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Notation

R - the ring of complex polynomials C[x ] (x∗ = x = x) or complex Laurent
polynomials C[z , 1

z ] (z∗ = z = 1
z )

Mn(R) - matrix polynomials (F ∗ = F T )

Hn(R) - hermitian matrix polynomials (F ∗ = F )

∑
Mn(R)2 - sums of hermitian matrix squares, i.e. finite sums of the form∑

A∗
i Ai , where Ai ∈ Mn(R)



Matrix Fejér-Riesz theorem
Theorem (Fejér-Riesz theorem on T)

Let

A(z) =
N∑

m=−N
Amzm ∈ Mn

(
C

[
z ,

1
z

])
be a n × n matrix Laurent polynomial, such that A(z) is positive
semidefinite for every

z ∈ T := {z ∈ C : |z | = 1} .

Then there exists a matrix polynomial

B(z) =
N∑

m=0
Bmzm ∈ Mn(C[z ]),

such that
A(z) = B(z)∗B(z).



Matrix Fejér-Riesz theorem

Theorem (Fejér-Riesz theorem on R)

Let

F (x) =
2N∑

m=0
Fmxm ∈ Mn(C[x ])

be a n × n matrix polynomial, such that F (x) is positive semidefinite for
every x ∈ R. Then there exists a matrix polynomial

G(x) =
N∑

m=0
Gmxm ∈ Mn(C[x ]),

such that
F (x) = G(x)∗G(x).
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Main problem

Problem

1 Characterize univariate matrix Laurent polynomials, which are positive
semidefinite on a union of points and arcs in T.

2 Characterize univariate matrix polynomials, which are positive
semidefinite on a union of points and intervals (not necessarily
bounded) in R.



Semialgebraic set and preordering

A basic closed semialgebraic set KS ⊆ R associated to a finite subset

S = {g1, . . . , gs} ⊂ R [x ]

is given by

K := KS = {x ∈ R : gj(x) ≥ 0, j = 1, . . . , s} .

We define the n-th matrix preordering T n
S by

T n
S :=

{ ∑
e∈{0,1}s

σege : σe ∈
∑

Mn(C[x ])2 for all e ∈ {0, 1}s
}

,

where e = (e1, . . . , es) and ge stands for ge1
1 · · · ges

s .



Saturated preordering

Let Posn
⪰0(KS) be the set of all n × n hermitian matrix polynomials, which

are positive semidefinite on KS , i.e.,

F ∈ Posn
⪰0(KS) ⇔ F (x) ⪰ 0 ∀x ∈ KS .

Matrix preordering T n
S is saturated if T n

S = Posn
⪰0(KS).

Saturated matrix preordering T n
S is boundedly saturated, if every

F ∈ Posn
⪰0(KS) is of the form

F =
∑

e∈{0,1}s
σege ,

where
deg(σege) ≤ deg(F )

holds for every e ∈ {0, 1}s .



Natural description and scalar saturated preorderings

Let K ⊆ R be a basic closed semialgebraic set.

A set S = {g1, . . . , gs} ⊂ R[x ] is the natural description of K , if it satisfies
the following conditions:
(a) If K has the least element a, then x − a ∈ S.
(b) If K has the greatest element a, then a − x ∈ S.
(c) For every a ̸= b ∈ K , if (a, b) ∩ K = ∅, then (x − a)(x − b) ∈ S.
(d) These are the only elements of S.

Theorem (Kuhlmann, Marshall, 2002)
If S is the natural description of K, then the preordering T 1

S is boundedly
saturated.



Matricial saturated preorderings

Theorem (Gohberg, Krein, 1958)
For K = R, T n

∅ is boundedly saturated for every n ∈ N.

Theorem (Dette, Studden, 2002)
For K = K{x ,1−x} = [0, 1], T n

{x ,1−x} is boundedly saturated for every
n ∈ N.

Theorem (Schmüdgen, Savchuk, 2012)
For K = K{x} = [0, ∞), T n

{x} is boundedly saturated for every n ∈ N.



Matricial saturated preorderings

Theorem (Compact Nichtnegativstellensatz; Z., 2016)
Let K be a compact semialgebraic set with the natural description S. Then
T n

S is saturated for every n ∈ N.

