Matrix Fejér-Riesz theorem with gaps

Aljaž Zalar

Konstanz, 29 May 2015

Notation

R - the ring of complex polynomials $\mathbb{C}[x]\left(x^{*}=\bar{x}=x\right)$ or complex Laurent polynomials $\mathbb{C}\left[z, \frac{1}{z}\right]\left(z^{*}=\bar{z}=\frac{1}{z}\right)$
$M_{n}(R)$ - matrix polynomials $\left(F^{*}=\bar{F}^{T}\right)$
$H_{n}(R)$ - hermitian matrix polynomials
$\sum M_{n}(R)^{2}$ - SOHS matrix polynomials, i.e. finite sums of the form $\sum A_{i}^{*} A_{i}$, where $A_{i} \in M_{n}(R)$

Matrix Fejér-Riesz theorem

Theorem (Fejér-Riesz theorem on \mathbb{T})

Let

$$
A(z)=\sum_{m=-N}^{N} A_{m} z^{m} \in M_{n}\left(\mathbb{C}\left[z, \frac{1}{z}\right]\right)
$$

be a $n \times n$ matrix Laurent polynomial, such that $A(z)$ is positive semidefinite for every $z \in \mathbb{T}:=\{z \in \mathbb{C}:|z|=1\}$. Then there exists a matrix polynomial $B(z)=\sum_{m=0}^{N} B_{m} z^{m} \in M_{n}(\mathbb{C}[z])$, such that

$$
A(z)=B(z)^{*} B(z)
$$

Matrix Fejér-Riesz theorem

Theorem (Fejér-Riesz theorem on \mathbb{R})

Let

$$
F(x)=\sum_{m=0}^{2 N} F_{m} x^{m} \in M_{n}(\mathbb{C}[x])
$$

be a $n \times n$ matrix polynomial, such that $F(x)$ is positive semidefinite for every $x \in \mathbb{R}$. Then there exists a matrix polynomial $G(x)=\sum_{m=0}^{N} G_{m} x^{m} \in M_{n}(\mathbb{C}[x])$, such that

$$
F(x)=G(x)^{*} G(x) .
$$

Main problem

Problem

(1) Characterize univariate matrix Laurent polynomials, which are positive semidefinite on a union of points and arcs in \mathbb{T}.
(2) Characterize univariate matrix polynomials, which are positive semidefinite on a union of points and intervals (not necessarily bounded) in \mathbb{R}.

Notation

A basic closed semialgebraic set $K_{S} \subseteq \mathbb{R}$ associated to a finite subset

$$
S=\left\{g_{1}, \ldots, g_{s}\right\} \subset \mathbb{R}[x]
$$

is given by

$$
K:=K_{S}=\left\{x \in \mathbb{R}: g_{j}(x) \geq 0, j=1, \ldots, s\right\}
$$

We define the n-th matrix preordering T_{S}^{n} by

$$
T_{S}^{n}:=\left\{\sum_{e \in\{0,1\}^{s}} \sigma_{e} \underline{g}^{e}: \sigma_{e} \in \sum M_{n}(\mathbb{C}[x])^{2} \text { for all } e \in\{0,1\}^{s}\right\},
$$

where $e=\left(e_{1}, \ldots, e_{s}\right)$ and \underline{g}^{e} stands for $g_{1}^{e_{1}} \cdots g_{s}^{e_{s}}$.

Notation

Let $\operatorname{Pos}_{\succeq 0}^{n}\left(K_{S}\right)$ be the set of all $n \times n$ hermitian matrix polynomials, which are positive semidefinite on K_{S}.

Matrix preordering T_{S}^{n} is saturated if $T_{S}^{n}=\operatorname{Pos}_{\succeq 0}^{n}\left(K_{S}\right)$.
Saturated matrix preordering T_{S}^{n} is boundedly saturated, if every $F \in \operatorname{Pos}_{\succeq 0}^{n}\left(K_{S}\right)$ is of the form $\sum_{e \in\{0,1\}^{s}} \sigma_{e} \underline{g}^{e}$, where

$$
\operatorname{deg}\left(\sigma_{e} \underline{g}^{e}\right) \leq \operatorname{deg}(F)
$$

holds for every $e \in\{0,1\}^{s}$.

