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Outline

Truncated moment problem on curve p(x,y) =0

1. Preliminaries

2. Main results Using univariate reduction technique
» Concrete solution:
oy?=x* oyx®*=1  oy(y-1)(y—a)=0.
> LMI based solution: .
oy'=q(x) oyX=1 oy=p()x=9()
> Solution in terms of the bound on PSD extensions of M(k):
Viy=q(x) v:yxX=1 Xy =x,ij>1gcd(i,j)=1.

The proof gives nonnegative
but not sos polynomials.

» Bounds on the number of atoms in the minimal measure for the curves above.

3. Proofs



Bivariate truncated moment problem (TMP)

Question

Let k € Nand
k
B =BY = (Bi))ijez, i+i<k

a bivariate sequence of real numbers of degree k.

K C R? is a closed subset.

The bivariate truncated moment problem on K (K—TMP): characterize the
existence of a positive Borel measure 1 on R? with support in K, such that

3,1 — [K X/yjd/,l(X)
forijcZ., i+]<k

1 is called a K—representing measure (K—RM) of 3.



Bivariate moment matrix

The moment matrix M(k) associated to 8 with the rows and columns indexed by
X'Y!, i+ ] < Kk, in degree-lexicographic order

1, X, Y,XQ,XY, Yz,...,Xk,Xk_1 Y,..., Yk
is defined by where
1 X Y X2 Yk Yk
1 [ Boo Bio Bo1 - Bio jo o fPok ]
X B1o  Beo Bia o Bortp o Pk
14 Boa B4 Bo2 - Pttt Boktt
M(k) = : ' :
Xl Bivg Bty Bicjiwt 0 Bivigi+i 0 Bk
v« | Boxk  Bik  Bok+1t o Bihjprk 0 Poz2k |




Necessary COnditionS for the existence of a RM

> To every polynomial p := 3, &;;x'y/ € R[x, yl«, we associate the vector

1 X Yk
Bo.0 B10 Bo.k
51,0 B2.0 B1 k

p(X,Y) = Z ai X'V =aoo-| Bos |+aio-| A1 |+ +aok-| Lokt
i . . .

Bo,k 51,k Bo,2k

from the column space of the matrix M(k).
» The matrix M(k) is recursively generated (RG) if for p, q, pg € R[x, y]«
pX.Y)=0 = (pg)(X,Y)=0.



Necessary co nditions for the existence of a RM

» The matrix M(k) satisfies the variety condition (VC) if
rank M(k) < card V,

where
V= N {(x,y) e R?: g(x,y) =0} .
R[x, )
g()?,GY)[:Xoyi]nS/\kA(k) 29

Proposition (Curto and Fialkow, 96)
If 3(2%) has a representing measure 4, then

M(k) is positive semidefinite (PSD), RG and satisfies VC.



SUffiCient Condition for the existence of a RM

Theorem (Flat extension theorem, Curto and Fialkow, 96')
TFAE:
1. 5®K) admits a (rank M(k))-atomic RM.

2. M(k) is PSD and there is an extension M(k + 1) such that

rank M(k 4+ 1) = rank M(k).



Solving the TMP on rational curves

Basic ideas

1. For irreducible curve C:
> Parametrize the curve with one parameter.

» Solve the corresponding univariate TMP.

2. For reducible curve C:
»> Study decompositions

B=p"+p2,

where

a moment sequence on one irreducible component of C,

[3(2) . a moment sequence on the complement of C.

» Apply the solution to the TMP on each summand ), i = 1,2.



Bivariate TMP on p(x, y) = O with degp < 3
NC = PSD + RG + V(, NC = PSD + RG, num. c.=numerical conditions
pure ... only relations except coming from p, FE ... flat extension
#atoms = rank M(k) + i



Bivariate TMP on p(x, y)

NC = PSD + RG +VC,

pure ...

