Matrix Fejér-Riesz theorem with gaps

Aljaž Zalar

Konstanz, 29 May 2015

イロト イヨト イヨト イヨト

臣

Matrix Fejér-Riesz theorem Main problem

イロト イヨト イヨト イヨト

Notation

R - the ring of complex polynomials $\mathbb{C}[x]$ ($x^* = \overline{x} = x$) or complex Laurent polynomials $\mathbb{C}[z, \frac{1}{z}]$ ($z^* = \overline{z} = \frac{1}{z}$)

$$M_n(R)$$
 - matrix polynomials $(F^* = \overline{F}^T)$

 $H_n(R)$ - hermitian matrix polynomials

 $\sum M_n(R)^2$ - SOHS matrix polynomials, i.e. finite sums of the form $\sum A_i^* A_i$, where $A_i \in M_n(R)$

Matrix Fejér-Riesz theorem Main problem

・ロト ・同ト ・ヨト ・ヨ

Matrix Fejér-Riesz theorem

Theorem (Fejér-Riesz theorem on T)

Let

$$A(z) = \sum_{m=-N}^{N} A_m z^m \in M_n\left(\mathbb{C}\left[z,\frac{1}{z}\right]\right)$$

be a $n \times n$ matrix Laurent polynomial, such that A(z) is positive semidefinite for every $z \in \mathbb{T} := \{z \in \mathbb{C} : |z| = 1\}$. Then there exists a matrix polynomial $B(z) = \sum_{m=0}^{N} B_m z^m \in M_n(\mathbb{C}[z])$, such that

$$A(z) = B(z)^* B(z).$$

Matrix Fejér-Riesz theorem Main problem

イロト イヨト イヨト イヨト

Matrix Fejér-Riesz theorem

Theorem (Fejér-Riesz theorem on $\mathbb R)$

Let

$$F(x) = \sum_{m=0}^{2N} F_m x^m \in M_n(\mathbb{C}[x])$$

be a $n \times n$ matrix polynomial, such that F(x) is positive semidefinite for every $x \in \mathbb{R}$. Then there exists a matrix polynomial $G(x) = \sum_{m=0}^{N} G_m x^m \in M_n(\mathbb{C}[x])$, such that

$$F(x) = G(x)^* G(x).$$

Matrix Fejér-Riesz theorem Main problem

イロト イポト イヨト イヨト

Main problem

Problem

- Characterize univariate matrix Laurent polynomials, which are positive semidefinite on a union of points and arcs in T.
- Characterize univariate matrix polynomials, which are positive semidefinite on a union of points and intervals (not necessarily bounded) in ℝ.

Notation Known results - scalar case Known results - matrix case

イロト イヨト イヨト イヨト

Notation

A basic closed semialgebraic set $K_S\subseteq \mathbb{R}$ associated to a finite subset

$$S = \{g_1, \ldots, g_s\} \subset \mathbb{R}[x]$$

is given by

$$\mathcal{K}:=\mathcal{K}_{\mathcal{S}}=\left\{x\in\mathbb{R}\colon g_{j}(x)\geq0,\ j=1,\ldots,s\right\}.$$

We define the *n*-th matrix preordering T_S^n by

$$T_S^n := \{\sum_{e \in \{0,1\}^s} \sigma_e \underline{g}^e \colon \sigma_e \in \sum M_n(\mathbb{C}[x])^2 \text{ for all } e \in \{0,1\}^s\},$$

where $e = (e_1, \ldots, e_s)$ and \underline{g}^e stands for $g_1^{e_1} \cdots g_s^{e_s}$.

Notation Known results - scalar case Known results - matrix case

イロト イヨト イヨト イヨト

Notation

Let $\operatorname{Pos}_{\geq 0}^{n}(K_{S})$ be the set of all $n \times n$ hermitian matrix polynomials, which are positive semidefinite on K_{S} .

Matrix preordering T_S^n is saturated if $T_S^n = \text{Pos}_{\geq 0}^n(K_S)$.

Saturated matrix preordering T_S^n is *boundedly saturated*, if every $F \in \text{Pos}_{\succeq 0}^n(K_S)$ is of the form $\sum_{e \in \{0,1\}^s} \sigma_e \underline{g}^e$, where

$$\deg(\sigma_{e}\underline{g}^{e}) \leq \deg(F)$$

holds for every $e \in \{0,1\}^s$.

Notation Known results - scalar case Known results - matrix case

イロト イヨト イヨト イヨト

Notation

Let $K \subseteq \mathbb{R}$ be a basic closed semialgebraic set.