Notation

Let $K \subseteq \mathbb{R}$ be a basic closed semialgebraic set.
A set $S=\left\{g_{1}, \ldots, g_{s}\right\} \subset \mathbb{R}[x]$ is the natural description of K, if it satisfies the following conditions:
(a) If K has the least element a, then $x-a \in S$.
(b) If K has the greatest element a, then $a-x \in S$.
(c) For every $a \neq b \in K$, if $(a, b) \cap K=\emptyset$, then $(x-a)(x-b) \in S$
(d) These are the only elements of S.

Notation

Let $K=\cup_{j=1}^{m}\left[x_{j}, y_{j}\right] \subseteq \mathbb{R}$ be a basic compact semialgebraic set.
A set $S=\left\{g_{1}, \ldots, g_{s}\right\} \subset \mathbb{R}[x]$ with $K=K_{S}$ is the saturated description of K, if it satisfies the following conditions:
(a) For every left endpoint x_{j} there exists $k \in\{1, \ldots, s\}$, such that $g_{k}\left(x_{j}\right)=0$ and $g_{k}^{\prime}\left(x_{j}\right)>0$.
(b) For every right endpoint y_{j} there exists $k \in\{1, \ldots, s\}$, such that $g_{k}\left(y_{j}\right)=0$ and $g_{k}^{\prime}\left(y_{j}\right)<0$.

Known results - scalar case

(1) (Kuhlmann, Marshall, 2002) If S is the natural description of K, then the preordering T_{S}^{1} is (even boundedly) saturated.

Known results - scalar case

(1) (Kuhlmann, Marshall, 2002) If S is the natural description of K, then the preordering T_{S}^{1} is (even boundedly) saturated.

- K not compact: T_{S}^{1} is saturated if and only if S contains each of the polynomials in the natural description of K up to scaling by positive constants.
- K compact (Scheiderer, 2003): T_{S}^{1} is saturated if and only if S is saturated description of K.

Known results - matrix case

(1) (Gohberg, Krein, 1958) For $K=\mathbb{R}, T_{\emptyset}^{n}$ is boundedly saturated for every $n \in \mathbb{N}$.

Known results - matrix case

(1) (Gohberg, Krein, 1958) For $K=\mathbb{R}, T_{\emptyset}^{n}$ is boundedly saturated for every $n \in \mathbb{N}$.
(2) (Dette, Studden, 2002) For $K=K_{\{x, 1-x\}}=[0,1], T_{\{x, 1-x\}}^{n}$ is boundedly saturated for every $n \in \mathbb{N}$.

Known results - matrix case

(1) (Gohberg, Krein, 1958) For $K=\mathbb{R}, T_{\emptyset}^{n}$ is boundedly saturated for every $n \in \mathbb{N}$.
(2) (Dette, Studden, 2002) For $K=K_{\{x, 1-x\}}=[0,1], T_{\{x, 1-x\}}^{n}$ is boundedly saturated for every $n \in \mathbb{N}$.
(3) (Schmdż"dgen, Savchuk, 2012) For $K=K_{\{x\}}=[0, \infty), T_{\{x\}}^{n}$ is boundedly saturated for every $n \in \mathbb{N}$.

New results

Theorem (Compact Nichtnegativstellensatz)

Let K be compact. The n-th matrix preordering T_{S}^{n} is saturated for every $n \in \mathbb{N}$ if and only if S is a saturated description of K.

