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1. Preliminaries



Positive and completely positive maps
Definitions

S ⊆ Mn(R), T ⊆ Mm(R) linear subspaces containing identity matrix and
invariant under transpose.

A linear map

Φ : S → T
such that Φ(AT ) = Φ(A)T for all A ∈ S, is:

I positive if A � 0⇒ φ(A) � 0.
I k–positive if

φk

(A11 . . . A1k
...

. . .
...

Ak1 . . . Akk

) =

φ(A11) . . . φ(A1k )
...

. . .
...

φ(Ak1) . . . φ(Akk )


is positive.

I completely positive (CP) if it is k–positive for every k ∈ N.



Positive and completely positive maps
Mental picture



Positive and completely positive maps
A breadth of applications

I matrix theory

I operator theory and operator algebra

I real algebraic geometry

I quantum physics

I quantum information theory

I free probability



Positive and completely positive maps
Our results
with I. Klep, S. McCullough, K. Šivic: There are many more positive maps than

completely positive maps, Int. Math. Res. Not. 11 (2019)

1. Quantitave bounds on the fraction of positive maps that are CP.
(exact asymptotics)

real algebraic geometry
convex analysis
harmonic analysis

2. An algorithm to produce positive maps that are not CP.
(from random input data)

algebraic geometry



Positive and completely positive maps
A small sample of existing literature

Theorem (Arveson, 2009)
Let n,m ≥ 2. Then the probability p that a positive map ϕ : Mn(C)→ Mm(C) is
cp satisfies 0 < p < 1.

I Szarek, Werner, Życzkowski (2008) and Auburn, Szarek, Ye (2014): for the
case m = n provide quantitative bounds on p and establish its asymptotic
behaviour.

I Collins, Hayden, Nechita (2017): random techniques for constructing
k -positive maps that are not (k + 1)-positive in large dimensions.



Copositive and completely positive matrices
Definitions

Sn. . . real symmetric n × n matrices

A matrix

A = (aij )i,j ∈ Sn

is:

I copositive (COP) if vT Av ≥ 0 for every v ∈ Rn
≥0.

I positive semidefinite (PSD) if vT Av ≥ 0 for every v ∈ Rn.

I nonnegative (NN) if aij ≥ 0 for every i , j .

I SPN if A = P + N for some P PSD and N NN.
I doubly nonnegative (DNN) if A = P ∩ N for some P PSD and N NN.

I completely positive (CP) if A = BBT for some B ∈ Rn×k
≥0 .
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≥0 .



Copositive and completely positive matrices
Mental picture



Copositive and completely positive matrices
A breadth of applications

I matrix theory

I optimization

I graph theory

I combinatorics

I quantum information theory



Copositive vs completely positive matrices
Our results
with I. Klep, T. Štrekelj: A random copositive matrix is completely positive

with positive probability, in preparation

1. Quantitave bounds on the fraction of COP matrices that are CP.
(exact asymptotics)

real algebraic geometry
convex analysis
harmonic analysis

2. An algorithm to produce COP matrices that are not CP.
free probability inspired construction



Copositive and completely positive matrices
A small sample of existing literature

I Maxfield, Minc (1962) and Hall, Newman (1963): COPn = SPNn holds only
for n ≤ 4.

I Murty, Kadaby (1987) and Dickinson, Gijben (2014): Deciding containment
in COP (resp. CP) is co-NP-complete (resp. NP-hard).

I Parrilo (2000): int(COPn) ⊆
⋃

r K (r)
n , where (x2 = (x2

1 , . . . , x
2
n ))

K (r)
n := {A ∈ Sn : (

n∑
i=1

x2
i )r · (x2)T Ax2 is a sum of squares of forms}.

I Dickinson, Dür, Gijben, Hildebrand (2013): COP5 6= K (r)
5 for any r ∈ N.

I Laurent, Schweighofer, Vargas (2022, 2023+): COP5 =
⋃

r

K (r)
5 and

COP6 6=
⋃

r

K (r)
6 .

I Berman, Shaked-Monderer (2021): Copositive and completely positive
matrices, World Scientific Publishing Co.



Quantitative bounds

Theorem (Klep, McCullough, Šivic, Z, 2019)
For integers n,m ≥ 3 the probability pn,m that a positive map Φ : Sn → Sm is CP,
is

pn,m ∈ Θ(min(n,m)−d/2),

where d =
(n+1

2

)(m+1
2

)
− 1.

