The truncated moment problem on some polynomial and rational plane curves

> Aljaž Zalar University of Ljubljana Slovenia

SIAM Conference on Applied Algebraic Geometry (AG23)

Moment Problems, Convex Algebraic Geometry, and Semidefinite Relaxations

> Eindhoven, The Netherlands July 11th, 2023

> > ◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

Truncated moment problem on curve p(x, y) = 0

1. Preliminaries

- 2. Main results Using univariate reduction technique
 Concrete solution:

 y² = x³
 yx² = 1
 y(y 1)(y α) = 0.

 LMI based solution:

 yⁱ = q(x)
 yⁱxⁱ = 1
 y = p(t), x = g(t)
 - Solution in terms of the bound on PSD extensions of M(k): $\checkmark : y = q(x)$ $\checkmark : y^i x^j = 1$ $\underbrace{\times : y^i = x^j, i, j > 1, gcd(i, j) = 1}_{\text{The pred time concepting}}$.

The proof gives nonnegative but not sos polynomials.

Bounds on the number of atoms in the minimal measure for the curves above.

3. Proofs

Bivariate truncated moment problem (TMP)

Let $k \in \mathbb{N}$ and

$$eta = eta^{(k)} = (eta_{i,j})_{i,j\in\mathbb{Z}_+,i+j\leq k}$$

a bivariate sequence of real numbers of degree k.

 $K \subseteq \mathbb{R}^2$ is a closed subset.

The bivariate truncated moment problem on K (K-TMP): characterize the existence of a positive Borel measure μ on \mathbb{R}^2 with support in K, such that

$$eta_{i,j} = \int_{\mathcal{K}} x^i y^j d\mu(x)$$

for $i, j \in \mathbb{Z}_+$, $i + j \le k$.

 μ is called a *K*-representing measure (*K*-RM) of β .

Bivariate moment matrix

The moment matrix M(k) associated to β with the rows and columns indexed by $X^i Y^j$, $i + j \le k$, in degree-lexicographic order

 $1, X, Y, X^2, XY, Y^2, \dots, X^k, X^{k-1}Y, \dots, Y^k$

is defined by where

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Necessary conditions for the existence of a RM

▶ To every polynomial $p := \sum_{i,j} a_{i,j} x^i y^j \in \mathbb{R}[x, y]_k$, we associate the vector

$$p(X,Y) = \sum_{i,j} a_{i,j} X^{i} Y^{j} = a_{0,0} \cdot \begin{pmatrix} \beta_{0,0} \\ \beta_{1,0} \\ \beta_{0,1} \\ \vdots \\ \beta_{0,k} \end{pmatrix} + a_{1,0} \cdot \begin{pmatrix} \beta_{1,0} \\ \beta_{2,0} \\ \beta_{1,1} \\ \vdots \\ \beta_{1,k} \end{pmatrix} + \dots + a_{0,k} \cdot \begin{pmatrix} \beta_{0,k} \\ \beta_{1,k} \\ \beta_{0,k+1} \\ \vdots \\ \beta_{0,2k} \end{pmatrix}$$

from the column space of the matrix M(k).

► The matrix M(k) is recursively generated (RG) if for $p, q, pq \in \mathbb{R}[x, y]_k$

$$\mathcal{D}(X, Y) = \mathbf{0} \quad \Rightarrow \quad (pq)(X, Y) = \mathbf{0}.$$

Necessary conditions for the existence of a RM

The matrix M(k) satisfies the variety condition (VC) if

 $\operatorname{rank} M(k) \leq \operatorname{card} \mathcal{V},$

where

$$\mathcal{V} := igcap_{\substack{g \in \mathbb{R}[x,y] \leq k, \ g(X,Y) = \mathbf{0} \text{ in } \mathcal{M}(k)}} igl(\underbrace{\{(x,y) \in \mathbb{R}^2 \colon g(x,y) = \mathbf{0}\}}_{\mathcal{Z}(g)}.$$

Proposition (Curto and Fialkow, 96') If $\beta^{(2k)}$ has a representing measure μ , then

M(k) is positive semidefinite (PSD), RG and satisfies VC.