Sketch of the proof of compact Nsatz

Proposition

Suppose K is a non-empty basic closed semialgebraic set in \mathbb{R} and S a saturated description of K. Then for every $F \in \operatorname{Pos}_{\succ 0}^{n}(K)$ and every $w \in \mathbb{C} \backslash\{0\}$ there exists $h \in \mathbb{R}[x]$, such that $h(w) \neq 0$ and $h^{2} F \in T_{S}^{n}$.

Sketch of the proof of compact Nsatz

Proposition

Suppose K is a non-empty basic closed semialgebraic set in \mathbb{R} and S a saturated description of K. Then for every $F \in \operatorname{Pos}_{\succ 0}^{n}(K)$ and every $w \in \mathbb{C} \backslash\{0\}$ there exists $h \in \mathbb{R}[x]$, such that $h(w) \neq 0$ and $h^{2} F \in T_{s}^{n}$.

Proof of Proposition.

The proof is by induction of the size of matrix polynomials n. We write $F(x)=p(x)^{m} G(x)$, where
$p(x)=\left\{\begin{array}{cc}x-w, & w \in \mathbb{R} \\ (x-w)(x-\bar{w}), & w \notin \mathbb{R}\end{array}, m \in \mathbb{N}_{0}, G(w) \neq 0\right.$.

Sketch of the proof of Compact Nsatz

Proof of Proposition.

Writing $G=\left[\begin{array}{cc}a & \beta \\ \beta^{*} & C\end{array}\right] \in M_{n}(\mathbb{C}[x])$, where $a=a^{*} \in \mathbb{R}[x]$,
$\beta \in M_{1, n-1}(\mathbb{C}[x])$ and $C \in H_{n-1}(\mathbb{C}[x])$ it holds
(i) $a^{4} \cdot G=\left[\begin{array}{cc}a^{*} & 0 \\ \beta^{*} & a^{*} I_{n-1}\end{array}\right]\left[\begin{array}{cc}a^{3} & 0 \\ 0 & a\left(a C-\beta^{*} \beta\right)\end{array}\right]\left[\begin{array}{cc}a & \beta \\ 0 & a I_{n-1}\end{array}\right]$
(ii) $\left[\begin{array}{cc}a^{3} & 0 \\ 0 & a\left(a C-\beta^{*} \beta\right)\end{array}\right]=\left[\begin{array}{cc}a^{*} & 0 \\ -\beta^{*} & a^{*} I_{n-1}\end{array}\right] \cdot G \cdot\left[\begin{array}{cc}a & -\beta \\ 0 & a I_{n-1}\end{array}\right.$

Sketch of the proof of compact Nsatz

Proof of Proposition.

Therefore

$$
a^{4} F=\left[\begin{array}{cc}
a & 0 \\
\beta^{*} & a I_{n-1}
\end{array}\right]\left[\begin{array}{ll}
d & 0 \\
0 & D
\end{array}\right]\left[\begin{array}{cc}
a & \beta \\
0 & a I_{n-1}
\end{array}\right],
$$

where $d=p^{m} a^{3} \in \mathbb{R}[x], D=p^{m}\left(a C-\beta^{*} \beta\right) \in H_{n-1}(\mathbb{C}[x])$. and

$$
\left[\begin{array}{ll}
d & 0 \\
0 & D
\end{array}\right]=\left[\begin{array}{cc}
a & 0 \\
-\beta^{*} & a I_{n-1}
\end{array}\right] F\left[\begin{array}{cc}
a & -\beta \\
0 & a I_{n-1}
\end{array}\right] .
$$

By the induction hypothesis, there exists appropriate $h_{1} \in \mathbb{R}[x]$, such that $h_{1}^{2} D \in T_{S}^{n-1}$ and by $h_{1}^{2} d \in T_{S}^{1}$, it follows that $\left(a^{2} h_{1}\right)^{2} F \in T_{S}^{n}$.