Theorem (Klep, Štrekelj, Z, 2023+)
For every integer n > 4 the probability pn that a copositive matrix A ∈ Sn is CP, is

2−13 ≤ pn ≤ 1.



2. Converting to polynomials



Positive maps meet real algebraic geometry (RAG)
L(Sn,Sm) . . . the vector space of all linear maps from Sn to Sm,

R[x,y]2,2 . . . biforms in x = (x1, . . . , xn) and y = (y1, . . . , ym)

of bidegree (2,2)

There is a natural bijection

Γ : L(Sn,Sm)→ R[x,y]2,2,

Φ 7→ pΦ(x,y) := yT Φ(xxT )y.

Proposition
Let Φ : Sn → Sm be a linear map. Then:

1. Φ is positive iff pΦ is nonnegative.
2. Φ is completely positive iff pΦ is a sum of squares (SOS). (Choi-Kraus theorem)

Corollary
The following probabilities (w.r.t. the corresponding distributions) are equal:

1. The probability that a positive map Φ ∈ L(Sn,Sm) is CP.
2. The probability that a nonnegative biform p ∈ R[x,y]2,2 is SOS.



Copositive matrices meet RAG
R[x2]4,e . . . forms in x2 = (x2

1 , . . . , x
2
n ) of degree 4, i.e., quartic even forms.

There is a natural bijection

Γ : Sn → R[x]4,e, A 7→ qA(x) := (x2)T Ax2 =
n∑

i,j=1

aijx2
i x2

j .

Proposition
Let A ∈ Sn be a matrix. Then:

1. A is COP iff qA is nonnegative. (qA . . . POS)

2. A is PSD iff qA is of the form
∑

i

(∑
j fijx2

j

)2. (qA . . . `-SOS)

3. A is NN iff qA has nonnegative coefficients. (qA . . . NN)

4. A is SPN iff qA is of the form
∑

i

(∑
j,k fijk xjxk

)2
(Parrilo, 00’) (qA . . . SOS)

5. A is DNN iff qA is `-SOS and NN. (qA . . . DNN)

6. A is CP iff qA is of the form
∑

i

(∑
j fijx2

j

)2 with fij ≥ 0. (qA . . . CP)

Corollary. The gaps between COP/PSD/NN/SPN/DNN/CP matrices correspond
to the gaps between POS/`-SOS/NN/SOS/DNN/CP even quartics.
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R[x2]4,e . . . forms in x2 = (x2

1 , . . . , x
2
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3. Proofs



Cones in question
Intersect with some hyperplane

Constraint: A hyperplane should be chosen such that the intersections with
cones are compact and hence finite.



Cones in question
Compact bases of the cones

Perspective: Use results of real algebraic geometry, convex analysis and
harmonic analysis to estimate the volumes from both sides.



Cones in question
Or maybe a proper mental picture for Problem 2 is the following...



Volume radius
Proper measure of the sizes of convex cones

The volume radius vrad(C) of a compact set C ⊆ Rn, equipped with an inner
product 〈·, ·〉 and a measure µ, is

vrad(C) =

(
Vol(C)

Vol(B)

)1/n

,

where B is the unit ball in 〈·, ·〉.

I Indeed, since we are concerned with the asymptotic behavior as n goes to infinity, we need to
eliminate the dimension effect when dilating K by some factor c.

I A dilation multiplies the volume of C by cn, but a more appropriate effect would be
multiplication by c.



A general procedure to obtain the volume estimates

Input: a convex cone K in Rn.

Output: Bounds on the size of K .

Procedure:
1. Choose an inner product 〈·, ·〉: . . . to equip Rn.

2. Choose an affine hyperplane H: . . . such that K ′ = K ∩H is bounded.

3. Translate H for −z toM:. . . such thatM is a hyperplane (0 ∈M). Write
K̃ := K ′ − z.

4. EquipM with a pushforward measure of the Lebesgue measure.

5. Estimate vrad(K̃ ) from both sides.



Blaschke-Santaló inequality and its reverse
Statement

〈·, ·〉 . . . the inner product on Rn

B . . . the unit ball w.r.t. 〈·, ·〉
K . . . a bounded convex set with a non-empty interior in Rn

K ◦ . . . the polar dual of a set K ⊆ Rn :

K ◦ = {y ∈ Rn : 〈x , y〉 ≤ 1 ∀x ∈ K}

Theorem (Bourgain, Milman, ’87, Kuperberg, 2008; Blaschke, 1917, Santaló, 49’)
If K is ‘central enough’, then

4−n(Vol(B))2 ≤ Vol(K ) Vol(K ◦) ≤ (Vol(B))2,

Remark: The left inequality holds also without the centrality assumption, but with
the origin in the interior.



