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1. Preliminaries



Positive and completely positive maps

Definitions
A linear map

o My(R) = Mn(R)
such that (A7) = ®(A)7 for all A € My(R), is:

» positive if

A-0 = ¢(A)>=0.

> k-positive if

A .. Ak (A1)
¢k( oot ) = :
At . Ak &(Ak1)

is positive.

?(Aik)

¢(Akk)

» completely positive (CP) if it is k-positive for every k € N.

|



Positive and completely positive maps

Mental picture

== 1-positive == 2-positive

=== 3-pOsitive === 4-positive == CP




Positive and completely positive maps

Problems and a small sample of existing literature

Problem A.1: Establish asymptotically exact quantitative bounds on the fraction
of positive maps that are CP.

Problem A.2: Derive algorithm to produce positive maps that are not CP from
random input data.

» Arveson (2009): Let n, m > 2. Then the probability p that a positive map
¢ : Mp(C) — Mp(C) is CP satisfies

> Szarek, Werner, Zyczkowski (2008): for the case m = n provide
and establish its asymptotic behaviour.

» Collins, Hayden, Nechita (2017): random techniques for
maps that are in large dimensions.



Positive maps meet real algebraic geometry

L(Sp,Sm) ... the vector space of all linear maps from S, to Sy,
R[x,v]z2 ... biformsinx=(x1,...,xp)andy = (¥1,...,¥m)
of bidegree (2, 2)
There is a natural bijection
r . E(Sn, Sm) — R[X, Y]2,27
O po(x,y) =y ®(xx")y.

Proposition
Let ®: S, — Sy be alinear map. Then:
1. @ is positive iff py is nonnegative.
2. & is completely positive iff pe is @ sum of squares (SOS). (Choi-Kraus theorem)

Corollary

The following probabilities (w.r.t. the corresponding distributions) are equal:
1. The probability that a positive map & € L(Sy,Sm) is CP.
2. The probability that a nonnegative biform pe € R[x,y]2,2 is SOS.



Cross—positive and completely cross—positive maps

Definitions

A linear map
® : My(R) — Mn(R)
is:

» cross-positive if

YU,V =0: (U, V) =0= (¢(U), V) > 0.

» k-cross-positive if

At .o Agk o(A11) ... o(Ak)
o | 0 )= 0
A ... Ak A(Ak1) .. d(Axk)

is cross—positive.

» completely cross—positive (CCP) if it is k-cross-positive for every k € N.



Cross—positive and completely cross—positive maps

Problems and a small sample of existing literature

Problem B.1: Establish asymptotically exact quantitative bounds on the fraction
of cross—positive maps that are CCP.

Problem B.2: Derive algorithm to produce cross—positive maps that are not
CCP from random input data.

» Schneider, Vidyasagar (1970):
> ¢(-) is crp if and only if exp(t¢(-)) is positive for every t > 0.
» Characterized cross—positive maps on polyhedral cones.

» Cuchiero, Filipovi¢, Mayerhofer, Teichmann (2011) established the importance of
cross—positive and completely cross-positive maps in math finance.

> Kuzma, Omladié, Sivic, Teichmann (2015) constructed, for the first time, a proper
cross—positive map. (Not of the form X — ¢(X) + CX + XCT, where ¢ is positive.)



Cross—positive maps meet RAG

I CR[x,y] ... theideal generatedby y'x =3, x;yi,
bo CR[x,v]oo ... ha=INR[x,y]2z,
V() ... thevariety {(x,y) € R" xR"|y"x =0}

There is a natural bijection
[ E(Srh Sn) — R[X, Y]2.27
O po(x,y) =y ®(xx")y.

Proposition

Letd : S, — S, be alinear map. Then:
1. ® is cross—positive iff py is nonnegative on V().
2. ¢ is CCP iff py is a sum of squares modulo .

Corollary
The following probabilities (w.r.t. the corresponding distributions) are equal:
1. The probability that a cross—positive map ® € L(Sy,Sp) is CCP.
2. The probability that a nonnegative biform pe + b2 € R[x,y]22/ k2 is SOS.



Copositive and completely positive matrices

Definitions
Sp ... real symmetric n x n matrices
A matrix
A= (aj)i) € Sn
is:

> copositive (COP)if VI Av > 0 forevery V € RZ,.

