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1. Preliminaries



Copositive and completely positive matrices
Definitions

Sn. . . real symmetric n × n matrices

A matrix

A = (aij)i,j ∈ Sn

is:

▶ copositive (COP) if vT Av ≥ 0 for every v ∈ Rn
≥0.

▶ positive semidefinite (PSD) if vT Av ≥ 0 for every v ∈ Rn.

▶ nonnegative (NN) if aij ≥ 0 for every i , j .

▶ SPN if A = P + N for some P PSD and N NN.
▶ doubly nonnegative (DNN) if A = P ∩ N for some P PSD and N NN.

▶ completely positive (CP) if A = BBT for some B ∈ Rn×k
≥0 .
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Copositive and completely positive matrices
Mental picture



Copositive vs completely positive matrices
Problems and a small sample of existing literature

Problem 1: Establish asymptotically exact quantitative bounds on the fraction of
COP matrices that are CP.

Problem 2: Derive algorithm to produce COP matrices that are not CP.

▶ Maxfield, Minc (1962), Hall, Newman (1963): COPn = SPNn holds only for n ≤ 4.

▶ Parrilo (2000): int(COPn) ⊆
⋃

r K (r)
n , where (x2 = (x2

1 , . . . , x
2
n ))

K (r)
n := {A ∈ Sn : (

n∑
i=1

x2
i )

r · (x2)T Ax2 is a sum of squares of forms}.

▶ Dickinson, Dür, Gijben, Hildebrand (2013): COP5 ̸= K (r)
5 for any r ∈ N.

▶ Laurent, Schweighofer, Vargas (2022, 23+): COP5 =
⋃

r

K (r)
5 and COP6 ̸=

⋃
r

K (r)
6 .
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Copositive matrices meet RAG
R[x2]4,e . . . forms in x2 = (x2

1 , . . . , x
2
n ) of degree 4, i.e., quartic even forms.

There is a natural bijection

Γ : Sn → R[x]4,e, A 7→ qA(x) := (x2)T Ax2 =
n∑

i,j=1

aijx2
i x2

j .

Proposition
Let A ∈ Sn be a matrix. Then:

1. A is COP iff qA is nonnegative. (qA . . . POS)

2. A is PSD iff qA is of the form
∑

i

(∑
j fijx2

j

)2. (qA . . . lin-SOS)

3. A is NN iff qA has nonnegative coefficients. (qA . . . NN)

4. A is SPN iff qA is of the form
∑

i

(∑
j fijxixj

)2
(Parrilo, 00’) (qA . . . SOS)

5. A is DNN iff qA is ℓ-SOS and NN. (qA . . . DNN)

6. A is CP iff qA is of the form
∑

i

(∑
j fijx2

j

)2 with fij ≥ 0. (qA . . . CP)

Corollary. The gaps between COP/PSD/NN/SPN/DNN/CP matrices correspond
to the gaps between POS/ℓ-SOS/NN/SOS/DNN/CP even quartics.
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Gap between positive and sos polynomials

R[x]2k . . . forms in x = (x1, . . . , xn) of degree 2k

Theorem (Blekherman, 2006)
For n ≥ 3 and fixed k the probability pn that a positive polynomial f ∈ R[x]2k is
sum of squares, satisfies(

C1 ·
1

n(k−1)/2

)dimR[x ]2k−1
≤ pn ≤

(
C2 ·

1
n(k−1)/2

)dimR[x ]2k−1
,

where C1, C2 are absolute constants.

In particular, for 2k = 4,

pn ∈ Θ
(( 1√

n

)dimR[x ]4−1
)
.



Solutions to Problems 1 and 2
Our results

Theorem: For n > 4 the probability pn that a positive even quartic f ∈ R[x2]4,e is
sum of squares, satisfies(

2−8 · 3−2)dimR[x2]4,e−1 ≤ pn.

