
A gap between positive polynomials and sums of
squares in various settings

Aljaž Zalar,
University of Ljubljana, Slovenia

SIAM AG25
July 8, 2025

University of Wisconsin-Madison

joint work with

Igor Klep University of Ljubljana, Slovenia

Scott McCullough University of Florida, Gainesville, USA

Klemen Šivic University of Ljubljana, Slovenia

Tea Štrekelj University of Ljubljana, Slovenia



Outline
quantitative estimates on volumes of pos vs sos cones

1. Preliminaries
▶ Problems:

▶ positive maps vs completely positive maps
▶ cross-positive maps vs completely cross-positive maps
▶ copositive vs completely positive matrices

▶ Converting to polynomials:
▶ pos vs sos biquadratic biforms
▶ pos vs sos biquadratic biforms modulo the ideal of all orthonormal 2-frames
▶ pos vs sos even quartic forms

2. Discussion on volume estimation

3. Proofs
▶ real algebraic geometry
▶ asymptotic convex analysis
▶ harmonic analysis



Positive and completely positive maps
Definitions

A linear map

Φ : Mn(R) → Mm(R)
such that Φ(AT ) = Φ(A)T for all A ∈ Mn(R), is:

▶ positive if
A ⪰ 0 ⇒ ϕ(A) ⪰ 0.

▶ k -positive if

ϕk

(A11 . . . A1k
...

. . .
...

Ak1 . . . Akk

)
=

ϕ(A11) . . . ϕ(A1k )
...

. . .
...

ϕ(Ak1) . . . ϕ(Akk )


is positive.

▶ completely positive (CP) if it is k -positive for every k ∈ N.



Positive and completely positive maps
Mental picture



Positive and completely positive maps
Problems and a small sample of existing literature

Problem A.1: Establish asymptotically exact quantitative bounds on the fraction
of positive maps that are CP.

Problem A.2: Derive algorithm to produce positive maps that are not CP from
random input data.

Small sample of related literature:
▶ Arveson (2009): Let n,m ≥ 2. Then the probability p that a positive map φ : Mn(C) → Mm(C)

is CP satisfies 0 < p < 1.
▶ Szarek, Werner, Życzkowski (2008): for the case m = n provide quantitative bounds on p and

establish its asymptotic behaviour.
▶ Collins, Hayden, Nechita (2017): random techniques for constructing k -positive maps that are

not (k + 1)-positive in large dimensions.



Positive maps meet real algebraic geometry
L(Sn,Sm) . . . the vector space of all linear maps from Sn to Sm,

R[x,y]2,2 . . . biforms in x = (x1, . . . , xn) and y = (y1, . . . , ym)

of bidegree (2,2)

There is a natural bijection

Γ : L(Sn,Sm) → R[x,y]2,2,
Φ 7→ pΦ(x,y) := yTΦ(xxT )y.

Proposition
Let Φ : Sn → Sm be a linear map. Then:

1. Φ is positive iff pΦ is nonnegative.
2. Φ is completely positive iff pΦ is a sum of squares (SOS). (Choi-Kraus theorem)

Corollary
The following probabilities (w.r.t. the corresponding distributions) are equal:

1. The probability that a positive map Φ ∈ L(Sn,Sm) is CP.
2. The probability that a nonnegative biform pΦ ∈ R[x,y]2,2 is SOS.



Cross–positive and completely cross–positive maps
Definitions

A linear map

Φ : Mn(R) → Mn(R)
is:

▶ cross-positive if
∀U,V ⪰ 0 : ⟨U,V ⟩ = 0 ⇒ ⟨ϕ(U),V ⟩ ≥ 0.

▶ k -cross-positive if

ϕk

(A11 . . . A1k
...

. . .
...

Ak1 . . . Akk

)
=

ϕ(A11) . . . ϕ(A1k )
...

. . .
...

ϕ(Ak1) . . . ϕ(Akk )


is cross–positive.

▶ completely cross–positive (CCP) if it is k -cross-positive for every k ∈ N.



Cross–positive and completely cross–positive maps
Problems and a small sample of existing literature

Problem B.1: Establish asymptotically exact quantitative bounds on the fraction
of cross–positive maps that are CCP.

Problem B.2: Derive algorithm to produce cross–positive maps that are not
CCP from random input data.

Small sample of related literature:

▶ Schneider, Vidyasagar (1970):

▶ ϕ(·) is crp if and only if exp(tϕ(·)) is positive for every t > 0.
▶ Characterized cross–positive maps on polyhedral cones.

