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Outline
Truncated moment problem on curve p(x , y) = 0

1. Preliminaries

2. Main results Using univariate reduction technique
▶ Concrete solution:

◦ y2 = x3 ◦ yx2 = 1 ◦ y(y − 1)(y − α) = 0.

▶ LMI based solution:
◦ y i = q(x) ◦ y ix j = 1 ◦ y = p(t), x = g(t)

▶ Solution in terms of the bound on PSD extensions of M(k):
✓: y = q(x) ✓ : y ix j = 1 : y i = x j , i, j > 1, gcd(i, j) = 1︸ ︷︷ ︸

The proof gives nonnegative
but not sos polynomials.

.

▶ Bounds on the number of atoms in the minimal measure for the curves above.

3. Proofs



Bivariate truncated moment problem (TMP)
Question

Let k ∈ N and

β = β(k) = (βi,j)i,j∈Z+,i+j≤k

a bivariate sequence of real numbers of degree k .

K ⊆ R2 is a closed subset.

The bivariate truncated moment problem on K (K –TMP): characterize the
existence of a positive Borel measure µ on R2 with support in K , such that

βi,j =
∫

K x iy jdµ(x)
for i , j ∈ Z+, i + j ≤ k .

µ is called a K –representing measure (K –RM) of β.



Bivariate moment matrix

The moment matrix M(k) associated to β with the rows and columns indexed by
X iY j , i + j ≤ k , in degree-lexicographic order

1,X ,Y ,X 2,XY ,Y 2, . . . ,X k ,X k−1Y , . . . ,Y k

is defined by where

M(k) :=



1 X Y ··· X i2 Y j2 ··· Y k

1 β0,0 β1,0 β0,1 · · · βi2,j2 · · · β0,k
X β1,0 β2,0 β1,1 · · · βi2+1,j2 · · · β1,k
Y β0,1 β1,1 β0,2 · · · βi2,j2+1 · · · β0,k+1

...
...

. . .
...

X i1 Y j1 βi1,j1 βi1+1,j1 βi1,j1+1 · · · βi1+i2,j1+j2 · · · βi1,j1+k

...
...

...
. . .

...
Y k β0,k β1,k β0,k+1 · · · βi2,j2+k · · · β0,2k





Necessary conditions for the existence of a RM

▶ To every polynomial p :=
∑

i,j ai,jx iy j ∈ R[x , y ]k , we associate the vector

p(X ,Y ) =
∑
i,j

ai,jX iY j = a0,0 ·

1


β0,0
β1,0
β0,1
...

β0,k

+ a1,0 ·

X


β1,0
β2,0
β1,1
...

β1,k

+ · · ·+ a0,k ·

Y k


β0,k
β1,k
β0,k+1

...
β0,2k

from the column space of the matrix M(k).

▶ The matrix M(k) is recursively generated (RG) if for p,q,pq ∈ R[x , y ]k

p(X ,Y ) = 0 ⇒ (pq)(X ,Y ) = 0.



Necessary conditions for the existence of a RM

▶ The matrix M(k) satisfies the variety condition (VC) if

rankM(k) ≤ cardV,
where

V :=
⋂

g∈R[x,y ]≤k ,
g(X ,Y )=0 in M(k)

{
(x , y) ∈ R2 : g(x , y) = 0

}︸ ︷︷ ︸
Z(g)

.

Proposition (Curto and Fialkow, 96’)

If β(2k) has a representing measure µ, then

M(k) is positive semidefinite (PSD), RG and satisfies VC.



Sufficient condition for the existence of a RM

Theorem (Flat extension theorem, Curto and Fialkow, 96’)
TFAE:

1. β(2k) admits a (rankM(k))–atomic RM.

2. M(k) is PSD and there is an extension M(k + 1) such that

rankM(k + 1) = rankM(k).



Solving the TMP on rational curves
Basic ideas

1. For irreducible curve C:
▶ Parametrize the curve with one parameter.

▶ Solve the corresponding univariate TMP.