All quartics: pn ∈ Θ
(( 1

√
n

)dimR[x ]4−1
)

Theorem: For n > 4 the probability pn that a copositive matrix A ∈ Sn is CP,
satisfies (

2−8 · 3−2)dim Sn−1 ≤ pn.

Problem 2
Free probability inspired construction of DNNn \CPn, n ≥ 5, matrices. Dually, we
obtain matrices from COPn \SPNn, or equivalently pos but not sot even quartics.
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2. Discussion on volume estimates



Cones in question
Intersect with a unit ball in some metric

▶ Goal: Compare the sizes of K1 ∩ B and K2 ∩ B.
▶ Beware 1: The choice of the measure influences the results.
▶ Beware 2: The ambient vector space V must be an inner product space for the

pushforward of the Lebesgue measure to be independent of the isomorphism
ϕ : V → Rdim V .

▶ Beware 3: The choice of the inner product and the metric for the ball B influence the
results.



Volume radius
Proper measure of the asymptotic sizes of a sequence of compact sets

The volume radius vrad(C) of a compact set C ⊆ Rn, equipped with an inner
product ⟨·, ·⟩ and a measure µ, is

vrad(C) =

(
Vol(C)

Vol(B)

)1/n

,

where B is the unit ball in ⟨·, ·⟩.

▶ Since we are concerned with the asymptotic behavior as n goes to infinity, we need to
eliminate the dimension effect when dilating K by some factor c.

▶ A dilation multiplies the volume of C by cn, but a more appropriate effect would be
multiplication by c.



Gap between positive and sos polynomials
asymptotically not visible in the ball of the ℓ1 norm
▶ R[x]2k is equipped with the natural L2 inner product

⟨f ,g⟩ =
∫

Sn−1
fg dσ,

where and σ is the rotation invariant probability measures on the unit
sphere Sn−1 ⊂ Rn.

▶ Let ∥ · ∥1 the ℓ1 norm on the vector of coefficients, i.e.,

∥
∑
α

aαx
α∥1 =

∑
α

|aα|.

▶ E.g., for k = 2, due to the equality (and Rogers-Shepard inequality)

xixjxk xℓ =
1
2
(xixj + xk xℓ)2 − 1

2
x2

i x2
j − 1

2
x2

k x2
ℓ ,

the volume radii of positive and sos polynomials in the unit ball B1 of ∥ · ∥1
are bounded by absolute constants.



Blekherman’s result on the gap between positive and
sos polynomials refers to the unit ball in the L2 norm

▶ R[x]2k is equipped with the natural L2 inner product

⟨f ,g⟩ =
∫

Sn−1
fg dσ,

where and σ is the rotation invariant probability measures on the unit
sphere Sn−1 ⊂ Rn.

▶ Let B2 be the unit ball in the L2 norm.

▶ Direct volume estimates for the sections POS2k ∩B2 and SOS2k ∩B2 are
difficult to obtain.

▶ Instead, it is natural to compare POS2k and SOS2k when intersected with
some affine hyperplane.



Choice of the affine hyperplane for comparison of the
cones

1. In case the cones share a unique line of symmetry, it is natural to take the
hyperplane whose normal is this line of symmetry.

2. Under the action O · f (x) := f (O−1x) for O ∈ O(n), POS2k and SOS2k are invariant,
while α(x2

1 + . . .+ x2
n )

2, α ∈ R, are the only fixed points.

3. So the hyperplane with the normal (x2
1 + . . .+ x2

n )
2 is the ‘fairest’ choice.



A general procedure to obtain the volume estimates

Inputs:
▶ A convex cone K in a finite-dimensional inner product space V .
▶ A norm ∥ · ∥ w.r.t. which the size of K is to be estimated.

Output: Quantitative bounds on the size of K .

Procedure:
1. Equip V with a pushforward measure of the Lebesgue measure.

2. Try to estimate vrad(K ∩ B), where B is the unit ball of ∥ · ∥. If this is
achieved, you are done. Otherwise go to step 3.

