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1. Preliminaries



Positive and completely positive maps

Definitions
S C My(R), T € Mpy(R) linear subspaces containing identity matrix and
invariant under transpose.

A linear map
¢:S—>T
such that ®(AT) = &(A) forall A€ S, is:
» positive if A = 0 = ¢(A) = 0.
» k—positive if

At ... Ak o(A11) ... o(Awk)
¢k( e ) = : :
Ak1 L. Akk ¢(Ak1) .. ¢(Akk)

is positive.

» completely positive (CP) if it is k—positive for every k € N.



Positive and completely positive maps
Mental picture

== 1-positive == 2-positive

we 3-poSitive === 4-positive === CP




Positive and completely positive maps

A breadth of applications

» matrix theory

» operator theory and operator algebra
> real algebraic geometry

» quantum physics

» quantum information theory

> free probability



Positive and completely positive maps

Our results 3
with I. Klep, S. McCullough, K. Sivic: There are many more positive maps than

completely positive maps, Int. Math. Res. Not. 11 (2019)

1. Quantitave bounds on the fraction of positive maps that are CP.
(exact asymptotics)
real algebraic geometry
convex analysis
harmonic analysis

2. An algorithm to produce positive maps that are not CP.
(from random input data)
algebraic geometry



Positive and completely positive maps

A small sample of existing literature

Theorem (Arveson, 2009)
Let n,m > 2. Then the probability p that a positive map ¢ : M,(C) — Mn(C) is
cp satisfies

» Szarek, Werner, Zyczkowski (2008) and Auburn, Szarek, Ye (2014): for the
case m = n provide and establish its asymptotic
behaviour.

» Collins, Hayden, Nechita (2017): random techniques for
maps that are in large dimensions.



Copositive and completely positive matrices

Definitions
Sp... real symmetric n x n matrices
A matrix
A= (aj)ij € Sn
is:

> positive semidefinite (PSD) if VT Av > 0 for every v € R”.



Copositive and completely positive matrices

Definitions
Sp... real symmetric n x n matrices
A matrix
A= (aj)i) € Sn
is:

> copositive (COP) if VT AV > 0 forevery V € RZ,.

> positive semidefinite (PSD) if VT Av > 0 for every v € R”.



Copositive and completely positive matrices

Definitions
Sp... real symmetric n x n matrices
A matrix
A= (aj)i) € Sn
is:

> copositive (COP) if VT AV > 0 forevery V € RZ,.

> positive semidefinite (PSD) if VT Av > 0 for every v € R”.

» completely positive (CP) if A = BB for some B € Rgﬁk.



Copositive and completely positive matrices

Definitions
Sp... real symmetric n x n matrices
A matrix
A= (aj)i) € Sn
is:

> copositive (COP) if VT AV > 0 forevery V € RZ,.

> positive semidefinite (PSD) if VT Av > 0 for every v € R”.

> nonnegative (NN) if &; > O for every /, /.

» sPNif A= P+ Nforsome P PSD and N NN.

» doubly nonnegative (DNN) if A = P N N for some P PSD and N NN.

» completely positive (CP) if A = BB for some B € Rgﬁk.



Copositive and completely positive matrices
Mental picture

== COP == 8PN = PSD e NN = DNN = CP




Copositive and completely positive matrices

A breadth of applications

v

matrix theory

v

optimization

v

graph theory

v

combinatorics

» quantum information theory



Copositive vs completely positive matrices

Ourresults
with I. Klep, T. Strekelj: A random copositive matrix is completely positive

with positive probability, in preparation

1. Quantitave bounds on the fraction of COP matrices that are CP.
(exact asymptotics)
real algebraic geometry
convex analysis
harmonic analysis

2. An algorithm to produce COP matrices that are not CP.
free probability inspired construction



Copositive and completely positive matrices

A small sample of existing literature

» Maxfield, Minc (1962) and Hall, Newman (1963): holds only
for

» Murty, Kadaby (1987) and Dickinson, Gijoen (2014): Deciding containment
in COP (resp. CP) is (resp. ).
» Parrilo (2000): , Where (x2 = (x2,...,x2))
n

K .= {AeS,: (O xF)" - (x*)T Ax® is a sum of squares of forms}.

i=1

» Dickinson, Dur, Gijben, Hildebrand (2013): for any

> Laurent, Schweighofer, Vargas (2022, 2023+): and

» Berman, Shaked-Monderer (2021): Copositive and completely positive
matrices, World Scientific Publishing Co.



