A gap between positive even quartics and sums of squares ones

Aljaž Zalar,
University of Ljubljana, Slovenia

MoPAT-24 -
Moments and Polynomials:
Applications and Theory, March 11th, 2024 Konstanz

joint work with

Igor Klep University of Ljubljana, Slovenia
Tea Štrekelj University of Ljubljana, Slovenia

Outline

1. Preliminaries

Problem:

- copositive vs completely positive matrices (size comparison, examples)

Converting to polynomials:

- pos vs sos even quartic forms

2. Discussion on volume estimation
3. Proofs
real algebraic geometry, asymptotic convex analysis, harmonic analysis
4. Algorithm and Examples
free probability inspired, implementation: semidefinite programming
5. Preliminaries

Copositive and completely positive matrices

Definitions

$\mathbb{S}_{n} \ldots \quad$ real symmetric $n \times n$ matrices
A matrix

$$
A=\left(a_{i j}\right)_{i, j} \in \mathbb{S}_{n}
$$

is:

- positive semidefinite (PSD) if $v^{T} A v \geq 0$ for every $v \in \mathbb{R}^{n}$.

Copositive and completely positive matrices

Definitions

$\mathbb{S}_{n} \ldots$ real symmetric $n \times n$ matrices
A matrix

$$
A=\left(a_{i j}\right)_{i, j} \in \mathbb{S}_{n}
$$

is:

- copositive (COP) if $v^{T} A v \geq 0$ for every $v \in \mathbb{R}_{\geq 0}^{n}$.
- positive semidefinite (PSD) if $V^{T} A v \geq 0$ for every $v \in \mathbb{R}^{n}$.

Copositive and completely positive matrices

Definitions

$\mathbb{S}_{n} \ldots$ real symmetric $n \times n$ matrices
A matrix

$$
A=\left(a_{i j}\right)_{i, j} \in \mathbb{S}_{n}
$$

is:

- copositive (COP) if $V^{T} A v \geq 0$ for every $v \in \mathbb{R}_{\geq 0}^{n}$.
- positive semidefinite (PSD) if $V^{T} A v \geq 0$ for every $v \in \mathbb{R}^{n}$.
- completely positive (CP) if $A=B B^{T}$ for some $B \in \mathbb{R}_{\geq 0}^{n \times k}$.

Copositive and completely positive matrices

Definitions

$\mathbb{S}_{n} \ldots$ real symmetric $n \times n$ matrices
A matrix

$$
A=\left(a_{i j}\right)_{i, j} \in \mathbb{S}_{n}
$$

is:

- copositive (COP) if $V^{T} A v \geq 0$ for every $v \in \mathbb{R}_{\geq 0}^{n}$.
- positive semidefinite (PSD) if $v^{T} A v \geq 0$ for every $v \in \mathbb{R}^{n}$.
- nonnegative (NN) if $a_{i j} \geq 0$ for every i, j.
- SPN if $A=P+N$ for some P PSD and N NN.
- doubly nonnegative (DNN) if $A=P \cap N$ for some P PSD and N NN.
- completely positive (CP) if $A=B B^{T}$ for some $B \in \mathbb{R}_{\geq 0}^{n \times k}$.

Copositive and completely positive matrices

Mental picture

$$
-\mathrm{COP}-\mathrm{SPN}-\mathrm{PSD}-\mathrm{NN}-\mathrm{DNN}-\mathrm{CP}
$$

Copositive vs completely positive matrices

Problems and a small sample of existing literature

Problem 1: Establish asymptotically exact quantitative bounds on the fraction of COP matrices that are CP.

Problem 2: Derive algorithm to produce COP matrices that are not CP.

Copositive vs completely positive matrices

Problems and a small sample of existing literature

Problem 1: Establish asymptotically exact quantitative bounds on the fraction of COP matrices that are CP.

Problem 2: Derive algorithm to produce COP matrices that are not $C P$.

- Maxfield, Minc (1962), Hall, Newman (1963): COP $_{n}=$ SPN $_{n}$ holds only for $n \leq 4$.
- Parrilo (2000): $\operatorname{int}\left(\mathrm{COP}_{n}\right) \subseteq \bigcup_{r} K_{n}^{(r)}$, where $\left(\mathrm{x}^{2}=\left(x_{1}^{2}, \ldots, x_{n}^{2}\right)\right)$

$$
K_{n}^{(r)}:=\left\{A \in \mathbb{S}_{n}:\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{r} \cdot\left(\mathrm{x}^{2}\right)^{T} A \mathrm{x}^{2} \text { is a sum of squares of forms }\right\} .
$$

- Dickinson, Dür, Gijben, Hildebrand (2013): $\mathrm{COP}_{5} \neq K_{5}^{(r)}$ for any $r \in \mathbb{N}$.
- Laurent, Schweighofer, Vargas (2022, 23+): $\mathrm{COP}_{5}=\bigcup_{r} K_{5}^{(r)}$ and $\mathrm{COP}_{6} \neq \bigcup_{r} K_{6}^{(r)}$.