3. Choose a fair affine hyperplane H: . . . such that K ′ = K ∩H is bounded.

4. Translate H to a hyperplane M.

5. Equip M with a pushforward measure of the Lebesgue measure and
estimate vrad(K ∩H) in M.
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3. Proofs



Procedure applied to our problem

1. R[x]4,e is equipped with the natural L2 inner product

⟨f ,g⟩ =
∫

Sn−1
fg dσ,

where σ is the rotation invariant probability measures on the unit sphere
Sn−1 ⊂ Rn.

2. H is the affine hyperplane of forms from R[x]4,e of average 1 on Sn−1:

H =

{
f ∈ R[x]4,e :

∫
Sn1

f dσ = 1
}
.

3. z :=
(∑n

i=1 x2
i

)2 and thus

M = H− z =

{
f ∈ R[x]4,e :

∫
Sn−1

f dσ = 0
}
.

4. Let µ be the pushforward of the Lebesgue measure on RdimM to M.



Procedure applied to our problem
5. It is crucial to make the following three observations:

Observation 1: C̃P ⊆ ÑN⊆ 4(C̃P− C̃P).

⇒ By the Roger’s-Shepard inequality
1

16
vrad ÑN ≤ vrad C̃P .

Observation 2: (̃NN)∗d = ÑN

⇒ By a version of the reverse Blaschke-Santaló inequality
1√
2n

≤ vrad(ÑN) .

Here (·)∗d stands for the dual in the differential inner product, i.e., for

f (x) =
∑

1≤i,j,k,ℓ≤n

aijkℓxixjxk xℓ ∈ R[x]4

and g ∈ R[x]4 we have

⟨f , g⟩d =
∑

1≤i,j,k,ℓ≤n

aijkℓ
∂4g

∂xi∂xj∂xk∂xℓ
.
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⇒ By a version of the reverse Blaschke-Santaló inequality
1√
2n

≤ vrad(ÑN) .

Here (·)∗d stands for the dual in the differential inner product, i.e., for

f (x) =
∑

1≤i,j,k,ℓ≤n

aijkℓxixjxk xℓ ∈ R[x]4

and g ∈ R[x]4 we have

⟨f , g⟩d =
∑

1≤i,j,k,ℓ≤n

aijkℓ
∂4g

∂xi∂xj∂xk∂xℓ
.



Procedure applied to our problem
5. It is crucial to make the following three observations:

Observation 1: C̃P ⊆ ÑN⊆ 4(C̃P− C̃P).
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Procedure applied to our problem

Let
LF :=

{
pr(f ) ∈ R[x]4,e : f =

∑
i

f 4
i for some fi ∈ R[x]1

}
and pr : R[x]4 → R[x]4,e is the projection defined by:

pr
( ∑

1≤i≤j≤k≤ℓ≤n

aijkℓxixjxk xℓ
)
=

∑
1≤i≤j≤n

aiijjx2
i x2

j . (1)

Observation 3: (̃LF)∗d = P̃OS and L̃F is ‘central enough’
for the Blaschke-Santaló inequality to apply.

⇒ By a version of the Blaschke-Santaló inequality

vrad(L̃F) vrad(P̃OS) ≤ 9
n2 .



4. Algorithms and Examples



DNN matrices that are not CP of size n ≥ 5
Algorithm

1. The setting:

L2[0,1] . . . an ambient space,

B :=
{

1
}
∪
{√

2 cos(2kπ) : k ∈ N
}
∪
{√

2 sin(2kπ) : k ∈ N
}
. . . a basis,

Mf : L2[0,1] → L2[0,1], Mf (g) = fg . . . the multiplication operator.

2. The idea: Find a closed infinite dimensional subspace H and f ∈ H such
that

MH
f := PHMf PH

has all finite principal submatrices DNN but not CP, where
PH : L2[0,1] → H is the orthogonal projection onto H.