Blaschke-Santaló inequality and its reverse
Geometric picture

K1 . . . the convex hull of the ellipse with a polar equation r(ϕ) = 3
4 (1 + 1

2 cosϕ)−1,
K2 = K1 − ( 1

3 , 0), K3 = K1 + ( 1
2 , 0),

I The set K1 is centered in different points on each of the pictures. The first two centers are not
close enough to the origin for the BS to hold, while in the third one it is.

I The translation of the body (i.e., Santaló point) so that the BS holds is difficult to determine,
unless the body has enough symmetries, fixing only one point which then must be the Santaló
one.



Procedure (from 3 slides above) applied to our Problem 2

1. R[x]4,e is equipped with the natural L2 inner product

〈f ,g〉 =

∫
Sn−1

fg dσ,

where and σ is the rotation invariant probability measures on the unit
sphere Sn−1 ⊂ Rn.

2. H is the affine hyperplane of forms from R[x]4,e of average 1 on Sn−1:

H =

{
f ∈ R[x]4,e :

∫
Sn1

f dσ = 1
}
.

3. z :=
(∑n

i=1 x2
i

)2 and thus

M = H− z =

{
f ∈ R[x]4,e :

∫
Sn−1

f dσ = 0
}
.

4. Letµ the pushforward of the Lebesgue measure on RdimM toM.



Procedure applied to our problems

5. It is crucial to make the following two observations:

Observation 1: (̃NN)∗d = ÑN and (̃LF)∗d = P̃OS.

Here d stands for the differential inner product and ∗ for the dual,

LF :=
{
pr(f ) ∈ R[x]4,e : f =

∑
i

f 4
i for some fi ∈ R[x]1

}
and pr : R[x]4 → R[x]4,e is projection defined by:

pr
( ∑

1≤i≤j≤k≤`≤n

aijk`xixjxk x`

)
=

∑
1≤i≤j≤n

aiijjx2
i x2

j . (1)

Observation 2: L̃F is central enough.

Observation 3: C̃P ⊆ L̃F ⊆ ÑN ⊆ 4(C̃P− C̃P).



The differential (also apolar) inner product
From Observation 1

For
f (x) =

∑
1≤i,j,k,`≤n

aijk`xixjxk x` ∈ R[x]4

the differential operator Df : R[x]4 → R is defined by

Df (g) =
∑

1≤i,j,k,`≤n

aijk`
∂4g

∂xi∂xj∂xk∂x`
.

The differential inner product on R[x]4 is given by

〈f ,g〉d = Df (g).



Blaschke-Santaló inequality and its reverse in 〈·, ·〉d
For a cone K ⊆ R[x]4,e let K ∗d be its dual in 〈·, ·〉d :

K ∗d = {f ∈ R[x]4,e : 〈f ,g〉d ≥ 0 ∀g ∈ K}

Theorem (BSd inequality and its reverse; Blekherman, 06’)
Let K be any of the cones from our Problem 2. Then

1
2n2 ≤︸︷︷︸

n≥5

2
(n + 4)(n + 6)

≤ vrad(K̃ ) vrad(K̃ ∗d ).

Moreover, if K̃ is ‘central enough’, then

vrad(K̃ ) vrad(K̃ ∗d ) ≤
( 8

(n + 4)(n + 6)

)1− 2n−1
n2+n−1 ≤︸︷︷︸

n≥5

32
n2 .

The proof uses representation theory, i.e., SO(n) acting on R[x]4,e by rotation of coordinates.



Observation 3: ÑN ⊆ 4(C̃P− C̃P)
Follows from 2ab = (a + b)2 − a2 − b2

Let r =
(∑n

k=1 x2
k )2. The extreme points of ÑNQ are of two types:

n(n + 2)

3
x4

i − r and n(n + 2)x2
i x2

j − r , i 6= j.