Theorem (Non-compact Nichtnegativstellensatz; Z., 2016)
Suppose K be an unbounded basic closed semialgebraic set in R and S its
natural description. Then, for a hermitian F ∈ Mn(C[x ]), the following are
equivalent:

1 F ∈ Posn
⪰0(K ).

2 (1 + x2)kF ∈ T n
S for some k ∈ N ∪ {0}.



Classification of non-compact sets K

K T n
S saturated

an unbounded interval Yes
a union of an unbounded interval and

an isolated point ?

a union of an unbounded interval and
m isolated points with m ≥ 2 No

a union of two unbounded intervals Yes
a union of two unbounded intervals and

an isolated point ?

a union of two unbounded intervals and
m isolated points with m ≥ 2 No

includes a bounded and an unbounded interval No



Classification of non-compact sets K
Theorem (Union of an interval and point; Sun, Z., 2025)
Let K = {a} ∪ [b, c], a, b, c ∈ R, a < b < c. Then T n

{x−a,(x−a)(x−b),c−x} is
boundedly saturated for every n ∈ N.

K T n
S sat.

an unbounded interval Yes
a union of an unbounded interval and

an isolated point Yes

a union of an unbounded interval and
m isolated points with m ≥ 2 No

a union of two unbounded intervals Yes
a union of two unbounded intervals and

an isolated point Yes

a union of two unbounded intervals and
m isolated points with m ≥ 2 No

includes a bounded and an unbounded interval No



Proof of Compact Nichtnegativstellensatz
Proposition
Suppose K is a non-empty basic closed semialgebraic set in R and S a
natural description of K. Then for every F ∈ Posn

⪰0(K ) and every w ∈ C
there exists h ∈ R[x ], such that h(w) ̸= 0 and

h2F ∈ T n
S .

Proof of Proposition.
The proof is by induction of the size of matrix polynomials n. We write

F (x) = p(x)mG(x),

where

p(x) =
{

x − w , w ∈ R
(x − w)(x − w), w /∈ R , m ∈ Z+, G(w) ̸= 0.



Proof of Compact Nichtnegativstellensatz

Proof of Proposition.
Writing

G :=
[

a β
β∗ C

]
∈

[
R[x ] M1,n−1

(
C[x ]

)
Mn−1,1

(
C[x ]

)
Hn−1

(
C[x ]

) ]
,

it holds that

a4 · G =
[

a 0
β∗ aIn−1

] [
a3 0
0 a(aC − β∗β)

] [
a β
0 aIn−1

]
,

[
a3 0
0 a(aC − β∗β)

]
=

[
a 0

−β∗ aIn−1

]
· G ·

[
a −β
0 aIn−1

]
.



Proof of Compact Nichtnegativstellensatz

Proof of Proposition.
WLOG: a(w) ̸= 0 (otherwise use a permutation).

a4F =
[

a 0
β∗ aIn−1

] [
d 0
0 D

] [
a β
0 aIn−1

]
,

[
d 0
0 D

]
=

[
a 0

−β∗ aIn−1

]
F

[
a −β
0 aIn−1

]
,

where d = pma3 ∈ R[x ] and D = pm (aC − β∗β) ∈ Hn−1
(
C[x ]

)
. By the

induction hypothesis, there exists h1 ∈ R[x ] with h1(w) ̸= 0, such that

h2
1D ∈ T n−1

S .

Together with h2
1d ∈ T 1

S , it follows that
(a2h1)2F ∈ T n

S .



Getting rid of the denominator

To conclude the proof we need the following:

Proposition (Scheiderer, 2006)
Suppose R is a commutative ring with 1 and Q ⊆ R. Let

Φ : R → C(K ,R)

be a ring homomorphism, where K is a topological space which is compact
and Hausdorff, and Φ(R) separates points in K. Suppose f1, . . . , fk ∈ R are
such that

⟨f1, . . . , fk⟩ = R and Φ(fj) ≥ 0, j = 1, . . . , k.

Then there exist s1, . . . , sk ∈ R such that

s1f1 + . . . + sk fk = 1 and Φ(sj) > 0, j = 1, . . . , k.



Proof of Compact Nichtnegativstellensatz

We have

I := ⟨h2 : h ∈ R[x ], h2F ∈ T n
S ⟩ =︸︷︷︸

“h2F−proposition”

R[x ].

