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Bivariate truncated moment problem (TMP)

Question

Let k € Nand
k
B =BY = (Bi))ijez, i+i<k

a bivariate sequence of real numbers of degree k.

K C R? is a closed subset.

The bivariate truncated moment problem on K (K—TMP): characterize the
existence of a positive Borel measure 1 on R? with support in K, such that

3,1 — [K X/yjd/,l(X)
forijcZ., i+]<k

1 is called a K—representing measure (K—RM) of 3.



Bivariate moment matrix

The moment matrix M(k) associated to 8 with the rows and columns indexed by
X'Y!, i+ ] < Kk, in degree-lexicographic order

1, X, Y,XQ,XY, Yz,...,Xk,Xk_1 Y,..., Yk
is defined by where
1 X Y X2 Yk Yk
1 [ Boo Bio Bo1 - Bio jo o fPok ]
X B1o  Beo Bia o Bortp o Pk
14 Boa B4 Bo2 - Pttt Boktt
M(k) = : ' :
Xl Bivg Bty Bicjiwt 0 Bivigi+i 0 Bk
v« | Boxk  Bik  Bok+1t o Bihjprk 0 Poz2k |




Known results on the bivariate TMP

1. Quadratic TMP, i.e. 3 = 5(®: Completely solved. Curto & Fialkow, '96
2. Cubic TMP, i.e. 8 = 8(®): Completely solved. Kimsey, '14, Curto & Yoo, ’18
3. Quartic TMP, i.e. 3 = 8(¥): Completely solved.
M(2) singular: Curto & Fialkow, '02
M(2) nonsingular: Fialkow & Nie, ’10, Curto & Yoo, ‘16
4. Quintic TMP, i.e. 8 = 8): Completely solved. El Azhar, Harrat, Idrissi, Zerouali, '19

5. Sextic TMP, i.e. 3 = 3(®):
» Extremal case - rank M(3) = card V
Curto & Fialkow & Méller, '05

» On variety y = x3 Fialkow, 11

> rank M(3) € {7,8} Curto, Yoo, ‘14,15

P On special cases of reducible varieties Yoo, '17

> M(3) invertible Fialkow, 17, Fialkow & Blekherman, 20
6. TMP on quadratic curves: Completely solved. Curto & Fialkow, '02, 04, 05, '14
7. TMP on cubic curves, i.e. 8 = 5K

> Infinite variety: y = x3 Fialkow, '11

> Finite variety: z% = itz + uz, Lu € R Curto, Yoo '14,’15

8. Bounds on the number of atoms: Riener & Schweighofer, 18, di Dio & Schmiidgen, '18



K—-TMP for K being a curve p(x,y) =0

Explicit solution

This is the solution in terms
of numerical conditions on 3
and is most desired.

[ Solution based on ) Solution based on the
feasibility of a LMl | size of PSD extensions

(f an explicit solution does |  [Existence of such solution

not exist, then we are sat- gives bounds on the de-

isfied with a LMI based so-| grees in the sum of squares

lution with bounded sizes certificates of positivity of

of LMIs. ) polynomials on the curve or

disproves the existence of
these bounds.

Special case of feasibility of
a LMI based solution.



K—-TMP for K being a curve p(x,y) =0

Explicit solution

Irreducible curves:

1. degpp =1 (Curto-Fialkow,96)

2. degp =2 (Curto-Fialkow,02-'14)
p=y—x3 (Fialkow,11)
p=y2—x* ;21
p=xy?—1 (222
‘symmetric’ Weierstrass case
p=y?>-x3—ax—b

(with Bhardwaj,;23-)

o g & W

Reducible curves:

1. degpp =2 (Curto-Fialkow,05,15)
2. p=y(1+yq(x,y)) .22
3. p=y(x +yq(x ¥))

4. p=y(x*+yq(x.y))

Solution based on the size m of
PSD extensions of M(k):

1. y=aq(x) m = [“£p=1]
2. yix' =1, irred. (2./23)
3. yg(x)=1:
m = O(k deg(q)) (Fialkow,11’)
X yl =x',irred., i,j > 1

Solution based on feasibility of a
LMI:

r,q € R[], ged(degr,degq) = 1

2. x=ty= (17)], ged(i,j) = 1

3. p=y(1 +ax* +yq(x.,y))

N

J




Column relations of a moment matrix

To every polynomial p := 3, ; a;;x'y/ € R[x, y]x, we associate the vector

1 X Yk
Bo,0 B1.0 Bo .k
o B10 B2.0 51,k
p(X,Y) = Z aijX'Y'=aoo | Bos [+ a@0| B |+ +ak-| Bokst
i j . . .
B0,k 31,k Bo,2k

from the column space of the matrix M(k).

If p(X, Y) = 0, then pis a column relation.



Necessary Conditions for the existence of a RM

The matrix M(k) is recursively generated (RG) if for p, q, pq € R[x, ¥«

p(X,Y)=0 = (pg)(X,Y)=0.