Theorem (Flat extension theorem, Curto and Fialkow, 96') *TFAE:*

1. $\beta^{(2k)}$ admits a (rank M(k))-atomic RM.

2. M(k) is PSD and there is an extension M(k + 1) such that

 $\operatorname{rank} M(k+1) = \operatorname{rank} M(k).$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Solving the TMP on rational curves

Basic ideas

1. For irreducible curve C:

- Parametrize the curve with one parameter.
- Solve the corresponding univariate TMP.
- 2. For reducible curve C:
 - Study decompositions

$$\beta = \beta^{(1)} + \beta^{(2)},$$

where

 $\beta^{(1)}$: a moment sequence on one irreducible component of C, $\beta^{(2)}$: a moment sequence on the complement of C.

• Apply the solution to the TMP on each summand $\beta^{(i)}$, i = 1, 2.

Bivariate TMP on p(x, y) = 0 with deg $p \le 3$

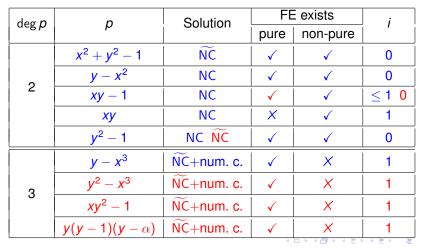
NC = PSD + RG + VC, NC = PSD + RG, num. c.=numerical conditions **pure** ... only relations except coming from *p*, **FE** ... flat extension #**atoms** = rank M(k) + i

Bivariate TMP on p(x, y) = 0 with deg $p \leq 3$

NC = PSD + RG + VC, \widetilde{NC} = PSD + RG, **num. c.**=numerical conditions **pure** ... only relations except coming from *p*, **FE** ... flat extension #atoms = rank M(k) + **i**

proved by FE technique

proved by univariate reduction technique



Sar

Hankel matrix

Let $k \in \mathbb{N}$. For

$$\gamma = (\gamma_0, \dots, \gamma_{2k}) \in \mathbb{R}^{2k+1}$$

we write

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

TMP for
$$p(x, y) = y^2 - x^3$$

For $\beta^{(2k)}$ we define a univariate sequence
 $\gamma(\mathbf{x}) := (\gamma_0, \mathbf{x}, \underbrace{\gamma_2, \gamma_3, \overbrace{\gamma_4, \dots, \gamma_{6k-2}, \gamma_{6k-1}, \gamma_{6k}}^{\gamma^{(2)}}), \text{ where } \gamma_{2i+3j} = \beta_{i,j}.$

Define also $\gamma^{(3)} = (\gamma_2, \dots, \gamma_{6k-2}).$

TMP for $p(x, y) = y^2 - x^3$ For $\beta^{(2k)}$ we define a univariate sequence $\gamma(\mathbf{x}) := (\gamma_0, \mathbf{x}, \underbrace{\gamma_2, \gamma_3, \overbrace{\gamma_4, \dots, \gamma_{6k-2}, \gamma_{6k-1}, \gamma_{6k}}^{\gamma^{(2)}}), \text{ where } \gamma_{2i+3j} = \beta_{i,j}.$

Define also $\gamma^{(3)} = (\gamma_2, \ldots, \gamma_{6k-2}).$

Existence:

(1) β has a $\mathcal{Z}(p)$ -RM. \Leftrightarrow

(2) β has at most (rank M(k) + 1)-atomic $\mathcal{Z}(p)$ -RM. \in

(3) M(k) is PSD and RG, $A_{\gamma(1)}$ is PSD and one of the following holds:

- a) $A_{\gamma^{(1)}}$ is PD and rank (M(k) without column/row $Y^k) = 3k 1$.
- b) rank $A_{\gamma^{(1)}} = \operatorname{rank} A_{\gamma^{(2)}} = \operatorname{rank} A_{\gamma^{(3)}}$.