A set $S = \{g_1, \ldots, g_s\} \subset \mathbb{R}[x]$ is the *natural description* of K, if it satisfies the following conditions:

- (a) If K has the least element a, then $x a \in S$.
- (b) If K has the greatest element a, then $a x \in S$.
- (c) For every $a \neq b \in K$, if $(a, b) \cap K = \emptyset$, then $(x a)(x b) \in S$.
- (d) These are the only elements of S.

Notation Known results - scalar case Known results - matrix case

イロト イヨト イヨト イヨト

Notation

Let $K = \bigcup_{j=1}^{m} [x_j, y_j] \subseteq \mathbb{R}$ be a basic compact semialgebraic set.

A set $S = \{g_1, \ldots, g_s\} \subset \mathbb{R}[x]$ with $K = K_S$ is the saturated description of K, if it satisfies the following conditions:

- (a) For every left endpoint x_j there exists $k \in \{1, ..., s\}$, such that $g_k(x_j) = 0$ and $g'_k(x_j) > 0$.
- (b) For every right endpoint y_j there exists $k \in \{1, ..., s\}$, such that $g_k(y_j) = 0$ and $g'_k(y_j) < 0$.

Notation Known results - scalar case Known results - matrix case

Image: A mathematical states and a mathem

Known results - scalar case

• (Kuhlmann, Marshall, 2002) If S is the natural description of K, then the preordering T_S^1 is (even boundedly) saturated.

Notation Known results - scalar case Known results - matrix case

Known results - scalar case

- (Kuhlmann, Marshall, 2002) If S is the natural description of K, then the preordering T_S^1 is (even boundedly) saturated.
 - *K* not compact: T_S^1 is saturated if and only if *S* contains each of the polynomials in the natural description of *K* up to scaling by positive constants.
 - K compact (Scheiderer, 2003): T_S^1 is saturated if and only if S is saturated description of K.

Notation Known results - scalar case Known results - matrix case

イロト イヨト イヨト イヨト

Known results - matrix case

● (Gohberg, Krein, 1958) For $K = \mathbb{R}$, T_{\emptyset}^{n} is boundedly saturated for every $n \in \mathbb{N}$.

Notation Known results - scalar case Known results - matrix case

Known results - matrix case

- (Gohberg, Krein, 1958) For $K = \mathbb{R}$, T_{\emptyset}^{n} is boundedly saturated for every $n \in \mathbb{N}$.
- ② (Dette, Studden, 2002) For $K = K_{\{x,1-x\}} = [0,1]$, $T_{\{x,1-x\}}^n$ is boundedly saturated for every $n \in \mathbb{N}$.

Notation Known results - scalar case Known results - matrix case

Known results - matrix case

- (Gohberg, Krein, 1958) For $K = \mathbb{R}$, T_{\emptyset}^n is boundedly saturated for every $n \in \mathbb{N}$.
- ② (Dette, Studden, 2002) For $K = K_{\{x,1-x\}} = [0,1]$, $T_{\{x,1-x\}}^n$ is boundedly saturated for every $n \in \mathbb{N}$.
- **③** (Schmdź"dgen, Savchuk, 2012) For $K = K_{\{x\}} = [0, \infty)$, $T_{\{x\}}^n$ is boundedly saturated for every $n \in \mathbb{N}$.

Compact Nichtnegativstellensatz Counterexample for non-compact case Classification of closed semialgebraic sets Non-compact Nichtnegativstellensatz

イロト イヨト イヨト イヨト

New results

Theorem (Compact Nichtnegativstellensatz)

Let K be compact. The n-th matrix preordering T_S^n is saturated for every $n \in \mathbb{N}$ if and only if S is a saturated description of K.

Compact Nichtnegativstellensatz Counterexample for non-compact case Classification of closed semialgebraic sets Non-compact Nichtnegativstellensatz

Sketch of the proof of compact Nsatz

Proposition

Suppose K is a non-empty basic closed semialgebraic set in \mathbb{R} and S a saturated description of K. Then for every $F \in Pos_{\geq 0}^{n}(K)$ and every $w \in \mathbb{C} \setminus \{0\}$ there exists $h \in \mathbb{R}[x]$, such that $h(w) \neq 0$ and $h^{2}F \in T_{S}^{n}$.

