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R - the ring of complex polynomials C[x] (x* = X = x) or complex Laurent
polynomials C[z, 1] (z* =z =1)

M,(R) - matrix polynomials (F* = fT)
Hn(R) - hermitian matrix polynomials (F* = F)

5" Mp(R)? - sums of hermitian matrix squares, i.e. finite sums of the form

> AiA;,  where A; € My(R)



Matrix Fejér-Riesz theorem

Theorem (Fejér-Riesz theorem on T)

Let

N 1
A(z): Z Amzme M,,((C[Z, ;])
m=—N

be a n x n matrix Laurent polynomial, such that A(z) is positive
semidefinite for every

zeT:={zeC: |z|=1}.
Then there exists a matrix polynomial

N
B(z) = Z Bmz™ € M,(C[z]),
m=0

such that




Matrix Fejér-Riesz theorem

Theorem (Fejér-Riesz theorem on R)

Let
2N

F(x) = Z Fmx™ € My(C|x])

m=0
be a n x n matrix polynomial, such that F(x) is positive semidefinite for
every x € R. Then there exists a matrix polynomial

N
G(x) = Y Gmx™ € Ma(Clx]),

m=0

such that




Many proofs of the matrix Fejér-Riesz theorem
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Main problem

© Characterize univariate matrix Laurent polynomials, which are positive
semidefinite on a union of points and arcs in T.
@ Characterize univariate matrix polynomials, which are positive

semidefinite on a union of points and intervals (not necessarily
bounded) in R.




Semialgebraic set and preordering

A basic closed semialgebraic set Ks C R associated to a finite subset
S={g1,...,8} CR[x]
is given by
K:=Ks={xeR:gj(x)>0,,j=1,...,s}.

We define the n-th matrix preordering TZ by

TS = { Z 0e8%: e € Z M, (C[x])? for all e € {0,1}° },
ec{0,1}°

where e = (ey, ..., es) and g€ stands for gi* - - - g&.



Saturated preordering

Let Posl(Ks) be the set of all n x n hermitian matrix polynomials, which
are positive semidefinite on Ks, i.e.,

F € Poslo(Ks) < F(x)=0 VxeKs.
Matrix preordering T¢ is saturated if T = Posly(Ks).

Saturated matrix preordering T¢ is boundedly saturated, if every
F € Posl(Ks) is of the form

F = Z oe8°,

ec{0,1}°

where
deg(ceg®) < deg(F)

holds for every e € {0,1}".



Natural description and scalar saturated preorderings

Let K C R be a basic closed semialgebraic set.

Aset S={g1,...,8s} C R[x] is the natural description of K, if it satisfies
the following conditions:

(a) If K has the least element a, then x —a € S.

(b) If K has the greatest element a, then a — x € S.

(c) Forevery a# be K, if (a,b)N K =0, then (x —a)(x — b) € S.
(d)

d) These are the only elements of S.

Theorem (Kuhlmann, Marshall, 2002)

If S is the natural description of K, then the preordering Tsl is boundedly
saturated.




Matricial saturated preorderings

Theorem (Gohberg, Krein, 1958)

For K =R, T4 is boundedly saturated for every n € N.

Theorem (Dette, Studden, 2002)

For K = Kix1-x3 = [0,1], T{"X 1—x} IS boundedly saturated for every
neN.

Theorem (Schmidgen, Savchuk, 2012)

For K = Ky, = [0, 0), T{”X} is boundedly saturated for every n € N.




Matricial saturated preorderings

Theorem (Compact Nichtnegativstellensatz; Z., 2016)
Let K be a compact semialgebraic set with the natural description S. Then
T¢ is saturated for every n € N.

Theorem (Non-compact Nichtnegativstellensatz; Z., 2016)

Suppose K be an unbounded basic closed semialgebraic set in R and S its
natural description. Then, for a hermitian F € M,(C[x]), the following are

equivalent:
Q F € Posly(K).
@ (1+x?)kF € TZ for some k € NU {0}.




