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1. Preliminaries



Bivariate truncated moment problem (TMP)

Question

Let k € Nand
k
B =BY = (Bi))ijez, i<k

a bivariate sequence of real numbers of degree k.

K C R? is a closed subset.

The bivariate truncated moment problem on K (K=TMP): characterize the
existence of a positive Borel measure 1 on R? with support in K, such that

Bij = [ X'y du(x)
fori.jcZ., i+]<k

1 is called a K—representing measure (K—RM) of 3.



Bivariate moment matrix

The moment matrix M(k) associated to 8 with the rows and columns indexed by
X'Y!, i+ ] < k, in degree-lexicographic order

1, X, Y,XQ,XY, Yz,...,Xk,Xk_1 Y,..., Yk
is defined by where
1 X Y X2 Yk Yk
1 [ Boo Bio Bo1 - Bio jo o fPok ]
X B1o0  Beo Bia 0 Bortp o Pk
14 Boa B4 Bo2 - Pttt Bokt
M(k) = : ' :
Xl Bivg Bty Bicjit 0 Bivigi+i 0 Bk
v« | Boxk  Bik  Bok+t o Bihjprk 0 Poz2k |




Necessary COnditionS for the existence of a RM

> To every polynomial p := 3, &;;x'y/ € R[x, yl«, we associate the vector

1 X Yk
Bo,0 B10 Bo.k
51,0 B2.0 Bk

p(X,Y) = Z ai; X'V =aoo-| Bos |+aio-| Br1 |+ +aok-| Lokt
i . . .

Bo,k 51,k Bo,2k

from the column space of the matrix M(k).
» The matrix M(k) is recursively generated (RG) if for p, q, pg € R[x, y]«
pX.Y)=0 = (pg)(X,Y)=0.



Necessary co nditions for the existence of a RM

» The matrix M(k) satisfies the variety condition (VC) if
rank M(k) < card V,

where
V= N {(x,y) e R?: g(x,y) =0} .
R[x, )
g()?,GY)[:Xoyi]nS/\kA(k) 209

Proposition (Curto and Fialkow, 96)
If 3(2%) has a representing measure 4, then

M(k) is positive semidefinite (PSD), RG and satisfies VC.



SUffiCient Condition for the existence of a RM

Theorem (Flat extension theorem, Curto and Fialkow, 96')
TFAE:
1. 5K) admits a (rank M(k))-atomic RM.

2. M(k) is PSD and there is an extension M(k + 1) such that

rank M(k 4+ 1) = rank M(k).



Type of solutions to the K—~TMP

[ Constructive solution ]

onstructed. The most desired so-

representing measure is explicitl>]
ution.

Concrete solution ]
<

This is the solution in terms of
explicit numerical conditions on 3. |

Solution based on
[ feasibility of a LMI
f an explicit solution does not ex-
ist, then we are satisfied with a
LMI based solution with bounded
izes of LMls. )

J




Known constructive/concrete solutions

1. Quadratic TMP, i.e. 3 = 3(®: Completely solved. Curto & Fialkow, 96
2. Cubic TMP, i.e. 8 = 8(®): Completely solved. Kimsey, '14, Curto & Yoo, ’18
3. Quartic TMP, i.e. 3 = 8(9): Completely solved.
M(2) singular: Curto & Fialkow, '02
M(2) nonsingular: Fialkow & Nie, ’10, Curto & Yoo, '16
4. Quintic TMP, i.e. 8 = 5(3: Completely solved. El Azhar, Harrat, Idrissi, Zerouali, 19

5. Sextic TMP,i.e. 3 = 3:
> Extremal case - rank M(3) = card V
Curto & Fialkow & Mdller, '05

» On variety y = x3 Fialkow, '11
> rank M(3) € {7,8} Curto, Yoo, '14,°15
P On special cases of reducible varieties Yoo, 17
> M(3) invertible Fialkow, 17, Fialkow & Blekherman, 20
6. TMP on quadratic curves: Completely solved. Curto & Fialkow, '02,’04, 05, '14