Quantitative bounds

Theorem (Klep, McCullough, Sivic, Z, 2019)

For integers n,m > 3 the probability pn.m that a positive map ¢ : Sp, — Sm is CF,
is

Pr.m € ©(min(n, m)~9/2)

where d = ("} ("51) — 1.

Y

Theorem (Klep, Strekelj, Z, 2023+)

For every integer n > 4 the probability p, that a copositive matrix A € S, is CP, is

278 < p, < 1.



2. Gonverting to polynomials



Positive maps meet real algebraic geometry (RAG)

L(Sp,Sm) ... the vector space of all linear maps from S, to Sy,
R[x,y]z2 ... biformsinx = (x1,...,xp)andy = (¥1,...,¥m)
of bidegree (2, 2)
There is a natural bijection
r . E(Sn, Sm) — R[X, Y]2,27
O po(x,y) =y ®(xx")y.

Proposition
Let ®: S, — Sy be alinear map. Then:
1. @ is positive iff py is nonnegative.
2. & is completely positive iff pe is @ sum of squares (SOS). (Choi-Kraus theorem)

Corollary

The following probabilities (w.r.t. the corresponding distributions) are equal:
1. The probability that a positive map & € L(Sy,Sm) is CP.
2. The probability that a nonnegative biform p € R[x, y]z2 is SOS.



Copositive matrices meet RAG
R[«"ls. ... formsinx®=(x2,...,x2) of degree 4, i.e., quariic even forms.
There is a natural bijection

n
[:Sh— Rlxlae, Arrga(x):=(x*)TAx® =) ajxPx?.
ij=1



Copositive matrices meet RAG
R[«"ls. ... formsinx®=(x2,...,x2) of degree 4, i.e., quariic even forms.
There is a natural bijection

n
[:Sh— Rlxlae, Arrga(x):=(x*)TAx® =) ajxPx?.
ij=1

Proposition

Let A € S, be a matrix. Then:
1. Ais COP iff ga is nonnegative. (9a ... POS)
2. Ais PSD iff gais of the form 3=, (37,737 @a...1-80S)

6. Ais CPiff gais of the form =, (32, fjx?)” with f; > 0. (G ...CP)



Copositive matrices meet RAG
R[«"ls. ... formsinx®=(x2,...,x2) of degree 4, i.e., quariic even forms.

There is a natural bijection

n
[:Sh— Rlxlae, Arrga(x):=(x*)TAx® =) ajxPx?.
ij=1

Proposition

Let A € S, be a matrix. Then:
1. Ais COP iff ga is nonnegative. (9a ... POS)
2. Ais PSD iff gais of the form 3=, (37,737 @a...1-80S)
3. Ais NN iff ga has nonnegative coefficients. (@n ... NN)
4. Ais SPNiiff ga is of the form 3, (7, fuxx)”  (Parrio, 00) (@ ... SOS)
5. Ais DNN iff ga is /-SOS and NN. (9a ...DNN)
6. Ais CPiff gais of the form =, (32, fjx?)” with f; > 0. (G ...CP)

Corollary. The gaps between COP/PSD/NN/SPN/DNN/CP matrices correspond
to the gaps between POS//-SOS/NN/SOS/DNN/CP even quartics.



3. Proofs



Cones in question

Intersect with some hyperplane

e COP == SPN === PSD === NN

me DNN === CP === Hyperplane

cones are compact and hence finite.