2. For reducible curve C:
▶ Study decompositions

β = β(1) + β(2),
where

β(1) : a moment sequence on one irreducible component of C,
β(2) : a moment sequence on the complement of C.

▶ Apply the solution to the TMP on each summand β(i), i = 1,2.



Bivariate TMP on p(x , y) = 0 with deg p ≤ 3

NC = PSD+RG+VC, ÑC = PSD+RG, num. c.=numerical conditions

pure . . . only relations except coming from p, FE . . . flat extension

#atoms = rankM(k) + i

proved by FE technique proved by univariate reduction technique

deg p p Solution FE exists i
pure non-pure

2

x2 + y2 − 1 ÑC ✓ ✓ 0
y − x2 NC ✓ ✓ 0
xy − 1 NC ✓ ✓ ≤ 1 0

xy NC ✓ 1

y2 − 1 NC ÑC ✓ ✓ 0

3

y − x3 ÑC+num. c. ✓ 1

y2 − x3 ÑC+num. c. ✓ 1

xy2 − 1 ÑC+num. c. ✓ 1

y(y − 1)(y − α) ÑC+num. c. ✓ 1



Bivariate TMP on p(x , y) = 0 with deg p ≤ 3
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Hankel matrix

Let k ∈ N. For

γ = (γ0, . . . , γ2k ) ∈ R2k+1

we write

Aγ =

1 T T 2 · · · T k



1 γ0 γ1 γ2 · · · γk

T γ1 γ2 . .
.

. .
.

γk+1

T 2 γ2 . .
.

. .
.

. .
. ...

...
... . .

.
. .
.

. .
.

γ2k−1
T k γk γk+1 · · · γ2k−1 γ2k



TMP for p(x , y) = y2 − x3

For β(2k) we define a univariate sequence

γ(x) := (γ0,x, γ2, γ3,

γ(2)︷ ︸︸ ︷
γ4, . . . , γ6k−2, γ6k−1, γ6k︸ ︷︷ ︸

γ(1)

), where γ2i+3j = βi,j .

Define also γ(3) = (γ2, . . . , γ6k−2).

Existence:
(1) β has a Z(p)–RM. ⇔

(2) β has at most (rankM(k) + 1)–atomic Z(p)–RM. ⇔

(3) M(k) is PSD and RG, Aγ(1) is PSD and one of the following holds:
a) Aγ(1) is PD and rank

(
M(k) without column/row Y k) = 3k − 1.

b) rankAγ(1) = rankAγ(2) = rankAγ(3) .

Uniqueness and cardinality:
▶ There is a (rankM(k))–atomic Z(p)–RM unless rankM(k) = 3k − 1 and Aγ(1) is PD.
▶ The Z(p)–RM is unique if rankM(k) < 3k . Otherwise two minimal Z(p)–RM exist.
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Property (Sk ,m)
Solution to the TMP based on the size of PSD extensions

Z(p) = {(x , y) ∈ R2 : p(x , y) = 0}

Z(p) has property (Sk,m) if the following are equivalent:

1. β(2k) has a Z(p)–RM.

2. M(k) satisfies p(X ,Y ) = 0 and admits a PSD extension M(k + m).

Z(p) has property (Ak,m) if every f ∈ R[x , y ]≤2k+2 with f |Z(p) > 0 is of the form

f =
∑

i

f 2
i + p

∑
j

g2
j − p

∑
ℓ

h2
ℓ ,

where f 2
i ,pg2

j ,ph2
ℓ ∈ R[x , y ]≤2m.