By Scheiderer’s result, there exist s1, . . . , sk ∈ Pos1
≻0(K ) and

h1, . . . , hk ∈ I, such that
k∑

j=1
sjh2

j = 1.

Hence,

F = 1 · F =
k∑

j=1
sj︸︷︷︸

∈T 1
S

h2
j F︸︷︷︸

∈T n
S

∈ T n
S ,

which concludes the proof.



Counterexample for non-compact case
Example
The matrix polynomial

F (x) :=
[
x + 2

√
6√

6 x2 − 2x + 3

]

is positive semidefinite on K := [−1, 0] ∪ [1, ∞), but F /∈ T 2
S , where S is

the natural description of K .

Proof.
All the principal minors of F , i.e. x + 2, x2 − 2x + 3 and det(F ) = x3 − x
are non-negative on K .
Suppose

F (x) = σ0 + σ1(x + 1) + σ2x(x − 1) + σ3(x + 1)x(x − 1), (∗)

where σi ∈
∑

M2(C[x ])2.



Counterexample for non-compact case

Proof.
After comparing degrees of both sides we conclude that σ3 = 0,
deg(σ0) ≤ 2, deg(σ1) = 0, deg(σ2) = 0 and observing the monomial x2 on

both sides, it follows that σ2 =
[
0 0
0 c

]
for some c ∈ [0, 1].

(∗) is equivalent to

F (x) − σ2x(x − 1) = σ0 + σ1(x + 1).

The right-hand side is positive semidefinite on [−1, ∞). But the
determinant of the left-hand side is

q(x) := −(−1 + x)x(−1 + 2c + (−1 + c)x).

Since q ̸≡ 0 and q cannot have double zeroes at x = 0 and x = 1, it is not
non-negative on [−1, ∞). Contradiction.



Union of an interval and a point
Theorem (Sun, Z., 2025)
Let K = {a} ∪ [b, c], a, b, c ∈ R, a < b < c. If F ∈ Posn

⪰0(K ) and:

deg F = 2m, m ∈ N, then
F (x) = F0(x)︸ ︷︷ ︸

degree≤deg F

+ (x − a)(x − b)F1(x)︸ ︷︷ ︸
degree≤deg F

+ (x − a)(c − x)F2(x)︸ ︷︷ ︸
degree≤deg F

,

Fi ∈
∑

Mn(R[x ])2.

deg F = 2m − 1, m ∈ N, then
F (x) = (x − a)F0(x)︸ ︷︷ ︸

degree≤deg F

+ (c − x)F1(x)︸ ︷︷ ︸
degree≤deg F

+ (x − a)2(x − b)F2(x)︸ ︷︷ ︸
degree≤deg F

+

+ (x − a)(x − b)(c − x)F3(x)︸ ︷︷ ︸
degree≤deg F

, Fi ∈
∑

Mn(R[x ])2.

Proof is done on the dual side by solving the corresponding truncated matrix moment
problem.



Positive matrix measures

Let K ⊆ R be a closed set and Bor(K ) the Borel σ-algebra of K . We call

µ := (µij)n
i ,j=1 : Bor(K ) → Sn

a n × n positive Borel matrix-valued measure supported on K if:
1 µij : Bor(K ) → R is a real measure for every i , j = 1, . . . , n and
2 µ(∆) ⪰ 0 for every ∆ ∈ Bor(K ).

Let τ := tr(µ) =
∑n

i=1 µii denote the trace measure. A polynomial
f ∈ R[x ]≤k is µ-integrable if f ∈ L1(τ). We define its integral by∫

K
f dµ =

( ∫
K

f dµij
)n

i ,j=1
.



Truncated matrix-valued moment problem

Let k, n ∈ N. Given a linear mapping

L : R[x ]≤k → Sn,

the truncated matrix-valued moment problem supported on K asks to
characterize the existence of a Sn-valued positive matrix measure µ such
that

L(f ) =
∫

K
f dµ for every f ∈ R[x ]≤k .

Equivalently, one can define L by a sequence of its values on monomials x i ,
i = 0, . . . , k, which we denote by Γi := L(x i). We write

Γ := (Γ0, Γ1, . . . , Γk) ∈ Sk+1
n .