[m] = =

Constraint: A hyperplane should be chosen such that the intersections with




Cones in question

Compact bases of the cones

[JCOP [SPN [PSD NN [CDNN [ CP

Perspective: Use results of real algebraic geometry, convex analysis and
harmonic analysis to estimate the volumes from both sides., -

>

DA



Cones in question

Or maybe a proper mental picture for Problem 2 is the following...

Naomi Shaked-Monderer * Abraham Berman

Copositive and
completely Positive
Matrices

Wb word scientitic




Volume radius

Proper measure of the sizes of convex cones

The volume radius vrad(C) of a compact set C C R", equipped with an inner
product (-, -) and a measure p, is

w0~ (551)

where B is the unit ball in (-, -).

» Indeed, since we are concerned with the asymptotic behavior as n goes to infinity, we need to
eliminate the dimension effect when dilating K by some factor c.

> A dilation multiplies the volume of C by ¢”, but a more appropriate effect would be
multiplication by c.



A general procedure to obtain the volume estimates

Input: a convex cone K in R".
Output: Bounds on the size of K.

Procedure:
1. Choose an inner product (-, -): ...to equip R".

2. Choose an affine hyperplane #: ...such that K" = K N H is bounded.

3. Translate # for —z to M:...such that M is a hyperplane (0 € Mm). Write
K=K —z.

4. Equip M with a pushforward measure of the Lebesgue measure.

5. Estimate vrad(K) from both sides.



Blaschke-Santal6 inequality and its reverse

Statement

(-,-) ... theinner product on R"
B ... theunitballw.rt. ()
K a bounded convex set with a non-empty interior in R”
K° ... thepolardualofaset K CR":
Ke={yeR" (x,y) <1 VxeK}
Theorem ( ; Blaschke, 1917, Santald, 49’)

If K is ‘central enough’, then

Vol(K) Vol(K®) < (Vol(B))?,

The left inequality holds also without the centrality assumption, but with
the origin in the interior.



Blaschke-Santal6 inequality and its reverse

Geometric picture

Ky ... the convex hull of the ellipse with a polar equation r(yp) =

Ko = Ki — (,0),

Ks = Ki +(3,0),

[Vol(K1)vol(K1%0)=1.73205 (vol(B)2]

|VDI(KZ)VOI(K2“0)=5.13711 (vol(B))*2

b
N

%(1 + %cosgp)q,

[Vol(K3)vol(K3"0)=0.989743 (vol(B))"2

-
-

@

FIK1 [ polar of K1

1 2 2 o 2 4 6

[IK2 [ polar of K2

2 1 [ 1 2

TIK3 [ polar of K3

> The set Kj is centered in different points on each of the pictures. The first two centers are not
close enough to the origin for the BS to hold, while in the third one it is.

> The translation of the body (i.e., Santalé point) so that the BS holds is difficult to determine,
unless the body has enough symmetries, fixing only one point which then must be the Santalé

one.



Procedure (irom 3 sices above) @pplied to our Problem 2
1. is equipped with the natural L? inner product
(f,g) = / fg do,
Sn—1
where and ¢ is the rotation invariant probability measures on the unit

sphere "' c R".
2. H is the affine hyperplane of forms from R[x]4 ¢ of average 1 on S"~':

H_{feR[x]m; /b;mfda_1}.

3. z:= and thus

M—H—Z—{fER[x]4,e:/ fd(T—O}.
Sn—1

4. Let [ the pushforward of the Lebesgue measure on R4m*M to M.



Procedure applied to our problems

5. It is crucial to make the following two observations:

—_—~—

Observation 1: (NN); = NN and (LF)j; = POS.
Here d stands for the differential inner product and « for the dual,

LF = { pr(f) € Rlxlae: f=Y £ forsome f, € R[x]w}
i

and pr : R[x]s = R[x]4,e is projection defined by:

2.2
pr( > QeXiXpXiXe) = Y aXixf.
1<i<j<k<e<n 1<i<j<n

Observation 2: LF is central enough.

Observation 3: CP C LF C NN C 4(€P — CxP).