▶ Cuchiero, Filipović, Mayerhofer, Teichmann (2011) established the importance of
cross–positive and completely cross-positive maps in math finance.

▶ Kuzma, Omladič, Šivic, Teichmann (2015) constructed, for the first time, a proper
cross–positive map. (Not of the form X 7→ ϕ̃(X) + CX + XCT , where ϕ̃ is positive.)



Cross–positive maps meet RAG
I ⊆ R[x,y] . . . the ideal generated by yTx =

∑
i xiyi ,

I2,2 ⊆ R[x,y]2,2 . . . I2,2 = I ∩ R[x,y]2,2,
V (I) . . . the variety {(x , y) ∈ Rn × Rn | yT x = 0}

Let us define

Γ : L(Mn,Mn) → R[x,y]2,2,
Φ 7→ pΦ(x,y) := yTΦ(xxT )y.

Proposition
Let Φ : Mn → Mn be a linear map. Then:

1. Φ is cross–positive iff pΦ is nonnegative on V (I).
2. If Φ is CCP then pΦ is a sum of squares modulo I.

Corollary
The probability that a cross–positive map Φ ∈ L(Mn,Mn) is CCP is bounded
above by the probability that a nonnegative biform pΦ + I2,2 ∈ R[x,y]2,2/I2,2 is
SOS. (Here we use compatible distributions.)



Copositive and completely positive matrices
Definitions

Sn. . . real symmetric n × n matrices

A matrix

A = (aij)i,j ∈ Sn

is:

▶ copositive (COP) if vT Av ≥ 0 for every v ∈ Rn
≥0.

▶ positive semidefinite (PSD) if vT Av ≥ 0 for every v ∈ Rn.

▶ nonnegative (NN) if aij ≥ 0 for every i , j .

▶ SPN if A = P + N for some P PSD and N NN.
▶ doubly nonnegative (DNN) if A = P ∩ N for some P PSD and N NN.

▶ completely positive (CP) if A = BBT for some B ∈ Rn×k
≥0 .



Copositive vs completely positive matrices
Problems and a small sample of existing literature

Problem C.1: Establish asymptotically exact quantitative bounds on the fraction
of COP matrices that are CP.

Problem C.2: Derive algorithm to produce COP matrices that are not CP.

Small sample of related literature:
▶ Maxfield, Minc (1962), Hall, Newman (1963): COPn = SPNn holds only for n ≤ 4.

▶ Parrilo (2000): int(COPn) ⊆
⋃

r K (r)
n , where (x2 = (x2

1 , . . . , x2
n ))

K (r)
n := {A ∈ Sn : (

n∑
i=1

x2
i )

r · (x2)T Ax2 is a sum of squares of forms}.

▶ Dickinson, Dür, Gijben, Hildebrand (2013): COP5 ̸= K (r)
5 for any r ∈ N.

▶ Laurent, Schweighofer, Vargas (2022, 23): COP5 =
⋃

r
K (r)

5 and COP6 ̸=
⋃

r
K (r)

6 .



Copositive matrices meet RAG
R[x2]4,e . . . forms in x2 = (x2

1 , . . . , x
2
n ) of degree 4, i.e., quartic even forms.

There is a natural bijection

Γ : Sn → R[x]4,e, A 7→ qA(x) := (x2)T Ax2 =
n∑

i,j=1

aijx2
i x2

j .

Proposition
Let A ∈ Sn be a matrix. Then:

1. A is COP iff qA is nonnegative. (qA . . . POS)

2. A is PSD iff qA is of the form
∑

i

(∑
j fijx2

j

)2. (qA . . . lin-SOS)

3. A is NN iff qA has nonnegative coefficients. (qA . . . NN)

4. A is SPN iff qA is of the form
∑

i

(∑
j fijxixj

)2
(Parrilo, 00’) (qA . . . SOS)

5. A is DNN iff qA is ℓ-SOS and NN. (qA . . . DNN)

6. A is CP iff qA is of the form
∑

i

(∑
j fijx2

j

)2 with fij ≥ 0. (qA . . . CP)

Corollary. The gaps between COP/PSD/NN/SPN/DNN/CP matrices correspond
to the gaps between POS/ℓ-SOS/NN/SOS/DNN/CP even quartics.



Gap between positive and sos polynomials

R[x]2k . . . forms in x = (x1, . . . , xn) of degree 2k

Theorem (Blekherman, 2006)
For n ≥ 3 and fixed k the probability pn that a positive polynomial f ∈ R[x]2k is
sum of squares, satisfies(

C1 ·
1

n(k−1)/2

)dimR[x ]2k−1
≤ pn ≤

(
C2 ·

1
n(k−1)/2

)dimR[x ]2k−1
,

where C1, C2 are absolute constants.