Theorem (Curto and Fialkow, 08’)

(Ak,k+m) ⇒ (Sk,m) and (Sk,m) ⇒ (Ak−1,k+m).
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Bivariate TMP on p(x , y) = 0 with deg p ≥ 4

proved through property (Ak,m(k)) (Fialkow,11’)

proved by univariate reduction technique

LMI . . . feasibility problem of a linear matrix inequality

deg p p (Sk,m) m Solution # atoms

ℓ ≥ 4

y − q(x) ✓ O(kℓ) ℓ− 1 LMI kℓ
yxℓ−1 − 1 ✓ O(kℓ) ℓ LMI kℓ

y j − xℓ, j > 1, irred. LMI kℓ
y jxℓ−j − 1, irred. ✓ O(k max(j , ℓ− j)) LMI kℓ



p(x , y) = y − q(x) has property (Sk ,k+deg q−1)
Nontrivial: M(k) satisties Y = q(X) and M(k + ℓ− 1) PSD exists. ⇒ β(2k) has a Z(p)-RM.

1. Basis of the column space of M(k + ℓ− 1):

Y iX j , i=0,...,k, j=0,...,deg q−1, i+j≤k+ℓ−2.

2. Relations between moments: Writing q(x) =
∑ℓ

i=0 qix i we have

βi,j = qℓβi+ℓ,j−1 + qℓ−1βi+ℓ−1,j−1 + . . .+ q0βi,j−1, i∈Z+, j∈N, i+j≤2(k+ℓ−2).

3. The corresponding univariate sequence: Let

qi,j,s :=


∑

0≤i1,...,ij≤ℓ,
i1+...+ij=s−i

qi1qi2 . . . qij , if i ≤ s ≤ i + jℓ,

0, otherwise.

Let

γt =
1

(qℓ)⌊
t
ℓ ⌋

(
βt mod ℓ,⌊ t

ℓ ⌋
−

t−1∑
s=0

qt mod ℓ,⌊ t
ℓ ⌋,s

· γs

)
t=0,...,2kℓ+2,



4. β(2k) has a Z(p)–RM. ⇔ γ(2kℓ) := (γ0, . . . , γ2kℓ) has a R–RM.

5. M(k + ℓ− 1) PSD ⇒ Aγ(2kℓ+2) PSD, where

γ(2kℓ+2) := (γ0, . . . , γ2kℓ+2).

6. Use the solution to the R–TMP (Curto and Fialkow, 91’), i.e., TFAE:
▶ γ(2kℓ) has a R-RM.

▶ γ(2kℓ) has a (rankAγ(2kℓ))–atomic R–RM.

▶ Aγ(2kℓ) has a PSD extension Aγ(2kℓ+2) .

7. Decrease the number of atoms by 1 in the case rankAγ(0,2kℓ) = kℓ+ 1:
This can be achieved by manipulating γ2kℓ−1 which does not affect the original sequence βi,j ,
i, j ∈ Z+, i + j ≤ 2k .



LMI based solution for p(x , y) = y − q(x), q(x) =
∑ℓ

i=0 qi x i

Theorem
TFAE:

1. β(2k) has a Z(p)–RM.

2. βi,j =
∑ℓ

p=0 qpβi+p,j−1 for every i, j ∈ Z+, such that i + j ≤ 2k − ℓ + 1 and there exists
missing values γi in the sequence γ = γ0, γ1, . . . , γ2kℓ+2 defined for t from
the set {

t ∈ N0 : t mod ℓ+
⌊ t
ℓ

⌋
≤ 2k

}
,

by

γt =
1

(qℓ)⌊
t
ℓ ⌋

(
βt mod ℓ,⌊ t

ℓ ⌋
−

t−1∑
s=0

qt mod ℓ,⌊ t
ℓ ⌋,s

· γs

)
,

qi,j,s :=


∑

0≤i1,...,ij≤ℓ,

i1+...+ij=s−i

qi1 qi2 . . . qij , if i ≤ s ≤ i + jℓ,

0, otherwise.

such that
Aγ ⪰ 0.



Example: p(x , y) = y − x4

γt = β
t mod t,

⌊
t
4

⌋
for every t from the set

{t∈Z+ : t≤8k, t /∈{8k−5,8k−2,8k−1}}.

The matrix Aγ is equal to

γ0 γ1 γ2 γ3 · · · · · · γ4k γ4k+1

γ1 γ2 γ3 . .
. ...