The differential (also apolar) inner product

From Observation 1

For
f(x) = Z AjkeXiXjXkX¢ € R[x]4
1<i,j,k,L<n

the differential operator Dy : R[x]|4 — R is defined by

DO= Y awgpaa
i\g) = ikt .
(<P TRe<n O0X;0X;0Xk0Xq

The differential inner product on R[x]4 is given by

(f.g)a = Di(9).



Blaschke-Santalé inequality and its reverse in (-, )4

For a cone K C R[x]4,¢ let Kj be its dual in (-, -)4:
Ki={f€R[xlse: (f,9)a =0 Vg e K}

Theorem (BSd inequality and its reverse; Blekherman, 06‘)

Let K be any of the cones from our Problem 2. Then

1 2
R
2n 2\?(n+4)(n+6)

Svrad(k)vrad(K&‘).

Moreover, if K is ‘central enough’, then

N 1 2n—1 2
vrad(K) vrad(K}) < 8 %

(rramre) =

The proof uses representation theory, i.e., SO(n) acting on R[x]4 ¢ by rotation of coordinates.



Observation 3: NN C 4(CP — CP)

Follows from 2ab = (a + b)? — & — b?

Let r = (3f_y x2)2. The extreme points of NN are of two types:

n(n+2)
3 N~

and NECYH

The first type clearly belong to CP, while the second type to 4(&> — ETD):

= w ((X/2+X,2)2_X/4—X/4)> —r

=4 (n(n+2)(x,-2+xj2)2) —r) _3 (n(n+2)x,-4 —r) 23 (n(n+2)x4 - r)

8 2 3 2 3 /
p1 P2 P3

3 3
=p1+ 5(P1 = p2) + 5 (P — Ps)

E@‘F%(&’*ﬁj)‘Fg(é\l—sfﬁ:’)g



Roger’s-Shepard inequality

Crucial for Observation 3 to be applicable

K ... abounded convex set with a non-empty interior in R"
The difference body Diff(K) of K is defined by

Diff(K) := K — K.
Theorem (Roger’s-Shepard inequality, 1957)

Vol(Diff(K)) < (2:> Vol(K)

Hence,
vrad(Diff(K)) < 4 vrad(K).



Roger’s-Shepard inequality

Geometric picture

vol(K-K)=6vol(K)

— K — K -K

Remark: Working with Diff K instead of K is one of the crucial steps to obtain
our volume estimates for the problem of copositive matrices.



Proof of the gap for Problem 2

Theorem (Klep, Strekelj, Z, 2023+)
Letn> 5. Forall K € C := {POS,SOS, NN, PSD, DNN, LF, CP} we have that

vrad(K) = ©(n™ ). (2)

Proof:
1. By (NN)} = NN and the reverse BS, inequality:

% < (vrad(lm))z.

2. By CP C NN C 4(CP — CP) and the RS inequality:

1 1 — —~
< — vrad(NN) < vrad(CP), 3
o < 76 AN < vrad(CP) @)

3. By (/L?)E, = POS and the BS, inequality:
— — — 1
vrad(POS) < %f(wad(LF))*‘ < %(vrad(cp))*1 < 29‘/53 (4)
4. Now by observing that

CP C K C POS,
the inequalities (3) and (4) imply that for all cones K € C the statement (2) holds.



4*. Algorithms and Examples



4.1. Positive but not CP maps



Positive polynomials that are not SOS

Algorithm by Blekherman, Smith, Velasco, 2013

1.

The setting:

X CP"... anondegenerate (not contained in a hyperplane),
totally-real (real points X(IR) are Zariski dense),
irreducible variety,
deg(X) > codim(X) + 1,

R =R[xo,...,Xn]/I(X)... the coordinate ring of X.

Step 1:
» Choose linear forms intersecting in deg(X) distinct points with at
least codim(X) + 1 real and smooth ones, ps, . . ., Peodim(x)+1-
> Choose a linear form /1y vanishing in p1, . . ., Peodim(x), PUt NOL N Peogim(x)+1-
> Let /= (ho,...,hHn).
Step 2: Choose a quadratic form vanishing of order > 1 in
P1; .-+ Peodim(X)-

. Step 3: For § > 0 small enough, of + 15 + ... + /7, is nonnegative on X but

not SOS.