7. TMP on cubic curves, i.e. 3 = 3(2):
> Infinite variety: y = x3, y?2 = x3, xy?2 = 1, y(y — 1)(y — 2) = 0 Fialkow, '11, Z.’21,22,23
> Finite variety: z° = itz + uz, t,u € R Curto, Yoo '14,°15
8. Bounds on the number of atoms: Riener & Schweighofer, ’18, di Dio & Schmiidgen, '18, di
Dio & Kummer °21, Z. 24, Riener & Texteira Turatti, '25



2. Solving the TMP for
y°=x>4+ax+b
using the flat extension theorem

with A. Bhardwaj,
Non-negative Polynomials, Sums of Squares & the Moment Problem,

PhD Thesis, Australian National University, 2020.



TMP for p(x,y) = y? —x3 —ax — b

k>38, B:={Bj}ijez. i+j<2k, analysis of the existence of a flat extension
-~ M(k) B(k+1)
k0= (o by ok )
of M(k) following Fialkow’s p(x, y) = y — x approach:
1. The block B(k + 1) restricted to rows of degree k is of the form :

Xk Xky X2Yyk—1 XYk yk+1
Xk B2k+1,0 Bek,1 coe oo Bry2k—1 Brek Bk k+1

Xk=1y Bk 1 Bok—12 - - Bk+1.k Bkt Br—1,k+2

X2YK=2 | Biyak—2  Brrok—1

XY= Brio k1 Bretk o 0 ®
Yk B,k Bk k+1 0 6 b
where
Biok+1—i = Bi—3,2k+3—i — @Bi—2,2k+1—i — bBi—32k+1—i for3 < i <2k 41

and 0, ¢, ¢ are arbitrary.



C(k+1):= (B(k+1))"M(K)'B(k + 1)

X3 YK—Z X?yk—T Xyn YK+T
xeyk=z | oo Cro1k—1 Ckk—1 Cky1k—1  Ckizk—1
= Xxeyk Chk k-1 Cr Cht1.k Crki2.k
Xk Ckr1 k=1 Cky1k Ckr1k+1  Cry2k+1
ykl - Cki2k—1 Cryok Ckiokt1  Criokio

has a moment structure iff:

Ck.k = Cks1,k—1,
b= h0?+ 0+ f
Ckt1.k = Cky2,k-1,
U = j11¢0 + fiod + jo20? + jo10 + joo
Cii1k+1 = Chyzk
k10110 + Kio0t) + Ko1100 + Kot0 + Koo20? + Koo10 + Kooo =
lo0d® + L1100 + L10¢ + Loz0? + Lo10 + Lo



2. C(k+1):=(B(k+1))"M(k)'B(k + 1) has a moment structure iff:

Cik.x = Cki1 k-1,
¢ =502+ £0+ f
Cki1.k = Ckr2,k—1,
= j1160 + jr00 + joob? + jor0 + joo
Crt1.k+1 = Chy2.k
k10110 + K100t + Ko1190 + Koto® + koo20? + Koo16 + Kooo =
200? + L1100 + L10¢ + Lozb? + Lo10 + Loo

3. A short computation shows that the last equation is of the form
042(92 + a1 +ag=0

and a flat extension M(k + 1) exists iff it has a real root 6.



TMP for p(x,y) = y? —x3 —ax — b

Generating M(3) with 10 atoms (x;, yi), (Xi, —yi) where

1 5 524287 ,
x,_7, y,_\/x,—262144x,+1, i=1,...,5

M(3) is of having a column relation

524287
262144

A flat extension M(4) does not exist, since in

p(X,Y)=Y?- X34 X—-1=0.
04292+OL19+05020

e, ap are rationals of the same sign, a1 = 0 and hence a real solution ¢ does
not exist.