Copositive matrices meet RAG

$\mathbb{R}\left[x^{2}\right]_{4, e} \quad \ldots$ forms in $x^{2}=\left(x_{1}^{2}, \ldots, x_{n}^{2}\right)$ of degree 4, i.e., quartic even forms.
There is a natural bijection

$$
\Gamma: \mathbb{S}_{n} \rightarrow \mathbb{R}[\mathrm{x}]_{4, e}, \quad \text { A } \mapsto q_{A}(\mathrm{x}):=\left(\mathrm{x}^{2}\right)^{\top} \boldsymbol{A} \mathrm{x}^{2}=\sum_{i, j=1}^{n} a_{i j} x_{i}^{2} x_{j}^{2} .
$$

Copositive matrices meet RAG

$\mathbb{R}\left[x^{2}\right]_{4, e} \quad \ldots$ forms in $x^{2}=\left(x_{1}^{2}, \ldots, x_{n}^{2}\right)$ of degree 4, i.e., quartic even forms.
There is a natural bijection

$$
\Gamma: \mathbb{S}_{n} \rightarrow \mathbb{R}[\mathrm{x}]_{4, e}, \quad \text { A } \mapsto q_{A}(\mathrm{x}):=\left(\mathrm{x}^{2}\right)^{\top} \boldsymbol{A} \mathrm{x}^{2}=\sum_{i, j=1}^{n} a_{i j} x_{i}^{2} x_{j}^{2} .
$$

Proposition
Let $A \in \mathbb{S}_{n}$ be a matrix. Then:

1. A is COP iff q_{A} is nonnegative.
2. \boldsymbol{A} is PSD iff q_{A} is of the form $\sum_{i}\left(\sum_{j} f_{i j} x_{j}^{2}\right)^{2}$. (a $_{A} \ldots$. lin-SOS)
3. A is NN iff q_{A} has nonnegative coefficients.
4. \boldsymbol{A} is SPN iff $\boldsymbol{q}_{\boldsymbol{A}}$ is of the form $\sum_{i}\left(\sum_{j} f_{i j} x_{i} x_{j}\right)^{2} \quad$ (Parrilo, 00')
($\mathrm{q}_{\mathrm{A}} \ldots \mathrm{SOS}$)
5. A is DNN iff q_{A} is $\ell-S O S$ and $N N$.
$\left(q_{A} \ldots D N N\right)$
6. \boldsymbol{A} is CP iff \boldsymbol{q}_{A} is of the form $\sum_{i}\left(\sum_{j} f_{i j} x_{j}^{2}\right)^{2}$ with $f_{i j} \geq 0$.

Copositive matrices meet RAG

$\mathbb{R}\left[x^{2}\right]_{4, e} \quad \ldots$ forms in $x^{2}=\left(x_{1}^{2}, \ldots, x_{n}^{2}\right)$ of degree 4, i.e., quartic even forms.
There is a natural bijection

$$
\Gamma: \mathbb{S}_{n} \rightarrow \mathbb{R}[\mathrm{x}]_{4, e}, \quad A \mapsto q_{A}(\mathrm{x}):=\left(\mathrm{x}^{2}\right)^{\top} \boldsymbol{A} \mathrm{x}^{2}=\sum_{i, j=1}^{n} a_{i j} x_{i}^{2} x_{j}^{2} .
$$

Proposition
Let $A \in \mathbb{S}_{n}$ be a matrix. Then:

1. A is COP iff q_{A} is nonnegative.
2. \boldsymbol{A} is PSD iff q_{A} is of the form $\sum_{i}\left(\sum_{j} f_{i j} x_{j}^{2}\right)^{2}$.
3. A is NN iff q_{A} has nonnegative coefficients.
4. \boldsymbol{A} is SPN iff q_{A} is of the form $\sum_{i}\left(\sum_{j} f_{i j} x_{i} x_{j}\right)^{2} \quad$ (Parrilo, $\left.00^{\prime}\right)$
5. A is DNN iff q_{A} is ℓ-SOS and NN.
$\left(q_{A} \ldots D N N\right)$
6. \boldsymbol{A} is CP iff q_{A} is of the form $\sum_{i}\left(\sum_{j} f_{i j} x_{j}^{2}\right)^{2}$ with $f_{i j} \geq 0$.