The matrix M(k) is p—pure, if there are no other column relations expect those
coming from p by RG.

Proposition (Curto and Fialkow, 96)
If 3(2%) has a representing measure 4, then

M(k) is positive semidefinite (PSD) and RG.



Bivariate p—pure TMPs with concrete solutions

p irreducible
p—pure ... only relations are those coming from p by RG
NC ... numerical conditions, FE ... flat extension
#atoms = rank M(k) + i

proved by FE technique proved by univariate reduction technique

degp o | Solution | FE exists | i

1 y ‘ PSD ‘ v ‘ 0

x*+y*—1 | PSD | v | O

2 y—x? | pPSD | v | 0O

xy —1 | PSD | v | 0

y—x3 | NC | v | 0

y2 —x38 | NC | v | 0

3 xy2 —1 | NC | v | 0
‘symmetric’

y2—x3—ax—b NC X <3




p—pure TMP for p(x, y) = y> — x3 —ax — b

k>3, B:={Bj}ijez. i+j<2k, analysis of the existence of a flat extension
_ M(k) B(k+1)
k0= (o by oGk )
of M(k) following Fialkow’s p(x, y) = y — x approach:
1. The block B(k + 1) restricted to rows of degree k is of the form :

Xk Xky X2Yyk—1 XYk yk+1
Xk B2k+1,0 Bek,1 coe oo Bry2k—1 Brek Bk k+1

Xk=1y Bk 1 Bok—12 - - Bk+1.k Bkt Br—1,k+2

X2YK=2 | Biyak—2  Briok—1

XYE=U A Brjok—1 Bryik - 6 é
Yk Bk+1,k Bk k+1 0 & W)
where
Biok+1—i = Bi—3,2k+3—i — @Bi—2,2k+1—i — bBi—32k+1—i for3 < i <2k 41

and 0, ¢, ¢ are arbitrary.



2. C(k+1):=(B(k+1))"M(k)!B(k + 1) has a moment structure iff:
Ckk = Cki1,k—1,

Ck+1,k = Cki2,k—1,

Ck+1,k+1 = Cki2.k




2. C(k+1):=(B(k+1))"M(k)'B(k + 1) has a moment structure iff:

Ckk = Cki1,k—1,

¢ = f292 + £+ 1
Ck+1,k = Cry2,k—1,

Ck41,k+1 = Ckyo.k




2. C(k+1):=(B(k+1))"M(k)'B(k + 1) has a moment structure iff:

Crk = Cki1k-1,
b =ho®+H0+1
Ck+1,k = Cry2,k—1,
U = i1l + jrod + jo20? + jo10 + Joo
Cri1k1 = Chy2k



2. C(k+1):=(B(k+1))"M(k)'B(k + 1) has a moment structure iff:

Cik.x = Cri1 k-1,
¢ =50+ £0+ f
Cki1.k = Crki2,k—1,
= j1160 + jr00 + joob + jor0 + joo
Ck+1,k+1 = Cky2,k
k10110 + K100t + Ko1190 + Koto® + koo20? + Koo16 + Kooo =
200? + L1100 + L10¢ + Lozb? + Lo10 + Loo



2. C(k+1):=(B(k+1))"M(k)'B(k + 1) has a moment structure iff:

Cik.x = Cri1 k-1,
¢ =50+ £0+ f
Cki1.k = Crki2,k—1,
= j1160 + jr00 + joob + jor0 + joo
Crt1.k+1 = Chy2.k
k10110 + K100t + Ko1190 + Koto® + koo20? + Koo16 + Kooo =
200? + L1100 + L10¢ + Lozb? + Lo10 + Loo

3. A short computation shows that the last equation is of the form
042(92 + a1 +ag=0

and a flat extension M(k + 1) exists iff it has a real root 6.



p—pure TMP for p(x, y) = y> — x® —ax — b

Example (A measure exists, but there is no flat extension.)
Generating M(3) with 10 atoms (x;, y;), (xi, —yi) where

1 , 524287 .
Xi= 1. y,_\/xl.—262144x,—|—1, i=1,....,5,

M(3) is of having a column relation

524287
262144

p(X,Y)=Y?- X34+ X—-1=0.

A flat extension M(4) does not exist, since in
agaz + 10+ g =0

g, ag are rationals of the same sign, ay = 0 and hence a real solution ¢ does
not exist.



Symmetric p—pure TMP for p(x,y) = y? — x> —ax — b

k>3, B:={Bj}ijez, irj<ek, symmetric: 3; = Qif jis odd.
1. Substitution Z = Y?2:
B:=Bj=Big forijezZ, withi+2j<2k

Define p(x,z) .=z —x3 —ax —band K := Z(p) N (R x RT):

3

Curve y"2=x"3+2x-1

2

tilde K




Curve y"2=x"3-4x-1

15}
tilde K
0 10
5[
-1 P
-3 -2 -1 1 2 3

5[
ol

~10f
=30 L L L L L L 15

-3 -2 -1 0 1 2 3

Bhasa Z(p)-RM. < 3 hasa K-RM.
(<): If (x1,21),...,(Xm, Zm) are atoms in the measure for Ewith densities p1, ..., pm, then
(X1 ) \/Z)? (X1 i _\/27)7 RN (Xm7 \/ZL (XfTh _m)

are atoms in the measure for 8 with densities &1, 2, ..., 22, 2.



