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A matrix
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is:
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Copositive and completely positive matrices

Definitions
Sp... real symmetric n x n matrices
A matrix
A= (aj)i) € Sn
is:

> copositive (COP)if VI Av > 0 forevery V € RZ,.

» positive semidefinite (PSD) if vl Av > O forevery v € R".

> nonnegative (NN) if &; > O for every /, /.

» sPNif A= P+ N forsome P PSD and N NN.

» doubly nonnegative (DNN) if A = P N N for some P PSD and N NN.

» completely positive (CP) if A = BB for some B € R;Dék.



Copositive and completely positive matrices
Mental picture

== COP == 8PN == PSD == NN == DNN == CP




Copositive vs completely positive matrices

Problems and a small sample of existing literature

Problem 1: Establish asymptotically exact quantitative bounds on the fraction of
COP matrices that are CP.

Problem 2: Derive algorithm to produce COP matrices that are not CP.



Copositive vs completely positive matrices

Problems and a small sample of existing literature

Problem 1: Establish asymptotically exact quantitative bounds on the fraction of
COP matrices that are CP.

Problem 2: Derive algorithm to produce COP matrices that are not CP.

» Maxfield, Minc (1962), Hall, Newman (1963): holds only for
» Parrilo (2000): , where (x2 = (x2,...,x2))

={AcSh: Z x?)" - (x®)T Ax? is a sum of squares of forms}.
» Dickinson, Dur, Gijben, Hildebrand (2013): for any

> Laurent, Schweighofer, Vargas (2022, 23+): and



Copositive matrices meet RAG
R[«"ls. ... formsinx®=(x2,...,x2) of degree 4, i.e., quariic even forms.
There is a natural bijection

n
Sy Rlxlae, Arrga(x) = (") A" = > apfx’.
ij=1



Copositive matrices meet RAG

R[+%],. ... formsinx?=(x2,...,x2) of degree 4, i.e., quartic even forms.

There is a natural bijection

n
M:Sh—= Rlxlse, A ga(x):=(x?)"Ax? = Z af]-xlzx/Z.

ij=1

Proposition
Let A € S, be a matrix. Then:

1.

I

Ais COP iff g4 is nonnegative.

Ais PSD iff a is of the form 3, (37, fx7)".

Ais NN iff g4 has nonnegative coefficients.

Ais SPNiff ga is of the form >, (Z/. f,v,'x,-x,-)2 (Parrilo, 00")
Ais DNN iff ga is /-SOS and NN.

Ais CPiff g is of the form 37, (3, fix?)* with f; > 0.

(Qa ... POS)
Qa -..1in-SOS)
(9n ... NN)

(Qa ...S0S)
(qa ...DNN)

@ ...CP)



Copositive matrices meet RAG
R[«"ls. ... formsinx®=(x2,...,x2) of degree 4, i.e., quariic even forms.

There is a natural bijection

n
Sy Rlxlae, Arrga(x) = (") A" = > apfx’.
ij=1

Proposition

Let A € S, be a matrix. Then:
1. Ais COP iff ga is nonnegative. (9a ... POS)
2. Ais PSD iff gais of the form 3=, (37,737 (@ ... [In-SOS)
3. Ais NN iff ga has nonnegative coefficients. (@n ... NN)
4. Ais SPNiiff ga is of the form 3, (7, fixix)®  (Parrilo, 00) (@a ... SOS)
5. Ais DNN iff ga is /-SOS and NN. (9a ...DNN)
6. Ais CPiff gais of the form =, (32, fjx?)” with f; > 0. (G ...CP)

Corollary. The gaps between COP/PSD/NN/SPN/DNN/CP matrices correspond
to the gaps between POS//-SOS/NN/SOS/DNN/CP even quartics.



Gap between positive and sos polynomials

R[x|ox ... formsinx = (xy,...,X,) of degree 2k

Theorem (Blekherman, 2006)

For n > 3 and fixed k the probability p, that a positive polynomial f € R[x]ok is
sum of squares, satisfies

1 dim R[x]2x—1 1 dim R[x]zx—1
(e za=r2) <p= (G i) ’

where Cy, C» are absolute constants.