The first type clearly belong to C̃P, while the second type to 4(C̃P− C̃P):

n(n + 2)x2
i x2

j − r =

=
n(n + 2)

2

(
(x2

i + x2
j )2 − x4

i − x4
j
))
− r

= 4
(

n(n + 2)

8
(x2

i + x2
j )2)− r

)
︸ ︷︷ ︸

p1

−
3
2

(
n(n + 2)

3
x4

i − r
)

︸ ︷︷ ︸
p2

−
3
2

(
n(n + 2)

3
x4

j − r
)

︸ ︷︷ ︸
p3

= p1 +
3
2

(p1 − p2) +
3
2

(p1 − p3)

∈ C̃PQ +
3
2

(C̃P− C̃P) +
3
2

(C̃P− C̃P) ⊆ 4(C̃P− C̃P).



Roger’s-Shepard inequality
Crucial for Observation 3 to be applicable

K . . . a bounded convex set with a non-empty interior in Rn

The difference body Diff(K ) of K is defined by

Diff(K ) := K − K .

Theorem (Roger’s-Shepard inequality, 1957)

Vol(Diff(K )) ≤
(

2n
n

)
Vol(K )

Hence,
vrad(Diff(K )) ≤ 4 vrad(K ).



Roger’s-Shepard inequality
Geometric picture

Remark: Working with Diff K instead of K is one of the crucial steps to obtain
our volume estimates for the problem of copositive matrices.



Proof of the gap for Problem 2
Theorem (Klep, Štrekelj, Z, 2023+)
Let n ≥ 5. For all K ∈ C := {POS,SOS,NN,PSD,DNN, LF,CP} we have that

vrad(K̃ ) = Θ(n−1). (2)

Proof:

1. By (̃NN)∗d = ÑN and the reverse BSd inequality:

1
2n2
≤
(

vrad(ÑN)
)2
.

2. By C̃P ⊆ ÑN ⊆ 4(C̃P− C̃P) and the RS inequality:

1

16
√

2n
≤

1
16

vrad(ÑN) ≤ vrad(C̃P), (3)

3. By (̃LF)∗d = P̃OS and the BSd inequality:

vrad(P̃OS) ≤
32
n2

(vrad(L̃F))−1 ≤
32
n2

(vrad(C̃P))−1 ≤ 29
√

2
1
n
. (4)

4. Now by observing that
CP ⊆ K ⊆ POS,

the inequalities (3) and (4) imply that for all cones K ∈ C the statement (2) holds.



4*. Algorithms and Examples



4.1. Positive but not CP maps



Positive polynomials that are not SOS
Algorithm by Blekherman, Smith, Velasco, 2013

1. The setting:

X ⊆ Pn . . . a nondegenerate (not contained in a hyperplane),

. . . totally-real (real points X (R) are Zariski dense),

. . . irreducible variety,

. . . deg(X ) > codim(X ) + 1,

R = R[x0, . . . , xn]/I(X ) . . . the coordinate ring of X .

2. Step 1:
I Choose linear forms h1, . . . , hdim(X) intersecting in deg(X ) distinct points with at

least codim(X ) + 1 real and smooth ones, p1, . . . , pcodim(X)+1.
I Choose a linear form h0 vanishing in p1, . . . , pcodim(X), but not in pcodim(X)+1.
I Let I = 〈h0, . . . , hm〉.

3. Step 2: Choose a quadratic form f ∈ R \ I2 vanishing of order > 1 in
p1, . . . ,pcodim(X).

4. Step 3: For δ > 0 small enough, δf + h2
0 + . . .+ h2

m is nonnegative on X but
not SOS.



Positive but not sos biquadratic biforms
Algorithm

1. The setting:

X = σn,m(Pn × Pm) ⊆ Pnm−1, σn,m Segre embedding

σn,m : ([x1 : . . . : xn], [y1 : . . . : ym]) 7→ [x1y1 : x1y2 : . . . : xnym],

z = (z11, z12, . . . , z1m, . . . , znm),

In,m . . . the ideal generated by 2× 2 minors of (zij )i,j ,

σ#
n,m : C[z]/In,m → C[x,y], σ#

n,m(zij + In,m) = xiyj ring homomorphism,
dim(X ) = n + m − 2, codim(X ) = (n − 1)(m − 1).