Positive but not sos biquadratic biforms

Algorithm
1. The setting:
X =opm(P" x P") C P"1. &, m Segre embedding
onm: (X1 oo X, ot Yml) = v XaYe oo XnYm)s
Z = (21132127"',Z1m7"',znm)7
Inm .. .the ideal generated by 2 x 2 minors of (z,-j)i,j,
ofm: Clz]/Inm — Clx,y], ofm(Zj+ Inm) = Xy; ring homomorphism,
dim(X) =n+m—2, codim(X) = (n—1)(m—1).
2. Step 1:

> Choose codim(X) + 1 random points x) € R”, y() € R™ and compute
20 = x) g ) ¢ R,
» Choose dim(X) = n+ m — 2 random vectors vi, . .. Vaim(x) € R™ from the

kernel of the matrix
(2(1) o Z(codim(X)+1)) *

and define
h(z)=v/ -z eR[z] forj=1,...,dim(X).

> Let /= (ho,...,Adim(x))-



Positive but not sos biquadratic biforms

Algorithm
3. Step 2:
3.1 Let gi(z),.. .,g(g)(,;)(z) be the generators of the ideal /. For each
i=1,...,codim(X) compute a basis {w{’,..., w{) , .} CR" of the kernel
of the matrix 0 _y
1 I
(VQ1 (27) - V(2 )) :
3.2 Choose a random vector v € R™™ from the intersection of the kernels of the
matrices

(Z(i) aw! ... Z0g ng"L(XMY fori=1,...,codim(X)
with the kernels of the matrices
(ei®e,-—e,-®e,-)* for1 <i<j<nm
and define
f(z)=Vv"-(z®z) € R[z]/In,m.

4. Step 3: Calculate the greatest 6o > 0 such that §of + Zfi%im(x) h2 is
nonnegative on Vi (/p,m). Then

(5f+ ) h?)(z) € POS\ SOS for every 0 < 4 < do.



Positive but not sos biquadratic biforms

Example

Po(X,y) = 104x7yF + 283xFy5 + 18x7y5 — 310X y1ye + 18X 15 + 4XF Vays+
310x1 X2)2 — 18x1X3y2 — 16X1 Xoy5 + 52X1 Xay5 + 4X1 Xoy5 — 26X1 X35
— 610xX1X2)1 Y2 — 44X1X3Y1Y2 + 36X1X2)1 Y3 — 200X1 X3Y1 Y3 — 44X1 X2 Y2 Y3
4 322x1 X3 o y3 + 285x2 Y2 + 16X5y72 4 4XoXzy? + 63X2 Y2 + X5y + 20X X35
+ 7X2y2 +125x35y5 — 20XoXays + 16X2y1 Yo + 4X2y1 Yo — 60X2X3Y1 Yo
+52x5y1 Y5 + 26X5 15 — 330x2XsY1 Y3 — 20X5 Yo ys + 20X5 25 — 100X2XsY2)3.



Positive but not CP map

Example @ : S3 — S3

104 155 9 285 8 26
®(Ey1)=|—-155 283 2|, ®(Ex)=|8 63 -—10|,
9 2 18 26 —-10 7

[16 2 13 310 -305 18
®(Ezz)=12 9 10|, O(E2+Exn)=|-305 -16 -22|,
|13 10 125 18 -—22 4

(18 —22 —100 4 30 -165
O(Ejg+Es) = | —22 52 161 |, O(Ep+Es)=|-30 20 -50
|—100 161 -26 ~165 —50 —20

] |



4.2. Exceptional DNN and exceptional
COP matrices



DNN matrices that are not CP of size n > 5

Algorithm
1. The setting:

[2[0,1]... an ambient space,
B:= {1} U{V2cos(2kn): k € N} U {V2sin(2kr): k € N} ... abasis,
M; : L2[0,1] — L2[0,1], Ms(g) = fg... the multiplication operator.