Corollary. The gaps between COP/PSD/NN/SPN/DNN/CP matrices correspond to the gaps between POS/l-SOS/NN/SOS/DNN/CP even quartics.

Gap between positive and sos polynomials

$$
\mathbb{R}[\mathrm{x}]_{2 k} \quad \ldots \quad \text { forms in } \mathrm{x}=\left(x_{1}, \ldots, x_{n}\right) \text { of degree } 2 k
$$

Theorem (Blekherman, 2006)

For $n \geq 3$ and fixed k the probability p_{n} that a positive polynomial $f \in \mathbb{R}[x]_{2 k}$ is sum of squares, satisfies

$$
\left(C_{1} \cdot \frac{1}{n^{(k-1) / 2}}\right)^{\operatorname{dim} \mathbb{R}[x]_{2 k}-1} \leq p_{n} \leq\left(C_{2} \cdot \frac{1}{n^{(k-1) / 2}}\right)^{\operatorname{dim} \mathbb{R}[x]_{2 k}-1},
$$

where C_{1}, C_{2} are absolute constants.
In particular, for $2 k=4$,

$$
p_{n} \in \Theta\left(\left(\frac{1}{\sqrt{n}}\right)^{\operatorname{dim} \mathbb{R}[x]_{4}-1}\right) .
$$

Solutions to Problems 1 and 2

Our results

Theorem: For $n>4$ the probability p_{n} that a positive even quartic $f \in \mathbb{R}\left[x^{2}\right]_{4, e}$ is sum of squares, satisfies

$$
\begin{aligned}
& \left(2^{-8} \cdot 3^{-2}\right)^{\operatorname{dim} \mathbb{R}\left[x^{2}\right]_{4, e-1}} \leq p_{n} . \\
& \text { All quartics: } p_{n} \in \Theta\left(\left(\frac{1}{\sqrt{n}}\right)^{\operatorname{dim} \mathbb{R}[x]_{4}-1}\right)
\end{aligned}
$$

Solutions to Problems 1 and 2

Our results

Theorem: For $n>4$ the probability p_{n} that a positive even quartic $f \in \mathbb{R}\left[x^{2}\right]_{4, e}$ is sum of squares, satisfies

$$
\begin{aligned}
& \left(2^{-8} \cdot 3^{-2}\right)^{\operatorname{dim} \mathbb{R}\left[x^{2}\right]_{4, e-1}} \leq \rho_{n} \\
& \text { All quartics: } p_{n} \in \Theta\left(\left(\frac{1}{\sqrt{n}}\right)^{\operatorname{dim} \mathbb{R}[x]_{4}-1}\right)
\end{aligned}
$$

Theorem: For $n>4$ the probability p_{n} that a copositive matrix $A \in \mathbb{S}_{n}$ is $C P$, satisfies

$$
\left(2^{-8} \cdot 3^{-2}\right)^{\operatorname{dim} \mathbb{S}_{n}-1} \leq p_{n}
$$

Solutions to Problems 1 and 2

Our results

Theorem: For $n>4$ the probability p_{n} that a positive even quartic $f \in \mathbb{R}\left[\mathrm{x}^{2}\right]_{4, e}$ is sum of squares, satisfies

$$
\begin{aligned}
& \left(2^{-8} \cdot 3^{-2}\right)^{\operatorname{dim} \mathbb{R}\left[x^{2}\right]_{4, e-1}} \leq p_{n} \\
& \text { All quartics: } p_{n} \in \Theta\left(\left(\frac{1}{\sqrt{n}}\right)^{\operatorname{dim} \mathbb{R}[x]_{4}-1}\right)
\end{aligned}
$$

Theorem: For $n>4$ the probability p_{n} that a copositive matrix $A \in \mathbb{S}_{n}$ is $C P$, satisfies

$$
\left(2^{-8} \cdot 3^{-2}\right)^{\operatorname{dim} \mathbb{S}_{n}-1} \leq p_{n}
$$

Problem 2
Free probability inspired construction of $\mathrm{DNN}_{n} \backslash \mathrm{CP}_{n}, n \geq 5$, matrices. Dually, we obtain matrices from $\mathrm{COP}_{n} \backslash \mathrm{SPN}_{n}$, or equivalently pos but not sot even quartics.
2. Discussion on volume estimates