2. Step 1:
I Choose codim(X ) + 1 random points x (i) ∈ Rn, y (i) ∈ Rm and compute

z(i) = x (i) ⊗ y (i) ∈ Rnm.
I Choose dim(X ) = n + m − 2 random vectors v1, . . . vdim(X) ∈ Rnm from the

kernel of the matrix (
z(1) . . . z(codim(X)+1)

)∗
and define

hj(z) = v∗j · z ∈ R[z] for j = 1, . . . , dim(X ).

I Let I = 〈h0, . . . , hdim(X)〉.



Positive but not sos biquadratic biforms
Algorithm
3. Step 2:

3.1 Let g1(z), . . . , g(n
2)(

m
2)
(z) be the generators of the ideal In,m. For each

i = 1, . . . , codim(X ) compute a basis {w (i)
1 , . . . ,w (i)

dim(X)+1} ⊆ Rnm of the kernel
of the matrix (

∇g1(z(i)) · · · ∇g(n
2)(

m
2)
(z(i))

)∗
.

3.2 Choose a random vector v ∈ Rn2m2
from the intersection of the kernels of the

matrices(
z(i) ⊗ w (i)

1 · · · z(i) ⊗ w (i)
dim(X)+1

)∗
for i = 1, . . . , codim(X )

with the kernels of the matrices(
ei ⊗ ej − ej ⊗ ei

)∗ for 1 ≤ i < j ≤ nm

and define
f (z) = v∗ · (z⊗ z) ∈ R[z]/In,m.

4. Step 3: Calculate the greatest δ0 > 0 such that δ0f +
∑codim(X)

i=0 h2
i is

nonnegative on VR(In,m). Then

(δf +
∑

i

h2
i )(z) ∈ POS \ SOS for every 0 < δ < δ0.



Positive but not sos biquadratic biforms
Example

pΦ(x , y) = 104x2
1 y2

1 + 283x2
1 y2

2 + 18x2
1 y2

3 − 310x2
1 y1y2 + 18x2

1 y1y3 + 4x2
1 y2y3+

310x1x2y2
1 − 18x1x3y2

1 − 16x1x2y2
2 + 52x1x3y2

2 + 4x1x2y2
3 − 26x1x3y2

3

− 610x1x2y1y2 − 44x1x3y1y2 + 36x1x2y1y3 − 200x1x3y1y3 − 44x1x2y2y3

+ 322x1x3y2y3 + 285x2
2 y2

1 + 16x2
3 y2

1 + 4x2x3y2
1 + 63x2

2 y2
2 + 9x2

3 y2
2 + 20x2x3y2

2

+ 7x2
2 y2

3 + 125x2
3 y2

3 − 20x2x3y2
3 + 16x2

2 y1y2 + 4x2
3 y1y2 − 60x2x3y1y2

+ 52x2
2 y1y3 + 26x2

3 y1y3 − 330x2x3y1y3 − 20x2
2 y2y3 + 20x2

3 y2y3 − 100x2x3y2y3.



Positive but not CP map
Example Φ : S3 → S3

Φ(E11) =

 104 −155 9
−155 283 2

9 2 18

 , Φ(E22) =

285 8 26
8 63 −10

26 −10 7

 ,

Φ(E33) =

16 2 13
2 9 10
13 10 125

 , Φ(E12 + E21) =

 310 −305 18
−305 −16 −22

18 −22 4

 ,
Φ(E13+E31) =

 −18 −22 −100
−22 52 161
−100 161 −26

 , Φ(E23+E32) =

 4 −30 −165
−30 20 −50
−165 −50 −20

 .



4.2. Exceptional DNN and exceptional
COP matrices



DNN matrices that are not CP of size n ≥ 5
Algorithm

1. The setting:

L2[0,1] . . . an ambient space,

B :=
{

1
}
∪
{√

2 cos(2kπ) : k ∈ N
}
∪
{√

2 sin(2kπ) : k ∈ N
}
. . . a basis,

Mf : L2[0,1]→ L2[0,1], Mf (g) = fg . . . the multiplication operator.

2. The idea: Find a closed infinite dimensional subspace H and f ∈ H such
that

MHf := PHMf PH

has all finite principal submatrices DNN but not CP, where
PH : L2[0,1]→ H the orthogonal projection onto H.