Classification of non-compact sets K

K TZ saturated
an unbounded interval Yes
a union of an unbounded interval and 7
an isolated point '
a union of an unbounded interval and No
m isolated points with m > 2
a union of two unbounded intervals Yes
a union of two unbounded intervals and ;
an isolated point '
a union of two unbounded intervals and
. . . No
m isolated points with m > 2
includes a bounded and an unbounded interval No




Classification of non-compact sets K

Theorem (Union of an interval and point; Sun, Z., 2025)

Let K ={a}U[b,c], a,b,cc R, a<b<c. Then T{ (x—a)(x—b),c—x} IS
boundedly saturated for every n € N.

K T¢ sat.
an unbounded interval Yes
a union of an unbounded interval and Yes
an isolated point
a union of an unbounded interval and
. . . No
m isolated points with m > 2
a union of two unbounded intervals Yes
a union of two unbounded intervals and Yes
an isolated point
a union of two unbounded intervals and
. . . No
m isolated points with m > 2
includes a bounded and an unbounded interval No




Proof of Compact Nichtnegativstellensatz

Proposition

Suppose K is a non-empty basic closed semialgebraic set in R and S a
natural description of K. Then for every F € Posl(K) and every w € C
there exists h € R[x], such that h(w) # 0 and

h*F e TZ.

Proof of Proposition.

The proof is by induction of the size of matrix polynomials n. We write




Proof of Compact Nichtnegativstellensatz

Proof of Proposition.

Writing
Co— [a ,8] . [ R[x] Ml,n—l(C[X])]
s C Mp—11(C[x])  Ha-1(C[X]) |’

it holds that

a 0 o 0 a f
at- 6= [ﬁ* aln_ll [o a(aC—,B*ﬁ)] lo aln_ll’

a3 0 | a 0 c. 12 —
0 a(aC—p"B)| ~ |-B° al-1] ~ |0 alpi|’




Proof of Compact Nichtnegativstellensatz

Proof of Proposition.
WLOG: a(w) # 0 (otherwise use a permutation).

| a 0 d 0||la §
a'F = [/3* a/n_ll [0 D] [0 aln_ll’

d 0| | a 0 Fl2 —6

0 D| |-p* al,—1 0 alh—1|’
where d = p™a® € R[x] and D = p™ (aC — 3*f3) € Hn,_1(C[x]). By the
induction hypothesis, there exists h; € R[x] with hi(w) # 0, such that

hiDe TZ.

Together with hid € T%, it follows that
(a®h1)?*F € TZ. O




Getting rid of the denominator

To conclude the proof we need the following:

Proposition (Scheiderer, 2006)
Suppose R is a commutative ring with 1 and Q C R. Let

¢:R— C(K,R)
be a ring homomorphism, where K is a topological space which is compact
and Hausdorff, and ®(R) separates points in K. Suppose fi,...,fx € R are
such that
(f,....,fk) =R and &(f;) >0, j=1,..., k.

Then there exist sy, ...,sx € R such that

sih+...+sfk=1 and &(s)) >0, j=1,... k.




Proof of Compact Nichtnegativstellensatz

We have
I :=(h?: h e R[x],h*F € T) = R[x].
“h2 F—proposition”
By Scheiderer’s result, there exist s, . .., sk € Posl o(K) and
hi,..., he €1, such that
Z:sjh2 =1.
Hence,

F=1.-F= si hPFe T2,
;\L/v

which concludes the proof.



Counterexample for non-compact case

The matrix polynomial

X+ 2 NG

)= V6 x2—2x+3

is positive semidefinite on K :=[~1,0] U[1,00), but F ¢ T2, where S is
the natural description of K.

All the principal minors of F, i.e. x +2, x2 — 2x + 3 and det(F) = x> — x
are non-negative on K.
Suppose

F(x) =00 + o1(x + 1) 4+ oox(x — 1) + o3(x + 1)x(x — 1), (%)

where o; € 3" Mo(C[x])2.
D




Counterexample for non-compact case

After comparing degrees of both sides we conclude that o3 = 0,
deg(do) < 2, deg(o1) = 0, deg(o2) = 0 and observing the monomial x2 on

both sides, it follows that oo = 8 S for some ¢ € [0, 1].
(*) is equivalent to
F(x) — oax(x — 1) = 09 + o1(x + 1).