Compact Nichtnegativstellensatz Counterexample for non-compact case Classification of closed semialgebraic sets Non-compact Nichtnegativstellensatz

Sketch of the proof of compact Nsatz

Proposition

Suppose K is a non-empty basic closed semialgebraic set in \mathbb{R} and S a saturated description of K. Then for every $F \in Pos_{\geq 0}^{n}(K)$ and every $w \in \mathbb{C} \setminus \{0\}$ there exists $h \in \mathbb{R}[x]$, such that $h(w) \neq 0$ and $h^{2}F \in T_{S}^{n}$.

Proof of Proposition.

The proof is by induction of the size of matrix polynomials *n*. We write $F(x) = p(x)^m G(x)$, where $p(x) = \begin{cases} x - w, & w \in \mathbb{R} \\ (x - w)(x - \overline{w}), & w \notin \mathbb{R} \end{cases}, m \in \mathbb{N}_0, G(w) \neq 0.$

Compact Nichtnegativstellensatz Counterexample for non-compact case Classification of closed semialgebraic sets Non-compact Nichtnegativstellensatz

イロト イヨト イヨト イヨト

Sketch of the proof of Compact Nsatz

Proof of Proposition.

Writing
$$G = \begin{bmatrix} a & \beta \\ \beta^* & C \end{bmatrix} \in M_n (\mathbb{C} [x])$$
, where $a = a^* \in \mathbb{R} [x]$,
 $\beta \in M_{1,n-1} (\mathbb{C} [x])$ and $C \in H_{n-1} (\mathbb{C} [x])$ it holds
(i) $a^4 \cdot G = \begin{bmatrix} a^* & 0 \\ \beta^* & a^* I_{n-1} \end{bmatrix} \begin{bmatrix} a^3 & 0 \\ 0 & a(aC - \beta^*\beta) \end{bmatrix} \begin{bmatrix} a & \beta \\ 0 & aI_{n-1} \end{bmatrix}$
(ii) $\begin{bmatrix} a^3 & 0 \\ 0 & a(aC - \beta^*\beta) \end{bmatrix} = \begin{bmatrix} a^* & 0 \\ -\beta^* & a^* I_{n-1} \end{bmatrix} \cdot G \cdot \begin{bmatrix} a & -\beta \\ 0 & aI_{n-1} \end{bmatrix}$

Compact Nichtnegativstellensatz Counterexample for non-compact case Classification of closed semialgebraic sets Non-compact Nichtnegativstellensatz

Sketch of the proof of compact Nsatz

Proof of Proposition.

Therefore

$$a^4 F = \begin{bmatrix} a & 0 \\ \beta^* & a I_{n-1} \end{bmatrix} \begin{bmatrix} d & 0 \\ 0 & D \end{bmatrix} \begin{bmatrix} a & \beta \\ 0 & a I_{n-1} \end{bmatrix},$$

where $d = p^m a^3 \in \mathbb{R}[x]$, $D = p^m (aC - \beta^* \beta) \in H_{n-1}(\mathbb{C}[x])$. and

$$\begin{bmatrix} d & 0 \\ 0 & D \end{bmatrix} = \begin{bmatrix} a & 0 \\ -\beta^* & al_{n-1} \end{bmatrix} F \begin{bmatrix} a & -\beta \\ 0 & al_{n-1} \end{bmatrix}$$

By the induction hypothesis, there exists appropriate $h_1 \in \mathbb{R}[x]$, such that $h_1^2 D \in T_S^{n-1}$ and by $h_1^2 d \in T_S^1$, it follows that $(a^2h_1)^2 F \in T_S^n$.

Compact Nichtnegativstellensatz Counterexample for non-compact case Classification of closed semialgebraic sets Non-compact Nichtnegativstellensatz

イロト イヨト イヨト イヨト

Sketch of the proof of compact Nsatz

To conclude the proof we need the following:

Proposition (Scheiderer, 2006)

Suppose *R* is a commutative ring with 1 and $\mathbb{Q} \subseteq R$. Let $\Phi: R \to C(K, \mathbb{R})$ be a ring homomorphism, where *K* is a topological space which is compact and Hausdorff. Suppose $\Phi(R)$ separates points in *K*. Suppose $f_1, \ldots, f_k \in R$ are such that $\Phi(f_j) \ge 0, j = 1, \ldots, k$ and $(f_1, \ldots, f_k) = (1)$. Then there exist $s_1, \ldots, s_k \in R$ such that $s_1f_1 + \ldots + s_kf_k = 1$ and such that each $\Phi(s_j)$ is strictly positive.