» positive semidefinite (PSD) if vl Av > O forevery v € R".

> nonnegative (NN) if &; > O for every /, /.

» sPNif A= P+ N forsome P PSD and N NN.

» doubly nonnegative (DNN) if A = P N N for some P PSD and N NN.

» completely positive (CP) if A = BB for some B € R;Dék.



Copositive and completely positive matrices

Mental picture

== COP == 8PN == PSD == NN == DNN == CP




Copositive vs completely positive matrices

Problems and a small sample of existing literature

Problem C.1: Establish asymptotically exact quantitative bounds on the fraction
of COP matrices that are CP.

Problem C.2: Derive algorithm to produce COP matrices that are not CP.

» Maxfield, Minc (1962), Hall, Newman (1963): holds only for
» Parrilo (2000): , where (x2 = (x2,...,x2))

={AcSy: Z x?)" - (x®)T Ax? is a sum of squares of forms}.
» Dickinson, Dur, Gijben, Hildebrand (2013): for any

> Laurent, Schweighofer, Vargas (2022, 23+): and



Copositive matrices meet RAG
R[«"ls. ... formsinx®=(x2,...,x2) of degree 4, i.e., quariic even forms.

There is a natural bijection

n
Sy Rlxlae, Arrga(x) = (") A" = > apfx’.
ij=1

Proposition

Let A € S, be a matrix. Then:
1. Ais COP iff ga is nonnegative. (9a ... POS)
2. Ais PSD iff gais of the form 3=, (37,737 (@ ... [In-SOS)
3. Ais NN iff ga has nonnegative coefficients. (@n ... NN)
4. Ais SPNiiff ga is of the form 3, (7, fixix)®  (Parrilo, 00) (@a ... SOS)
5. Ais DNN iff ga is /-SOS and NN. (9a ...DNN)
6. Ais CPiff gais of the form =, (32, fjx?)” with f; > 0. (G ...CP)

Corollary. The gaps between COP/PSD/NN/SPN/DNN/CP matrices correspond
to the gaps between POS//-SOS/NN/SOS/DNN/CP even quartics.



Gap between positive and sos polynomials

R[x|ox ... formsinx = (xy,...,Xp) of degree 2k

Theorem (Blekherman, 2006)

For n > 3 and fixed k the probability p, that a positive polynomial f € R[x]ok is
sum of squares, satisfies

1 dim R[x]2x—1 1 dim R[x]zx—1
(e za=r2) <p= (G i) ’

where Cy, C» are absolute constants.

In particular, for 2k = 4,

o € e((\}ﬁ)dimR[x]4—1).



Solutions to Problems A.1, B.1, C.1

Theorem A.1 [Klep, McCullough, Sivic, Z, 2019]: For n,m > 3 the probability p, m
that a positive map & : S, — S, is CP, satisfies

< 3V3 1 >d/ ~ <212~52‘6%1O§ 1 >d
210/2 v/ min(m, n) = Pom = 33 \/min(m.n) ’

where d = dim{® | ¢ : S, — Sy, linear map} — 1.

Theorem B.1 [Klep, Sivic, Z, 2024+]: For n > 3 the probability p, that a
cross—positive map @ : S, — S, is CCP, satisfies

33 Vn
where d = dim{® | ¢ : S, — S, linear map} — 1.

b - <25.2%-52.10% 1 >d’

Theorem C.1 [Klep, Strekelj, Z, 2023+]: For n > 4 the probability p, that a
copositive matrix A € S, is CP, satisfies

(2 8 ) 3 2>dim‘f}ﬁ—1 g ,On.



Solutions to Problems A.2, B.2, C.2

Problem A.2, B.2 [Klep, McCullough, Sivic, Z, 2019, 2024+]-

Construction of (nonnegative modulo V(/))) biquadratic biforms
that are biforms (modulo /) by specializing the algorithm by
Blekherman, Smith, Velasco (2016) to produce pos not sos forms on varieties,
which are not of minimal degree.

