There are many more positive maps than completely positive maps

joint work with I. Klep, S. McCullough and K. Šivic

LAW 2017

Positive vs completely positive

Main results:

 Quantitative bounds on the fraction of positive maps that are completely positive.

< 注→ < 注→ -

臣

Main results:

- Quantitative bounds on the fraction of positive maps that are completely positive.
- An algorithm to produce positive maps which are not completely positive is given (from random input data).

Main results:

- Quantitative bounds on the fraction of positive maps that are completely positive.
- An algorithm to produce positive maps which are not completely positive is given (from random input data).

A main tool is the real algebraic geometry techniques developed by Blekherman to study the gap between positive polynomials and sums of squares. $\mathbb{F} \dots$ the field $\{\mathbb{R} \text{ or } \mathbb{C}\}$

- $M_n(\mathbb{F}) \dots n \times n$ matrices over \mathbb{F} equipped with (conjugate) transposition as the involution *
- $\mathbb{S}_n \dots$ real symmetric matrices
- $A \succeq 0 \dots$ the matrix A is positive semidefinite

同ト・モート

For $n, m \in \mathbb{N}$, a linear map $\Phi : M_n(\mathbb{F}) \to M_m(\mathbb{F})$ is:

- *-linear if $\Phi(A^*) = \Phi(A)^*$ for every $A \in M_n(\mathbb{F})$.
- **2 positive** if $\Phi(A) \succeq 0$ for every $A \succeq 0$.
- **(3)** completely positive (cp) if for all $k \in \mathbb{N}$ the ampliations

 $I_k \otimes \Phi : M_k(\mathbb{F}) \otimes M_n(\mathbb{F}) \to M_k(\mathbb{F}) \otimes M_m(\mathbb{F}), \quad M \otimes A \mapsto M \otimes \Phi(A)$

are positive.

イロン イヨン イヨン ・

What is the probability that a random positive map Φ is cp?

What is the probability that a random positive map Φ is cp?

Theorem (Arveson, 2009)

Let $n, m \ge 2$. Then the probability p that a positive map $\varphi: M_n(\mathbb{C}) \to M_m(\mathbb{C})$ is cp satisfies 0 .

Positive vs completely positive

What is the probability that a random positive map Φ is cp?

Theorem (Arveson, 2009)

Let $n, m \ge 2$. Then the probability p that a positive map $\varphi: M_n(\mathbb{C}) \to M_m(\mathbb{C})$ is cp satisfies 0 .

Question

Can we find more precise bounds for p in Arveson's theorem?

What is the probability that a random positive map Φ is cp?

Theorem (Arveson, 2009)

Let $n, m \ge 2$. Then the probability p that a positive map $\varphi: M_n(\mathbb{C}) \to M_m(\mathbb{C})$ is cp satisfies 0 .

Question

Can we find more precise bounds for p in Arveson's theorem?

Question

How to construct positive map Φ which are not cp?

For integers $n, m \ge 2$, the probability $p_{n,m}^{\mathbb{F}}$ that a random positive map $\Phi : M_n(\mathbb{F}) \to M_m(\mathbb{F})$ is completely positive, is bounded by

$$p_{n,m}^{\mathbb{F}} < \left(\left(2^{28-\dim_{\mathbb{R}} \mathbb{F}} \right)^{\frac{1}{2}} \cdot 3^{-\frac{5}{2}} \cdot 5^{2} \cdot 10^{\frac{2}{9}} \cdot \frac{1}{\sqrt{\min(n,m) - \frac{1}{2}}} \right)^{D_{\mathcal{M}_{\mathcal{C}_{\mathbb{F}}}}}$$

where
$$D_{\mathcal{M}_{\mathcal{C}_{\mathbb{F}}}} = \begin{cases} n^2 m^2 - 1, & \text{if } \mathbb{F} = \mathbb{C}, \\ \frac{nm(nm+1)}{2}, & \text{if } \mathbb{F} = \mathbb{R}, \end{cases}$$

For integers $n, m \ge 2$, the probability $p_{n,m}^{\mathbb{F}}$ that a random positive map $\Phi : M_n(\mathbb{F}) \to M_m(\mathbb{F})$ is completely positive, is bounded by

$$p_{n,m}^{\mathbb{F}} < \left(\left(2^{28-\dim_{\mathbb{R}} \mathbb{F}} \right)^{\frac{1}{2}} \cdot 3^{-\frac{5}{2}} \cdot 5^2 \cdot 10^{\frac{2}{9}} \cdot \frac{1}{\sqrt{\min(n,m) - \frac{1}{2}}} \right)^{D_{\mathcal{M}_{\mathcal{C}_{\mathbb{F}}}}}$$

where
$$D_{\mathcal{M}_{\mathcal{C}_{\mathbb{F}}}} = \begin{cases} n^2 m^2 - 1, & \text{if } \mathbb{F} = \mathbb{C}, \\ \frac{nm(nm+1)}{2}, & \text{if } \mathbb{F} = \mathbb{R}. \end{cases}$$