Compact Nichtnegativstellensatz Counterexample for non-compact case Classification of closed semialgebraic sets Non-compact Nichtnegativstellensatz

イロト イヨト イヨト イヨト

Sketch of the proof of compact Nsatz

The ideal

$$I := \left(h^2 \colon h \in \mathbb{R}[x], h^2 F \in T_S^n\right)$$

is $\mathbb{R}[x]$. Therefore there exist $s_1, \ldots, s_k \in \mathsf{Pos}^1_{\succ 0}(K)$ and $h_1, \ldots, h_k \in I$, such that

$$\sum_{j=1}^k s_j h_j^2 = 1.$$

Hence, $\sum_{j=1}^{k} s_j h_j^2 F = F \in T_S^n$, which concludes the proof.

Compact Nichtnegativstellensatz Counterexample for non-compact case Classification of closed semialgebraic sets Non-compact Nichtnegativstellensatz

イロト イヨト イヨト イヨト

Counterexample for non-compact case

Example

The matrix polynomial
$$F(x) := \begin{bmatrix} x+2 & \sqrt{6} \\ \sqrt{6} & x^2-2x+3 \end{bmatrix}$$
 is positive semidefinite on $K := [-1,0] \cup [1,\infty)$, but $F \notin T_5^2$, where S is the natural description of K.

Compact Nichtnegativstellensatz Counterexample for non-compact case Classification of closed semialgebraic sets Non-compact Nichtnegativstellensatz

Counterexample for non-compact case

Example

The matrix polynomial
$$F(x) := \begin{bmatrix} x+2 & \sqrt{6} \\ \sqrt{6} & x^2-2x+3 \end{bmatrix}$$
 is positive semidefinite on $K := [-1,0] \cup [1,\infty)$, but $F \notin T_S^2$, where S is the natural description of K.

Proof.

All the principal minors of *F*, i.e. x + 2, $x^2 - 2x + 3$ and $det(F) = x^3 - x$ are non-negative on *K*.

Compact Nichtnegativstellensatz Counterexample for non-compact case Classification of closed semialgebraic sets Non-compact Nichtnegativstellensatz

Counterexample for non-compact case

Example

The matrix polynomial
$$F(x) := \begin{bmatrix} x+2 & \sqrt{6} \\ \sqrt{6} & x^2-2x+3 \end{bmatrix}$$
 is positive semidefinite on $K := [-1,0] \cup [1,\infty)$, but $F \notin T_S^2$, where S is the natural description of K.

Proof.

All the principal minors of *F*, i.e. x + 2, $x^2 - 2x + 3$ and $det(F) = x^3 - x$ are non-negative on *K*. Suppose

$$F(x) = \sigma_0 + \sigma_1(x+1) + \sigma_2 x(x-1) + \sigma_3(x+1)x(x-1), \quad (*)$$

where $\sigma_i \in \sum M_2(\mathbb{C}[x])^2$.

Compact Nichtnegativstellensatz Counterexample for non-compact case Classification of closed semialgebraic sets Non-compact Nichtnegativstellensatz

イロト イヨト イヨト イヨト

臣

Counterexample for non-compact case

Proof.

After comparing degrees of both sides we conclude that $\sigma_3 = 0$, $deg(\sigma_0) \leq 2$, $deg(\sigma_1) = 0$, $deg(\sigma_2) = 0$ and observing the monomial x^2 on both sides, it follows that $\sigma_2 = \begin{bmatrix} 0 & 0 \\ 0 & c \end{bmatrix}$ for some $c \in [0, 1]$.

Compact Nichtnegativstellensatz Counterexample for non-compact case Classification of closed semialgebraic sets Non-compact Nichtnegativstellensatz

イロト イヨト イヨト イヨト

Counterexample for non-compact case

Proof.

After comparing degrees of both sides we conclude that $\sigma_3 = 0$, $deg(\sigma_0) \le 2$, $deg(\sigma_1) = 0$, $deg(\sigma_2) = 0$ and observing the monomial x^2 on both sides, it follows that $\sigma_2 = \begin{bmatrix} 0 & 0 \\ 0 & c \end{bmatrix}$ for some $c \in [0, 1]$. (*) is equivalent to $F(x) - \sigma_2 x(x - 1) = \sigma_0 + \sigma_1(x + 1)$.

Compact Nichtnegativstellensatz Counterexample for non-compact case Classification of closed semialgebraic sets Non-compact Nichtnegativstellensatz

イロト イヨト イヨト イヨト

Counterexample for non-compact case

Proof.