Cones in question

Intersect with a unit ball in some metric

$$
-\mathrm{K} 1-\mathrm{K} 2-\text { Unit ball B }
$$

- Goal: Compare the sizes of $K_{1} \cap B$ and $K_{2} \cap B$.
- Beware 1: The choice of the measure influences the results.
- Beware 2: The ambient vector space V must be an inner product space for the pushforward of the Lebesgue measure to be independent of the isomorphism $\phi: V \rightarrow \mathbb{R}^{\text {dim } V}$.
- Beware 3: The choice of the inner product and the metric for the ball B influence the results.

Volume radius

Proper measure of the asymptotic sizes of a sequence of compact sets

The volume radius $\operatorname{vrad}(C)$ of a compact set $C \subseteq \mathbb{R}^{n}$, equipped with an inner product $\langle\cdot, \cdot\rangle$ and a measure μ, is

$$
\operatorname{vrad}(C)=\left(\frac{\operatorname{Vol}(C)}{\operatorname{Vol}(B)}\right)^{1 / n}
$$

where B is the unit ball in $\langle\cdot, \cdot\rangle$.

- Since we are concerned with the asymptotic behavior as n goes to infinity, we need to eliminate the dimension effect when dilating K by some factor c.
- A dilation multiplies the volume of C by c^{n}, but a more appropriate effect would be multiplication by c.

Gap between positive and sos polynomials

 asymptotically not visible in the ball of the ℓ^{1} norm- $\mathbb{R}[x]_{2 k}$ is equipped with the natural L^{2} inner product

$$
\langle f, g\rangle=\int_{S^{n-1}} f g \mathrm{~d} \sigma
$$

where and σ is the rotation invariant probability measures on the unit sphere $S^{n-1} \subset \mathbb{R}^{n}$.

- Let $\|\cdot\|_{1}$ the ℓ^{1} norm on the vector of coefficients, i.e.,

$$
\left\|\sum_{\alpha} a_{\alpha} \mathrm{x}^{\alpha}\right\|_{1}=\sum_{\alpha}\left|a_{\alpha}\right| .
$$

- E.g., for $k=2$, due to the equality (and Rogers-Shepard inequality)

$$
x_{i} x_{j} x_{k} x_{\ell}=\frac{1}{2}\left(x_{i} x_{j}+x_{k} x_{\ell}\right)^{2}-\frac{1}{2} x_{i}^{2} x_{j}^{2}-\frac{1}{2} x_{k}^{2} x_{\ell}^{2}
$$

the volume radii of positive and sos polynomials in the unit ball B_{1} of $\|\cdot\|_{1}$ are bounded by absolute constants.

Blekherman's result on the gap between positive and sos polynomials refers to the unit ball in the L^{2} norm

- $\mathbb{R}[\mathrm{x}]_{2 k}$ is equipped with the natural L^{2} inner product

$$
\langle f, g\rangle=\int_{S^{n-1}} f g \mathrm{~d} \sigma,
$$

where and σ is the rotation invariant probability measures on the unit sphere $S^{n-1} \subset \mathbb{R}^{n}$.

- Let B_{2} be the unit ball in the L^{2} norm.
- Direct volume estimates for the sections $\mathrm{POS}_{2 k} \cap B_{2}$ and $\mathrm{SOS}_{2 k} \cap B_{2}$ are difficult to obtain.
- Instead, it is natural to compare $\mathrm{POS}_{2 k}$ and $\mathrm{SOS}_{2 k}$ when intersected with some affine hyperplane.

Choice of the affine hyperplane for comparison of the cones

1. In case the cones share a unique line of symmetry, it is natural to take the hyperplane whose normal is this line of symmetry.
2. Under the action $O \cdot f(\mathrm{x}):=f\left(O^{-1} \mathrm{x}\right)$ for $O \in O(n), \mathrm{POS}_{2 k}$ and $\mathrm{SOS}_{2 k}$ are invariant, while $\alpha\left(x_{1}^{2}+\ldots+x_{n}^{2}\right)^{2}, \alpha \in \mathbb{R}$, are the only fixed points.
3. So the hyperplane with the normal $\left(x_{1}^{2}+\ldots+x_{n}^{2}\right)^{2}$ is the 'fairest' choice.

A general procedure to obtain the volume estimates

Inputs:

- A convex cone K in a finite-dimensional inner product space V.
- A norm $\|\cdot\|$ w.r.t. which the size of K is to be estimated.