Problem C.2 [Klep, Strekelj, Z, 2023+]:

Free probability inspired construction of , N > 5, matrices. Dually, we
obtain matrices from



2. Discussion on volume estimates



Cones in question

Intersect with a unit ball in some metric

v

— K1 K2 Unit ball B

A\

Compare the sizes of the intersections Ky N Band K> N B.
Beware 1: Size estimates might differ according to the choice of the measure.

Beware 2: Equipping the ambient vector space V with the pushforward of the
Lebesgue measure is independent of the isomorphism ¢ : V — RY™ Y only if ¢ is a
Hilbert space isomorphism (V being a normed spaces is not enough).

Beware 3: Size estimates might differ according to the choice of the inner product
and for balls in different metrics.



Volume radius

Proper measure of the asymptotic sizes of a sequence of compact sets

The volume radius vrad(C) of a compact set C C R", equipped with an inner
product (-, -) and a measure u, is

- (49"

where B is the unit ball in (-, -).

> Since we are concerned with the asymptotic behavior as n goes to infinity, we need to
eliminate the dimension effect when dilating K by some factor c.

> A dilation multiplies the volume of C by c¢", but a more appropriate effect would be
multiplication by c.



Gap between positive and sos polynomials
asymptotically not visible in the ball of the ¢! norm
> is equipped with the natural L? inner product

(.g) = / fg do,
Sn—1

where and ¢ is the rotation invariant probability measures on the unit
sphere S"~' Cc R".

> Let | - |1 the ¢! norm on the vector of coefficients, i.e.,
1> aax1 =" |aal.

» E.g., for k = 2, due to the equality (and Rogers-Shepard inequality)

—

1 1
2 2,2 2,2
(XiXj + XkXe)® — X7 X7 — =X X[,

XiXj Xk Xe = 5 Xi ] 5

2
the volume radii of positive and sos polynomials in the unit ball By of || - |1
are bounded by absolute constants.



Blekherman'’s result on the gap between positive and
sos polynomials refers to the unit ball in the L? norm

> 2[x]o, is equipped with the natural L2 inner product

(f.g) = / fg do,
Sn—1

where and o is the rotation invariant probability measures on the unit
sphere S"~1 c R".

» Let B, be the unit ball in the L2 norm.

» Direct volume estimates for the sections POS,x NB, and SOS,, NB» are
difficult to obtain.

> Instead, it is natural to compare POS,x and SOSox when intersected with
some affine hyperplane.



Choice of the affine hyperplane for comparison of the
cones

— K1 K2 == Fair hyperplane === Not fair hyperplane

1. In case the cones share a unique line of symmetry, it is natural to take the
hyperplane whose normal is this line of symmetry.

2. Under the action O - f(x) := f(O~'x) for O € O(n), POSz and SOSy are invariant,
while o(x? + ...+ x7)?, a € R, are the only fixed points.

3. So the hyperplane with the normal (x{ + ... + x7)? is the ‘fairest’ choice.



A general procedure to obtain the volume estimates

Inputs:
» A convex cone K in a finite-dimensional inner product space V.
» A norm || - || w.r.t. which the size of K is to be estimated.

Output: Quantitative bounds on the size of K.

Procedure:
1. Equip V with a pushforward measure of the Lebesgue measure.

2. Try to estimate vrad(K N B), where B is the unit ball of || - ||. If this is
achieved, you are done. Otherwise go to step 3.

3. Choose a fair affine hyperplane #: ...such that K" = K N H is bounded.
4. Translate H to a hyperplane M.

5. Equip M with a pushforward measure of the Lebesgue measure and
estimate vrad(K N'H) in M.



3. Proofs



Procedure applied to Problem A.1

1. R[x, v]2» is equipped with the natural L2 inner product

g~ | fgao = | ( / fgdae(y)) 4o (),
J Sn—1x 8gm—1 JxeSsn—1 _yesm—1

where o = g1 x o is the product measure of rotation invariant probability
measures o1, o> on the unit spheres S ¢ R?, ™' c R™.