Uniqueness and cardinality:

- ▶ There is a (rank M(k))-atomic $\mathcal{Z}(p)$ -RM unless rank M(k) = 3k 1 and $A_{\gamma^{(1)}}$ is PD.
- The $\mathcal{Z}(p)$ -RM is unique if rank M(k) < 3k. Otherwise two minimal $\mathcal{Z}(p)$ -RM exist.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Property $(S_{k,m})$

Solution to the TMP based on the size of PSD extensions $\mathcal{Z}(p) = \{(x,y) \in \mathbb{R}^2 \colon p(x,y) = 0\}$

 $\mathcal{Z}(p)$ has property $(S_{k,m})$ if the following are equivalent:

1. $\beta^{(2k)}$ has a $\mathcal{Z}(p)$ -RM.

2. M(k) satisfies p(X, Y) = 0 and admits a PSD extension M(k + m).

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Property $(S_{k,m})$

Solution to the TMP based on the size of PSD extensions $\mathcal{Z}(p) = \{(x,y) \in \mathbb{R}^2 \colon p(x,y) = 0\}$

 $\mathcal{Z}(p)$ has property $(S_{k,m})$ if the following are equivalent:

- 1. $\beta^{(2k)}$ has a $\mathcal{Z}(p)$ -RM.
- 2. M(k) satisfies p(X, Y) = 0 and admits a PSD extension M(k + m).

 $\mathcal{Z}(p)$ has property $(A_{k,m})$ if every $f \in \mathbb{R}[x, y]_{\leq 2k+2}$ with $f|_{\mathcal{Z}(p)} > 0$ is of the form

$$f = \sum_i f_i^2 + p \sum_j g_j^2 - p \sum_\ell h_\ell^2;$$

where f_i^2 , pg_j^2 , $ph_\ell^2 \in \mathbb{R}[x, y]_{\leq 2m}$.

Property $(S_{k,m})$

Solution to the TMP based on the size of PSD extensions $\mathcal{Z}(p) = \{(x,y) \in \mathbb{R}^2 \colon p(x,y) = 0\}$

 $\mathcal{Z}(p)$ has property $(S_{k,m})$ if the following are equivalent:

- 1. $\beta^{(2k)}$ has a $\mathcal{Z}(p)$ -RM.
- 2. M(k) satisfies p(X, Y) = 0 and admits a PSD extension M(k + m).

 $\mathcal{Z}(p)$ has property $(A_{k,m})$ if every $f \in \mathbb{R}[x, y]_{\leq 2k+2}$ with $f|_{\mathcal{Z}(p)} > 0$ is of the form

$$f = \sum_{i} f_i^2 + p \sum_{j} g_j^2 - p \sum_{\ell} h_{\ell}^2$$

where f_i^2 , pg_j^2 , $ph_\ell^2 \in \mathbb{R}[x, y]_{\leq 2m}$.

Theorem (Curto and Fialkow, 08')

$$(A_{k,k+m}) \Rightarrow (S_{k,m})$$
 and $(S_{k,m}) \Rightarrow (A_{k-1,k+m}).$

Bivariate TMP on p(x, y) = 0 with deg $p \ge 4$

proved through property $(A_{k,m(k)})$ (Fialkow, 11')

proved by univariate reduction technique

LMI ... feasibility problem of a linear matrix inequality

deg <i>p</i>	p	$(S_{k,m})$	т	Solution	# atoms
	y - q(x)	\checkmark	$O(k\ell) \ell-1$	LMI	kℓ
$\ell \geq 4$	$yx^{\ell-1} - 1$	\checkmark	O(k ℓ) ℓ	LMI	kℓ
	$y^{j} - x^{\ell}, j > 1$, irred.	×	×	LMI	kℓ
	$y^j x^{\ell-j} - 1$, irred.	\checkmark	$O(k \max(j, \ell - j))$	LMI	kℓ

p(x, y) = y - q(x) has property $(S_{k,k+\deg q-1})$

Nontrivial: M(k) satisfies Y = q(X) and $M(k + \ell - 1)$ PSD exists. $\Rightarrow \beta^{(2k)}$ has a $\mathcal{Z}(p)$ -RM.

