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1. Preliminaries



Bivariate truncated moment problem (TMP)
Question

Let k ∈ N and

β = β(k) = (βi,j)i,j∈Z+,i+j≤k

a bivariate sequence of real numbers of degree k .

K ⊆ R2 is a closed subset.

The bivariate truncated moment problem on K (K –TMP): characterize the
existence of a positive Borel measure µ on R2 with support in K , such that

βi,j =
∫

K x iy jdµ(x)
for i , j ∈ Z+, i + j ≤ k .

µ is called a K –representing measure (K –RM) of β.



Bivariate moment matrix

The moment matrix M(k) associated to β with the rows and columns indexed by
X iY j , i + j ≤ k , in degree-lexicographic order

1,X ,Y ,X 2,XY ,Y 2, . . . ,X k ,X k−1Y , . . . ,Y k

is defined by where

M(k) :=



1 X Y ··· X i2 Y j2 ··· Y k

1 β0,0 β1,0 β0,1 · · · βi2,j2 · · · β0,k
X β1,0 β2,0 β1,1 · · · βi2+1,j2 · · · β1,k
Y β0,1 β1,1 β0,2 · · · βi2,j2+1 · · · β0,k+1

...
...

. . .
...

X i1 Y j1 βi1,j1 βi1+1,j1 βi1,j1+1 · · · βi1+i2,j1+j2 · · · βi1,j1+k

...
...

...
. . .

...
Y k β0,k β1,k β0,k+1 · · · βi2,j2+k · · · β0,2k





Necessary conditions for the existence of a RM

▶ To every polynomial p :=
∑

i,j ai,jx iy j ∈ R[x , y ]k , we associate the vector

p(X ,Y ) =
∑
i,j

ai,jX iY j = a0,0 ·

1


β0,0
β1,0
β0,1
...
β0,k

+ a1,0 ·

X


β1,0
β2,0
β1,1
...
β1,k

+ · · ·+ a0,k ·

Y k


β0,k
β1,k
β0,k+1
...

β0,2k

from the column space of the matrix M(k).

▶ The matrix M(k) is recursively generated (RG) if for p, q, pq ∈ R[x , y ]k

p(X ,Y ) = 0 ⇒ (pq)(X ,Y ) = 0.



Necessary conditions for the existence of a RM

▶ The matrix M(k) satisfies the variety condition (VC) if

rankM(k) ≤ cardV,
where

V :=
⋂

g∈R[x,y ]≤k ,
g(X ,Y )=0 in M(k)

{
(x , y) ∈ R2 : g(x , y) = 0

}︸ ︷︷ ︸
Z(g)

.

Proposition (Curto and Fialkow, 96’)

If β(2k) has a representing measure µ, then

M(k) is positive semidefinite (PSD), RG and satisfies VC.



Sufficient condition for the existence of a RM

Theorem (Flat extension theorem, Curto and Fialkow, 96’)
TFAE:

1. β(2k) admits a (rankM(k))–atomic RM.

2. M(k) is PSD and there is an extension M(k + 1) such that

rankM(k + 1) = rankM(k).



Type of solutions to the K –TMP

Concrete solution

This is the solution in terms of
explicit numerical conditions on β.

Constructive solution

A representing measure is explicitly
constructed. The most desired so-
lution.

Solution based on
feasibility of a LMI

If an explicit solution does not ex-
ist, then we are satisfied with a
LMI based solution with bounded
sizes of LMIs.



Known constructive/concrete solutions
1. Quadratic TMP, i.e. β = β(2): Completely solved. Curto & Fialkow, ’96

2. Cubic TMP, i.e. β = β(3): Completely solved. Kimsey, ’14, Curto & Yoo, ’18

3. Quartic TMP, i.e. β = β(4): Completely solved.
M(2) singular: Curto & Fialkow, ’02
M(2) nonsingular: Fialkow & Nie, ’10, Curto & Yoo, ’16