In particular, for 2k = 4,

o € e((\}ﬁ)dimR[x]4—1).



Solutions to Problems 1 and 2

Our results

Theorem: For n > 4 the probability p, that a positive even quartic f € R[x?]4¢ is
sum of squares, satisfies

(278 ) 3,2>dimﬂ«¥;[x2]4‘ei1 < on.

All quartics: pn € @((%)dimR[X]A 1)



Solutions to Problems 1 and 2

Our results

Theorem: For n > 4 the probability p, that a positive even quartic f € R[x?]4¢ is
sum of squares, satisfies

(278 ) 3,2>dimﬂ«%‘;[x2]4‘ei1 < on.

All quartics: pn € @((%)dim]\?[x]‘l 1)

Theorem: For n > 4 the probability p, that a copositive matrix A € S, is CP,

satisfies R
. . mop—
(278.37%) < Pp.



Solutions to Problems 1 and 2

Our results

Theorem: For n > 4 the probability p, that a positive even quartic f € R[x?]4¢ is
sum of squares, satisfies

(22 3,2)dim£{g]4e e

All quartics: pn € @((%)dimm[xh 1)

Theorem: For n > 4 the probability p, that a copositive mairix A € S, is CP,

satisfies P
. . Imonp—

Problem 2
Free probability inspired construction of DNN, \ CP,, n > 5, matrices. Dually, we

obtain matrices from COP,\ SPN,, or equivalently pos but not sot even quartics.



2. Discussion on volume estimates



Cones in question
Intersect with a unit ball in some metric

— K1 K2 —— Unitball B

g

» Goal: Compare the sizes of K1 N B and K> N B.
» Beware 1: The choice of the measure influences the results.

» Beware 2: The ambient vector space V must be an inner product space for the
pushforward of the Lebesgue measure to be independent of the isomorphism
¢:V—RIMY,

» Beware 3: The choice of the inner product and the metric for the ball B influence the
results.




Volume radius

Proper measure of the asymptotic sizes of a sequence of compact sets

The volume radius vrad(C) of a compact set C C R", equipped with an inner
product (-, -) and a measure u, is

- (49"

where B is the unit ball in (-, -).

> Since we are concerned with the asymptotic behavior as n goes to infinity, we need to
eliminate the dimension effect when dilating K by some factor c.

> A dilation multiplies the volume of C by c¢", but a more appropriate effect would be
multiplication by c.



Gap between positive and sos polynomials
asymptotically not visible in the ball of the ¢! norm
> is equipped with the natural L? inner product

(f.g) = / fg do,
Sn—1

where and ¢ is the rotation invariant probability measures on the unit
sphere S"~' Cc R".

> Let | - |1 the ¢! norm on the vector of coefficients, i.e.,
1> aax1 =" |aal.

» E.g., for k = 2, due to the equality (and Rogers-Shepard inequality)

—

1 1
2 2,2 2,2
(XiXj + XkXe)® — X7 X7 — =X X[,

XiXj Xk Xe = 5 Xi ] 5

2
the volume radii of positive and sos polynomials in the unit ball By of || - |1
are bounded by absolute constants.



Blekherman'’s result on the gap between positive and
sos polynomials refers to the unit ball in the L2 norm

> is equipped with the natural L? inner product

(f.g) = / fg do,
Sn—1

where and o is the rotation invariant probability measures on the unit
sphere S"~1 c R".

» Let B, be the unit ball in the L2 norm.

» Direct volume estimates for the sections POSsx NB, and SOS,, NB> are
difficult to obtain.

» Instead, it is natural to compare POS,x and SOSox when intersected with
some affine hyperplane.



Choice of the affine hyperplane for comparison of the
cones

— K1 K2 == Fair hyperplane === Not fair hyperplane

1. In case the cones share a unique line of symmetry, it is natural to take the
hyperplane whose normal is this line of symmetry.

2. Under the action O - f(x) := f(O~'x) for O € O(n), POSz and SOSy are invariant,
while o(x? + ...+ x7)?, a € R, are the only fixed points.