1. Basis of the column space of $M(k + \ell - 1)$:

$$Y^{i}X^{j}, \quad i=0,...,k, \ j=0,...,\deg q-1, \ i+j\leq k+\ell-2.$$

2. Relations between moments: Writing $q(x) = \sum_{i=0}^{\ell} q_i x^i$ we have

$$\beta_{i,j} = q_{\ell}\beta_{i+\ell,j-1} + q_{\ell-1}\beta_{i+\ell-1,j-1} + \ldots + q_{0}\beta_{i,j-1}, \quad i \in \mathbb{Z}_{+}, j \in \mathbb{N}, i+j \le 2(k+\ell-2).$$

3. The corresponding univariate sequence: Let

$$q_{i,j,s} := \begin{cases} \sum_{\substack{0 \le i_1, \dots, i_j \le \ell, \\ i_1 + \dots + i_j = s - i \\ 0, \\ \end{cases}} q_{i_1} q_{i_2} \dots q_{i_j}, & \text{if } i \le s \le i + j\ell, \end{cases}$$

Let

$$\gamma_t = \frac{1}{(q_\ell)^{\lfloor \frac{t}{\ell} \rfloor}} \Big(\beta_{t \mod \ell, \lfloor \frac{t}{\ell} \rfloor} - \sum_{s=0}^{t-1} q_{t \mod \ell, \lfloor \frac{t}{\ell} \rfloor, s} \cdot \gamma_s \Big) \quad t=0, \dots, 2k\ell+2,$$

- 4. $\beta^{(2k)}$ has a $\mathcal{Z}(p)$ -RM. $\Leftrightarrow \gamma^{(2k\ell)} := (\gamma_0, \dots, \gamma_{2k\ell})$ has a \mathbb{R} -RM.
- 5. $M(k + \ell 1)$ PSD \Rightarrow $A_{\gamma^{(2k\ell+2)}}$ PSD, where

$$\gamma^{(2k\ell+2)} := (\gamma_0, \ldots, \gamma_{2k\ell+2}).$$

- 6. Use the solution to the \mathbb{R} -TMP (Curto and Fialkow, 91'), i.e., TFAE:
 - $\gamma^{(2k\ell)}$ has a \mathbb{R} -RM.
 - $\gamma^{(2k\ell)}$ has a (rank $A_{\gamma^{(2k\ell)}}$)-atomic \mathbb{R} -RM.
 - $A_{\gamma^{(2k\ell)}}$ has a PSD extension $A_{\gamma^{(2k\ell+2)}}$.
- 7. Decrease the number of atoms by 1 in the case rank $A_{\gamma^{(0,2k\ell)}} = k\ell + 1$:

This can be achieved by manipulating $\gamma_{2k\ell-1}$ which does not affect the original sequence $\beta_{i,j}$, $i, j \in \mathbb{Z}_+, i+j \leq 2k$.

LMI based solution for p(x, y) = y - q(x), $q(x) = \sum_{i=0}^{\ell} q_i x^i$ Theorem

TFAE:

- 1. $\beta^{(2k)}$ has a $\mathcal{Z}(p)$ –RM.
- 2. $\beta_{i,j} = \sum_{p=0}^{\ell} q_p \beta_{i+p,j-1}$ for every $i, j \in \mathbb{Z}_+$, such that $i+j \le 2k-\ell+1$ and there exists missing values γ_i in the sequence $\gamma = \gamma_0, \gamma_1, \ldots, \gamma_{2k\ell+2}$ defined for t from the set

$$\Big\{t\in\mathbb{N}_0\colon t \mod \ell+\Big\lfloor \frac{t}{\ell}\Big\rfloor\leq 2k\Big\},$$

by

$$\gamma_t = \frac{1}{(q_\ell)^{\lfloor \frac{t}{\ell} \rfloor}} \Big(\beta_{t \mod \ell, \lfloor \frac{t}{\ell} \rfloor} - \sum_{s=0}^{t-1} q_{t \mod \ell, \lfloor \frac{t}{\ell} \rfloor, s} \cdot \gamma_s \Big),$$

$$q_{i,j,s} := \begin{cases} \sum_{\substack{0 \le i_1, \dots, i_j \le \ell, \\ i_1 + \dots + i_j = s - i \\ 0, \\ \end{cases}} q_{i_1} q_{i_2} \dots q_{i_j}, & \text{if } i \le s \le i + j\ell, \end{cases}$$

 $A_{\gamma} \succ 0.$

such that

Example: $p(x, y) = y - x^4$

$$\gamma_t = \beta_{t \mod t, \left\lfloor \frac{t}{4}
ight
ceil}$$

for every t from the set

$$\{t \in \mathbb{Z}_+: t \leq 8k, t \notin \{8k-5, 8k-2, 8k-1\}\}.$$

The matrix A_{γ} is equal to

(γ_0	$\gamma_{\rm 1}$	γ_2	γ_3					γ_{4k}	γ_{4k+1}	
	γ_1	γ_2	γ_3	. · [·]						÷	
	γ_2	γ_3	· · [·]					γ_{8k-6}	$\gamma_{\mathbf{8k-5}}$	γ_{8k-4}	
	γ_3						γ_{8k-6}	$\gamma_{\mathbf{8k-5}}$	γ_{8k-4}	γ_{8k-3}	
	÷					γ_{8k-6}	$\gamma_{\rm 8k-5}$	γ_{8k-4}	γ_{8k-3}	$\gamma_{\mathbf{8k-2}}$	
					γ_{8k-6}	$\gamma_{ m 8k-5}$	γ_{8k-4}	γ_{8k-3}	$\gamma_{ m 8k-2}$	γ_{8k-1}	
	÷			γ_{8k-6}	$\gamma_{ m 8k-5}$	γ_{8k-4}	γ_{8k-3}	$\gamma_{\mathbf{8k-2}}$	$\gamma_{\rm 8k-1}$	γ_{8k}	
	γ_{4k}		γ_{8k-6}	γ_{8k-5}	γ_{8k-4}	γ_{8k-3}	$\gamma_{\mathbf{8k-2}}$	γ_{8k-1}	γ_{8k}	$\gamma_{\mathbf{8k+1}}$	
/	γ_{4k+1}		$\gamma_{\rm 8k-5}$	γ_{8k-4}	γ_{8k-3}	$\gamma_{\mathbf{8k-2}}$	$\gamma_{\rm 8k-1}$	γ_{8k}	$\gamma_{\rm 8k+1}$	$\gamma_{\mathbf{8k+2}}$ /	
	りょう 一直 (言)(言)(曰)										

$$p(x,y) = y^{\ell_2} x^{\ell_1} - 1, \operatorname{gcd}(\ell_1,\ell_2) = 1,$$
 has $(\mathcal{S}_{k,(k+1)\ell_2})$

1. Parametrization: $x = t^{\ell_2}$, $y = t^{-\ell_1}$.

2. The univariate sequence: $\beta_{ij} \leftrightarrow \gamma_{i\ell_2 - j\ell_1}$.

 $\gamma := (\gamma_{-2k\ell_1}, \dots, \gamma_{2k\ell_2})$ has some gaps.