The right-hand side is positive semidefinite on [—1,00). But the
determinant of the left-hand side is

q(x) := —(=1+ x)x(—=1 4+ 2c + (-1 + ¢)x).

Since g # 0 and g cannot have double zeroes at x =0 and x =1, it is not
non-negative on [—1,00). Contradiction. O




Union of an interval and a point

Theorem (Sun, Z., 2025)
Let K={a}U[b,c], a,b,c € R, a< b < c. If F € Posly(K) and:

degF =2m,m € N, then
F(x)= Fo(x) +(x—a)(x—Db)F(x)+(x—a)(c—x)F(x),
\“/—/
degree<deg F degree<deg F degree<deg F

Fi € Ma(R[x]).

Proof is done on the dual side by solving the corresponding truncated matrix moment

problem.



Positive matrix measures

Let K C R be a closed set and Bor(K) the Borel o-algebra of K. We call
= (1)} : Bor(K) = S,

a n X n positive Borel matrix-valued measure supported on K if:

© ujj : Bor(K) — R is a real measure for every i,j =1,...,n and

@ 1(A) = 0 for every A € Bor(K).

Let 7 :=tr(u) = >_7; pii denote the trace measure. A polynomial
f € R[x]<k is p-integrable if f € L}(7). We define its integral by

/de,u:(/deu,-j)Zj_l.



Truncated matrix-valued moment problem

Let k, n € N. Given a linear mapping
L:R[x]<x — Sp,

the truncated matrix-valued moment problem supported on K asks to
characterize the existence of a S,-valued positive matrix measure p such
that

L(f) = /K fdu forevery feR[x]<.

Equivalently, one can define L by a sequence of its values on monomials x',
i=0,...,k, which we denote by I; := L(x'). We write

M= (To,T1,...,Tk) € Sk



Univariate Compact Matricial Truncated Riesz-Haviland

Let n,k € N, T = (Fg,...,Tx) € Sk*! and K a compact set. The following
statements are equivalent:

© I has a positive matrix measure supported on K.

Q Yk, Axi e Poslo(K) implies that Sk o tr(T;A;) > 0.

k
ZtiAfEO forall t € K
i=0
k
<:>Z t'a'Aia>0 forallacR"and te K
i=0
k
> tr(Ait'aa’) >0 forallacR"and t € K
i=0
k
@Ztr(A;F;) >0 for all moment sequences (o, ..., k).
i=0



For m ke N, m< % we denote by

o I T - M
M I [ma1
m+1 .
Mp = (ri+jf2)i’j:1 = |l
: Mom—1
_rm rm—l—l o Tomea [2m 1

the m—th truncated moment matrix.



Localizing moment matrices

Fix f € R[x]<x and write
rif.— 1(a).

An f—localizing ¢-th truncated moment matrix Hy is

L L L P
0 r 0,
He() = (r§j)1._2)fj+_:11: 5 .
L 0,
LR PR A A




The Flat Extension Theorem

Let k,s,n € N, K = Ks be a closed nonempty semialgebraic set such that,
where S = {g1,...,8s} CR[x], and T = (Fo,T1,...,T2x) € S?*1 pe a
given sequence. Then the following statements are equivalent:
© The following statemets hold:
o M, =0.
0 Hg = 0.
© rank My_, = rank My, where v := max(max;[deg gj/2], 1).

@ T has a (rank M_,)—atomic positive measure p with supp i C K.




The moment problem: a union of an interval and a point

Let k,neN, a,b,ceR, a< b<c,
K = K{x—a(x—a)(x—b),c—x} = {a} U [b, c],

and T = (o, T1,...,T) € SK+tL. Then the following facts are equivalent:
@ There exists a K—representing matrix measure for I.
@ There exists a finitely—atomic K—representing matrix measure for I'.