Output: Quantitative bounds on the size of K.

A general procedure to obtain the volume estimates

Inputs:

- A convex cone K in a finite-dimensional inner product space V.
- A norm $\|\cdot\|$ w.r.t. which the size of K is to be estimated.

Output: Quantitative bounds on the size of K.
Procedure:

1. Equip V with a pushforward measure of the Lebesgue measure.
2. Try to estimate $\operatorname{vrad}(K \cap B)$, where B is the unit ball of $\|\cdot\|$. If this is achieved, you are done. Otherwise go to step 3.

A general procedure to obtain the volume estimates

Inputs:

- A convex cone K in a finite-dimensional inner product space V.
- A norm $\|\cdot\|$ w.r.t. which the size of K is to be estimated.

Output: Quantitative bounds on the size of K.

Procedure:

1. Equip V with a pushforward measure of the Lebesgue measure.
2. Try to estimate $\operatorname{vrad}(K \cap B)$, where B is the unit ball of $\|\cdot\|$. If this is achieved, you are done. Otherwise go to step 3.
3. Choose a fair affine hyperplane $\mathcal{H}: \ldots$ such that $K^{\prime}=K \cap \mathcal{H}$ is bounded.
4. Translate \mathcal{H} to a hyperplane \mathcal{M}.
5. Equip \mathcal{M} with a pushforward measure of the Lebesgue measure and estimate $\operatorname{vrad}(K \cap \mathcal{H})$ in \mathcal{M}.

3. Proofs

Procedure applied to our problem

1. $\mathbb{R}[\mathrm{x}]_{4, e}$ is equipped with the natural L^{2} inner product

$$
\langle f, g\rangle=\int_{S^{n-1}} f g \mathrm{~d} \sigma,
$$

where σ is the rotation invariant probability measures on the unit sphere $S^{n-1} \subset \mathbb{R}^{n}$.
2. \mathcal{H} is the affine hyperplane of forms from $\mathbb{R}[\mathrm{x}]_{4, e}$ of average 1 on S^{n-1} :

$$
\mathcal{H}=\left\{f \in \mathbb{R}[\mathrm{x}]_{4, e}: \int_{S^{n 1}} f \mathrm{~d} \sigma=1\right\} .
$$

3. $z:=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{2}$ and thus

$$
\mathcal{M}=\mathcal{H}-z=\left\{f \in \mathbb{R}[\mathrm{x}]_{4, e}: \int_{S^{n-1}} f \mathrm{~d} \sigma=0\right\} .
$$

4. Let μ be the pushforward of the Lebesgue measure on $\mathbb{R}^{\operatorname{dim} \mathcal{M}}$ to \mathcal{M}.

Procedure applied to our problem

5. It is crucial to make the following three observations:

Procedure applied to our problem

5. It is crucial to make the following three observations:

Observation 1: $\widetilde{C P} \subseteq \widetilde{N N} \subseteq 4(\widetilde{C P}-\widetilde{C P})$.

$$
\Rightarrow \text { By the Roger's-Shepard inequality } \frac{1}{16} \operatorname{vrad} \widetilde{\mathrm{NN}} \leq \operatorname{vrad} \widetilde{\mathrm{CP}} \text {. }
$$

Procedure applied to our problem

5. It is crucial to make the following three observations:

Observation 1: $\widetilde{C P} \subseteq \widetilde{N N} \subseteq 4(\widetilde{C P}-\widetilde{C P})$.

$$
\Rightarrow \text { By the Roger's-Shepard inequality } \frac{1}{16} \operatorname{vrad} \widetilde{\mathrm{NN}} \leq \operatorname{vrad} \widetilde{\mathrm{CP}} \text {. }
$$

Observation 2: $\widetilde{(\mathrm{NN})_{d}^{*}}=\widetilde{\mathrm{NN}}$
\Rightarrow By a version of the reverse Blaschke-Santaló inequality $\frac{1}{\sqrt{2} n} \leq \operatorname{vrad}(\widetilde{\mathrm{NN}})$.
Here $(\cdot)_{d}^{*}$ stands for the dual in the differential inner product, i.e., for

$$
f(\mathrm{x})=\sum_{1 \leq i, j, k, \ell \leq n} a_{i j k \ell} x_{i} x_{j} x_{k} x_{\ell} \in \mathbb{R}[\mathrm{x}]_{4}
$$

and $g \in \mathbb{R}[\mathrm{x}]_{4}$ we have

$$
\langle f, g\rangle_{d}=\sum_{1 \leq i, j, k, \ell \leq n} a_{i j k \ell} \frac{\partial^{4} g}{\partial x_{i} \partial x_{j} \partial x_{k} \partial x_{\ell}}
$$