- **3.** $\beta^{(2k)}$ has a $\mathcal{Z}(p)$ -RM $\Leftrightarrow \gamma$ has a $(\mathbb{R} \setminus \{0\})$ -RM.
- 4. Solution of the strong $(\mathbb{R} \setminus \{0\})$ -TMP (Z,22'), i.e., TFAE:

γ has a (ℝ \ {0})–RM.
 γ can be extended to the sequence

 $\widetilde{\gamma} := (\gamma_{-2k\ell_1-2}, \dots, \gamma_{2k\ell_2+2})$ without gaps and $A_{\widetilde{\gamma}}$ is PSD.

A D F A 同 F A E F A E F A Q A

5. $M(m + \ell)$ PSD for ℓ large enough $\Rightarrow A_{\widetilde{\gamma}}$ PSD.

 $p(x, y) = y^{\ell_2} - x^{\ell_1}, \ell_2 > \ell_1 > 1$, irreducible does not have property $(S_{k,m})$ for every m

- 1. Parametrization: $x = t^{\ell_2}$, $y = t^{\ell_1}$.
- 2. The univariate sequence: $\beta_{ij} \leftrightarrow \gamma_{i\ell_2+j\ell_1}$.

 $\gamma := \gamma_0, \ldots, \gamma_{2k\ell_2}$ has some gaps.

- **3.** $\beta^{(2k)}$ has a $\mathcal{Z}(p)$ -RM $\Leftrightarrow \gamma$ has a \mathbb{R} -RM.
- 4. Solution of the \mathbb{R} -TMP: γ has a \mathbb{R} -RM $\Leftrightarrow \gamma$ can be extended to the sequence

 $\gamma^{(2k\ell_2+2)} = (\gamma_0, \dots, \gamma_{2k\ell_2+2}) \quad \text{without gaps and} \quad A_{\gamma^{(2k\ell_2+2)}} \text{ is PSD}.$

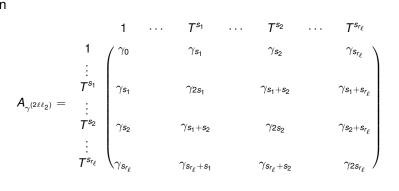
5. One can construct a sequence γ such that A_{γ} is not even partially PSD, but it can be extended with $\gamma_{2k\ell_2+1}, \gamma_{2k\ell_2+2}, \ldots$ to a matrix such that the submatrices corresponding to matrices M(k + m) are PSD.

► Columns of *M*(ℓ) correspond to columns

$$\mathcal{T}_{\ell} = \{ T^{s} \colon s = a\ell_{1} + b\ell_{2}, \ a, b = 0, \dots, \ell \} = \{ 1, T^{s_{1}}, T^{s_{2}}, \dots, T^{s_{r_{\ell}}} \}$$

of the univariate Hankel matrix $A_{\gamma^{(2\ell\ell_2)}}$.

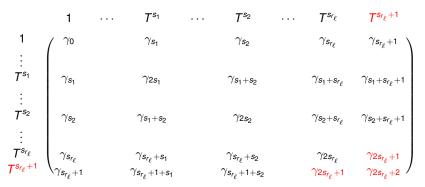
Then



The specified part of $A_{\gamma^{(2\ell\ell_2)}}$ corresponds to $M(\ell)|_{\text{rows/columns in the basis}}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

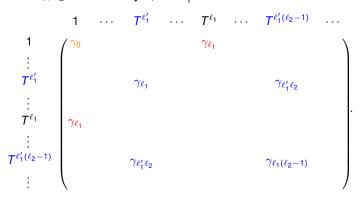
If $M(k)|_{\text{basis}}$ is PD, then A is PD and it has infinitely many PD extensions:



- γ_{2s_{r_ℓ+1} is chosen arbitrarily, while γ_{2s_{r_ℓ+2} must be such that the Schur complement is positive.}}
- One can continue in this way to determine T^{s_{rℓ}+2}, T^{s_{rℓ}+3},.... On the side of β one gets a sequence of extensions β^(2k), β^(2k+2), β^(2k+4),... such that M(k + 1), M(k + 2),... are PSD.
- So one gets a full sequence $\beta^{(\infty)}$ with $M(\infty)$ PSD.