3. So the hyperplane with the normal (x7 + ... + x7)? is the ‘fairest’ choice.



A general procedure to obtain the volume estimates

Inputs:
» A convex cone K in a finite-dimensional inner product space V.
» A norm || - | w.r.t. which the size of K is to be estimated.

Output: Quantitative bounds on the size of K.
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A general procedure to obtain the volume estimates

Inputs:
» A convex cone K in a finite-dimensional inner product space V.
» A norm || - | w.r.t. which the size of K is to be estimated.

Output: Quantitative bounds on the size of K.

Procedure:
1. Equip V with a pushforward measure of the Lebesgue measure.

2. Try to estimate vrad(K N B), where B is the unit ball of || - ||. If this is
achieved, you are done. Otherwise go to step 3.

3. Choose a fair affine hyperplane #: ...such that K" = K N H is bounded.
4. Translate H to a hyperplane M.

5. Equip M with a pushforward measure of the Lebesgue measure and
estimate vrad(K N'H) in M.



3. Proofs



Procedure applied to our problem
1. is equipped with the natural L? inner product
(f,.9) = / fg do,
J gn—1
where o is the rotation invariant probability measures on the unit sphere

ST C R
2. H is the affine hyperplane of forms from R[x]4 ¢ of average 1 on S"~':

H—{fER[X]&e:/ de—1}.
J g
3. and thus
MHZ{fGR[x]«e:/ fd(rO}.
J gn—1

4. Let 1 be the pushforward of the Lebesgue measure on R9mM to M.



Procedure applied to our problem
5. ltis crucial to make the following three observations:
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= By the Roger’s-Shepard inequality

1 __ __
— < .
16 vrad NN < vrad CP




Procedure applied to our problem
5. ltis crucial to make the following three observations:

Observation 1: CP C NN C 4(6|v:’ — Elv:’)

= By the Roger’s-Shepard inequality 11—6 vrad NN < vrad CP|.

—~—

Observation 2: (NN)7, = NN

= By a version of the reverse Blaschke-Santal6 inequality 1 < vrad(NT\l) .

van ~

Here (-); stands for the dual in the differential inner product, i.e., for
f(x) = Z Ajike XiXjXkXe € R[x]4
1<i,j,k,0<n
and g € R[x]+ we have

(fLo)a= D, amps o o

1<ij,k.e<n



Procedure applied to our problem
Let

LF —{ (f) € R[x]ge: =) f* for some f 6R[x]1}

i
and pr : R[x]4 — R[x]4 ¢ is the projection defined by

pr( >

a/jk[X/X/XkX/
1<i<j<k<t<n

Z aijx?

1<i<j<n
—

Observation 3: (LF)j; = POS and LF is ‘central enough

for the Blaschke-Santal6 inequality to apply
= By a version of the Blaschke-Santalé inequality

9

= 2

vrad(LF) vrad(POS)




4. Algorithms and Examples



DNN matrices that are not CP of size n > 5

Algorithm
1. The setting:

L2[0,1]... an ambient space,
B:= {1} U{V2cos(2kn): k € N} U{v2sin(2kr): k € N} ... abasis,
M; : L2[0,1] — L?[0,1], Mi(g) = fg... the multiplication operator.
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Algorithm
1. The setting:

L2[0,1]... an ambient space,
B:= {1} U{V2cos(2kn): k € N} U{v2sin(2kr): k € N} ... abasis,
M; : L2[0,1] — L?[0,1], Mi(g) = fg... the multiplication operator.

2. The idea: Find a closed infinite dimensional subspace # and f € # such
that

MfH = P/H MfP/H

has all finite principal submatrices DNN but not CP, where
P;, : L2]0,1] — H is the orthogonal projection onto .




DNN matrices that are not CP of size n > 5

Algorithm
1. The setting:

L2[0,1]... an ambient space,
B:= {1} U{v2cos(2kr): k € N} U{V2sin(2kn): k € N} ... abasis,
M; : L2[0,1] — L?[0,1], Mi(g) = fg... the multiplication operator.