Procedure applied to our problem

Let

$$
\mathrm{LF}:=\left\{\operatorname{pr}(f) \in \mathbb{R}[\mathrm{x}]_{4, e}: f=\sum_{i} f_{i}^{4} \quad \text { for some } f_{i} \in \mathbb{R}[\mathrm{x}]_{1}\right\}
$$

and $\mathrm{pr}: \mathbb{R}[\mathrm{x}]_{4} \rightarrow \mathbb{R}[\mathrm{x}]_{4, e}$ is the projection defined by:

$$
\begin{equation*}
\operatorname{pr}\left(\sum_{1 \leq i \leq j \leq k \leq \ell \leq n} a_{i j k \ell} x_{i} x_{j} x_{k} x_{\ell}\right)=\sum_{1 \leq i \leq j \leq n} a_{i i j} x_{i}^{2} x_{j}^{2} . \tag{1}
\end{equation*}
$$

Observation 3: $\widetilde{(\mathrm{LF})_{d}^{*}}=\widetilde{\mathrm{POS}}$ and $\widetilde{\mathrm{LF}}$ is 'central enough'
for the Blaschke-Santaló inequality to apply.
\Rightarrow By a version of the Blaschke-Santaló inequality

$$
\operatorname{vrad}(\widetilde{\mathrm{LF}}) \operatorname{vrad}(\widetilde{\mathrm{POS}}) \leq \frac{9}{n^{2}}
$$

4. Algorithms and Examples

DNN matrices that are not CP of size $n \geq 5$

Algorithm

1. The setting:
$L^{2}[0,1] \ldots$ an ambient space,
$\mathcal{B}:=\{1\} \cup\{\sqrt{2} \cos (2 k \pi): k \in \mathbb{N}\} \cup\{\sqrt{2} \sin (2 k \pi): k \in \mathbb{N}\} \ldots$ a basis,
$M_{f}: L^{2}[0,1] \rightarrow L^{2}[0,1], M_{f}(g)=f g \ldots$ the multiplication operator.

DNN matrices that are not CP of size $n \geq 5$

Algorithm

1. The setting:
$L^{2}[0,1] \ldots$ an ambient space,
$\mathcal{B}:=\{1\} \cup\{\sqrt{2} \cos (2 k \pi): k \in \mathbb{N}\} \cup\{\sqrt{2} \sin (2 k \pi): k \in \mathbb{N}\} \ldots$ a basis,
$M_{f}: L^{2}[0,1] \rightarrow L^{2}[0,1], M_{f}(g)=f g \ldots$ the multiplication operator.
2. The idea: Find a closed infinite dimensional subspace \mathcal{H} and $f \in \mathcal{H}$ such that

$$
M_{f}^{\mathcal{H}}:=P_{\mathcal{H}} M_{f} P_{\mathcal{H}}
$$

has all finite principal submatrices DNN but not CP, where $P_{\mathcal{H}}: L^{2}[0,1] \rightarrow \mathcal{H}$ is the orthogonal projection onto \mathcal{H}.

DNN matrices that are not CP of size $n \geq 5$

Algorithm

1. The setting:
$L^{2}[0,1] \ldots$ an ambient space,
$\mathcal{B}:=\{1\} \cup\{\sqrt{2} \cos (2 k \pi): k \in \mathbb{N}\} \cup\{\sqrt{2} \sin (2 k \pi): k \in \mathbb{N}\} \ldots$ a basis,
$M_{f}: L^{2}[0,1] \rightarrow L^{2}[0,1], M_{f}(g)=f g \ldots$ the multiplication operator.
2. The idea: Find a closed infinite dimensional subspace \mathcal{H} and $f \in \mathcal{H}$ such that

$$
M_{f}^{\mathcal{H}}:=P_{\mathcal{H}} M_{f} P_{\mathcal{H}}
$$

has all finite principal submatrices DNN but not CP, where $P_{\mathcal{H}}: L^{2}[0,1] \rightarrow \mathcal{H}$ is the orthogonal projection onto \mathcal{H}.
3. Choice of \mathcal{H} and $f \in \mathcal{H}$:
$\mathcal{H} \subseteq L^{2}[0,1] \ldots \quad$ a closed subspace spanned by $\cos (2 k \pi), k \in \mathbb{N}_{0}$,