4. Quintic TMP, i.e. β = β(5): Completely solved. El Azhar, Harrat, Idrissi, Zerouali, ’19

5. Sextic TMP, i.e. β = β(6): Partially solved.
▶ Extremal case - rankM(3) = cardV

Curto & Fialkow & Möller, ’05
▶ On variety y = x3 Fialkow, ’11
▶ rankM(3) ∈ {7, 8} Curto, Yoo, ’14, ’15
▶ On special cases of reducible varieties Yoo, ’17
▶ M(3) invertible Fialkow, ’17, Fialkow & Blekherman, ’20

6. TMP on quadratic curves: Completely solved. Curto & Fialkow, ’02, ’04, ’05, ’14

7. TMP on cubic curves, i.e. β = β(2k): Cases solved.
▶ Infinite variety: y = x3, y2 = x3, xy2 = 1, y(y − 1)(y − 2) = 0 Fialkow, ’11, Z. ’21,’22,’23
▶ Finite variety: z3 = itz + uz̄, t , u ∈ R Curto, Yoo ’14, ’15

8. Bounds on the number of atoms: Riener & Schweighofer, ’18, di Dio & Schmüdgen, ’18, di
Dio & Kummer ’21, Z. ’24, Riener & Texteira Turatti, ’25



2. Solving the TMP for

y2 = x3 + ax + b
using the flat extension theorem

with A. Bhardwaj,
Non-negative Polynomials, Sums of Squares & the Moment Problem,

PhD Thesis, Australian National University, 2020.



TMP for p(x , y) = y2 − x3 − ax − b
k ≥ 3, β := {βij}i,j∈Z+,i+j≤2k , analysis of the existence of a flat extension

M(k + 1) =
(

M(k) B(k + 1)
(B(k + 1))T C(k + 1)

)

of M(k) following Fialkow’s p(x , y) = y − x3 approach:

1. The block B(k + 1) restricted to rows of degree k is of the form :
X k+1 X k Y . . . . . . X 2Y k−1 XY k Y k+1



X k β2k+1,0 β2k,1 . . . . . . βk+2,k−1 βk+1,k βk,k+1

X k−1Y β2k,1 β2k−1,2 . .
.

. .
.

βk+1,k βk,k+1 βk−1,k+2
...

... . .
.

. .
.

. .
.

. .
.

. .
. ...

...
... . .

.
. .
.

. .
.

. .
.

. .
. ...

X 2Y k−2 βk+3,k−2 βk+2,k−1 . .
.

. .
.

. .
.

. .
.

θ

XY k−1 βk+2,k−1 βk+1,k . .
.

. .
.

. .
.

θ ϕ
Y k βk+1,k βk,k+1 . . . . . . θ ϕ ψ

,

where

βi,2k+1−i = βi−3,2k+3−i − aβi−2,2k+1−i − bβi−3,2k+1−i for 3 ≤ i ≤ 2k + 1

and θ, ϕ, ψ are arbitrary.



2.
C(k + 1) := (B(k + 1))T M(k)†B(k + 1)

=



... X 3Y k−2 X 2Y k−1 XY n Y k+1

···
. . .

...
...

X 3Y k−2 · · · Ck−1,k−1 Ck,k−1 Ck+1,k−1 Ck+2,k−1
X 2Y k−1 Ck,k−1 Ck,k Ck+1,k Ck+2,k

XY k Ck+1,k−1 Ck+1,k Ck+1,k+1 Ck+2,k+1
Y k+1 · · · Ck+2,k−1 Ck+2,k Ck+2,k+1 Ck+2,k+2


has a moment structure iff:

Ck,k = Ck+1,k−1,

ϕ = f2θ2 + f1θ + f0
Ck+1,k = Ck+2,k−1,

ψ = j11ϕθ + j10ϕ+ j02θ
2 + j01θ + j00

Ck+1,k+1 = Ck+2,k

k101ψθ + k100ψ + k011ϕθ + k010ϕ+ k002θ
2 + k001θ + k000 =

ℓ20ϕ
2 + ℓ11ϕθ + ℓ10ϕ+ ℓ02θ

2 + ℓ01θ + ℓ00



2. C(k + 1) := (B(k + 1))T M(k)†B(k + 1) has a moment structure iff:

Ck,k = Ck+1,k−1,

ϕ = f2θ2 + f1θ + f0
Ck+1,k = Ck+2,k−1,

ψ = j11ϕθ + j10ϕ+ j02θ
2 + j01θ + j00

Ck+1,k+1 = Ck+2,k

k101ψθ + k100ψ + k011ϕθ + k010ϕ+ k002θ
2 + k001θ + k000 =

ℓ20ϕ
2 + ℓ11ϕθ + ℓ10ϕ+ ℓ02θ

2 + ℓ01θ + ℓ00

3. A short computation shows that the last equation is of the form

α2θ
2 + α1θ + α0 = 0

and a flat extension M(k + 1) exists iff it has a real root θ.



