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Notation

R - the ring of complex polynomials C[x ] (x∗ = x = x) or complex
Laurent polynomials C[z , 1

z ] (z∗ = z = 1
z )

Mn(R) - matrix polynomials (F ∗ = FT )

Hn(R) - hermitian matrix polynomials

∑
Mn(R)2 - SOHS matrix polynomials, i.e. finite sums of the form∑
A∗i Ai , where Ai ∈ Mn(R)
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Matrix Fejér-Riesz theorem

Theorem (Fejér-Riesz theorem on T)

Let

A(z) =
N∑

m=−N
Amzm ∈ Mn

(
C
[
z , 1z

])
be a n × n matrix Laurent polynomial, such that A(z) is positive
semidefinite for every z ∈ T := {z ∈ C : |z | = 1}. Then there
exists a matrix polynomial B(z) =

∑N
m=0 Bmzm ∈ Mn(C[z ]), such

that
A(z) = B(z)∗B(z).
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Matrix Fejér-Riesz theorem

Theorem (Fejér-Riesz theorem on R)

Let

F (x) =
2N∑

m=0
Fmxm ∈ Mn(C[x ])

be a n × n matrix polynomial, such that F (x) is positive
semidefinite for every x ∈ R. Then there exists a matrix
polynomial G(x) =

∑N
m=0 Gmxm ∈ Mn(C[x ]), such that

F (x) = G(x)∗G(x).
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Main problem

Problem

1 Characterize univariate matrix Laurent polynomials, which are
positive semidefinite on a union of points and arcs in T.

2 Characterize univariate matrix polynomials, which are positive
semidefinite on a union of points and intervals (not necessarily
bounded) in R.
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Notation

A basic closed semialgebraic set KS ⊆ R associated to a finite
subset

S = {g1, . . . , gs} ⊂ R [x ]

is given by

K := KS = {x ∈ R : gj(x) ≥ 0, j = 1, . . . , s} .

We define the n-th matrix preordering T n
S by

T n
S := {

∑
e∈{0,1}s

σege : σe ∈
∑

Mn(C[x ])2 for all e ∈ {0, 1}s},

where e = (e1, . . . , es) and ge stands for ge1
1 · · · ges

s .
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Notation

Let Posn
�0(KS) be the set of all n × n hermitian matrix

polynomials, which are positive semidefinite on KS .

Matrix preordering T n
S is saturated if T n

S = Posn
�0(KS).

Saturated matrix preordering T n
S is boundedly saturated, if every

F ∈ Posn
�0(KS) is of the form

∑
e∈{0,1}s σege , where

deg(σege) ≤ deg(F )

holds for every e ∈ {0, 1}s .
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Notation

Let K ⊆ R be a basic closed semialgebraic set.

A set S = {g1, . . . , gs} ⊂ R [x ] is the natural description of K , if it
satisfies the following conditions:
(a) If K has the least element a, then x − a ∈ S.
(b) If K has the greatest element a, then a − x ∈ S.
(c) For every a 6= b ∈ K , if (a, b) ∩ K = ∅, then

(x − a)(x − b) ∈ S.
(d) These are the only elements of S.
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Notation

Let K = ∪m
j=1[xj , yj ] ⊆ R be a basic compact semialgebraic set.

A set S = {g1, . . . , gs} ⊂ R [x ] with K = KS is the saturated
description of K , if it satisfies the following conditions:
(a) For every left endpoint xj there exists k ∈ {1, . . . , s}, such

that gk(xj) = 0 and g ′k(xj) > 0.
(b) For every right endpoint yj there exists k ∈ {1, . . . , s}, such

that gk(yj) = 0 and g ′k(yj) < 0.
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Known results - scalar case

1 (Kuhlmann, Marshall, 2002) If S is the natural description of
K , then the preordering T 1

S is (even boundedly) saturated.

K not compact: T 1
S is saturated if and only if S contains each

of the polynomials in the natural description of K up to scaling
by positive constants.
K compact (Scheiderer, 2003): T 1

S is saturated if and only if S
is saturated description of K .
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Known results - matrix case

1 (Gohberg, Krein, 1958) For K = R, T n
∅ is boundedly

saturated for every n ∈ N.

2 (Dette, Studden, 2002) For K = K{x ,1−x} = [0, 1], T n
{x ,1−x} is

boundedly saturated for every n ∈ N.
3 (Schmďż˝dgen, Savchuk, 2012) For K = K{x} = [0,∞), T n

{x}
is boundedly saturated for every n ∈ N.
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New results

Theorem (Compact Nichtnegativstellensatz)
Let K be compact. The n-th matrix preordering T n

S is saturated
for every n ∈ N if and only if S is a saturated description of K.
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Sketch of the proof of compact Nsatz

Proposition
Suppose K is a non-empty basic closed semialgebraic set in R and
S a saturated description of K. Then for every F ∈ Posn

�0(K ) and
every w ∈ C \ {0} there exists h ∈ R [x ], such that h(w) 6= 0 and
h2F ∈ T n

S .

Proof of Proposition.
The proof is by induction of the size of matrix polynomials n. We
write F (x) = p(x)mG(x), where

p(x) =
{

x − w , w ∈ R
(x − w)(x − w), w /∈ R , m ∈ N0, G(w) 6= 0.
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Sketch of the proof of Compact Nsatz

Proof of Proposition.