Univariate Compact Matricial Truncated Riesz-Haviland
Proposition

Let n, k ∈ N, Γ = (Γ0, . . . , Γk) ∈ Sk+1
n and K a compact set. The following

statements are equivalent:
1 Γ has a positive matrix measure supported on K.
2

∑k
i=0 Aix i ∈ Posn

⪰0(K ) implies that
∑k

i=0 tr(ΓiAi) ≥ 0.

k∑
i=0

t i Ai ⪰ 0 for all t ∈ K

⇐⇒
k∑

i=0

t i atAi a ≥ 0 for all a ∈ Rn and t ∈ K

⇐⇒
k∑

i=0

tr
(
Ai t i aat) ≥ 0 for all a ∈ Rn and t ∈ K

⇐⇒
k∑

i=0

tr(Ai Γi ) ≥ 0 for all moment sequences (Γ0, . . . , Γk).



Moment matrix

For m, k ∈ N, m ≤ k
2 we denote by

Mm =
(
Γi+j−2

)m+1

i ,j=1
=



Γ0 Γ1 Γ2 · · · Γm
Γ1 Γ2 Γm+1

Γ2
...

... Γ2m−1
Γm Γm+1 · · · Γ2m−1 Γ2m


the m–th truncated moment matrix.



Localizing moment matrices

Fix f ∈ R[x ]≤k and write
Γ(f )

i := L(fx i).

An f –localizing ℓ-th truncated moment matrix Hf is

Hf (ℓ) :=
(
Γ(f )

i+j−2

)ℓ+1

i ,j=1
=



Γ(f )
0 Γ(f )

1 Γ(f )
2 · · · Γ(f )

ℓ

Γ(f )
1 Γ(f )

2 Γ(f )
ℓ+1

Γ(f )
2

...
... Γ(f )

2ℓ−1

Γ(f )
ℓ Γ(f )

ℓ+1 · · · Γ(f )
2ℓ−1 Γ(f )

2ℓ


.



The Flat Extension Theorem

Theorem

Let k, s, n ∈ N, K = KS be a closed nonempty semialgebraic set such that,
where S = {g1, . . . , gs} ⊂ R[x ], and Γ = (Γ0, Γ1, . . . , Γ2k) ∈ S2k+1

n be a
given sequence. Then the following statements are equivalent:

1 The following statemets hold:
1 Mk ⪰ 0.
2 Hgj ⪰ 0.
3 rank Mk−v = rank Mk , where v := max(maxj⌈deg gj/2⌉, 1).

2 Γ has a (rank Mk−v )–atomic positive measure µ with supp µ ⊆ K.



The moment problem: a union of an interval and a point
Theorem

Let k, n ∈ N, a, b, c ∈ R, a < b < c,

K = K{x−a,(x−a)(x−b),c−x} = {a} ∪ [b, c],

and Γ = (Γ0, Γ1, . . . , Γk) ∈ Sk+1
n . Then the following facts are equivalent:

1 There exists a K–representing matrix measure for Γ.
2 There exists a finitely–atomic K–representing matrix measure for Γ.
3 One of the following statements holds:

1 k = 2m for some m ∈ N and

Mm ⪰ 0, H(x−a)(x−b)(m − 1) ⪰ 0 and H(x−a)(c−x)(m − 1) ⪰ 0.

2 k = 2m + 1 for some m ∈ N and

Hx−a(m), Hc−x (m), H(x−a)2(x−b)(m−1), H(x−a)(x−b)(c−x)(m−1) ⪰ 0.

Moreover, if n = 2m, then there is a (Mn)–atomic K–representing measure
for Γ, while if n = 2m + 1, there exists at most (Mn + p)–atomic one.



Sketch of the proof
The nontrivial implication is (3) ⇒ (2). WLOG: a = 0, b = 1 and c > 1.
Assume that k = 2m, m ∈ N.

Note that Γ0 only appears in Mm.

Let us replace Γ0 by the smallest Γ̃0 such that M̃m ⪰ 0, where M̃ℓ is the
moment matrix corresponding to

Γ̃ = (Γ̃0, Γ1, . . . , Γ2ℓ), 1 ≤ ℓ ≤ m.

Namely, using Schur complements,

Γ̃0 =
[
Γ1 · · · Γm

] (
Hx2(m − 1)

)† [
Γ1 · · · Γm

]T

and
rank M̃m = rank Hx2(m − 1).

It turns out that
rank M̃m = rank M̃m−1.