TMP for p(x , y) = y2 − x3 − ax − b
There are cases with a measure but without flat extension.

Generating M(3) with 10 atoms (xi , yi), (xi ,−yi) where

xi =
1
i
, yi =

√
x3

i − 524287
262144

xi + 1, i = 1, . . . , 5,

M(3) is of rank 9 having a column relation

p(X ,Y ) = Y 2 − X 3 +
524287
262144

X − 1 = 0.

A flat extension M(4) does not exist, since in

α2θ
2 + α1θ + α0 = 0

α2, α0 are rationals of the same sign, α1 = 0 and hence a real solution θ does
not exist.



TMP for p(x , y) = y2 − x3 − ax − b

Theorem (Bhardwaj, Z)
Assume M(k) ⪰ 0 and there are no other column relations besides the ones
obtained from p by RG. The following statements are equivalent:

1. L has a (rankM(k))–atomic Z(p)–representing measure.

2. Quadratic polynomial Q(θ), completely determined by β, has a real root.

Using a recent result (2024+) by Baldi, Blekherman and Sinn on the number of
atoms in a minimal measure, this result solves the TMP in case Z(p) has one
connected component and the homogenization of p(x , y) determines a
projectively smooth curve.



3. Solving the TMP for

y = x3

using the univariate reduction
technique

Z.: The truncated Hamburger moment problems with gaps in the index set,
Integ. Equ. Oper. Theory 93 (2021).



Univariate reduction technique

Let β(2k) be a sequence with M(k) satisfying the column relation Y = X 3.

Every atom must be of the form (t , t3) for some t ∈ R. So βi,j corresponds to the
moment of z i+3j .

As i , j run over 0,1, . . . ,2k such that i + j ≤ 2k , the sum i + 3j runs over the set

{0, 1, . . . , 6k − 2,6k}.

The problem is equivalent to the truncated Hamburger moment problem
(THMP) with a gap γ6k−1, i.e., does there exist x ∈ R such that

(γ0, γ1, . . . , γ6k−2, x , γ6k )

admits a measure µ on R, i.e., γi =
∫
R x idµ for each i . This is a PSD matrix

completion problem with constraints.



Matrix completion result

Proposition
Let

A(?) :=

 A1 a b
aT α ?
bT ? β

 =

 A1 a ∗
aT α ∗
∗ ∗ ∗

 =

 A1 ∗ b
∗ ∗ ∗

bT ∗ β


be a n × n matrix, where A1 is a symmetric matrix, a,b ∈ Rn−2 are vectors,
α, β ∈ R real numbers and x is a variable. Let A2 and A3 be the colored
submatrices of A(x) and

x± := bT A†
1a ±

√
(A2

/
A1)(A3

/
A1) ∈ R,

where A2
/

A1 = α− aT A†a and A3
/

A1 = β − bT B†b. Then:

1. A(x0) is PSD if and only if A2, A3 are PSD and x0 ∈ [x−, x+].

2.

rankA(x0) = max
{
rankA2, rankA3

}
+

{
0, for x0 ∈ {x−, x+},
1, for x0 ∈ (x−, x+).



Notation - Hankel matrix

Let k ∈ N. For γ = (γ0, . . . , γ2k ) ∈ R2k+1 we define the corresponding Hankel
matrix as

Aγ := [γi+j ]
k
i,j=0 =



γ0 γ1 γ2 · · · γk

γ1 γ2 . .
.

. .
.

γk+1

γ2 . .
.

. .
.

. .
. ...

... . .
.

. .
.

. .
.

γ2k−1
γk γk+1 · · · γ2k−1 γ2k


.