Sketch of the proof of compact Nsatz

To conclude the proof we need the following:

Proposition (Scheiderer, 2006)

Suppose R is a commutative ring with 1 and $\mathbb{Q} \subseteq R$. Let $\Phi: R \rightarrow C(K, \mathbb{R})$ be a ring homomorphism, where K is a topological space which is compact and Hausdorff. Suppose $\Phi(R)$ separates points in K. Suppose $f_{1}, \ldots, f_{k} \in R$ are such that $\Phi\left(f_{j}\right) \geq 0, j=1, \ldots, k$ and $\left(f_{1}, \ldots, f_{k}\right)=(1)$. Then there exist $s_{1}, \ldots, s_{k} \in R$ such that $s_{1} f_{1}+\ldots+s_{k} f_{k}=1$ and such that each $\Phi\left(s_{j}\right)$ is strictly positive.

Sketch of the proof of compact Nsatz

The ideal

$$
I:=\left(h^{2}: h \in \mathbb{R}[x], h^{2} F \in T_{S}^{n}\right)
$$

is $\mathbb{R}[x]$. Therefore there exist $s_{1}, \ldots, s_{k} \in \operatorname{Pos}_{\succ 0}^{1}(K)$ and $h_{1}, \ldots, h_{k} \in I$, such that

$$
\sum_{j=1}^{k} s_{j} h_{j}^{2}=1
$$

Hence, $\sum_{j=1}^{k} s_{j} h_{j}^{2} F=F \in T_{S}^{n}$, which concludes the proof.

Counterexample for non-compact case

Example

The matrix polynomial $F(x):=\left[\begin{array}{cc}x+2 & \sqrt{6} \\ \sqrt{6} & x^{2}-2 x+3\end{array}\right]$ is positive semidefinite on $K:=[-1,0] \cup[1, \infty)$, but $F \notin T_{S}^{2}$, where S is the natural description of K.

Counterexample for non-compact case

Example

The matrix polynomial $F(x):=\left[\begin{array}{cc}x+2 & \sqrt{6} \\ \sqrt{6} & x^{2}-2 x+3\end{array}\right]$ is positive semidefinite on $K:=[-1,0] \cup[1, \infty)$, but $F \notin T_{S}^{2}$, where S is the natural description of K.

Proof.

All the principal minors of F, i.e. $x+2, x^{2}-2 x+3$ and $\operatorname{det}(F)=x^{3}-x$ are non-negative on K.

Counterexample for non-compact case

Example

The matrix polynomial $F(x):=\left[\begin{array}{cc}x+2 & \sqrt{6} \\ \sqrt{6} & x^{2}-2 x+3\end{array}\right]$ is positive semidefinite on $K:=[-1,0] \cup[1, \infty)$, but $F \notin T_{S}^{2}$, where S is the natural description of K.

Proof.

All the principal minors of F, i.e. $x+2, x^{2}-2 x+3$ and $\operatorname{det}(F)=x^{3}-x$ are non-negative on K.
Suppose

$$
\begin{equation*}
F(x)=\sigma_{0}+\sigma_{1}(x+1)+\sigma_{2} x(x-1)+\sigma_{3}(x+1) x(x-1) \tag{*}
\end{equation*}
$$

where $\sigma_{i} \in \sum M_{2}(\mathbb{C}[x])^{2}$.

Counterexample for non-compact case

Proof.

After comparing degrees of both sides we conclude that $\sigma_{3}=0$, $\operatorname{deg}\left(\sigma_{0}\right) \leq 2, \operatorname{deg}\left(\sigma_{1}\right)=0, \operatorname{deg}\left(\sigma_{2}\right)=0$ and observing the monomial x^{2} on both sides, it follows that $\sigma_{2}=\left[\begin{array}{ll}0 & 0 \\ 0 & c\end{array}\right]$ for some $c \in[0,1]$.

Counterexample for non-compact case

Proof.