In particular, for 2k = 4,

pn ∈ Θ
(( 1√

n

)dimR[x ]4−1
)
.



Solutions to Problems A.1, B.1, C.1
Theorem A.1 [Klep, McCullough, Šivic, Z, 2019]: For n,m ≥ 3 the probability pn that
a positive map Φ : Sn → Sn is CP, satisfies

pn ∈ Θ
(( 1√

n

)d
)
,

where d = dim{Φ | Φ : Sn → Sn linear map} − 1.

Theorem B.1 [Klep, Šivic, Z, 2024+]: For n ≥ 3 the probability pn that a
cross–positive map Φ : Sn → Sn is CCP, satisfies

pn ∈ O
(( 1√

n

)d
)
,

where d = dim{Φ | Φ : Sn → Sn linear map} − 1.

Theorem C.1 [Klep, Štrekelj, Z, 2024]: For n > 4 the probability pn that a
copositive matrix A ∈ Sn is CP, satisfies(

2−8 · 3−2)dim Sn−1 ≤ pn.



Solutions to Problems A.2, B.2, C.2

Problem A.2, B.2 [Klep, McCullough, Šivic, Z, 2019, 2024+]:

Construction of nonnegative (nonnegative modulo V (I))) biquadratic biforms
that are not sums of squares biforms (modulo I) by specializing the algorithm by
Blekherman, Smith, Velasco (2016) to produce pos not sos forms on varieties,
which are not of minimal degree.

Problem C.2 [Klep, Štrekelj, Z, 2023+]:

Free probability inspired construction of DNNn \CPn, n ≥ 5, matrices. Dually, we
obtain matrices from COPn \ SPNn.



2. Discussion on volume estimates



Gap between positive and sos polynomials
asymptotically not visible in the ball of the ℓ1 norm
▶ R[x]2k is equipped with the natural L2 inner product

⟨f ,g⟩ =
∫

Sn−1
fg dσ,

where and σ is the rotation invariant probability measures on the unit
sphere Sn−1 ⊂ Rn.

▶ Let ∥ · ∥1 the ℓ1 norm on the vector of coefficients, i.e.,

∥
∑
α

aαx
α∥1 =

∑
α

|aα|.

▶ E.g., for k = 2, due to the equality (and Rogers-Shepard inequality)

xixjxk xℓ =
1
2
(xixj + xk xℓ)2 − 1

2
x2

i x2
j − 1

2
x2

k x2
ℓ ,

the volume radii of positive and sos polynomials is the unit ball B1 of ∥ · ∥1
are bounded by absolute constants.



Blekherman’s result on the gap between positive and
sos polynomials is in the fair hyperplane of the L2 norm

▶ R[x]2k is equipped with the natural L2 inner product

⟨f ,g⟩ =
∫

Sn−1
fg dσ,

where and σ is the rotation invariant probability measures on the unit
sphere Sn−1 ⊂ Rn.

▶ Volume estimates refer to the sections

POS2k ∩H and SOS2k ∩H,

where H is the hyperplane of forms with average 1 on Sn−1.



3. Proofs



Problem A.1
1. R[x,y]2,2 is equipped with the natural L2 inner product

⟨f ,g⟩ =
∫

Sn−1×Sm−1
fg dσ =

∫
x∈Sn−1

(∫
y∈Sm−1

fg dσ2(y)
)

dσ1(x),

where σ = σ1 × σ2 is the product measure of rotation invariant probability
measures σ1, σ2 on the unit spheres Sn−1 ⊂ Rn, Sm−1 ⊂ Rm.

2. H is the affine hyperplane

H =

{
f ∈ R[x,y]2,2 :

∫
Sn−1×Sm−1

f dσ = 1
}
.

3. z :=
(∑n

i=1 x2
i

)(∑m
j=1 y2

j

)
and thus

M = H− z =

{
f ∈ R[x,y]2,2 :

∫
Sn−1×Sm−1

f dσ = 0
}
.

4. The estimates of vrad(POS∩H − z) and vrad(SOS∩H − z) follow closely
Blekherman’s proof for R[x]k .



Problem B.1

1. Let T := (Sn−1 × Sn−1) ∩ V (I) and equip it with the unique SO(n)-invariant
measure. T is also known as the Stiefel manifold of all 2-frames in Rn.