We use
Aγ(m)

to denote the restriction of A to the first m rows and columns.



THMP of degree 2k with a gap γ2k−1

Theorem
Let k > 1 and γ(x) := (γ0, γ1, . . . , γ2k−2, x , γ2k ),

be a sequence, where x is a variable, γ(1) = (γ0, γ1, . . . , γ2k−2),
γ(2) = (γ0, γ1, . . . , γ2k−4) with the moment matrix

Aγ(x) =

 Aγ(1)
v
x

vT x γ2k

 =

 Aγ(2) u
uT γ2k−2

v
x

vT x γ2k

 ,
where v = (γk , . . . , γ2k−2) and u = (γk−1, . . . , γ2k−3). TFAE:

1. There exists x0 ∈ R and a RM for γ(x0).

2. Aγ(1) and
[

Aγ(2) v
vT γ2k

]
are PSD and one of the following conditions is true:

a) Aγ(1) is PD.

b) rankAγ(2) = rankAγ(1) = rank

[
Aγ(2) v
vT γ2k

]
.



4. Solving the TMP for plane cubics
using positivity certificates

M. Kummer, Z.:
Positive polynomials and the truncated moment problem on plane cubics, 2025,

arXiv preprint https://arxiv.org/abs/2508.13850

https://arxiv.org/abs/2508.13850


Reformulation of the TMP
In the language of linear functionals

Let k ∈ N and

L : R[x , y ]≤2k → R
a linear functional.

C ⊆ R2 is a plane cubic.

The bivariate truncated moment problem on C (C–TMP): characterize the
existence of a positive Borel measure µ on R2 with support in C, such that

L(f ) =
∫

C f dµ
for i , j ∈ Z+, i + j ≤ k .

If µ exists, it is called a C–representing measure (C–RM) of L and L is called a
C–moment functional.



Classification of plane cubics
Up to invertible affine change of coordinates

Irreducible cases:

(I) y = p(x), (II) xy = p(x), (III) y2 = p(x),
(IV ) xy2 + ay = p(x),

where p(x) = bx3 + cx2 + dx + e.

Reducible cases:

(i) y(ay + x2 + y2), a ̸= 0, (ii) y(1 + ay − x2 − y2), |a| > 2,
(iii) y(1 + ay − x2 − y2), (iv) y(y − x2), (v) y(x − y2),

(vi)y(1 + y + x2), (vii)y(1 + y − x2), (viii) y(1 − xy),
(ix) y(x + y + axy), a ̸= 0, (x) y(ay + x2 − y2), a ̸= 0,
(xi) y(1 + ay + x2 − y2), (xii) y(1 + ay − x2 + y2),

(xiii) y(a + y)(b + y), a, b ̸= 0, a ̸= b, (xiv) y(x − y)(x + y),
(xv) yx(y + 1), (xvi) y(1 − x + y)(1 + x + y),



Some definitions
C = Z(P) a plane cubic, I = ⟨P⟩ ⊆ R[x , y ] an ideal generated by P,

L : R[x , y ]≤2k → R a linear functional

R[C] = R[x , y ]/I a coordinate ring of C
R[C]≤m an image of R[x , y ]≤m under the restriction map f 7→ f |C

Q(R[C]) a quotient ring of R[C]
LC : R[C]≤2k → R an induced functional

ker LC the kernel of the bil. form LC : R[C]≤k × R[C]≤k → R
induced by LC

POS2k (C) a set of all p ∈ R[C]≤2k with p(x) ≥ 0 for x ∈ C
V a finite–dimensional vector space in Q(R[C])
f an element of R[C]

U a vector space generated by {gh : g,h ∈ V}
U f a vector space generated by {fgh : g,h ∈ V}

Assume that Uf ⊆ R[C]≤k . Then the functional

LC,V ,f : U → R, LC,V ,f (g) := LC(f g)

if well–defined and called a (V , f )–localizing functional of LC .



Some definitions
Assume Vf ⊆ R[C]≤k .

LC is strictly positive if LC(p) > 0 for every 0 ̸= p ∈ POS2k (C).

Theorem (di Dio, Schmüdgen, 2018)
Every strictly positive functional LC is a C–moment functional.