TMP for p(x,y) = y? — x> —ax—b

Theorem (Bhardwaj, )

Assume M(k) = 0 and there are no other column relations besides the ones
obtained from p by RG. The following statements are equivalent:

1. L has a (rank M(k))—atomic Z(p)—representing measure.

2. Quadratic polynomial Q(6), completely determined by 3, has a real root.

Using a recent result (2024+) by Baldi, Blekherman and Sinn on the number of
atoms in a minimal measure, this result solves the TMP in case



3. Solving the TMP for
y=x

using the univariate reduction
technique

Z.: The truncated Hamburger moment problems with gaps in the index set,
Integ. Equ. Oper. Theory 93 (2021).



Univariate reduction technique

Let 3% be a sequence with M(k) satisfying the column relation Y = X2,

Every atom must be of the form for some t € R. So [, ; corresponds to the
moment of

Asi,jrunover0,1,...,2k such that i +j < 2k, the sum i + 3j runs over the set
{0,1,...,6k — 2,6k}.

The problem is equivalent to the truncated Hamburger moment problem
(THMP) with a gap ~s«_1, i.e., does there exist x € R such that

(70,715 - - - » Y6k—25 X, Yk

admits a measure pon R, i.e., v = fR x'dy for each i. This is a PSD matrix
completion problem with constraints.



Matrix completion result

Proposition

A a b * A x b
A= a a 7 |= ¥ | =1 * x x
b 7 g Xk % bT x f

be a n x n matrix, where A, is a symmetric matrix, a, b € R"~2 are vectors,
a, 8 € R real numbers and x is a variable. Let A> and A3 be the colored
submatrices of A(x) and

xs = bTAla+ /(A2 /A1) (As/ A1) €R,

where A/ and A; /A = 3 — b"Bb. Then:
1. A(xp) is PSD if and only if A>, A; are PSD and xo € [x_, x4].

2.
0, forxoe {x_,x;},

rank A(Xo) = max { rank A2, rank Ag } + { 1, for xo € (x_, X1)



Notation - Hankel matrix

Let k € N. For v = (70, . .., 72k) € R2*" we define the corresponding Hankel

matrix as
(s} 71 Y2 te Tk

oo Vk+1

k . . .

A, = [7i+j]i,j=o |
. : : Y2k —1
Yk Vk+1 o V2k—1 Yok

We use
A,(m)

to denote the restriction of A to the first m rows and columns.



THMP of degree 2k with a gap 2«1

Theorem
Letk> 1 and V(X) = (70771%"772/(—27)(772/()7
be a sequence, where x is a variable, v") = (y0,71, ..., V2k—2),
v = (70,71, - - -, Yok_4) With the moment matrix
"4 A,Y(z) u "4
T
A = X | = u' ek | x|
vl x ‘ Y2k vl x ‘ Yok

where v = (’yk, e ,’ka_g) andu = (’yk_1 s ,’ygk_g). TFAE:
1. There exists xo € R and a RM for v(xp).

2. and [ A‘;(TZ ’ Vk } are PSD and one of the following conditions is true:
2
a) is PD.

b) rank A () = rank — rank { A‘;<T2) v } .



4. Solving the TMP for plane cubics
using positivity certificates

M. Kummer, Z.:
Positive polynomials and the truncated moment problem on plane cubics, 2025,

arXiv preprint https://arxiv.org/abs/2508.13850


https://arxiv.org/abs/2508.13850

Reformulation of the TMP

In the language of linear functionals

Let k € Nand

L:R[x,y]<ok = R
a linear functional.
CC R? isa plane cubic.

The : characterize the
existence of a positive Borel measure i on R? with support in C, such that

for

If v exists, it is called a C—representing measure (C—RM) of L and L is called a
C—-moment functional.