#atoms = rank M(k) + i

proved by FE technique

= O with degp < 3
NC = PSD +RG,
only relations except coming from p,

. flat extension

proved by univariate reduction technique

num. c.=numerical conditions
FE ..

degp p } Solution g purgE\ i):)lrjiure } i }
X4y?—1 | NC v | v | o |

» y — x? ‘ NC | v | v | 0 |
xy —1 \ NC | v | v |<10]

Xy \ NC | X | Vv | 1]

y2 -1 | NN | v | v | o ]

y—x3 | NC+mnum.c. | v | x | 1 |

3 y2 —x3 ‘ NC-+num. c. ‘ v ‘ X ‘ 1 ‘
xy—1 \ c+numc\ v ox 1

y(y \ NC-+num. c. \ v \ X \ 1 \




Hankel matrix

7= (70---

Let k € N. For
we write
1
1T /7
T [
A, =

2 T2 7o
Tk Tk

04
Y2

Yk+1

. Y2k )

T2
Y2

Yok—1

Tk

Vk+A1

Yok—1
Yok



TMP for p(x, y) = y? — x°
For 3(3%) we define a univariate sequence
@
-

A

Y(X) == (70, X, 72,73, 745 - - -, V6k—2, Vok—1, Vek), Where yaiz; = i,

4

Define also v®) = (72, ..., ek_2).



TMP for p(x, y) = y? — x°
For 3(3%) we define a univariate sequence

~@

A

Y(X) == (70, X, 72,73, 745 - - -, V6k—2, Vok—1, Vek), Where yaiz; = i,

~(1)

Define also v®) = (72, ..., ek_2).

Existence:
(1) B hasa Z(p)-RM. &

(2) B has at most (rank M(k) + 1)—atomic Z(p)-RM. &

(8) M(k)is PSD and RG, A, ) is PSD and one of the following holds:
a) A is PD and rank (M(k) without column/row Y¥) =3k — 1.
b) rank A 1) =rank A @ =rankA ).
Uniqueness and cardinality:
> There is a (rank M(k))—atomic Z(p)-RM unless rank M(k) = 3k — 1 and A ) is PD.
> The Z(p)-RM is unique if rank M(k) < 3k. Otherwise two minimal Z(p)—-RM exist.



Property (Sk.m)
Solution to the TMP based on the size of PSD extensions

2(p) = {(x,y) € R?: p(x,y) = 0}
Z(p) has if the following are equivalent:

1. 8 has a Z(p)-RM.
2. M(k) satisfies p(X, Y) = 0 and admits a PSD extension M(k + m).



Property (Sk.m)
Solution to the TMP based on the size of PSD extensions

Z(p) = {(x,y) € R?: p(x,y) = 0}

Z(p) has if the following are equivalent:

1. 8 has a Z(p)-RM.
2. M(k) satisfies p(X, Y) = 0 and admits a PSD extension M(k + m).

Z(p) has if every f € R[x, y]<2ki2 With f|z(,) > 0 is of the form
f=) fF+pY gt —p) h.
i j ’

where 7, pg?, ph} € R[X, ¥]<am.



Property (Sk.m)
Solution to the TMP based on the size of PSD extensions

Z(p) = {(x,y) € R?: p(x,y) = 0}

Z(p) has if the following are equivalent:

1. 8 has a Z(p)-RM.
2. M(k) satisfies p(X, Y) = 0 and admits a PSD extension M(k + m).

Z(p) has if every f € R[x, y]<2ki2 With f|z(,) > 0 is of the form

f=> " R+pd F-p>
i j ¢

where f2, pg?, ph? € R[x, y]<zm.
Theorem (Curto and Fialkow, 08’)

(Ak k+m) = (Skm)  and  (Sk,m) = (Ak=1 k+m)-



Bivariate TMP on p(x, y) = O withdegp > 4

proved through property (Ax m)) (Fialkow,11’)
proved by univariate reduction technique

LMI . . . feasibility problem of a linear matrix inequality

degp p | (Sk,m) | m | Solution | #atoms |
y —q(x) | v | Okf -1 | LMl | ki |

(>4 yxt=1 | v | Oke ¢ | M| ki |
yl=x'j>1ired. | X | X | M| ke |
yix*J—1jired. | v | O(kmax(j,£—j)) | LMI | k¢ |




p(x.y) =y — q(x) has property (Skk-degq—1)
Nontrivial: M(k) satisties Y = q(X) and M(k + ¢ — 1) PSD exists. = 3(2%) has a Z(p)-RM