2. The idea: Find a closed infinite dimensional subspace # and f € # such
that

M‘fH = P/H MfP/H

has all finite principal submatrices DNN but not CP, where
P;, : L2]0,1] — H is the orthogonal projection onto .
3. Choice of H and f € H:

H C L2[0,1]... aclosed subspace spanned by cos(2kr), k « Ny,

m
f=1+2) axcos(2kr), mEN,
k=1




DNN matrices that are not CP of size n > 5

Algorithm

4. Certificates:
41 NN:a; > 0,..., am > 0.
42 PSD:f =Y. h?.
4.3 Not CP:

Hn... asubspace spanned by 1, cos(27),...,cos(2(n— 1)x),
Pn,:H — Hn... the orthogonal projection onto H,,
A = P.MH Py,
1 -1 1 1 -1
-1 1 -1 1 A
H= 1 -1 1 -1 1] € COP\SPN,
1 1 -1 1 -1
-1 1 1 -1 A
(Horn matrix; Hall, Newman, 1963)
We demand
(A®) H) <0,

with (-, -) the usual Frobenius inner product on symmetric matrices.



DNN matrices that are not CP of size n > 5

Justification of the certificates

1. NN is certified by the following equation:

; 3, ifj=6k=0,
/ cos(2jmx) cos(2kmx) cos(2¢mx)dx = %, ifk#0andje {¢+k,l—k},
0
0, otherwise.
In particular,
1 V2ay Vea, V2ay;  V2a

V2a;, a+1 aj+a; a+as a+as

A®) = | \2a, ay+a; as+1 a+as a+ a
V2a; ata, ajt+a 1+as ay
V2a, az;+as a+as a 1

2. PSD is certified by

2 *
ME =" (MI)™ = MM (M)
i

3. Not CP is certified by
COP* =CP

(in the Frobenius inner product).



DNN matrices that are not CP of size n > 5

Implementation and an example

The feasibility semidefinite program (SDP) implements the algorithm above:
1

20’

f=v'Bv with B> 0ofsize4 x4,

a>0 i=1,...,6,

tr(A®H) = —

where
vl = (1 cos(27x) cos(4nx) cos(Brx)).



DNN matrices that are not CP of size n > 5

Implementation and an example

The feasibility semidefinite program (SDP) implements the algorithm above:
1

20’

f=v'Bv with B> 0ofsize4 x4,

a>0 i=1,...,6,

tr(A®H) = —

where
vl = (1 cos(27x) cos(4nx) cos(Brx)).
Solving this SDP, we get

1 162 V2 1 5v2
27 123 1472 i
162 124 1577 212 1205
27 123 2646 861 8526
AG) — V2 1577 26 572 1777340+/2 2413803
123 2646 21 783 3254580
1 212 572 1777340+/2+814317 16
1472 861 783 3254580 27
5v2 1205 1777340+/2—2413803 16 1
21 8526 3254580 27



COP matrices that are not SPN of size n > 5

Algorithm and an example

Let A" be a DNN not CP matrix. To obtain a matrix C € COP \ SPN of size
n x nwe demand

(A Al ,C) <

Zx )"Cx?) is SOS for some k € N.
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Algorithm and an example

Let A(" be a DNN not CP matrix. To obtain a matrix C € COP \ SPN of size
n x nwe demand

(AN, C) < (2)
Zx )"Cx?) is SOS for some k € N. (3)

(2) certifies C is not SPN due to
SPN* = DNN (in the Frobenius inner product),
while (3) certifies C is COP.



COP matrices that are not SPN of size n > 5

Algorithm and an example

Let A(" be a DNN not CP matrix. To obtain a matrix C € COP \ SPN of size

n x n we demand
(A Al ,C) <

Zx )"Cx?) is SOS for some k € N.

(2) certifies C is not SPN due to
SPN* = DNN (in the Frobenius inner product),

while (3) certifies C is COP. This is again a feasibility SDP. Using A

we obtain (with (A®), C) = —; and k = 1)
91 33 38 6
v -5 7 3 —%
91 5 _58 g 33
5 3 4 4
33 53 39 13
C=1%2 -7 7 -~z 8
38 _13 18 _13
3 2 3 3
3 33 8 13 1373628701
5 4 3 353935575

(5) as above



Thank you for your attention!