If $\min(n, m) \ge \left(2^{28 - \dim_{\mathbb{R}} \mathbb{F}}\right) \cdot 3^{-5} \cdot 5^4 \cdot 10^{\frac{4}{9}}$, then

For integers $n, m \ge 3$ the probability $p_{n,m}$ that a positive map $\Phi : \mathbb{S}_n \to \mathbb{S}_m$ is completely positive, is bounded by

$$\left(\frac{3\sqrt{3}}{2^{10}\cdot 7^2\cdot \sqrt{\min(n,m)}}\right)^{D_{\mathcal{M}}} < p_{n,m} < \left(\frac{2^{12}\cdot 5^2\cdot 6^{\frac{1}{2}}\cdot 10^{\frac{2}{9}}}{3^3\cdot \sqrt{\min(n,m)+1}}\right)^{D_{\mathcal{M}}},$$

where $D_{\mathcal{M}} = \binom{n+1}{2}\binom{m+1}{2} - 1.$

ヘロア 人間 アメヨア 人間 アー

크

For integers $n, m \ge 3$ the probability $p_{n,m}$ that a positive map $\Phi : \mathbb{S}_n \to \mathbb{S}_m$ is completely positive, is bounded by

$$\left(\frac{3\sqrt{3}}{2^{10} \cdot 7^2 \cdot \sqrt{\min(n,m)}}\right)^{D_{\mathcal{M}}} < p_{n,m} < \left(\frac{2^{12} \cdot 5^2 \cdot 6^{\frac{1}{2}} \cdot 10^{\frac{2}{9}}}{3^3 \cdot \sqrt{\min(n,m)+1}}\right)^{D_{\mathcal{M}}},$$
where $D_{\mathcal{M}} = \binom{n+1}{2}\binom{m+1}{2} - 1.$
If $\min(n,m) \ge \frac{2^{25} \cdot 5^4 \cdot 10^{\frac{4}{9}}}{3^5}$, then
$$\lim_{\max(n,m)\to\infty} p_{n,m} = 0.$$

Positive vs completely positive

・ロト ・回ト ・ヨト

Positive maps and biforms

 $\mathcal{L}(\mathbb{S}_n, \mathbb{S}_m) \dots$ the vector space of all linear maps from \mathbb{S}_n to \mathbb{S}_m $\mathbb{R}[x, y]_{2,2} \dots$ biforms in $x := (x_1, \dots, x_n)$ and $y := (y_1, \dots, y_m)$ of bidegree (2,2)

回 とうほう うほとう

Positive maps and biforms

 $\mathcal{L}(\mathbb{S}_n, \mathbb{S}_m) \dots$ the vector space of all linear maps from \mathbb{S}_n to \mathbb{S}_m $\mathbb{R}[x, y]_{2,2} \dots$ biforms in $x := (x_1, \dots, x_n)$ and $y := (y_1, \dots, y_m)$ of bidegree (2,2)

There is a natural bijection Γ between $\mathcal{L}(\mathbb{S}_n, \mathbb{S}_m)$ and $\mathbb{R}[x, y]_{2,2}$ given by

$$\Gamma:\mathcal{L}(\mathbb{S}_n,\mathbb{S}_m)\to\mathbb{R}[\mathtt{x},\mathtt{y}]_{2,2},\quad\Phi\mapsto\rho_\Phi(\mathtt{x},\mathtt{y}):=\mathtt{y}^*\Phi(\mathtt{x}\mathtt{x}^*)\mathtt{y}.$$

白 ト イヨト イヨト

Positive maps and biforms

 $\mathcal{L}(\mathbb{S}_n, \mathbb{S}_m) \dots$ the vector space of all linear maps from \mathbb{S}_n to \mathbb{S}_m $\mathbb{R}[x, y]_{2,2} \dots$ biforms in $x := (x_1, \dots, x_n)$ and $y := (y_1, \dots, y_m)$ of bidegree (2,2)

There is a natural bijection Γ between $\mathcal{L}(\mathbb{S}_n,\mathbb{S}_m)$ and $\mathbb{R}[\mathtt{x},\mathtt{y}]_{2,2}$ given by

$$\mathsf{F}:\mathcal{L}(\mathbb{S}_n,\mathbb{S}_m)\to\mathbb{R}[\mathrm{x},\mathrm{y}]_{2,2},\quad\Phi\mapsto\rho_\Phi(\mathrm{x},\mathrm{y}):=\mathrm{y}^*\Phi(\mathrm{x}\mathrm{x}^*)\mathrm{y}.$$

Proposition

Let $\Phi : \mathbb{S}_n \to \mathbb{S}_m$ be a linear map. Then

- **(**) Φ is positive iff p_{Φ} is nonnegative;
- **2** Φ is completely positive iff p_{Φ} is a sum of squares.