1. Basis of the column space of M(k + ¢ —1):
YXI, ico,..k j=0,..degq—1, i+j<k+i—2.
2. Relations between moments: Writing q(x) = Ef:o gix' we have
Bij = QeBivej-1+ Qe—1Biye—1j-1+ ... +QoBij—1, I€Ls,jEN, i+j<2(k+0-2).
3. The corresponding univariate sequence: Let

> GG...qp i<s<i+jl,

o= o<y,
Gijss * PR
0, otherwise.
Let
1 t—1
= (ﬂtmodl[ L] thmodl[ t|.s ’YS) t=0,...,2k+2,

(q@) s=0



4. 3% hasa Z(p)-RM. < k) = (vg,...,v24¢) has a R-RM.

5. M(k+£—-1)PSD = A @iz PSD, where

(kD) = (10, .., Yoket2)-

/

6. Use the solution to the R—TMP (Curto and Fialkow, 91°), i.e., TFAE:
> (%) has a R-RM.

> B has a (rank A_ @x) )-atomic R-RM.

> A (e has a PSD extension A_xe+z).

7. Decrease the number of atoms by 1 in the case rank A_,2xe) = K¢ + 1:
This can be achieved by manipulating 24,1 which does not affect the original sequence 3; j,



LMI based solution for p(x, y) = y — q(X), a0 =5, ax

Theorem
TFAE:
1. has a
2. Bij= Eé:o QplBisp,j—1 foreveryi,j € Z., suchthati+j < 2k — ¢+ 1 and there exists
missing values ~; in the sequence v = Yo, 71, - - - , Yekes2 defined for t from
the set

{te No: tmod ¢ + LEJ < 2k},

by
1 t—1
Tt = 12 (ﬂtmodf,%] 7thmodf,[ﬂ,s'75)a
(Ge) =0
> G a.--qp, fi<s<itie
. 0<iy,...,ii<e,
ql,],s - ,’1+'1,,+/jisfj
0, otherwise.
such that

A, = 0.



Example: p(x,y) =y — x*

for every f from the set

{tez, : t<8k, t¢{8k—58k—2,8k—1}}.

The matrix A, is equal to

=

tmodt, L

1
3

Y0 T 72 73 Yak Yak+1
M 72 73

2 73 V8k—6  Y8k—5 | V8k—4

V3 Y8k—6 Y8k—5 V8k—4 | V8k-3

: Y8k—6 Y8k—5 V8k—4 V8k—3 | Ygk—2

Y8k—6 Vgk—5 V8k—4 V8k—3 Y8k—2 | V8k—1

Y8k—6 VYgk—5 V8k—4 V8k—3 Y8k—2 V8k—1 Y8k
Y4k Y8k—6 Ygk—5 V8k—4 V8k—3 Ygk—2 Y8k—1 "8k Y8k+1
Yak-+1 Ysk—5 V8k—4 V8k—3 VYgk—2 Y8k—1 Y8k Y8k+1 | Y8k+2




p(x.y) = y'ex" =1, ged(ly, (2) = 1, has (Sk (k+1)e.)

1. Parametrization: x = t%, y = t~4.
2. The univariate sequence: f; < Yig—je, -

v = (Y—2ke,, - - - » Y2ke,) NS SOMeE gaps.
3. p®) hasa Z(p)-RM < ~hasa (R\ {0})-RM.

4. Solution of the strong (R \ {0})-TMP (z,22), i.e., TFAE:
> ~yhasa (R\ {0})-RM.
> ~ can be extended to the sequence

¥ := (Y=2ke;—2, - - - s V2kep+2)  Without gaps and  As is PSD.