Classification of plane cubics

Up to invertible affine change of coordinates

Irreducible cases:

(N y=p(x), () xy=px), ()y>=px),
(IV) xy? + ay = p(x),

where p(x) = bx® + cx? + dx + e.

Reducible cases:

(i) y(ay + x* +y?), a#0, (i)y(1+ay—x*—y?), |a > 2,
(i) y(1 + ay — X2 — y?), (iv) y(y — x%), (v) y(x — y?),
(vi)y(1 +y + x2), (vil)y(1 +y — x®), (viii) y(1 — xy),

(ix) (X+y+axy) a#0, (x)ylay +x* —y?), a#0,

(xi) y(1+ ay + x* — y?), (xii) y(1 + ay — x* + y?),

(xiii) y(a+y)(b+y), a,b# 0,a# b, (xiv) y(x — y)(x +y),
(xv) yx(y + 1), (xvi) y(1 —x+y)(1 +x+y),



Some definitions
C = Z(P) aplane cubic, I = (P) C R[x, y] an ideal generated by P,

L : R[x, y]<2k — R alinear functional

R[C] = R[x, y]/I | a coordinate ring of C
R[C]<m | animage of R[x, y]<, under the restriction map f — f|¢
Q(R[C]) | a quotient ring of R[C]
Lc : R[C]<2k — R | an induced functional
ker Lc | the kernel of the bil. form L¢ : R[C]<k x R[C]<x — R
induced by Lg
POS2(C) | asetofall p e R[C]<ax With p(x) > 0forx € C
V | afinite—dimensional vector space in Q(R[C])
an element of R[C]
U | avector space generated by {gh: g,h € V}
Uy | avector space generated by {fgh: g,h e V}

Assume that U; C R[C]<. Then the functional

Levi:U—=R, Lcvi(g):=Lc(7g)

if well-defined and called a (V, f)-localizing functional of L.




Some definitions

Assume Vi C R[C]<k.

Lc is strictly positive if Lo(p) > 0 for every 0 # p € POSy«(C).

Theorem (di Dio, Schmiidgen, 2018)
Every strictly positive functional L¢ is a C—moment functional.

But checking square positivity is simple.

Lc is strictly square positive if Lc(g?) > 0 for every 0 # g € R[C] <.

Lc is (V, f)-locally strictly square positive if L¢ v ;(g?) > 0 for every g € V.



Solution to the TMP on plane cubics - part 1

Assume Vi C R[C]<k.

Assume C is irreducible or C is reducible without non-real intersection points.

Theorem (Kummer, z, 25+)

There exists such that for every k € N there is a vector subspace
V() C Q(R[C]) of dimension 3k so that the following holds: Let

L: R[X,y]ggk — R

be a linear functional with ker L = |, and ker L¢ v« ; = {0}. Then the following
are equivalent:

1. L is strictly positive.
2. L is strictly square positive and (V%) f)—locally strictly square positive.



Solution to the TMP on plane cubics - part 2
Assume that C is reducible with non-real intersection points, defined by

P(Xa.y):P‘I(Xv}/)PZ(Xay)) degP1:1adegP2:2-

Theorem (kummer, z., 25+)
Let
L:R[x,yl<ok = R
be a linear functional with ker L = <y, ker Lo g(c)., ,.p, = {0} and
ker ZC,R[C] —«_1,P. = {0}. Then the following are ezyuiva/ent.'
1. L is strictly positive.

2. Lc is strictly square positive, (R[C]<k_1, )—locally strictly square
positive and (R[Cl<x_1, )—locally strictly square positive,
where

1, if Py is nonnegative on Z(P.),
X1 = —1, if Py is nonpositive on Z(P>),
if Py changes sign on Z(P;),
. 1, if P> is nonnegative on Z(Py),
X2 =9 -1, if P, is nonpositive on Z(Py).