イロン イヨン イヨン

臣

Corollary

Estimating the probability that a positive map $\Phi : \mathbb{S}_n \to \mathbb{S}_m$ is cp, is equivalent to estimating the probability that a positive polynomial $p \in \mathbb{R}[x, y]_{2,2}$ is a sum of squares (sos) of polynomials, i.e., $p = \sum_i q_i^2$ for some $q_i \in \mathbb{R}[x, y]_{1,1}$.

Corollary

Estimating the probability that a positive map $\Phi : \mathbb{S}_n \to \mathbb{S}_m$ is cp, is equivalent to estimating the probability that a positive polynomial $p \in \mathbb{R}[x, y]_{2,2}$ is a sum of squares (sos) of polynomials, i.e., $p = \sum_i q_i^2$ for some $q_i \in \mathbb{R}[x, y]_{1,1}$.

Now one can employ powerful techniques, based on harmonic analysis and classical convexity, developed by Barvinok and Blekherman, to obtain bounds on the probability. The Blekherman-Smith-Velasco algorithm (2013) produces positive forms of degree 2 that are not sos on nondegenerate totally-real subvariety $X \subseteq \mathbb{P}^n$ such that $\deg(X) > 1 + \operatorname{codim}(X)$.

The Segre variety $X := \sigma_{n,m}(\mathbb{P}^{n-1} \times \mathbb{P}^{m-1}) \subseteq \mathbb{P}^{nm-1}$ where

$$\sigma_{n,m}([x_1:\ldots:x_n],[y_1:\ldots:y_m]) =$$

= [x_1y_1:x_1y_2:\ldots:x_1y_m:\ldots:x_ny_m],

is an example of such subvariety of degree $\binom{n+m-2}{n-1}$, dimension n+m-2 and codimension (n-1)(m-1).

(日) (日) (日) (日)

X is the zero locus of the ideal $I_{n,m} \subseteq \mathbb{R}[z_{11}, z_{12}, \dots, z_{1m}, \dots, z_{nm}]$ generated by all 2 × 2 minors of the matrix $(z_{ij})_{i,i}$. X is the zero locus of the ideal $I_{n,m} \subseteq \mathbb{R}[z_{11}, z_{12}, \dots, z_{1m}, \dots, z_{nm}]$ generated by all 2 × 2 minors of the matrix $(z_{ij})_{i,j}$. Therefore, there is the injective ring homomorphism

$$\sigma_{n,m}^{\#}: \mathbb{C}[\mathbf{z}]/I_{n,m} \to \mathbb{C}[\mathbf{x},\mathbf{y}], \quad \sigma_{n,m}^{\#}(z_{ij}+I_{n,m}) = x_i y_j$$

for $1 \leq i \leq n, 1 \leq j \leq m$.

X is the zero locus of the ideal $I_{n,m} \subseteq \mathbb{R}[z_{11}, z_{12}, \dots, z_{1m}, \dots, z_{nm}]$ generated by all 2 × 2 minors of the matrix $(z_{ij})_{i,j}$. Therefore, there is the injective ring homomorphism

$$\sigma_{n,m}^{\#}:\mathbb{C}[\mathbf{z}]/I_{n,m}\to\mathbb{C}[\mathbf{x},\mathbf{y}],\quad\sigma_{n,m}^{\#}(z_{ij}+I_{n,m})=x_iy_j$$

for $1 \leq i \leq n, 1 \leq j \leq m$. Moreover,

$$\sigma_{n,m}^{\#}(\mathbb{R}[\mathbf{z}]_2/I_{n,m}) = \mathbb{R}[\mathbf{x},\mathbf{y}]_{2,2}$$

Let $d := n + m - 2 = \dim(X), e := (n - 1)(m - 1) = \operatorname{codim}(X)$.

Positive vs completely positive

ヘロト 人間 とくほ とくほ とう

크

Let $d := n + m - 2 = \dim(X)$, $e := (n - 1)(m - 1) = \operatorname{codim}(X)$. Ocumentary Construction of linear forms h_0, \ldots, h_d .