2. H is the affine hyperplane
'H_{fGR[X,y]z’z: / fdJ_1}.
. Sn—WXSm—1
8. z:= (XL x7) (X2 ¥F) and thus

M_/H—Z—{fGR[X,y]gygi/ de_O}.
Sn—1x gm—1

4. The estimates of vrad(POS NH — z) and vrad(SOS NH — z) follow closely
Blekherman’s proof for R[x].



Procedure applied to Problem B.1

1. Let T := (S"' x §"~")n V(/) and equip it with the unique SO(n)-invariant
measure. T is also known as the Stiefel manifold of all 2-frames in R".

2. Q :=R[x,v]22/(INR[x,y]22) is equipped with the natural L? inner product

(f,g) = /T fg do.

3. H is the affine hyperplane

H—{fEQ: /fdo—1}.
T

4. z:= (2L x7) (X[ ¥F) and thus

MzH—Z:{fEQ: /de:O}.
T



Procedure applied to our Problem B.1
5. Only
vrad(SOSNH —z) < (x) and  (x) <vrad(POSNH — 2)
can be obtained using Blekherman'’s proof for R[x]x, where the main novelty

is the following inequality:

Proposition (Reverse Holder inequality (RHI))
For a bilinear biform g € R[x, y]1,1/(/ " R[x, y]1,1) we have

g*do %=||Q||4§ Y6 lglo=v6( | g?do %
T T

Main observation:
independence of n

Idea of the proof:
»> Compute the values of the integrals of all bilinear, biquadratic and biquartic monomials.
> Prove RHI separately for symmetric forms g (difficult part: Muirhead inequality used) and
antisymmetric ones (easier part: sos type inequality).



RHI for symmetric g

1. WLOG:

g(x,y) = dixiy1 + thxoyo + ... + dhxpyn, di €R.

2. RHI equivalent to:

(n-3)(YdPof(n-2)-2 3 dfdok)+12 Y didckd 0.
i<j ij,k i<j<k<l
pairw.diff,
j<k
3. Induction on n starting with n = 3 and noticing that the inequality is invariant

under
(di,...,dn) = (di +a,...,dy +a), whereacR.

WLOG:
di>d>...>dy>dhp1 =0.



RHI for symmetric g
4. n—n+1:

(n-2)( > ddf(n-1)-2 > ddd)+12 Y dddd >0

i<j<n ij,k<n i<j<k<I<n
pairw.diff,
j<k
Equivalently
~3)( X d#df(n-2)-2 > ddd)+12 Y dddd
i<j<n ij,k<n i<j<k<I<n
pairw.diff,
j<k

>0 by the induction hypothesis

+2 (Y d¥n-2)- Y ddd) =o.

i<j<n ij,k<n
pairw.diff,
j<k

>0 by Muirhead’s inequality for (2,2,0,...,0)>(2,1,1,0,...,0)



Procedure applied to Problem C.1
1. is equipped with the natural L? inner product
(f,.9)= / fg do,
J gn—1
where o is the rotation invariant probability measures on the unit sphere

ST C R
2. H is the affine hyperplane of forms from R[x]4 ¢ of average 1 on S"~':

H—{fER[X]&e:/ de—1}.
J g
3. and thus
MHZ{fGR[x]«e:/ fd(rO}.
J gn—1

4. Let . be the pushforward of the Lebesgue measure on R9mM to M.



Procedure applied to Problem C.1

5. ltis crucial to make the following three observations:

—_—~—

Observation 1: (NN);, = NN and (LF)j; = POS.
Here d stands for the differential inner product and « for the dual,

LF : {pr(f)cﬂéz[xh,e;f S 1t for some f cjg[xh}

and pr : R[x]s = R[x]4,e is the projection defined by:

2.2
pr ( E AjkeXiXXkXe) = E apiXi X; -
1<i<j<k<e<n 1<i<j<n

Observation 2: LF is ‘central enough’.

Observation 3: LF C NN C 4(63 — ElvD)



Cones in question

Compact bases of the cones
[JCOP [ISPN [ PSD NN TDNN [ CP

Perspective: Use results of real algebraic geometry, convex analysis and
harmonic analysis to estimate the volumes from both sides.



Blaschke-Santal6 inequality and its reverse

Statement

) ... theinner product on R"
B ... theunitballw.rt. ()
K ... abounded convex set with a non-empty interior in R”
K° ... thepolardual of aset K CR":
Ke={yeR" (x,y) <1 VxeK}

Theorem ( ; Blaschke, 1917, Santald, 49’)
If K is ‘central enough’, then

Vol(K) Vol(K®) < (Vol(B))?,

The left inequality holds also without the centrality assumption, but with
the origin in the interior.