$$
f=1+2 \sum_{k=1}^{m} a_{k} \cos (2 k \pi), \quad m \in \mathbb{N},
$$

DNN matrices that are not CP of size $n \geq 5$

Algorithm

4. Certificates:
4.1 NN: $a_{1} \geq 0, \ldots, a_{m} \geq 0$.
4.2 PSD: $f=\sum_{i} h_{i}^{2}$.
4.3 Not CP:

$$
\begin{aligned}
& \mathcal{H}_{n} \ldots \quad \text { a subspace spanned by } 1, \cos (2 \pi), \ldots, \cos (2(n-1) \pi), \\
& P_{n}: \mathcal{H} \rightarrow \mathcal{H}_{n} \ldots \text { the orthogonal projection onto } \mathcal{H}_{n}, \\
& A^{(n)}:=P_{n} M_{f}^{\mathcal{H}} P_{n}, \\
& H=\left(\begin{array}{rrrrr}
1 & -1 & 1 & 1 & -1 \\
-1 & 1 & -1 & 1 & 1 \\
1 & -1 & 1 & -1 & 1 \\
1 & 1 & -1 & 1 & -1 \\
-1 & 1 & 1 & -1 & 1
\end{array}\right) \in \operatorname{COP} \backslash \operatorname{SPN} \\
& \text { (Horn matrix; Hall, Newman, 1963) }
\end{aligned}
$$

We demand

$$
\left\langle A^{(5)}, H\right\rangle<0
$$

with $\langle\cdot, \cdot\rangle$ the usual Frobenius inner product on symmetric matrices.

DNN matrices that are not CP of size $n \geq 5$

Justification of the certificates

1. $N N$ is certified by the following equation:

$$
\int_{0}^{1} \cos (2 j \pi x) \cos (2 k \pi x) \cos (2 \ell \pi x) d x= \begin{cases}\frac{1}{2}, & \text { if } j=\ell, k=0 \\ \frac{1}{4}, & \text { if } k \neq 0 \text { and } j \in\{\ell+k, \ell-k\} \\ 0, & \text { otherwise }\end{cases}
$$

In particular,

$$
A^{(5)}=\left(\begin{array}{ccccc}
1 & \sqrt{2} a_{1} & \sqrt{2} a_{2} & \sqrt{2} a_{3} & \sqrt{2} a_{4} \\
\sqrt{2} a_{1} & a_{2}+1 & a_{1}+a_{3} & a_{2}+a_{4} & a_{3}+a_{5} \\
\sqrt{2} a_{2} & a_{1}+a_{3} & a_{4}+1 & a_{1}+a_{5} & a_{2}+a_{6} \\
\sqrt{2} a_{3} & a_{2}+a_{4} & a_{1}+a_{5} & 1+a_{6} & a_{1} \\
\sqrt{2} a_{4} & a_{3}+a_{5} & a_{2}+a_{6} & a_{1} & 1
\end{array}\right) .
$$

2. $P S D$ is certified by

$$
M_{f}^{\mathcal{H}}=\sum_{i}\left(M_{h_{i}}^{\mathcal{H}}\right)^{2}=\sum_{i} M_{h_{i}}^{\mathcal{H}}\left(M_{h_{i}}^{\mathcal{H}}\right)^{*} .
$$

3. Not CP is certified by

$$
\mathrm{COP}^{*}=\mathrm{CP} \quad \text { (in the Frobenius inner product). }
$$

DNN matrices that are not CP of size $n \geq 5$

Implementation and an example

The feasibility semidefinite program (SDP) implements the algorithm above:

$$
\begin{aligned}
& \operatorname{tr}\left(A^{(5)} H\right)=-\frac{1}{20} \\
& f=v^{\top} B v \quad \text { with } \quad B \succeq 0 \text { of size } 4 \times 4 \\
& a_{i} \geq 0, \quad i=1, \ldots, 6
\end{aligned}
$$

where

$$
v^{T}=(1 \quad \cos (2 \pi x) \quad \cos (4 \pi x) \quad \cos (6 \pi x))
$$

DNN matrices that are not CP of size $n \geq 5$

Implementation and an example

The feasibility semidefinite program (SDP) implements the algorithm above:

$$
\begin{aligned}
& \operatorname{tr}\left(A^{(5)} H\right)=-\frac{1}{20} \\
& f=v^{\top} B v \quad \text { with } \quad B \succeq 0 \text { of size } 4 \times 4 \\
& a_{i} \geq 0, \quad i=1, \ldots, 6
\end{aligned}
$$