副 と く ヨ と く ヨ と

臣

- Let $d := n + m 2 = \dim(X), e := (n 1)(m 1) = \operatorname{codim}(X)$. O Construction of linear forms h_0, \ldots, h_d .
 - Choose e + 1 random points $x^{(i)} \in \mathbb{R}^n$ and $y^{(i)} \in \mathbb{R}^m$ and calculate their Kronecker tensor products $z^{(i)} = x^{(i)} \otimes y^{(i)} \in \mathbb{R}^{nm}$.

・ 回 ト ・ ヨ ト ・ ヨ ト …

æ

- Let $d := n + m 2 = \dim(X), e := (n 1)(m 1) = \operatorname{codim}(X)$. Ocumentary Construction of linear forms h_0, \ldots, h_d .
 - Choose e + 1 random points $x^{(i)} \in \mathbb{R}^n$ and $y^{(i)} \in \mathbb{R}^m$ and calculate their Kronecker tensor products $z^{(i)} = x^{(i)} \otimes y^{(i)} \in \mathbb{R}^{nm}$.
 - **2** Choose *d* random vectors $v_1, \ldots v_d \in \mathbb{R}^{nm}$ from the kernel of the matrix

$$\begin{pmatrix} z^{(1)} & \ldots & z^{(e+1)} \end{pmatrix}^*$$
.

The corresponding linear forms h_1, \ldots, h_d are

$$h_j(\mathbf{z}) = v_j^* \cdot \mathbf{z} \in \mathbb{R}[\mathbf{z}] \quad ext{for } j = 1, \dots, d.$$

・ 回 ト ・ ヨ ト ・ ヨ ト

Let $d := n + m - 2 = \dim(X), e := (n - 1)(m - 1) = \operatorname{codim}(X)$. Ocumentary Construction of linear forms h_0, \ldots, h_d .

- Choose e + 1 random points $x^{(i)} \in \mathbb{R}^n$ and $y^{(i)} \in \mathbb{R}^m$ and calculate their Kronecker tensor products $z^{(i)} = x^{(i)} \otimes y^{(i)} \in \mathbb{R}^{nm}$.
- **2** Choose *d* random vectors $v_1, \ldots v_d \in \mathbb{R}^{nm}$ from the kernel of the matrix

$$\begin{pmatrix} z^{(1)} & \ldots & z^{(e+1)} \end{pmatrix}^*$$
.

The corresponding linear forms h_1, \ldots, h_d are

$$h_j(\mathbf{z}) = v_j^* \cdot \mathbf{z} \in \mathbb{R}[\mathbf{z}] \quad ext{for } j = 1, \dots, d.$$

③ Choose a random vector v_0 from the kernel of the matrix

$$\begin{pmatrix} z^{(1)} & \ldots & z^{(e)} \end{pmatrix}^*$$
.

(Note that we have omitted $z^{(e+1)}$.) The corresponding linear form h_0 is

$$h_0(z) = v_0^* \cdot z \in \mathbb{R}[z].$$

Positive vs completely positive

Let \mathfrak{a} be the ideal in $\mathbb{R}[\mathbf{z}]/I_{n,m}$ generated by h_0, h_1, \ldots, h_d .

Positive vs completely positive

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

æ

Let \mathfrak{a} be the ideal in $\mathbb{R}[\mathbf{z}]/I_{n,m}$ generated by h_0, h_1, \ldots, h_d .

Onstruction of a quadratic form

 $f := v^* \cdot (z \otimes z) \in (\mathbb{R}[z]/I_{n,m}) \setminus \mathfrak{a}^2.$

回とくほとくほと

Let \mathfrak{a} be the ideal in $\mathbb{R}[\mathbf{z}]/I_{n,m}$ generated by h_0, h_1, \ldots, h_d .

② Construction of a quadratic form $f := v^* \cdot (z \otimes z) \in (\mathbb{R}[z]/I_{n,m}) \setminus \mathfrak{a}^2.$

Let g₁(z),...,g_{(ⁿ₂)(^m₂)}(z) be the generators of the ideal I_{n,m}, i.e., 2 × 2 minors of the matrix (z_{ij})_{i,j}. For each i = 1,..., e compute a basis {w₁⁽ⁱ⁾,...,w_{d+1}⁽ⁱ⁾} ⊆ ℝ^{nm} of the kernel of the matrix

$$\left(\nabla g_1(z^{(i)}) \quad \cdots \quad \nabla g_{\binom{n}{2}\binom{m}{2}}(z^{(i)}) \right)^*$$

白 と く ヨ と く ヨ と …

Let \mathfrak{a} be the ideal in $\mathbb{R}[\mathbf{z}]/I_{n,m}$ generated by h_0, h_1, \ldots, h_d .