Blaschke-Santal6 inequality and its reverse

Geometric picture

Ki ... the convex hull of the ellipse with a polar equation r(¢) = 3(1 + 1 cos¢) ",
K2:K17(%70)’ K3:K1+(%70)’

[Vol(K1)vol(K1%0)=1.73205 (vol(B)2] [vol(K3)v0l(K3%0)=0.989743 (vol(B))"2

2

[vol(K2)vol(K2"0)=5.13711 (vol(B))"2]

| \#/ P |
<

) E] o 1 2 T2 o 2 4 6 8 2 E] o 1 2

FIK1 [ polar of K1 [IK2 [ polar of K2 K3 [ polar of K3

il
@

> The set Kj is centered in different points on each of the pictures. The first two centers are not
close enough to the origin for the BS to hold, while in the third one it is.

> The translation of the body (i.e., Santalé point) so that the BS holds is difficult to determine,
unless the body has enough symmetries, fixing only one point which then must be the Santalé
one.



The differential (also apolar) inner product

From Observation 1

For
f(x) = Z ajkeXiXiXkXp € R[x]a
1<i,j,k,L<n

the differential operator Dy : R[x]|4 — R is defined by
do*g
DO = D @ Geaondn

1<iyj,k.L<n

The differential inner product on R[x]4 is given by

(f,9)d = Ds(9).



Blaschke-Santalé inequality and its reverse in (-, )4

For acone K C R[x]s ¢ let K be its dual in (-,-)4:
={feR[xlse: (f,g)d >0 Vge K}

Theorem (BSd inequality and its reverse; Blekherman, 06‘)

Let K be any of the cones from Problem C.1. Then

1 2
S g —
2n 2\;/(n+4)(n+6)

Svrad(k)vrad(K&‘).

Moreover, if K is ‘central enough’, then

. — 8 -2 9
vrad(K)vrad(Kd) < (m) — -

The proof uses representation theory, i.e., SO(n) acting on R[x]4 ¢ by rotation of coordinates.



Observation 3: NN C 4(CP — CP)

Follows from 2ab = (a + b)® — & — b?

Let r = (Y-f_ x2)2. The extreme points of NN are of two types:

n(n+ 2)xf‘

3 +—r  and RSP

The first type clearly belong to CP, while the second type to 4(67D — ETD):

_ n(n2+ 2) ((x X2 — xf 7)(/4)) _

74(n(n+2)( 2 2P - r) _g (n(n;-2)xi4—r) _g (n(néf—z)xlf‘_r)

P1 P2 P3

3
=p1+ 5 (p1 p2) + 5(/01 —Ps)

e€|5+§(6T>—6T>)+g(6T>—€E>)g



Roger’s-Shepard inequality

Crucial for Observation 3 to be applicable

K ... abounded convex set with a non-empty interior in R"”
The difference body Diff(K) of K is defined by

Diff(K) .= K — K.
Theorem (Roger’s—Shepard inequality, 1957)

Vol(Diff(K)) < (2:> Vol(K)

Hence,
vrad(Diff(K)) < 4vrad(K).



Roger’s-Shepard inequality

Geometric picture

vol(K-K)=6vol(K)

—K — K -K

Remark: Working with Diff K instead of K is one of the crucial steps to obtain
our volume estimates for the problem of copositive matrices.



Proof of the gap for Problem C.1

Theorem For all K € C := {POS, SOS, NN, PSD, DNN, LF, CP} we have that
vrad(K) = ©(n™").

Proof:
1. By (T\IN)/;; = NN and the reverse BS, inequality:

1 __
el < (vrad(NN))z.

2. ByCP C NN C 4(CNP — CNP) and the RS inequality:

1 1 — ~
< — vrad(NN) < vrad(CP),
16v2n ~ 16 (NN) < (P)

3. By (/Ll\:-)?; = POS and the BS,; inequality:

—~ 9 _~
vrad(POS) < - (vrad(LF)) 1<

3| ©

— 1
(vrad(CP))~1 < 24. 32;.