Checking positivity is difficult.

But checking square positivity is simple.

LC is strictly square positive if LC(g2) > 0 for every 0 ̸= g ∈ R[C]≤k .

LC is (V , f )–locally strictly square positive if LC,V ,f (g2) > 0 for every g ∈ V .



Solution to the TMP on plane cubics - part 1
Assume Vf ⊆ R[C]≤k .

Assume C is irreducible or C is reducible without non-real intersection points.

Theorem (Kummer, Z., 25+)
There exists f ∈ Q(R[C]) such that for every k ∈ N there is a vector subspace
V (k) ⊆ Q(R[C]) of dimension 3k so that the following holds: Let

L : R[x , y ]≤2k → R

be a linear functional with ker L = I≤k and ker LC,V (k),f = {0}. Then the following
are equivalent:

1. LC is strictly positive.
2. LC is strictly square positive and (V (k), f )–locally strictly square positive.



Solution to the TMP on plane cubics - part 2
Assume that C is reducible with non-real intersection points, defined by

P(x , y) = P1(x , y)P2(x , y), degP1 = 1, degP2 = 2.

Theorem (Kummer, Z., 25+)
Let

L : R[x , y ]≤2k → R

be a linear functional with ker L = I≤k , ker LC,R[C]≤k−1,P1 = {0} and
ker LC,R[C]≤k−1,P2 = {0}. Then the following are equivalent:

1. LC is strictly positive.
2. LC is strictly square positive, (R[C]≤k−1, χ1P1)–locally strictly square

positive and (R[C]≤k−1, χ2P2)–locally strictly square positive,
where

χ1 =

 1, if P1 is nonnegative on Z(P2),
−1, if P1 is nonpositive on Z(P2),

0, if P1 changes sign on Z(P2),

χ2 =

{
1, if P2 is nonnegative on Z(P1),

−1, if P2 is nonpositive on Z(P1).



Specifying V (k) and f for irreducible cases

C = Z(P), Bk is a basis for R[C]≤k , BV (k) is a basis for V (k), Φ1(p(x , y)) := p(t2, t3 − t),
Φ2(p(x , y)) := p(t2 + 1, t3 + t).

P Bk BV (k) f

y2 − x(x − a)(x − b),
a, b ∈ R,

0 < a < b

{1, x , y , . . . , x2y i−2, xy i−1, y i ,
. . . x2yk−2, xyk−1, yk} Bk \ {yk} ∪ { y

x } x

y2 − x(x2 + c),
c ∈ (0,∞)

{1, x , y , . . . , x2y i−2, xy i−1, y i ,
. . . x2yk−2, xyk−1, yk} Bk \ {yk} ∪ { y

x } x

y2 − x3 {1, x , y , . . . , x2y i−2, xy i−1, y i ,
. . . x2yk−2, xyk−1, yk} Bk \ {1} ∪ { y

x } 1

y2 − x(x − 1)2 Φ−1
1 ({1, t2 − 1, t3 − t , . . . ,

tk−1 − tk−3, tk − tk−2})
Bk \ {1} ∪ { y

x−1} 1

y2 − x2(x − 1) Φ−1
2 ({1, t2 + 1, t3 + t , . . . ,

tk−1 + tk−3, tk + tk−2})
Bk \ {1} ∪ { y

x } 1

yx − c(x),
c of degree 3,

c(0) ̸= 0

{1, x , y , . . . , x2y i−2, xy i−1, y i ,
. . . x2yk−2, xyk−1, yk} Bk \ {yk} ∪ {yk − 2[x2k ]} 1

xy2 + ax − by − c
a, b, c ∈ R,

c ̸= 0 or ab ̸= 0

{xk , xk−1, xk−1y , . . . ,
x , xy , 1, y , . . . , yk} Bk \ {xk} ∪ {xk y} 1



Specifying V (k) and f for reducible cases

C = Z(P), Bk is a basis for R[C]≤k , BV (k) is a basis for V (k), f is always 1

P Bk BV (k)

y(ay + x2 + y2),
a ∈ R \ {0}

{1, x , y , . . . , x j , x j−1y , x j−2y2,
. . . xk , xk−1y , xk−2y2} Bk \ {1} ∪ { ay+x2+y2

x }

y(1 + ay − x2 − y2),
a ∈ R

{1, x − 1, x2 − 1, . . . , xk−2(x2 − 1),
y , yx , . . . , yxk−1, y2, . . . , y2xk−2}