- ② Construction of a quadratic form $f := v^* \cdot (z \otimes z) \in (\mathbb{R}[z]/I_{n,m}) \setminus \mathfrak{a}^2.$
 - Let g₁(z),...,g_{(ⁿ)(^m)(z)}(z) be the generators of the ideal I_{n,m}, i.e., 2 × 2 minors of the matrix (z_{ij})_{i,j}. For each i = 1,..., e compute a basis {w₁⁽ⁱ⁾,...,w_{d+1}⁽ⁱ⁾} ⊆ ℝ^{nm} of the kernel of the matrix

$$\left(\nabla g_1(z^{(i)}) \quad \cdots \quad \nabla g_{\binom{n}{2}\binom{m}{2}}(z^{(i)}) \right)^*.$$

Q Let e_i denote the *i*-th standard basis vector of the corresponding vector space. Choose a random vector v ∈ ℝ^{n²m²} from the intersection of the kernels of the matrices

$$\left(z^{(i)}\otimes w_1^{(i)}\quad\cdots\quad z^{(i)}\otimes w_{d+1}^{(i)}
ight)^*\quad ext{for }i=1,\ldots,e$$

with the kernels of the matrices

$$(\mathbf{e}_i \otimes \mathbf{e}_j - \mathbf{e}_j \otimes \mathbf{e}_i)^*$$
 for $1 \leq i < j \leq nm$.

Onstruction of a quadratic form in R[z]/I_{n,m} that is positive but not a sum of squares.
 Calculate the greatest δ₀ > 0 such that δ₀f + Σ^d_{i=0} h²_i is

nonnegative on $V_{\mathbb{R}}(I_{n,m})$. Then for every $0 < \delta < \delta_0$ the quadratic form

$$(\delta f + \sum_{i=0}^d h_i^2)(\mathbf{z})$$

is nonnegative on $V_{\mathbb{R}}(I_{n,m})$ but is not a sum of squares.

• Construction of a quadratic form in $\mathbb{R}[z]/I_{n,m}$ that is positive but not a sum of squares.

イロン イヨン イヨン イヨン

臣

Onstruction of a quadratic form in R[z]/I_{n,m} that is positive but not a sum of squares.
 Calculate the greatest δ₀ > 0 such that δ₀f + Σ^d_{i=0} h²_i is

nonnegative on $V_{\mathbb{R}}(I_{n,m})$. Then for every $0 < \delta < \delta_0$ the quadratic form

$$(\delta f + \sum_{i=0}^d h_i^2)(\mathbf{z})$$

is nonnegative on $V_{\mathbb{R}}(I_{n,m})$ but is not a sum of squares.

$$\begin{split} p_{\Phi}(x,y) &= 104x_1^2y_1^2 + 283x_1^2y_2^2 + 18x_1^2y_3^2 - 310x_1^2y_1y_2 + 18x_1^2y_1y_3 + \\ &+ 4x_1^2y_2y_3 + 310x_1x_2y_1^2 - 18x_1x_3y_1^2 - 16x_1x_2y_2^2 + 52x_1x_3y_2^2 + 4x_1x_2y_3^2 - \\ &- 26x_1x_3y_3^2 - 610x_1x_2y_1y_2 - 44x_1x_3y_1y_2 + 36x_1x_2y_1y_3 - 200x_1x_3y_1y_3 - \\ &- 44x_1x_2y_2y_3 + 322x_1x_3y_2y_3 + 285x_2^2y_1^2 + 16x_3^2y_1^2 + 4x_2x_3y_1^2 \\ &+ 63x_2^2y_2^2 + 9x_3^2y_2^2 + 20x_2x_3y_2^2 + 7x_2^2y_3^2 + 125x_3^2y_3^2 - 20x_2x_3y_3^2 + 16x_2^2y_1y_2 + \\ &+ 4x_3^2y_1y_2 - 60x_2x_3y_1y_2 + 52x_2^2y_1y_3 + 26x_3^2y_1y_3 - 330x_2x_3y_1y_3 - \\ &- 20x_2^2y_2y_3 + 20x_3^2y_2y_3 - 100x_2x_3y_2y_3. \end{split}$$

< 口 > < 回 > < 臣 > < 臣 > 、

Ð,

Thank you for your attention!

Positive vs completely positive

▲冊▶ ▲臣▶ ▲臣▶

臣