4. Now by observing that
CP C K C POS,

the inequalities (3) and (4) imply that for all cones K € C the statement (2) holds.

(4)



4. Algorithms and Examples



A.2. and B.2. (Cross)-Positive but not
(Cross)-CP maps



Positive polynomials that are not SOS

Algorithm by Blekherman, Smith, Velasco, 2013

1.

The setting:

X CP"... anondegenerate (notcontained in a hyperplane),
totally-real (real points X(IR) are Zariski dense),
irreducible variety,
deg(X) > codim(X) + 1,

R =R[xo,...,Xn]/I(X)... the coordinate ring of X.

Step 1:
» Choose linear forms intersecting in deg(X) distinct points with at
least codim(X) 4 1 real and smooth ones, p1, . . ., Peodim(X)+1-
> Choose a linear form /1y vanishing in p1, . . ., Peodim(x), Ut NOL N Peodim(x)+1-
> Let /= (ho,...,hn).
Step 2: Choose a quadratic form vanishing of order > 1 in
P1; -5 Peodim(X)-

. Step 3: For § > 0 small enough, of + 1 + ... + /7, is nonnegative on X but

not SOS.



Positive but not sos biquadratic biforms

Algorithm
1. The setting:
X = opm(P" x P™) C P"M1,
onm: (X1 o X, Aot Ym]) = v XaYe s XnYm)s

z = (211,212, -, Ztms - - - » Znm)
In.m .. . the ideal generated by 2 x 2 minors of (z;)

on.m Segre embedding

ij?
ofm: Clz]/Inm — Clx,y], ofm(Zj+ Inm) = Xy; ring homomorphism,
dim(X) = n+m— 2, codim(X) = (n— 1)(m — 1).
2. Step 1:
> Choose codim(X) + 1 random points x € R”, y() ¢ R™ and compute
z0) = x() y(") c R™,
» Choose dim(X) = n+ m — 2 random vectors vi, . .. Vaim(x) € R™ from the

kernel of the matrix
(2(1) L Z(codim(X)+1)) *

and define
hi(z) =v/ -z eR[z] forj=1,...,dim(X).

> Let /= (ho,...,~gimx))-



Positive but not sos biquadratic biforms

Algorithm
3. Step 2:
3.1 Let gi(z),.. .,g(g)(g;)(z) be the generators of the ideal I, m. For each
i=1,...,codim(X) compute a basis {w1('), cee wg{;(X)H} C R™ of the kernel

of the matrix

*

(Vo2 - Vo E)
3.2 Choose a random vector v € R™ from the intersection of the kernels of the
matrices

(z(’) aw! . Z0gwd fori=1,...,codim(X)

dim(X)+1)
with the kernels of the matrices
(ei®e,-—ej®e,-)* for1 <i<j<nm

and define
f(z)=v"-(z® z) € R[z]/In,m.

4. Step 3: Calculate the greatest do > 0 such that §of + Zfi%im(x) h? is
nonnegative on Vi (/n,m). Then

(6f+ > _h?)(z) € POS\ SOS for every 0 < 4 < &o.
i



Positive but not sos biquadratic biforms

Example

Po(X,y) = 104x7yF + 283xFy5 + 18x7y5 — 310X 1Yo + 18X 15 + 4XF Yays+
310x1 X2y2 — 18x1X3y2 — 16X1Xoy5 + 52X1 Xaya + 4X1 Xoys — 26X1 X35
— 610x1X2)1 Vo — 44X1X3Y1 Y2 + 36X1X2Y1 V3 — 200X1 X3 Y1 Y3 — 44Xx1 X223
+ 322x1 X3 o y3 + 285x2 Y2 + 16X5y2 4 4XoXzy? + 63X2 Y2 + OX5y2 + 20X X35
+ 7x3y3 +125x3y5 — 20x2X3yZ2 + 16X5y1y2 + 4X5 1y — 60X2Xs Y1 ¥
+52x2 1y + 26X5y1 Y3 — 330XaX3y1 Y3 — 20X2 Yoz + 20x5 Y2y — 100XaX3y2y3.