© One of the following statements holds:
©® k=2m for some m € N and

M., =0, H(X—a)(x—b)(m —1) >0 and 'H(X_a)(c_x)(m —1)=0.
® k=2m-+1 for some m € N and

Hx—a(m), Hex(m), Hix—ap(x—b)(Mm—1), Hix—a)(x—b)(c—x)(m—1) = 0.
D




Sketch of the proof

The nontrivial implication is (3) = (2). WLOG: a=0, b=1and ¢ > 1.
Assume that k =2m, m e N.

Note that 'y only appears in M.

Let us replace g by the smallest Fo such that /Wm = 0, where ﬂg is the
moment matrix corresponding to

F:(F(),r]_,...,rzg), 1</ < m.

Namely, using Schur complements,

Fo=[N - | Hem-1)t[r - rm}T

and N
rank M, = rank H,2(m — 1).

It turns out that / /
rank M, = rank M ,_1.



Sketch of the proof

By the Flat Extension Theorem, I has a K—representing matrix measure of
the form .
Z C,'C,-Téd,.,
i=1
where r = rank ./{/lvm, ¢i € R"and d; € R. Then
r ~
Z C,'C,-T(sdl. + (ro — F0)60

i=1

is a (rank M ,)—atomic K—representing matrix-valued measure for I'. [



Corollary: Nichtnegativstellensatz

Namely, assume that k = 2m. Note that

Mm =0
& (M, B) >0 for every B e S7°

(m+1)n

& (M, BBT) >0 for every B = (B € (Ms(R))™*

& S t(BITiB) > 0 for every B = (B)o € (Mo(R))™

i,j=0

& S t(TuyBBT) > 0 for every B = (B)o € (My(R))™

i.j=0
k k m m
& Y tr(MeA) >0 forevery > A’ = (D" Bid) (D Bix) " € Mu(R[x]<i)
=0 i=0 =0 =0

K k
& Ztr(rgAg) >0 for every ZA;Xi S Z M, (R[x])?
= i=0



Corollary: Nichtnegativstellensatz

Similarly, for
fi=cox’+ax+ac{(x—a)(x—b),(x—a)c—x)},
we have that
Hi(m—1) =0

& (Hi(m—1,C) >0 for every C € S5J

& (He(m—1),C"C) >0 for every C = (G)"5" € (Ma(R))™

k—2 k—2
& Ztr(ry)Ag) >0 for every Z Aix' € Z M,(R[x])?
=0 i=0

k—2 k—2
(= Ztr((re+2C2 +Tpp1a + rgCo)Ak) >0 for every ZA,‘Xi S Z /\/’,,(]R[X])2
£=0 £=0

K K k—2
pEN Ztr(rng) >0 for every ZZ,-X[ = f(ZA;xi) with
£=0 i=0 i=0

i Ax' € Ma(R[x]).
D



Corollary: Nichtnegativstellensatz

K K
Ztr(FgAg) >0 for every Z Aix" € Poslo({a} U [b,c])
4—0 i=0

& Ztr (F¢Ap) >0 for every ZAgx € QM{X a)(x—b),(x—a)(c—x)} -
/=0 {=0

Qmz
Since QM{ is closed, it follows that
Posfo({a} U [b.c]) = QMZ.

Indeed, otherwise there is Zé 0Agx € PosHJ({a} U [b, c]) which is not contained in
QM?Z. By the Hahn-Banach theorem there is I := (Fo, . T n) such that
S, tr(F¢Ar) < 0 and Soh o tr( (T¢Ar) > 0 for every Zi:o Aix" € QM. Contradiction.



Open problems

Solve the matrix-valued truncated moment problem for K a finite union of
closed intervals in R.

Problem (Savchuk, Schmiidgen, 2012)

Characterize positive semidefinite matrix polynomials on

S={(x,y,2) eR®: x> +y? + 22 = 1}

or equivalently solve the corresponding truncated matrix moment problem.
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Thank you for your attention!