γ2 γ3 . .
.

γ8k−6 γ8k−5 γ8k−4

γ3 . .
.

γ8k−6 γ8k−5 γ8k−4 γ8k−3
... γ8k−6 γ8k−5 γ8k−4 γ8k−3 γ8k−2

γ8k−6 γ8k−5 γ8k−4 γ8k−3 γ8k−2 γ8k−1
... γ8k−6 γ8k−5 γ8k−4 γ8k−3 γ8k−2 γ8k−1 γ8k

γ4k γ8k−6 γ8k−5 γ8k−4 γ8k−3 γ8k−2 γ8k−1 γ8k γ8k+1
γ4k+1 · · · γ8k−5 γ8k−4 γ8k−3 γ8k−2 γ8k−1 γ8k γ8k+1 γ8k+2





p(x , y) = y ℓ2x ℓ1 − 1, gcd(ℓ1, ℓ2) = 1, has (Sk ,(k+1)ℓ2)

1. Parametrization: x = tℓ2 , y = t−ℓ1 .

2. The univariate sequence: βij ↔ γiℓ2−jℓ1 .

γ := (γ−2kℓ1 , . . . , γ2kℓ2) has some gaps.

3. β(2k) has a Z(p)–RM ⇔ γ has a (R \ {0})–RM.

4. Solution of the strong (R \ {0})-TMP (Z,22’), i.e., TFAE:
▶ γ has a (R \ {0})–RM.
▶ γ can be extended to the sequence

γ̃ := (γ−2kℓ1−2, . . . , γ2kℓ2+2) without gaps and Aγ̃ is PSD.

5. M(m + ℓ) PSD for ℓ large enough ⇒ Aγ̃ PSD.



p(x , y) = y ℓ2 − x ℓ1, ℓ2 > ℓ1 > 1, irreducible does not
have property (Sk ,m) for every m

1. Parametrization: x = tℓ2 , y = tℓ1 .

2. The univariate sequence: βij ↔ γiℓ2+jℓ1 .

γ := γ0, . . . , γ2kℓ2 has some gaps.

3. β(2k) has a Z(p)–RM ⇔ γ has a R–RM.

4. Solution of the R-TMP: γ has a R–RM ⇔ γ can be extended to the
sequence

γ(2kℓ2+2) = (γ0, . . . , γ2kℓ2+2) without gaps and Aγ(2kℓ2+2) is PSD.

5. One can construct a sequence γ such that Aγ is not even partially PSD, but
it can be extended with γ2kℓ2+1, γ2kℓ2+2, . . . to a matrix such that the
submatrices corresponding to matrices M(k + m) are PSD.



▶ Columns of M(ℓ) correspond to columns

Tℓ = {T s : s = aℓ1 + bℓ2, a,b = 0, . . . , ℓ} = {1,T s1 ,T s2 , . . . ,T srℓ}

of the univariate Hankel matrix Aγ(2ℓℓ2) .

▶ Then

A
γ(2ℓℓ2) =

1 · · · T s1 · · · T s2 · · · T srℓ



1 γ0 γs1 γs2 γsrℓ
...

T s1 γs1 γ2s1 γs1+s2 γs1+srℓ
...

T s2 γs2 γs1+s2 γ2s2 γs2+srℓ
...

T srℓ γsrℓ
γsrℓ+s1 γsrℓ+s2 γ2srℓ

The specified part of A
γ(2ℓℓ2) corresponds to M(ℓ)|rows/columns in the basis.



If M(k)|basis is PD, then A is PD and it has infinitely many PD extensions:

1 · · · T s1 · · · T s2 · · · T srℓ T srℓ+1



1 γ0 γs1 γs2 γsrℓ
γsrℓ+1

...
T s1 γs1 γ2s1 γs1+s2 γs1+srℓ

γs1+srℓ+1
...