5. M(m+¢) PSD for ¢ large enough = As PSD.



p(x,y) =y — x", o > (1 > 1, irreducible does not
have property (Sk.m) for every m

1. Parametrization: x = tf, y = t&,
2. The univariate sequence: B < Vig4je,-

¥ =0, - .,Y2ke, NAS SOME gaps.
3. 5®) hasa Z(p)-RM < ~has a R-RM.

4. Solution of the R-TMP: v has a R-RM <~ can be extended to the
sequence

y(@Kt2t2) — (5 ... yoke,i2)  without gaps and A (ke 2 is PSD.

5. One can construct a sequence v such that A, is not even partially PSD, but
it can be extended with ~vyoke, 11, Voke,+2, - - - t0 @ matrix such that the
submatrices corresponding to matrices M(k + m) are PSD.



» Columns of M(¢) correspond to columns
Te={T°:s=aly1+bly, a,b=0,...,0} ={1,T% T%, ... T}

of the univariate Hankel matrix A_z,).

» Then
1 A TS A TS R TSre
T /7 Vsi Vs Vi,
TS Vs V2sy Vsi+sp Vst +sr,
A,Y(zeez) = :
T2 Vso Vsq+sp Y2s, Vsa+sr,
Ts,e ’YSr[ ’YS’K +84 ’Ysr[ +Sp ’YQS,I{

The specified part of A,y(zuz) corresponds to M(€)|rows/columns in the basis -



If M(K)|basis is PD, then Aiis PD and it has infinitely many PD extensions:

1 e TS e T2 e TS TS +1
1 7o Vs Vso rysre rysrz +1
S1
T Vsy V2s4 Vsi+sp Vsi+sr, Vs1+5sr, +1
52
T Vsp Vsi+sz Y2sy Vsotsr,  Vsptsp,+1
S e
T Vsr, Vsr,+s1 Vsry+s2 Vas;, Y257, +1
Sr, +1 ~, N
T*r Vsr,+1 Vsr, +1+5¢ Vsr, +1+8 Vs, +1 Y2s;,+2

> 725, +1 is chosen arbitrarily, while 25, > must be such that the Schur complement is
positive.

» One can continue in this way to determine T *2 T%:*3 _ _ On the side of 8 one
gets a sequence of extensions 2K g(k+2) gk+4)  gych that
M(k +1),M(k +2),... are PSD.

> So one gets a full sequence 3> with M(oc) PSD.



Consequently, we will get 3 with infinitely many extensions but without a measure.

Case 1: One of ¢4, (5 is even. Say ¢ = 2¢,. Then

1 ... TA ... Th L. Tl
1 Ve,
Teq ey Veqe,
Th e,
Ttz Vel e, Ve (e2—1)
1. Generate any sequence v = (70,71, - - - » 725, ) SUch that A, is PD.
2. You decrease v, such that the submatrix (Av)\{r,gq TN is not PSD.

3. Since ~,, occurs in (A,)|7, only twice at non-diagonal places, you can
increase -, such that (A,)|, is PD.



Nonnegative but not sos polynomial on Z(p)

Let (v, v2) € R? be the eigenvector of the negative eigenvalue of
ey Veyeo
Vet Vey(la—1)

Then

is nonnegative on Z(p), but not sos.



Case 2: Both ¢4, /> are odd. Then

1 . TR T+t 2470
1 Ve +2,
z.+/z Lo(l1—1
Th5 Yerrts 2(12 )
T€1 +02 Yoy 10,
] <', —1) _
T4 fa(l=1) G0y — 1)
1. Generate any sequence v = (70,71, - - - » 725, ) SUch that A, is PD.

2. You decrease vy, 1¢, such that the submatrix A\{T[ " is not PSD.
1

I 11 1)}
3. Since vy, 14, 0ccurs in (Ay)|7, only twice at non-diagonal places, you can
increase -, such that (A,)|7; is PD.



Nonnegative but not sos polynomial on Z(p)

Let (v, v2) € R? be the eigenvector of the negative eigenvalue of

Y1+, 7@
7@ Vea(t1-1)
Then
(v1t RERIRYA w)2 = V2Xy + 2vy vgy1# + v2xh 1

is nonnegative on Z(p), but not sos.



Thank you for your attention!