2. The idea: Find a closed infinite dimensional subspace # and 7 € H such
that /
M7t = Py M; Py
has all finite principal submatrices DNN but not CP, where
P, : L2[0,1] — H the orthogonal projection onto .
3. Choice of H and f € H:

#H C L2[0,1]... aclosed subspace spanned by cos(2kx). k < NN,

fisoftheform 1 2% &, cos(2kn), meN,
k=1



DNN matrices that are not CP of size n > 5

Algorithm
4. Certificates:
41 NN:a; >0, ..., am > 0.
42 PSD:f =Y. h?.
4.3 Not CP:
Hn... asubspace spanned by 1,cos(27),...,cos(2(n— 1)),
Pn:H — Hn... the orthogonal projection onto Hp,
A = P.MH Py,
1 -1 1 1 -1
—1 1 -1 1 1
H=| 1 -1t 1 —1 1] eCOP\SPN,
1 1 -1 1 -1
—1 1 1 —1 1
(Horn matrix; Hall, Newman, 1963)
We demand

(A®) H) <0,

with (-, -) the usual Frobenius inner product on symmetric matrices.



DNN matrices that are not CP of size n > 5

Justification of the certificates

1. NN is certified by the following equation:

1
/ cos(2jmx) cos(2kmx) cos(2¢mx)dx =
0

In particular,
1 V2ay
\/531 ao + 1
AB) = \/éag as + as
V2as a>+as
V2a, a3+ as

2. PSD is certified by

O Bl= NI

\/éaz
a + as
as+1
a +as
a + ag

ifj=4¢,k=0,
ifk#0andje {¢+k,l—k},
otherwise.

\/§a3 \@34
a +as as—+as
ay+as as—+as
14+ & a4

ai 1

2 *
M7t =32 (ME)™ = > ME!(MEF)"
i

!
3. Not CP is certified by
COP* =CP

(in the Frobenius inner product).



DNN matrices that are not CP of size n > 5

Implementation and an example
Let m = 6. The feasibility semidefinite program (SDP) implements the algorithm

above:
tr(A® H) = —¢,
f=v'Bv with B> 0ofsizem x m,

a>0, i=1,...,6,

where € > 0 is predetermined (small enough) and

vi=(1 cos(2nx) .-+ cos(2m'nx)).
Solving this SDP for different values of e and m’ < 6, we get (for e = 1/20)
1 16v2 V2 1 5v2
27 123 1472 21
16v2 124 1577 212 1205
27 123 2646 861 8526
A — V2 1577 26 572 1777340/2—2413803
123 2646 21 783 3254580
1 212 572 1777340/2+814317 16
1a7v2 861 783 3254580 27
5v2 1205 1777340+/2—2413803 16 1
21 8526 3254580 27



COP matrices that are not SPN of size n > 5

Algorithm and an example

Let A" be a DNN not CP matrix. To obtain a matrix C € COP \ SPN of size
n x nwe demand

(A", C) < (5
Z X; TCx?) is SOS for some k € N. (6)

(5) certifies C is not SPN due to
SPN* = DNN (in the Frobenius inner product),
while (6) certifies C is COP.

This is again a . Using A® as above we obtain
17 -2 38 38 _38
5 2 3 5
91 s _58 g 33
5 3 4 4
_ 33 53 39 13
C=1%2 -% % -~z 8
38 13 16 13
3 8 -7 3 -3
_ 36 33 8 _ 13 1373628701

5 4

ol

353935575



Open questions

> Estimate the gap between k-positive vs (k + 1)-positive vs cp maps for
fixed k.

» Construct an algorithm for producing random k-positive not (k + 1)-positive
maps.

» Can the algorithm produce extreme rays of the cone of positive maps?
» Estimate precisely the constants for volume radius of a Parrilo cone K,(,’) for
fixed r.

> Construct an algorithm for producing matrices from K" \ K"~ for fixed r.

» Construct an algorithm for producing matrices from COP,\ |, K,S') for
n>6.



Thank you for your attention!