Bk \ {1}∪
{1 − 2 1+ay−x2−y2

1−x2 }

y(x − y2)
{1, x , . . . , xk , y , y2, yx , y2x , . . . ,
yx j , y2x j , . . . , y2xk−2, yxk−1}

Bk \ {xk}∪
{xk − 2y2xk−1}

y(1 + y − x2)
1, x − 1, x2 − 1, . . . , xk−2(x2 − 1),

y , yx , y2, y2x . . . , yk−1x , yk}
Bk \ {xk}∪

{1 − x − 2 1+y−x2

1+x }

y(x − y)(x + y) {1, x , y , x2, xy , y2,
. . . xk , xk−1y , yk} Bk \ {1} ∪ { x2−y2

x ]}

yx(y + 1) {1, x , y , x2, xy , y2,
. . . xk , xk−1y , yk} Bk \ {xk} ∪ {xk + 2yxk}



Main method in proofs
C = Z(P), P =

∏r
i=1 Pi with Pi irreducible

Theorem (Baldi, Blekherman, Sinn, 24+ & Kummer, 24+)
Assume that the restriction of Q ∈ R[x , y ]≤2d to C generates an extreme ray of
POS2d (C). Denote Qh(x , y , z) = z2d · Q( x

z ,
y
z ).

Irreducible C: The set

{x ∈ P2 | Qh(x) = Ph(x) = 0}

consists only of real points.

Reducible C: Let S be the set of indices i ∈ {1, . . . , r} for which Q is divisible by
Pi . Then, for every j ∈ {1, . . . , r}∖ S, the set

{x ∈ P2 | Qh(x) = Ph
j (x) = 0 and Ph

i (x) ̸= 0 for all i ∈ S}

consists only of real points.



Positivstellensatz

V (k) and f appearing in the tables above also appear in the following Positivstellensatz.

Theorem
There are f ∈ R[C] and a finite–dimensional vector space V (k) in Q(R[C]) with
V (k)

f ⊆ R[C]≤k such that the following are equivalent:
1. p ∈ POS2k (C).
2. There exist finitely many gi ∈ R[C]≤k and hj ∈ V (k) such that

p =
∑

i g2
i + f

∑
j h2

j .



TMP for y2 − x(x − a)(x − b) = 0, a, b ∈ R, 0 < a < b
A C–degree function degC :

degC(x
iy j) = 2i + 3j including negative i , j .

A basis Bk for R[C]≤k and BV (k) for V (k):

Bk 1 x y . . . x2y i−2 xy i−1 y i . . . x2yk−2 xyk−1 yk

degC 0 2 3 . . . 3i − 2 3i − 1 3i − 2 . . . 3k − 2 3k − 1 3k/1
BV (k) 1 x y . . . x2y i−2 xy i−1 y i . . . x2yk−2 xyk−1 y

x

Theorem
Let p ∈ POS2k (C). Then there exist finitely many gi ∈ R[C]≤k and hj ∈ V (k) such
that p =

∑
i g2

i + x
∑

j h2
j .

Sketch of the proof:
▶ Let u ∈ POS2k (C) be an extreme ray and uh(x , y , z) = z2k u( x

z ,
y
z ) a homogenization of u.

▶ Then uh has only real zeroes Pi , i = 1, . . . , 3k , of the form Pi = [xi : yi : 1], xi , yi ∈ R or
Pi = [0 : 1 : 0], each of multiplicity 2.

▶ Known fact: P := P1 ⊕ . . .⊕ P3k is a 2–torsion point in the group law of C.
▶ If P is the point at infinity O := [0 : 1 : 0], then uh = (uh

1)
2 for some uh

1 ∈ R[x , y , z]≤k and
u = u2

1 is a square of u1(x , y) = uh
1(x , y , 1) ∈ R[C]≤k .