γ can be chosen such that it does not have a measure, even though (A)|_{T_k} is PD. Consequently, we will get β with infinitely many extensions but without a measure.

Case 1: One of ℓ_1, ℓ_2 is even. Say $\ell_1 = 2\ell'_1$. Then



- 1. Generate any sequence $\gamma = (\gamma_0, \gamma_1, \dots, \gamma_{2s_{r_k}})$ such that A_{γ} is PD.
- 2. You decrease γ_{ℓ_1} such that the submatrix $(A_{\gamma})|_{\{T^{\ell'_1}, T^{\ell'_1(\ell_2-1)}\}}$ is not PSD.
- 3. Since γ_{ℓ_1} occurs in $(A_{\gamma})|_{\mathcal{T}_k}$ only twice at non-diagonal places, you can increase γ_0 such that $(A_{\gamma})|_{\mathcal{T}_k}$ is PD.

Nonnegative but not sos polynomial on $\mathcal{Z}(p)$

Let $(v_1, v_2) \in \mathbb{R}^2$ be the eigenvector of the negative eigenvalue of

$$\begin{pmatrix} \gamma_{\ell_1} & \gamma_{\ell'_1\ell_2} \\ \gamma_{\ell'_1\ell_2} & \gamma_{\ell_1(\ell_2-1)} \end{pmatrix}$$

•

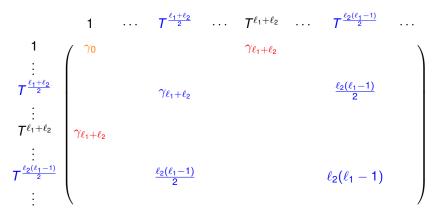
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Then

$$\left(v_{1}t^{\ell_{1}'}+v_{2}t^{\ell_{1}'(\ell_{2}-1)}\right)^{2}=v_{1}^{2}y+2v_{1}v_{2}x^{\ell_{1}'}+v_{2}^{2}y^{\ell_{2}-1}$$

is nonnegative on $\mathcal{Z}(p)$, but not sos.

Case 2: Both ℓ_1, ℓ_2 are odd. Then



- 1. Generate any sequence $\gamma = (\gamma_0, \gamma_1, \dots, \gamma_{2s_{r_k}})$ such that A_{γ} is PD.
- 2. You decrease $\gamma_{\ell_1+\ell_2}$ such that the submatrix $A|_{\left\{ T^{\ell_1+\ell_2}, T^{\frac{\ell_2(\ell_1-1)}{2}} \right\}}$ is not PSD.

3. Since $\gamma_{\ell_1+\ell_2}$ occurs in $(A_{\gamma})|_{\mathcal{T}_k}$ only twice at non-diagonal places, you can increase γ_0 such that $(A_{\gamma})|_{\mathcal{T}_k}$ is PD.

Nonnegative but not sos polynomial on $\mathcal{Z}(p)$

Let $(v_1, v_2) \in \mathbb{R}^2$ be the eigenvector of the negative eigenvalue of

$$\begin{pmatrix} \gamma_{\ell_1+\ell_2} & \gamma_{\frac{\ell_2(\ell_1-1)}{2}} \\ \gamma_{\frac{\ell_2(\ell_1-1)}{2}} & \gamma_{\ell_2(\ell_1-1)} \end{pmatrix}.$$

Then

$$\left(v_{1}t^{\frac{\ell_{1}+\ell_{2}}{2}}+v_{2}t^{\frac{\ell_{2}(\ell_{1}-1)}{2}}\right)^{2}=v_{1}^{2}xy+2v_{1}v_{2}y^{\frac{1+\ell_{2}}{2}}+v_{2}^{2}x^{\ell_{1}-1}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

is nonnegative on $\mathcal{Z}(p)$, but not sos.

Thank you for your attention!