Specifying V%)

C = Z(P), By is a basis for R[C] <,

and f torirreducible cases

By is a basis for V),

®1(p(x,y)) := p(t2, 2 — 1),

®a(p(x, y)) = p(t2 + 1,83 + 1).
P By \ Byt [ 7]
2 _ _ _ . . .
y Xg,(b ea%éj( b), {1,x,y),(éﬁl,f}i;kify};;}”, B\ (/¥ U {2}
0<a<b ’ ’
Pl ., Y;é‘y;;’;i{(’;kzgff;;;’y E B\ /U {L}
y2— X3 {1’Xjf);é}k;’giy)(/;kzjff;;;’yi’ B\ {1} u{}}
y2 — x(x —1)? d;iig{i’,f%l’kti?kﬁéjj’ B\ {1} U {3}
y2 = xe(x = 1) t__1${l’tf_§71t’kipﬁéb’ B\ {1} U {4}
c}c;)f(d_egcr(exe)?: ey, YIS B\ (A Uk — 2y
¢(0) # 0 S XEYETE Xy Y
X}/Z;;XC;%’,*C (xk xk=1 xk=1y,

c#0Oorab#0

X7Xy’17y7"'7.yk}

B\ {x} u {x*y}




Specifying V!

C = Z(P), By is a basis for R[C]<k, By

k) and f for reducible cases

is a basis for V(9| f is always

yx—=y)x+y)

P By By
y(@y + 52 + y?), {1x,y,. X, Xy, X —2y2, ayxPey?
acR\ {0} xk xk=1y xk=2y2y B\ {1} u{=5—"}
y(1 4+ ay — x2 — y?), {1, x —=1,x2 —1,... ,xk=2(x2 — 1), Bk\{1}U
aeR y7yX7"'7.yxk717y27"'7y2Xk72} {1 21+ay X *,V }
y(X_yZ) {1 X, X 7yay27.yxv.y2X7~-~7 Bk\{ }U
N I nay s b {xk —2y2xk 1}
1,x—1,x2—1,...,xk2(x2 = 1) B\ {x"}u
y(1+y—x?) ' oo U kCay Ky THy—x2
VB ZO AN SN L S {1 —x -2
2 2
B\ {1y u {1}

{1,%,y,x2,xy, ¥,
CxK xk Ty, yky

yx(y +1)

{1,x,y,x2,xy, ¥,

XXy yky

Bi \ {x¥} U {xK 4 2yxk}




Main method in proofs

C = Z(P), P =[]}_, P; with P; irreducible

Theorem (Baldi, Blekherman, Sinn, 24+ & Kummer, 24+)

Assume that the restriction of Q € R[x, y]<24 to C generates an extreme ray of
POS24(C). Denote Q"(x,y,z) = z2¢ - Q(%, ).

zz
The set
{x e P? | Q"'(x) = P"(x) = 0}
consists only of real points.

Let S be the set of indices i € {1,...,r} for which Q is divisible by
P;. Then, foreveryjc {1,...,r} \ S, the set

{x e P? | Q"(x) = P!(x) = 0 and P(x) # 0 for all i € S}

consists only of real points.



Positivstellensatz

V(¥) and f appearing in the tables above also appear in the following Positivstellensatz.

Theorem
There are and a finite—dimensional vector space V\*) in Q(R[C]) with

V) C R[C]< such that the following are equivalent:
1. p € POSx(C).
2. There exist finitely many g; € R[C]<x and h; € V) such that
p=>,07+ fZ,-h,-z-



TMP for y2 — x(x — a)(x — b) =0, abecro<a<sb

A C—degree function deg:

dego(X'y/) = 2i + 3j including negative i, j.

A basis By for R[C]<x and By for VK):

Be [1]x[yl...[x?y2] xyT yoo XY xy KT R
degc |02 (3 ]...|83—2|3i—1|3i—2|...|3k—-2|3k—-1]|3k/
Byw [ 1] x|y ... [ x®y 2] xyT yoo Xy xR

Theorem

Let p € POSu«(C). Then there exist finitely many g; € R[C]<x and h; € V) such
thatp =32, 97 + x>, h2.