Writing G =
[

a β
β∗ C

]
∈ Mn (C [x ]), where a = a∗ ∈ R [x ],

β ∈ M1,n−1 (C [x ]) and C ∈ Hn−1 (C [x ]) it holds

(i) a4 · G =
[

a∗ 0
β∗ a∗In−1

] [
a3 0
0 a(aC − β∗β)

] [
a β
0 aIn−1

]

(ii)
[
a3 0
0 a(aC − β∗β)

]
=
[

a∗ 0
−β∗ a∗In−1

]
· G ·

[
a −β
0 aIn−1

]
.
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Sketch of the proof of compact Nsatz

Proof of Proposition.
Therefore

a4F =
[

a 0
β∗ aIn−1

] [
d 0
0 D

] [
a β
0 aIn−1

]
,

where d = pma3 ∈ R[x ], D = pm (aC − β∗β) ∈ Hn−1 (C [x ]) . and[
d 0
0 D

]
=

[
a 0
−β∗ aIn−1

]
F
[
a −β
0 aIn−1

]
.

By the induction hypothesis, there exists appropriate h1 ∈ R[x ],
such that h2

1D ∈ T n−1
S and by h2

1d ∈ T 1
S , it follows that

(a2h1)2F ∈ T n
S .
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Sketch of the proof of compact Nsatz

To conclude the proof we need the following:

Proposition (Scheiderer, 2006)
Suppose R is a commutative ring with 1 and Q ⊆ R. Let
Φ : R → C(K ,R) be a ring homomorphism, where K is a
topological space which is compact and Hausdorff. Suppose Φ(R)
separates points in K. Suppose f1, . . . , fk ∈ R are such that
Φ(fj) ≥ 0, j = 1, . . . , k and (f1, . . . , fk) = (1). Then there exist
s1, . . . , sk ∈ R such that s1f1 + . . .+ sk fk = 1 and such that each
Φ(sj) is strictly positive.
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Sketch of the proof of compact Nsatz

The ideal
I :=

(
h2 : h ∈ R[x ], h2F ∈ T n

S

)
is R[x ]. Therefore there exist s1, . . . , sk ∈ Pos1

�0(K ) and
h1, . . . , hk ∈ I, such that

k∑
j=1

sjh2
j = 1.

Hence,
∑k

j=1 sjh2
j F = F ∈ T n

S , which concludes the proof.
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Counterexample for non-compact case

Example

The matrix polynomial F (x) :=
[
x + 2

√
6√

6 x2 − 2x + 3

]
is positive

semidefinite on K := [−1, 0] ∪ [1,∞), but F /∈ T 2
S , where S is the

natural description of K .

Proof.
All the principal minors of F , i.e. x + 2, x2 − 2x + 3 and
det(F ) = x3 − x are non-negative on K .
Suppose

F (x) = σ0 + σ1(x + 1) + σ2x(x − 1) + σ3(x + 1)x(x − 1), (∗)

where σi ∈
∑

M2(C[x ])2.
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Counterexample for non-compact case

Proof.
After comparing degrees of both sides we conclude that σ3 = 0,
deg(σ0) ≤ 2, deg(σ1) = 0, deg(σ2) = 0 and observing the

monomial x2 on both sides, it follows that σ2 =
[
0 0
0 c

]
for some

c ∈ [0, 1].

(∗) is equivalent to F (x)−σ2x(x − 1) = σ0 +σ1(x + 1).
The right-hand side is positive semidefinite on [−1,∞). But the
determinant of the left-hand side is

q(x) := −(−1 + x)x(−1 + 2c + (−1 + c)x).

Since q 6≡ 0 and q cannot have double zeroes at x = 0 and x = 1,
it is not non-negative on [−1,∞). Contradiction.
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Classification of non-compact sets K

Let K be a non-compact closed semialgebraic set with a natural
description S. The classification of sets K according to T n

S being
saturated is the following:
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Classification of non-compact sets K

K T n
S sat.

an unbounded interval Yes
a union of an unbounded interval and

an isolated point conj.: Yes

a union of an unbounded interval and
m isolated points with m ≥ 2 No

a union of two unbounded intervals Yes
a union of two unbounded intervals and

an isolated point conj.: Yes

a union of two unbounded intervals and
m isolated points with m ≥ 2 No

includes a bounded and an unbounded interval No
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Classification of compact sets K

Let K be a compact closed semialgebraic set with a natural
description S. The classification of sets K according to T n

S being
boundedly saturated is the following:
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Classification of compact sets K

K T n
S sat. T n

S bsat.
a union of at most three points Yes Yes
a union of m points with m ≥ 4 Yes No

a bounded interval Yes Yes
a union of a bounded interval

and an isolated point Yes conj.: Yes

a union of a bounded interval and
m isolated points with m ≥ 2 Yes No

a compact set containing
at least two intervals Yes No
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Non-compact Nichtnegativstellensatz

Theorem (Non-compact Nichtnegativstellensatz)
Suppose K is an unbounded basic closed semialgebraic set in R
and S a saturated description of K. Then, for a hermitian
F ∈ Mn(C[x ]), the following are equivalent:

1 F ∈ Posn
�0(K ).

2 (1 + x2)kF ∈ T n
S for some k ∈ N ∪ {0}.
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Thank you for your attention!
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