3. Choice of H and f ∈ H:

H ⊆ L2[0,1] . . . a closed subspace spanned by cos(2kπ), k ∈ N0,

f = 1 + 2
m∑

k=1

ak cos(2kπ) , m ∈ N,
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DNN matrices that are not CP of size n ≥ 5
Algorithm

4. Certificates:
4.1 NN: a1 ≥ 0, . . . ,am ≥ 0.
4.2 PSD: f =

∑
i h2

i .
4.3 Not CP:

Hn . . . a subspace spanned by 1, cos(2π), . . . , cos(2(n − 1)π),

Pn : H → Hn . . . the orthogonal projection onto Hn,

A(n) := PnMH
f Pn,

H =


1 −1 1 1 −1

−1 1 −1 1 1
1 −1 1 −1 1
1 1 −1 1 −1

−1 1 1 −1 1

 ∈ COP \ SPN,

(Horn matrix; Hall, Newman, 1963)

We demand

⟨A(5),H⟩ < 0,
with ⟨·, ·⟩ the usual Frobenius inner product on symmetric matrices.



DNN matrices that are not CP of size n ≥ 5
Justification of the certificates

1. NN is certified by the following equation:

∫ 1

0
cos(2jπx) cos(2kπx) cos(2ℓπx)dx =


1
2 , if j = ℓ, k = 0,
1
4 , if k ̸= 0 and j ∈ {ℓ+ k , ℓ− k},
0, otherwise.

In particular,

A(5) =


1

√
2a1

√
2a2

√
2a3

√
2a4√

2a1 a2 + 1 a1 + a3 a2 + a4 a3 + a5√
2a2 a1 + a3 a4 + 1 a1 + a5 a2 + a6√
2a3 a2 + a4 a1 + a5 1 + a6 a1√
2a4 a3 + a5 a2 + a6 a1 1

 .

2. PSD is certified by
MH

f =
∑

i

(
MH

hi

)2
=

∑
i

MH
hi

(
MH

hi

)∗
.

3. Not CP is certified by

COP∗ = CP (in the Frobenius inner product).



DNN matrices that are not CP of size n ≥ 5
Implementation and an example

The feasibility semidefinite program (SDP) implements the algorithm above:

tr(A(5)H) = − 1
20

,

f = vTBv with B ⪰ 0 of size 4 × 4,

ai ≥ 0, i = 1, . . . ,6,

where
vT =

(
1 cos(2πx) cos(4πx) cos(6πx)

)
.

Solving this SDP, we get

A(5) =



1 16
√

2
27

√
2

123
1

147
√

2
5
√

2
21

16
√

2
27

124
123

1577
2646

212
861

1205
8526

√
2

123
1577
2646

26
21

572
783

1777340
√

2−2413803
3254580

1
147

√
2

212
861

572
783

1777340
√

2+814317
3254580

16
27

5
√

2
21

1205
8526

1777340
√

2−2413803
3254580

16
27 1


.
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COP matrices that are not SPN of size n ≥ 5
Algorithm and an example

Let A(n) be a DNN not CP matrix. To obtain a matrix C ∈ COP \ SPN of size
n × n we demand

⟨A(n),C⟩ < 0, (2)( n∑
i=1

x2
i
)k(

(x2)T Cx2) is SOS for some k ∈ N. (3)

(2) certifies C is not SPN due to

SPN∗ = DNN (in the Frobenius inner product),

while (3) certifies C is COP. This is again a feasibility SDP. Using A(5) as above

we obtain (with ⟨A(5),C⟩ = − 1
10 and k = 1)

C =



17 − 91
5

33
2

38
3 − 36

5

− 91
5

59
3 − 53

4 8 33
4

33
2 − 53

4
39
4 − 13

2 8
38
3 8 − 13

2
16
3 − 13

3

− 36
5

33
4 8 − 13

3
1373628701
353935575


.
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Thank you for your attention!