T s2 γs2 γs1+s2 γ2s2 γs2+srℓ
γs2+srℓ+1

...
T srℓ γsrℓ

γsrℓ+s1 γsrℓ+s2 γ2srℓ
γ2srℓ+1

T srℓ+1 γsrℓ+1 γsrℓ+1+s1 γsrℓ+1+s2 γ2srℓ+1 γ2srℓ+2

▶ γ2srℓ+1 is chosen arbitrarily, while γ2srℓ+2 must be such that the Schur complement is
positive.

▶ One can continue in this way to determine T srℓ+2,T srℓ+3, . . .. On the side of β one
gets a sequence of extensions β(2k), β(2k+2), β(2k+4), . . . such that
M(k + 1),M(k + 2), . . . are PSD.

▶ So one gets a full sequence β(∞) with M(∞) PSD.



▶ γ can be chosen such that it does not have a measure, even though (A)|Tk

is PD. Consequently, we will get β with infinitely many extensions but without a measure.

Case 1: One of ℓ1, ℓ2 is even. Say ℓ1 = 2ℓ′1. Then

1 · · · T ℓ′1 · · · T ℓ1 · · · T ℓ′1(ℓ2−1) · · ·



1 γ0 γℓ1
...

T ℓ′1 γℓ1 γℓ′1ℓ2
...

T ℓ1 γℓ1
...

T ℓ′1(ℓ2−1) γℓ′1ℓ2
γℓ1(ℓ2−1)

...

.

1. Generate any sequence γ = (γ0, γ1, . . . , γ2srk
) such that Aγ is PD.

2. You decrease γℓ1 such that the submatrix (Aγ)|{T ℓ′1 ,T ℓ′1(ℓ2−1)} is not PSD.

3. Since γℓ1 occurs in (Aγ)|Tk only twice at non-diagonal places, you can
increase γ0 such that (Aγ)|Tk is PD.



Nonnegative but not sos polynomial on Z(p)

Let (v1, v2) ∈ R2 be the eigenvector of the negative eigenvalue of γℓ1 γℓ′1ℓ2

γℓ′1ℓ2 γℓ1(ℓ2−1)

.

Then (
v1tℓ

′
1 + v2tℓ

′
1(ℓ2−1)

)2
= v2

1 y + 2v1v2xℓ′1 + v2
2 y ℓ2−1

is nonnegative on Z(p), but not sos.



Case 2: Both ℓ1, ℓ2 are odd. Then

1 · · · T
ℓ1+ℓ2

2 · · · T ℓ1+ℓ2 · · · T
ℓ2(ℓ1−1)

2 · · ·



1 γ0 γℓ1+ℓ2

...

T
ℓ1+ℓ2

2 γℓ1+ℓ2
ℓ2(ℓ1−1)

2
...

T ℓ1+ℓ2 γℓ1+ℓ2

...

T
ℓ2(ℓ1−1)

2
ℓ2(ℓ1−1)

2 ℓ2(ℓ1 − 1)
...

1. Generate any sequence γ = (γ0, γ1, . . . , γ2srk
) such that Aγ is PD.

2. You decrease γℓ1+ℓ2 such that the submatrix A|{
T ℓ1+ℓ2 ,T

ℓ2(ℓ1−1)
2

} is not PSD.

3. Since γℓ1+ℓ2 occurs in (Aγ)|Tk only twice at non-diagonal places, you can
increase γ0 such that (Aγ)|Tk is PD.



Nonnegative but not sos polynomial on Z(p)

Let (v1, v2) ∈ R2 be the eigenvector of the negative eigenvalue of γℓ1+ℓ2 γ ℓ2(ℓ1−1)
2

γ ℓ2(ℓ1−1)
2

γℓ2(ℓ1−1)

.

Then(
v1t

ℓ1+ℓ2
2 + v2t

ℓ2(ℓ1−1)
2

)2
= v2

1 xy + 2v1v2y
1+ℓ2

2 + v2
2 xℓ1−1

is nonnegative on Z(p), but not sos.



Thank you for your attention!