2. Q := R[x,y]2,2/(I ∩ R[x,y]2,2) is equipped with the natural L2 inner product

⟨f ,g⟩ =
∫

T
fg dσ.

3. H is the affine hyperplane

H =

{
f ∈ Q :

∫
T

f dσ = 1
}
.

4. z :=
(∑n

i=1 x2
i

)(∑n
j=1 y2

j

)
and thus

M = H− z =

{
f ∈ Q :

∫
T

f dσ = 0
}
.



Problem B.1
5. Only

vrad(SOS∩H − z) ≤ (∗) and (∗) ≤ vrad(POS∩H − z)

can be obtained using Blekherman’s proof for R[x]k , where the main novelty
is the following inequality:

Proposition (Reverse Hölder inequality (RHI))
For a bilinear biform g ∈ R[x,y]1,1/(I ∩ R[x,y]1,1) we have(∫

T
g4 dσ

) 1
4

= ∥g∥4 ≤
√

6︸︷︷︸
Main observation:
independence of n

∥g∥2 =
√

6
(∫

T
g2 dσ

) 1
2

.

Idea of the proof:
▶ Compute the values of the integrals of all bilinear, biquadratic and biquartic monomials.
▶ Prove RHI separately for symmetric forms g (difficult part: Muirhead inequality used) and

antisymmetric ones (easier part: sos type inequality).



Problem C.1

1. R[x]4,e is equipped with the natural L2 inner product

⟨f ,g⟩ =
∫

Sn−1
fg dσ,

where σ is the rotation invariant probability measures on the unit sphere
Sn−1 ⊂ Rn.

2. H is the affine hyperplane of forms from R[x]4,e of average 1 on Sn−1:

H =

{
f ∈ R[x]4,e :

∫
Sn1

f dσ = 1
}
.

3. z :=
(∑n

i=1 x2
i

)2 and thus

M = H− z =

{
f ∈ R[x]4,e :

∫
Sn−1

f dσ = 0
}
.

4. Let µ be the pushforward of the Lebesgue measure on RdimM to M.



Problem C.1

5. It is crucial to make the following three observations:

Observation 1: (̃NN)∗d = ÑN and (̃LF)∗d = P̃OS.

Here d stands for the differential/apolar inner product and ∗ for the dual,

LF :=
{
pr(f ) ∈ R[x]4,e : f =

∑
i

f 4
i for some fi ∈ R[x]1

}
and pr : R[x]4 → R[x]4,e is the projection defined by:

pr
( ∑

1≤i≤j≤k≤ℓ≤n

aijkℓxixjxk xℓ

)
=

∑
1≤i≤j≤n

aiijjx2
i x2

j . (1)

Observation 2: L̃F is ‘central enough’.

Observation 3: C̃P ⊆ L̃F⊆ ÑN⊆ 4(C̃P− C̃P).



Blaschke-Santaló inequality and its reverse
Geometric picture

K1 . . . the convex hull of the ellipse with a polar equation r(φ) = 3
4 (1 + 1

2 cosφ)−1,
K2 = K1 − ( 1

3 , 0), K3 = K1 + ( 1
2 , 0),

▶ The set K1 is centered in different points on each of the pictures. The first two centers are not
close enough to the origin for the BS to hold, while in the third one it is.

▶ The translation of the body (i.e., Santaló point) so that the BS holds is difficult to determine,
unless the body has enough symmetries, fixing only one point which then must be the Santaló
one.



Observation 3: ÑN ⊆ 4(C̃P− C̃P)
Follows from 2ab = (a + b)2 − a2 − b2

Let r =
(∑n

k=1 x2
k )

2. The extreme points of ÑN are of two types:

n(n + 2)
3

x4
i − r and n(n + 2)x2

i x2
j − r , i ̸= j.

The first type clearly belong to C̃P, while the second type to 4(C̃P− C̃P):

n(n + 2)x2
i x2

j − r =

=
n(n + 2)

2

(
(x2

i + x2
j )

2 − x4
i − x4

j
))

− r

= 4
(

n(n + 2)
8

(x2
i + x2

j )
2)− r

)
︸ ︷︷ ︸

p1

−
3
2

(
n(n + 2)

3
x4

i − r
)

︸ ︷︷ ︸
p2

−
3
2

(
n(n + 2)

3
x4

j − r
)

︸ ︷︷ ︸
p3

= p1 +
3
2
(p1 − p2) +

3
2
(p1 − p3)

∈ C̃P +
3
2
(C̃P− C̃P) +

3
2
(C̃P− C̃P) ⊆ 4(C̃P− C̃P).
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