Sketch of the proof

By the Flat Extension Theorem, Γ̃ has a K–representing matrix measure of
the form r∑

i=1
cicT

i δdi ,

where r = rank M̃m, ci ∈ Rn and di ∈ R. Then
r∑

i=1
cicT

i δdi + (Γ0 − Γ̃0)δ0

is a (rank Mm)–atomic K–representing matrix-valued measure for Γ.



Corollary: Nichtnegativstellensatz
Namely, assume that k = 2m. Note that

Mm ⪰ 0

⇔ ⟨Mm, B⟩ ≥ 0 for every B ∈ S⪰0
(m+1)n

⇔ ⟨Mm, B̃B̃T ⟩ ≥ 0 for every B̃ = (B̃i )m
i=0 ∈ (Mn(R))m+1

⇔
m∑

i,j=0

tr(B̃T
i Γi+j B̃j) ≥ 0 for every B̃ = (B̃i )m

i=0 ∈ (Mn(R))m+1

⇔
m∑

i,j=0

tr(Γi+j B̃j B̃T
i ) ≥ 0 for every B̃ = (B̃i )m

i=0 ∈ (Mn(R))m+1

⇔
k∑

ℓ=0

tr(ΓℓAℓ) ≥ 0 for every
k∑

i=0

Ai x i =
( m∑

j=0

B̃jx j)( m∑
j=0

B̃jx j)T ∈ Mn(R[x ]≤k)

⇔
k∑

ℓ=0

tr(ΓℓAℓ) ≥ 0 for every
k∑

i=0

Ai x i ∈
∑

Mn(R[x ])2.



Corollary: Nichtnegativstellensatz
Similarly, for

f := c2x2 + c1x + c0 ∈ {(x − a)(x − b), (x − a)(c − x)},

we have that
Hf (m − 1) ⪰ 0

⇔ ⟨Hf (m − 1, C⟩ ≥ 0 for every C ∈ S⪰0
mn

⇔ ⟨Hf (m − 1), C̃T C̃⟩ ≥ 0 for every C̃ = (C̃i )m−1
i=0 ∈ (Mn(R))m

⇔
k−2∑
ℓ=0

tr(Γ(f )
ℓ Aℓ) ≥ 0 for every

k−2∑
i=0

Ai x i ∈
∑

Mn(R[x ])2

⇔
k−2∑
ℓ=0

tr
(
(Γℓ+2c2 + Γℓ+1c1 + Γℓc0)Ak

)
≥ 0 for every

k−2∑
ℓ=0

Ai x i ∈
∑

Mn(R[x ])2

⇔
k∑

ℓ=0

tr(ΓℓÃℓ) ≥ 0 for every
k∑

i=0

Ãi x i = f
( k−2∑

i=0

Ai x i) with

k−2∑
i=0

Ai x i ∈
∑

Mn(R[x ])2.



Corollary: Nichtnegativstellensatz

k∑
ℓ=0

tr(ΓℓAℓ) ≥ 0 for every
k∑

i=0
Aix i ∈ Posn

⪰0({a} ∪ [b, c])

⇔
k∑

ℓ=0
tr(ΓℓAℓ) ≥ 0 for every

k∑
ℓ=0

Aℓx ℓ ∈ QMn
{(x−a)(x−b),(x−a)(c−x)}︸ ︷︷ ︸

QMn
S

.

Since QMn
S is closed, it follows that

Posn
⪰0({a} ∪ [b, c]) = QMn

S .

Indeed, otherwise there is
∑k

ℓ=0 Ãℓx ℓ ∈ Posn
⪰0({a} ∪ [b, c]), which is not contained in

QMn
S . By the Hahn-Banach theorem there is Γ̃ := (Γ̃0, . . . , Γ̃n) such that∑k

ℓ=0 tr(Γ̃ℓÃℓ) < 0 and
∑k

ℓ=0 tr(Γ̃ℓAℓ) ≥ 0 for every
∑k

i=0 Ai x i ∈ QMn
S . Contradiction.



Open problems

Problem

Solve the matrix-valued truncated moment problem for K a finite union of
closed intervals in R.

Problem (Savchuk, Schmüdgen, 2012)
Characterize positive semidefinite matrix polynomials on

S = {(x , y , z) ∈ R3 : x2 + y2 + z2 = 1}

or equivalently solve the corresponding truncated matrix moment problem.
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