After comparing degrees of both sides we conclude that $\sigma_3 = 0$, $deg(\sigma_0) \le 2$, $deg(\sigma_1) = 0$, $deg(\sigma_2) = 0$ and observing the monomial x^2 on both sides, it follows that $\sigma_2 = \begin{bmatrix} 0 & 0 \\ 0 & c \end{bmatrix}$ for some $c \in [0, 1]$. (*) is equivalent to $F(x) - \sigma_2 x(x-1) = \sigma_0 + \sigma_1(x+1)$. The right-hand side is positive semidefinite on $[-1, \infty)$.

Compact Nichtnegativstellensatz Counterexample for non-compact case Classification of closed semialgebraic sets Non-compact Nichtnegativstellensatz

イロト イヨト イヨト イヨト

Counterexample for non-compact case

Proof.

After comparing degrees of both sides we conclude that $\sigma_3 = 0$, $deg(\sigma_0) \leq 2$, $deg(\sigma_1) = 0$, $deg(\sigma_2) = 0$ and observing the monomial x^2 on both sides, it follows that $\sigma_2 = \begin{bmatrix} 0 & 0 \\ 0 & c \end{bmatrix}$ for some $c \in [0, 1]$. (*) is equivalent to $F(x) - \sigma_2 x(x-1) = \sigma_0 + \sigma_1(x+1)$. The right-hand side is positive semidefinite on $[-1, \infty)$. But the determinant of the left-hand side is

$$q(x) := -(-1+x)x(-1+2c+(-1+c)x).$$

Since $q \neq 0$ and q cannot have double zeroes at x = 0 and x = 1, it is not non-negative on $[-1, \infty)$. Contradiction.

Compact Nichtnegativstellensatz Counterexample for non-compact case Classification of closed semialgebraic sets Non-compact Nichtnegativstellensatz

Classification of non-compact sets K

Let K be a non-compact closed semialgebraic set with a natural description S. The classification of sets K according to T_S^n being saturated is the following:

Compact Nichtnegativstellensatz Counterexample for non-compact case Classification of closed semialgebraic sets Non-compact Nichtnegativstellensatz

イロン 不同 とくほど 不同 とう

Э

Classification of non-compact sets K

К	T_S^n sat.
an unbounded interval	Yes
a union of an unbounded interval and	conj.: Yes
an isolated point	
a union of an unbounded interval and	No
m isolated points with $m \ge 2$	
a union of two unbounded intervals	Yes
a union of two unbounded intervals and	conj.: Yes
an isolated point	
a union of two unbounded intervals and	No
m isolated points with $m \ge 2$	
includes a bounded and an unbounded interval	No

Compact Nichtnegativstellensatz Counterexample for non-compact case Classification of closed semialgebraic sets Non-compact Nichtnegativstellensatz

Classification of compact sets K

Let K be a compact closed semialgebraic set with a natural description S. The classification of sets K according to T_S^n being boundedly saturated is the following:

Compact Nichtnegativstellensatz Counterexample for non-compact case Classification of closed semialgebraic sets Non-compact Nichtnegativstellensatz

イロト イヨト イヨト イヨト

臣

Classification of compact sets K

K	T_S^n sat.	T_S^n bsat.
a union of at most three points	Yes	Yes
a union of m points with $m \ge 4$	Yes	No
a bounded interval	Yes	Yes
a union of a bounded interval	Yes	conj.: Yes
and an isolated point		
a union of a bounded interval and	Yes	No
<i>m</i> isolated points with $m \ge 2$	Tes	NO
a compact set containing	Yes	No
at least two intervals	162	NO

Compact Nichtnegativstellensatz Counterexample for non-compact case Classification of closed semialgebraic sets Non-compact Nichtnegativstellensatz

・ロト ・回ト ・ヨト ・ヨト

Non-compact Nichtnegativstellensatz

Theorem (Non-compact Nichtnegativstellensatz)

Suppose K is an unbounded basic closed semialgebraic set in \mathbb{R} and S a saturated description of K. Then, for a hermitian $F \in M_n(\mathbb{C}[x])$, the following are equivalent: **1** $F \in Pos_{\geq 0}^n(K)$.

 $(1+x^2)^k F \in T_S^n \text{ for some } k \in \mathbb{N} \cup \{0\}.$

Compact Nichtnegativstellensatz Counterexample for non-compact case Classification of closed semialgebraic sets Non-compact Nichtnegativstellensatz

イロト イヨト イヨト イヨト

臣

Thank you for your attention!