▶ Otherwise P = [0 : 0 : 1] and xzuh = (uh
2)

2 for some uh
2 ∈ R[x , y , z]≤k+1. Then u = x( u2

x )2,
where u2 = uh

2(x , y , 1). Considering degC of both sides, u2 cannot contain 1, yk+1 or xyk .



TMP for y2 − x(x − a)(x − b) = 0, a, b ∈ R, 0 < a < b

Example: 2k = 6, βij = L(x i y j )

LC strict square positivity and Vx –local strict square positivity are equivalent to positive definiteness
of the following matrices:



1 X Y X2 XY Y 2 X2Y XY 2 Y 3

1 β00 β10 β01 β20 β11 β02 β21 β12 β03
X β10 β20 β11 β30 β21 β12 β31 β22 β13
Y β01 β11 β02 β21 β12 β03 β22 β13 β04
X2 β20 β30 β21 β40 β31 β22 β41 β32 β23
XY β11 β21 β12 β31 β22 β13 β32 β23 β14
Y 2 β02 β12 β03 β22 β13 β04 β23 β14 β05

X2Y β21 β31 β22 β41 β32 β23 β42 β33 β24
XY 2 β12 β22 β13 β32 β23 β14 β33 β24 β15
Y 3 β03 β13 β04 β23 β14 β05 β24 β15 β06


,



X Y X2 XY X3 X2Y XY 2 X3Y X2Y 2

1 β10 β01 β20 β11 β30 β21 β12 β31 β22
Y/X β01 L((x − a)(x − b)) β11 β02 β21 β12 β03 β22 β13

X β20 β11 β30 β21 β40 β31 β22 β41 β32
Y β11 β02 β21 β12 β31 β22 β13 β32 β23
X2 β30 β21 β40 β31 β50 β41 β32 β51 β42
XY β21 β12 β31 β22 β41 β32 β23 β42 β33
Y 2 β12 β03 β22 β13 β32 β23 β14 β33 β24

X2Y β31 β22 β41 β32 β51 β42 β33 β52 β43
XY 2 β22 β13 β32 β23 β42 β33 β24 β43 β34


.



TMP for nodal cubic y2 − x(x − 1)2 = 0
Parametrization of C:

(x(t), y(t)) = (t2, t3 − t), t ∈ R,

Let

Nodal := {s ∈ R[t ] : s(1) = s(−1)}, Nodal≤i := {s ∈ Nodal : deg s ≤ i}.

The map
Φ : R[C] → Nodal, Φ(p(x , y)) = p(t2, t3 − t)

is a ring isomorphism. The vector subspace R[C]≤i is in one-to-one
correspondence with the set Nodal≤3i under Φ.

Let

POS(Nodal≤i) := {f ∈ Nodal≤i : f (t) ≥ 0 for every t ∈ R},

Ñodal≤i := {s ∈ R[t ]≤i : s(1) = −s(−1)}.

Theorem
Let p ∈ POS(Nodal≤6k ). Then there exist finitely many gi ∈ Nodal≤3k and
hj ∈ Ñodal≤3k such that p =

∑
i g2

i +
∑

j h2
j .



TMP for nodal cubic y2 − x(x − 1)2 = 0

The basis for Nodal≤i is the following:

BNodal≤i := {1, t2 − 1, t3 − t , t4 − t2, . . . , t i−1 − t i−3, t i − t i−2}.

The basis for Ñodal≤i is the following:

B
Ñodal≤i

:= {t , t2 − 1, t3 − t , t4 − t2, . . . , t i−1 − t i−3, t i − t i−2}.

We have that
y

x − 1
maps to t under Φ. So this is a replacement for 1 in the basis for V .



This approach also gives an idea for constructive
solution to the TMP working also in singular cases

Using correspondence Φ above the C–TMP for L is equivalent to the R–TMP for

LNodal≤6k : Nodal≤6k → R, LNodal≤6k (p) = LC(Φ
−1(p)).