After comparing degrees of both sides we conclude that $\sigma_{3}=0$, $\operatorname{deg}\left(\sigma_{0}\right) \leq 2, \operatorname{deg}\left(\sigma_{1}\right)=0, \operatorname{deg}\left(\sigma_{2}\right)=0$ and observing the monomial x^{2} on both sides, it follows that $\sigma_{2}=\left[\begin{array}{ll}0 & 0 \\ 0 & c\end{array}\right]$ for some $c \in[0,1] .(*)$ is equivalent to $F(x)-\sigma_{2} x(x-1)=\sigma_{0}+\sigma_{1}(x+1)$.

Counterexample for non-compact case

Proof.

After comparing degrees of both sides we conclude that $\sigma_{3}=0$, $\operatorname{deg}\left(\sigma_{0}\right) \leq 2, \operatorname{deg}\left(\sigma_{1}\right)=0, \operatorname{deg}\left(\sigma_{2}\right)=0$ and observing the monomial x^{2} on both sides, it follows that $\sigma_{2}=\left[\begin{array}{ll}0 & 0 \\ 0 & c\end{array}\right]$ for some $c \in[0,1] .(*)$ is equivalent to $F(x)-\sigma_{2} x(x-1)=\sigma_{0}+\sigma_{1}(x+1)$. The right-hand side is positive semidefinite on $[-1, \infty)$.

Counterexample for non-compact case

Proof.

After comparing degrees of both sides we conclude that $\sigma_{3}=0$, $\operatorname{deg}\left(\sigma_{0}\right) \leq 2, \operatorname{deg}\left(\sigma_{1}\right)=0, \operatorname{deg}\left(\sigma_{2}\right)=0$ and observing the monomial x^{2} on both sides, it follows that $\sigma_{2}=\left[\begin{array}{ll}0 & 0 \\ 0 & c\end{array}\right]$ for some $c \in[0,1] .(*)$ is equivalent to $F(x)-\sigma_{2} x(x-1)=\sigma_{0}+\sigma_{1}(x+1)$. The right-hand side is positive semidefinite on $[-1, \infty)$. But the determinant of the left-hand side is

$$
q(x):=-(-1+x) x(-1+2 c+(-1+c) x) .
$$

Since $q \not \equiv 0$ and q cannot have double zeroes at $x=0$ and $x=1$, it is not non-negative on $[-1, \infty)$. Contradiction.

Classification of non-compact sets K

Let K be a non-compact closed semialgebraic set with a natural description S. The classification of sets K according to T_{S}^{n} being saturated is the following:

Classification of non-compact sets K

K	T_{S}^{n} sat.
an unbounded interval	Yes
a union of an unbounded interval and an isolated point	conj.: Yes
a union of an unbounded interval and m isolated points with $m \geq 2$	No
a union of two unbounded intervals	Yes
a union of two unbounded intervals and an isolated point	conj.: Yes
a union of two unbounded intervals and m isolated points with $m \geq 2$	No
includes a bounded and an unbounded interval	No

Classification of compact sets K

Let K be a compact closed semialgebraic set with a natural description S. The classification of sets K according to T_{S}^{n} being boundedly saturated is the following:

Classification of compact sets K

K	T_{S}^{n} sat.	T_{S}^{n} bsat.
a union of at most three points	Yes	Yes
a union of m points with $m \geq 4$	Yes	No
a bounded interval	Yes	Yes
a union of a bounded interval and an isolated point	Yes	conj.: Yes
a union of a bounded interval and m isolated points with $m \geq 2$	Yes	No
a compact set containing at least two intervals	Yes	No

Non-compact Nichtnegativstellensatz

Theorem (Non-compact Nichtnegativstellensatz)

Suppose K is an unbounded basic closed semialgebraic set in \mathbb{R} and S a saturated description of K. Then, for a hermitian $F \in M_{n}(\mathbb{C}[x])$, the following are equivalent:
(1) $F \in \operatorname{Pos}_{\succeq 0}^{n}(K)$.
(2) $\left(1+x^{2}\right)^{k} F \in T_{S}^{n}$ for some $k \in \mathbb{N} \cup\{0\}$.

Introduction

Thank you for your attention!