3. Choice of H and f ∈ H:

H ⊆ L2[0,1] . . . a closed subspace spanned by cos(2kπ), k ∈ N0,

f is of the form 1 + 2
m∑

k=1

ak cos(2kπ), m ∈ N,



DNN matrices that are not CP of size n ≥ 5
Algorithm

4. Certificates:
4.1 NN: a1 ≥ 0, . . . ,am ≥ 0.
4.2 PSD: f =

∑
i h2

i .
4.3 Not CP:

Hn . . . a subspace spanned by 1, cos(2π), . . . , cos(2(n − 1)π),

Pn : H → Hn . . . the orthogonal projection onto Hn,

A(n) := PnMHf Pn,

H =


1 −1 1 1 −1
−1 1 −1 1 1

1 −1 1 −1 1
1 1 −1 1 −1
−1 1 1 −1 1

 ∈ COP \ SPN,

(Horn matrix; Hall, Newman, 1963)

We demand

〈A(5),H〉 < 0,
with 〈·, ·〉 the usual Frobenius inner product on symmetric matrices.



DNN matrices that are not CP of size n ≥ 5
Justification of the certificates

1. NN is certified by the following equation:

∫ 1

0
cos(2jπx) cos(2kπx) cos(2`πx)dx =


1
2 , if j = `, k = 0,
1
4 , if k 6= 0 and j ∈ {`+ k , `− k},
0, otherwise.

In particular,

A(5) =


1

√
2a1

√
2a2

√
2a3

√
2a4√

2a1 a2 + 1 a1 + a3 a2 + a4 a3 + a5√
2a2 a1 + a3 a4 + 1 a1 + a5 a2 + a6√
2a3 a2 + a4 a1 + a5 1 + a6 a1√
2a4 a3 + a5 a2 + a6 a1 1

 .

2. PSD is certified by
MHf =

∑
i

(
MHhi

)2
=
∑

i

MHhi

(
MHhi

)∗
.

3. Not CP is certified by

COP∗ = CP (in the Frobenius inner product).



DNN matrices that are not CP of size n ≥ 5
Implementation and an example

Let m = 6. The feasibility semidefinite program (SDP) implements the algorithm
above:

tr(A(5)H) = −ε,
f = vTBv with B � 0 of size m′ ×m′,
ai ≥ 0, i = 1, . . . ,6,

where ε > 0 is predetermined (small enough) and

vT =
(
1 cos(2πx) · · · cos(2m′πx)

)
.

Solving this SDP for different values of ε and m′ ≤ 6, we get (for ε = 1/20)

A(5) =



1 16
√

2
27

√
2

123
1

147
√

2
5
√

2
21

16
√

2
27

124
123

1577
2646

212
861

1205
8526

√
2

123
1577
2646

26
21

572
783

1777340
√

2−2413803
3254580

1
147
√

2
212
861

572
783

1777340
√

2+814317
3254580

16
27

5
√

2
21

1205
8526

1777340
√

2−2413803
3254580

16
27 1


.



COP matrices that are not SPN of size n ≥ 5
Algorithm and an example

Let A(n) be a DNN not CP matrix. To obtain a matrix C ∈ COP \ SPN of size
n × n we demand

〈A(n),C〉 < 0, (5)( n∑
i=1

x2
i
)k(

(x2)T Cx2) is SOS for some k ∈ N. (6)

(5) certifies C is not SPN due to

SPN∗ = DNN (in the Frobenius inner product),

while (6) certifies C is COP.

This is again a feasibility SDP. Using A(5) as above we obtain

C =



17 − 91
5

33
2

38
3 − 36

5

− 91
5

59
3 − 53

4 8 33
4

33
2 − 53

4
39
4 − 13

2 8
38
3 8 − 13

2
16
3 − 13

3

− 36
5

33
4 8 − 13

3
1373628701
353935575


.



Open questions
Maps:
I Estimate the gap between k -positive vs (k + 1)-positive vs cp maps for

fixed k .

I Construct an algorithm for producing random k -positive not (k + 1)-positive
maps.

I Can the algorithm produce extreme rays of the cone of positive maps?

Matrices:
I Estimate precisely the constants for volume radius of a Parrilo cone K (r)

n for
fixed r .

I Construct an algorithm for producing matrices from K (r)
n \ K (r−1)

n for fixed r .

I Construct an algorithm for producing matrices from COPn \
⋃

r K (r)
n for

n ≥ 6.



Thank you for your attention!