where

$$
v^{T}=(1 \quad \cos (2 \pi x) \quad \cos (4 \pi x) \quad \cos (6 \pi x))
$$

Solving this SDP, we get

$$
A^{(5)}=\left(\begin{array}{ccccc}
1 & \frac{16 \sqrt{2}}{27} & \frac{\sqrt{2}}{123} & \frac{1}{147 \sqrt{2}} & \frac{5 \sqrt{2}}{21} \\
\frac{16 \sqrt{2}}{27} & \frac{124}{123} & \frac{1577}{2646} & \frac{212}{861} & \frac{1205}{8526} \\
\frac{\sqrt{2}}{123} & \frac{1577}{2646} & \frac{26}{21} & \frac{572}{783} & \frac{1777340 \sqrt{2}-2413803}{3254580} \\
\frac{1}{147 \sqrt{2}} & \frac{212}{861} & \frac{572}{783} & \frac{1777340 \sqrt{2}+814317}{3254580} & \frac{16}{27} \\
\frac{5 \sqrt{2}}{21} & \frac{1205}{8526} & \frac{1777340 \sqrt{2}-2413803}{3254580} & \frac{16}{27} & 1
\end{array}\right)
$$

COP matrices that are not SPN of size $n \geq 5$

Algorithm and an example

Let $A^{(n)}$ be a DNN not CP matrix. To obtain a matrix $C \in C O P \backslash S P N$ of size $n \times n$ we demand

$$
\begin{align*}
& \left\langle A^{(n)}, C\right\rangle<0, \tag{2}\\
& \left(\sum_{i=1}^{n} x_{i}^{2}\right)^{k}\left(\left(\mathrm{x}^{2}\right)^{T} C \mathrm{x}^{2}\right) \quad \text { is SOS for some } k \in \mathbb{N} . \tag{3}
\end{align*}
$$

COP matrices that are not SPN of size $n \geq 5$

Algorithm and an example

Let $A^{(n)}$ be a DNN not CP matrix. To obtain a matrix $C \in C O P \backslash S P N$ of size $n \times n$ we demand

$$
\begin{align*}
& \left\langle A^{(n)}, C\right\rangle<0, \tag{2}\\
& \left(\sum_{i=1}^{n} x_{i}^{2}\right)^{k}\left(\left(x^{2}\right)^{T} C x^{2}\right) \quad \text { is SOS for some } k \in \mathbb{N} . \tag{3}
\end{align*}
$$

(2) certifies C is not SPN due to

$$
\mathrm{SPN}^{*}=\mathrm{DNN} \quad \text { (in the Frobenius inner product), }
$$

while (3) certifies C is COP.

COP matrices that are not SPN of size $n \geq 5$

Algorithm and an example

Let $A^{(n)}$ be a DNN not CP matrix. To obtain a matrix $C \in C O P \backslash S P N$ of size $n \times n$ we demand

$$
\begin{align*}
& \left\langle A^{(n)}, C\right\rangle<0, \tag{2}\\
& \left(\sum_{i=1}^{n} x_{i}^{2}\right)^{k}\left(\left(\mathrm{x}^{2}\right)^{T} C \mathrm{x}^{2}\right) \quad \text { is SOS for some } k \in \mathbb{N} . \tag{3}
\end{align*}
$$

(2) certifies C is not SPN due to

$$
\mathrm{SPN}^{*}=\mathrm{DNN} \quad \text { (in the Frobenius inner product), }
$$

while (3) certifies C is COP. This is again a feasibility SDP. Using $A^{(5)}$ as above we obtain (with $\left\langle A^{(5)}, C\right\rangle=-\frac{1}{10}$ and $k=1$)

$$
C=\left(\begin{array}{ccccc}
17 & -\frac{91}{5} & \frac{33}{2} & \frac{38}{3} & -\frac{36}{5} \\
-\frac{91}{5} & \frac{59}{3} & -\frac{53}{4} & 8 & \frac{33}{4} \\
\frac{33}{2} & -\frac{53}{4} & \frac{39}{4} & -\frac{13}{2} & 8 \\
\frac{38}{3} & 8 & -\frac{13}{2} & \frac{16}{3} & -\frac{13}{3} \\
-\frac{36}{5} & \frac{33}{4} & 8 & -\frac{13}{3} & \frac{1373688701}{3539335555}
\end{array}\right)
$$

Thank you for your attention!