Using the basis BNodal≤3k ∪ B
Ñodal≤3k

the moment matrix of LNodal≤6k is



1 T T2−1 T3−T ··· T 3k −T3k−2

1 L(1) ? L(t2 − 1) L(t3 − t) · · · L(t3k − t3k−2)
T ? L(t2) L(t3 − t) L(t4 − t2) · · · L(t3k+1 − t3k−1)

T 2−1 L(t2 − 1) L(t3 − t) L((t2 − 1)2) L(t(t2 − 1)2) · · · L(t3k−2(t2 − 1)2)
T 3−T L(t3 − t) L(t(t3 − t)) L(t(t2 − 1)2) L((t3 − t)2) · · · L(t3k−1(t2 − 1)2)

...
...

. . .
...

T 3k −T3k−2 L(t3k − t3k−2) · · · · · · L((t3k − t3k−2)2)


.

From here it is easy to characterize when LNodal≤6k is a R–moment functional and
construct a measure after completing the only ? position in the matrix above.
However, it is not clear whether one needs rank LNodal≤6k or rank LNodal≤6k + 1 atoms in a minimal
measure.



TMP for nodal cubic y2 − x(x − 1)2 = 0
Φ : R[C]≤2k → Nodal≤6k ,Φ(p(x , y)) = p(t2, t3 − t),

V (k) = span{Φ−1(BNodal≤3k )}

LC is singular if ker LC ̸= {0}.

LC is (V (k), 1)–locally singular if ker LC,V (k),1 ̸= {0}.

Theorem
Let L : R[x , y ]≤2k be a linear functional such that I≤k ⊆ ker L and (ker LC ̸= {0} or
ker LC,V k ,1 ̸= {0}). Then the following are equivalent:

1. L is a C–moment functional.
2. LC is square positive and (V (k), 1)–locally square positive and one of the

following holds:
2.1 rank LC = rank(LC)|(Φ−1(BNodal≤3k−1

)).

2.2 rank LC,V (k),1 = rank(LC,V (k),1)|(Φ−1(B
Ñodal≤3k−1

)).



TMP for y(ay + x2 + y2) = 0
A line C1 an a circle C2 with one double intersection point

Parametrization of C:

C1 : {(s, 0), s ∈ R}; C2 :
{
(−

a
2

t2 − 1
t2 + 1

,−
a
2
(t + 1)2

t2 + 1

}
, t ∈ R.

Let D = Qi + Q−i and

Circ = {(f (s), g(t)) ∈ R[s]× R
[ 1

t2 + 1
,

t
t2 + 1

]
: f (0) = g(−1), f ′(0) =

2g′(−1)
a

},

Circ≤i = {(f (s), g(t)) ∈ R[s]≤i × L(iD) : f (0) = g(−1), f ′(0) =
2g′(−1)

a
}.

The map

Φ : R[C] → Circ1, Φ(p(x , y)) =

(
p(s, 0), p

(
−

a
2

t2 − 1
t2 + 1

,−
a
2
(t + 1)2

t2 + 1

))
is a ring isomorphism. The vector subspace R[C]≤i is in one-to-one correspondence with the set
Circ≤3i under Φ.

Let

POS(Circ≤i ) := {(f (s), g(t)) ∈ (Circ1)≤i : f (s) ≥ 0, g(t) ≥ 0 for every (s, t) ∈ R2},

C̃irc≤i := {(f (s), g(t)) ∈ R[s]≤i × L(iD) : f (0) = g(−1) = 0}.



TMP for y(ay + x2 + y2) = 0
Theorem
Let (p1, p2) ∈ POS(Circ≤2k ). Then there exist finitely many (g1;i , g2,i) ∈ Circ≤k

and (h1;j , h2;j) ∈ C̃irc≤k such that

(p1, p2) =
∑

i

(g2
1;i , g

2
2;i) +

∑
j

(h2
1;j , h

2
2;j).

The basis for Circ≤i is the following:

BCirc≤i := Φ({1, x , y , x2, xy , y2, . . . , x j , x j−1y , x j−2y2, . . . x i , x i−1y , x i−2y2})

The basis for C̃irc≤i is the following:

B
C̃irc≤i

:= BCirc≤i \ {(1, 1)} ∪ {(s, 0)}

We have that
ay + x2 + y2

x
maps to (s, 0) under Φ. So this is a replacement for 1 in the basis for V .



Thank you for your attention!