Positive but not CP map

Example @ : S3 — S3

104 -155 9 285 8 26
O(Ey) = |-155 283 2|, ®(Ex)=|8 63 —10|,

9 2 18 26 -10 7
16 2 13 310 —305 18]

P(Ezz) =12 9 10|, O(Eqp+Ex)=|-305 —-16 -22
13 10 125 18 -22 4

[—18 —22 —100 4 -30 -165
¢(E13+E31) = | =22 52 161 , ¢(E23+E32) = | —-30 20 -50
|—100 161 26 -165 -50 -20



C.2. Exceptional DNN and exceptional
COP matrices



DNN matrices that are not CP of size n > 5

Algorithm
1. The setting:

L2[0,1]... an ambient space,
B:= {1} U{v2cos(2kr): k € N} U{V2sin(2kn): k € N} ... abasis,
M; : L2[0,1] — L?][0,1], Mi(g) = fg... the multiplication operator.

2. The idea: Find a closed infinite dimensional subspace # and f € # such
that

M‘fH = P/H MfP/H

has all finite principal submatrices DNN but not CP, where
P;, : L2]0,1] — H is the orthogonal projection onto .
3. Choice of H and f € H:

H C L2[0,1]... aclosed subspace spanned by cos(2kr), k « Ny,

m
f=1+2) axcos(2kr), mEN,
k=1




DNN matrices that are not CP of size n > 5

Algorithm

4. Certificates:
41 NN:a; > 0,..., am > 0.
42 PSD:f =Y. h?.
4.3 Not CP:

Hn... asubspace spanned by 1, cos(27),...,cos(2(n— 1)m),
Pn,:H — Hn... the orthogonal projection onto H,,
A = P.MH Py,
1 -1 1 1 -1
-1 1 =1 1 A
H= 1 -1 1 -1 1] € COP\SPN,
1 1 -1 1 -1
-1 1 1 -1 A
(Horn matrix; Hall, Newman, 1963)
We demand
(A®) H) <0,

with (-, -) the usual Frobenius inner product on symmetric matrices.



DNN matrices that are not CP of size n > 5

Justification of the certificates

1. NN is certified by the following equation:

; 3, ifj=6k=0,
/ cos(2jmx) cos(2kmx) cos(2¢mx)dx = %, ifk#0andje {{+k,l—k},
0
0, otherwise.
In particular,
1 V2ay Vea, V2ay  V2a

V2a, a+1 a+a; a+as a+as

A®) = | \2a, ay+a; as+1 a+as a+ a
V2a; ata, ajt+a 1+as ay
V2a, az;+as a+as a 1

2. PSD is certified by

2 *
ME =" (MI)™ = MM (M)
i

3. Not CP is certified by
COP* =CP

(in the Frobenius inner product).



DNN matrices that are not CP of size n > 5

Implementation and an example

The feasibility semidefinite program (SDP) implements the algorithm above:
1

20’

f=v'Bv with B> 0ofsize4 x4,

a>0 i=1,...,6,

tr(A®H) = —

where
vl = (1 cos(27x) cos(4nx) cos(Brx)).
Solving this SDP, we get

1 162 V2 1 5v2
27 123 1472 i
162 124 1577 212 1205
27 123 2646 861 8526
AG) — V2 1577 26 572 1777340+/2 2413803
123 2646 21 783 3254580
1 212 572 1777340+/2+814317 16
1472 861 783 3254580 27
5v2 1205 1777340+/2—2413803 16 1
21 8526 3254580 27



COP matrices that are not SPN of size n > 5

Algorithm and an example

Let A(" be a DNN not CP matrix. To obtain a matrix C € COP \ SPN of size

n x n we demand
(A Al ,C) <

Zx )"Cx?) is SOS for some k € N.

(5) certifies C is not SPN due to
SPN* = DNN (in the Frobenius inner product),

while (6) certifies C is COP. This is again a feasibility SDP. Using A

we obtain (with (A®), C) = —; and k = 1)
91 33 38 6
v -5 7 3 —%
91 5 _58 g 33
5 3 4 4
33 53 39 13
C=1%2 -7 7 -~z 8
38 _13 18 _13
3 2 3 3
3 33 8 13 1373628701
5 4 3 353935575

(5) as above



Thank you for your attention!