Sketch of the proof:

>
»

>

Let u € POS,(C) be an extreme ray and u'(x, y, z) = 22 u(%, £) a homogenization of u.
Then u” has only real zeroes P;, i = 1,...,3k, of the form P; = [x; : y; : 1], x;, ¥ € Roor

P; =[0:1: 0], each of multiplicity 2.

Known fact: P := Py & ... ® Pz is a 2—torsion point in the group law of C.

If P is the point at infinity O := [0 : 1 : 0], then u"" = (uf")? for some uf € R[x, y, z]< and

u = u? is a square of uy(x,y) = ull(x,y,1) € R[C]<.

Otherwise P =[0: 0 : 1] and xzu™ = (uf})? for some ufl € R[x, y, Z]<x11. Then u = x(‘2)2,
where up = ufl(x, y,1). Considering deg, of both sides, u, cannot contain 1, y¥*1 or xy*.



TMP for y?2 — x(x — a)(x —b) =0, abcro<a<b

Example: 2k = 6, 8 = L(x'y/)

L strict square positivity and Vx—local strict square positivity are equivalent to positive definiteness

of the following matrices:

Y/X

X2

Xy

X2y
XY?

Bo1

B11
B30
B21
B12
B31

L Boo

1

[ Boo
B1o
Bo1
B20
B11
Boz2
Be1
B12

L Bos

X

B1o
B20
B11
B30
Be1
B12
Ba1
B2z
B13

Y

Bo1

Y

Bo1
B11
Boz2
B21
B12
Bo3
Bo2
B13
Boa

L((x — a)(x = b))

B11
Boz2
Ba1
B2
Bo3
B22
B13

X2
B20
B30
B2t
Bao
Ba1
Bo2
Bat
B32
Be3

X2
B20
B11
B30
Bo1
Bao
B31
Bo2
Bat
B32

XY

B11
Be1
B12
B31
Bo2
B13
Ba2
Bo3
B14

XY

B11
Boz2
Ba1
B12
B31
Bo2
B13
B32
Be3

Y2
Boz2
B12
Bos
Bo2
B13
Boa
B3
B1a
Bos

X3
B30
Be1
Bao
B31
Bso
Ba
Ba2
Bs1
Baz

X2y
Ba1
B31
Bo2
Ba
Ba2
Bo3
Baz
B33
Boa
X2y
Ba1
B12
B31
Bo2
Ba
B32
Be3
Baz
B33

XY?2
B2
B2z
B13
B32
Bo3
B4
B33
B24
B1s

XY?2

B2
Bos
B22
B13
B32
B23
B14
B33
B4

Y3
Bos
B13
Boa
B23
B1a
Bos
Bea
B1s
Bos

X3y
B31
Ba2
Bat
B32
Bs1

Baz
B33
Bs2
Ba3

X2y2
B22
B13
B32
B23
Baz
B33
Boa
Ba3
B34




TMP for nodal cubic y? — x(x —1)2 =0

Parametrization of C:

Let
Nodal := {s € R[f]: s(1) = s(—1)}, Nodal<;:= {s € Nodal: degs < i}.

The map
® : R[C] — Nodal, &(p(x,y)) = p(t?, 2 —t)

is a ring isomorphism. The vector subspace R[C]<; is in one-to-one
correspondence with the set Nodal<g; under ¢.

Let
POS(Nodal<;) := {f € Nodal<;: f(t) > 0 for every t € R},
Nodal<; i= {s € R[f]<;: s(1) = —s(~1)}.
Theorem

Let p € POS(Nodal<gk). Then there exist finitely many g; € Nodal<gx and
hj € Nodal<ax such thatp = >, 97 + >, h?.



TMP for nodal cubic y? — x(x —1)2 =0

The basis for Nodal<; is the following:

Brodale, = {1, 2 = 1,83 —t,t* — 2, ¢ — 73 ¢ — 2}

The basis for mg, is the following:

We have that
y

x—1
maps to t under ®. So this is a replacement for 1 in the basis for V.




This approach also gives an idea for constructive
solution to the TMP working also in singular cases
Using correspondence ¢ above the C—TMP for L is equivalent to the R—TMP for

LNodal_g : Nodal<gk = R, Lnodal_g(P) = Lc(®7 (D))

Using the basis Bnodal 5 U B~ N the moment matrix of Lnodal_g, IS

Nodal<
1 T T2 1 8T 73k _78k—2
! £(1) ? L —1) £ - o £(3k _ Bk—2)
T ? L(2) 3 -t ot - 12) coo (ke _ Bk=1y
T2 4 L2 = 1) L3 -t LR =12 ci® —1)2) . @322~ 1)?)
87 e -1 LB — 1) L -1 o -n2) ... c@dk=12 - 12
7—3k7;—3k—2 £(83k 7 Bk—2) o o (8K 7',3;(72)2)

From here it is easy to characterize when Lyogal_,, iS @ R-moment functional and
construct a measure after completing the only 7 position in the matrix above.

However, it is not clear whether one needs rankaoda|<6k or rankZNoda|<6k + 1 atoms in a minimal
measure.



TMP for nodal cubic y? — x(x —1)2 =0

® : R[C]<2k — Nodal<g, ®(p(x,y)) = p(t?, 2 — 1),

V) = span{d—1 (BNodal <34 ) }

Lc is singular if ker Lo # {07}.
Lcis (V) 1)-locally singular if ker Ls 0 ¢ # {0}

Theorem B B
Let L : R[x, y]<2« be a linear functional such that | C ker L and (ker L¢c # {0} or
ker L v« 1 # {0}). Then the following are equivalent:

1. L is a C—moment functional.

2. L¢ is square positive and (V¥ 1)—locally square positive and one of the
following holds:

2.1 rankL¢ = rank(zc)\(¢71(BNodal<3k_1)).

2.2 rankzc,v(km = rank(fc,v(km)|(¢71(Bm<3k 1)).



TMP for y(ay + x? + y?) =0

A line Cq an a circle C, with one double intersection point
Parametrization of C:

LetD=Q;, + Q_; and

Cire = {(1(9).9(0)) € Rls] x B[ . 7+ 10) = a(-1), #(0) = 220,
Cire<; = {(f(s), 9(t)) € R[s]<i x L(iD): £(0) = g(~1), F(0) = 29/;1) }.

The map

2 _ 2
® : R[C] — Circy, ®(p(x,y)) = <p(s, 0),p( - 2:2 - 1 ’_g (:2++11) >>

is a ring isomorphism. The vector subspace R[C]<; is in one-to-one correspondence with the set
Circ§3,- under ¢.

Let
POS(Circ<;) := {(f(5), 9(t)) € (Circi)<;: f(8) > 0, g(t) > 0 for every (s, t) € R?},
Circ< = {(f(s),g(t)) € R[s]<; x L(iD): f(0) = g(—1) = 0}.



TMP for y(ay + x* + y?) =0

Theorem
Let (p1,p2) € POS(Circ<ox). Then there exist finitely many (g1.i, g2,;) € Circ<k
and (hy,j, ho;j) € Circ<x such that

(p17p2):Z g1/a921 +Z 1]ah§]

The basis for Circ<; is the following:
Beire., = O({1,X,y, X%, xy, y2, ... X Xy xI=2y2 X! Xy, xR YY)
The basis for ar/cﬁ is the following:
Bere., = Beiree, \{(1:1)} U {(s,0)}
We have that
ay +x* + y?

X
maps to (s, 0) under ®. So this is a replacement for 1 in the basis for V.



Thank you for your attention!