3. Affine linear transformation ¢(x, z) = (x,z — ax — b — Xp):
B = (B
Define p(x, z) := z — x® and K := Z(p) N (R* x RT):

hat K

-0.5 0.5 1.0 15 20 25 3.0 1

4. fhasa K-RM. & [ has a K-RM.



7.1

7.2

visg = Bj,  fori,j € Z, withi+2j < 2k.

Note that v := (7+)i<3k is @ degree 3k sequence.

rg- - - projection to x-coordinate.

Note that prx(f() is of the form [0, co) or [0, c] U [d, c0).

Use the solution to the Stieltjies TMP (Curto, Fialkow, 91°).

> By the truncated Riesz-Haviland theorem (Curto, Fialkow, 08’), the functional
Ly : R[X]<3k — R, defined by

Ly(p):== > am, where p= > ax,

0<i<3k 0<i<3k

must have a pr, (K)—positive extension L ek+2) if kis evenand L_(s+) if k is odd.



7.2

> By the Positivstellensatz on prx(f() (Kuhlmann, Marshall, Schwartz, 05’), f|prx(,~0 >0if

and only if
f=o009+ 01X+ o2(x —c)(x — d) + o3x(x — ¢)(x — d),
where o, 01, 02,03 € 3. R[x]? and

deg oy, deg(o1x), deg(oa(x — ¢)(x — d)),deg(ozx(x — ¢)(x — d)) < degf.

> Finally, the solution in case of pr,(K) = [0, c] U [d, o0) can be concretely characterized
in terms of the localizing Hankel matrices at 1, x, (x — ¢)(x — d), x(x — ¢)(x — d):

Y Ym 7 T TYm+1
Ym o Yem Ymet o Vemd
cdyo — (c+d)vt + 12 e Cdym—1 — (€ + d)ym + Ymi
cdym—1 —(c+d)ym+vmi1 -+ Cdvam_2 — (¢ + d)v2m—1 + Yom
cdyy —(c+d)v2+ s o cdym = (€ + d)Ymi1 + Ymt2
cdym — (C+ d)¥mt1 +Ymiz2 -+ Cdyem—1 — (C+ d)vem + Yom+1



Bivariate p—pure TMPs with concrete solutions

p reducible

p—pure . ..

NC ... numerical conditions, FE ...

#atoms = rank M(k) + i

proved by FE technique

only relations are those coming from p by RG

flat extension

proved by univariate reduction technique

degp o | Solution [ FE exists | 7 |
Xy | PSD | X | 1]

2 y2— 1 | psD | v | 0|
y(x+yq(x.y)) | PSD | | <2|

3 y(1+yax,y)) | NC | v | 0 |
y(®+yq(x,y)) | NC | | <3]




Solving the TMP on reducible rational curves

Basic idea

1. Study decompositions

B =00+ p52,

where

a moment sequence on one irreducible component of C,

“‘[’)’(2) © amoment sequence on the complement of C.

2. Apply the solution to the TMP on each summand g0, j = 1,2.



Let 5 be the basis for the column space and X = (1,X,...,X%). Then

X B\X
X7 A A
(MEkDIs = O =m0 + M,
@X)7 [ (Ar2)" Az
Due to the relation Ys(X, Y) = 0in M(k):
X B\X
X7 * A
= , Mo (k) = . .
BX)7 | (A2)] A
There are only two paramaters in =, x:
1. s(x,y) = x4+ yq(x,y): ﬁ((fg, Béi),o Easy to analyze.
2. s(x,y)=1+q9x,y): Béi)—LO’ g’?éi)_o. A bit more demanding.
3. s(x,y) = x2+q(x,y): Bé%, /31(23 Involved analysis.
4. s(x,y) =1+ax®+q(x,y): ((f()), 552()) all over . Intractable to analyze.



Property (Sk.m)
Solution to the TMP based on the size of PSD extensions

Z(p) = {(x,y) € R?: p(x,y) = 0}

Z(p) has if the following are equivalent:

1. 8 has a Z(p)-RM.
2. M(k) satisfies p(X, Y) = 0 and admits a PSD extension M(k + m).

Z(p) has if every f € R[x, y]<2k12 With f|z(5) > 0 is of the form

f=>R+pd F-p> M,
i j ¢

where f2, pg?, ph? € R[x, y]<zm.
Theorem (Curto and Fialkow, 08’)

(Ak k+m) = (Skm)  and  (Sk,m) = (Ak=1 k+m)-



Bivariate TMP on p(x, y) = 0 with degp > 4

proved through property (Ax,mx)) (Fialkow,11’)
proved by univariate reduction technique

LMI. .. feasibility problem of a linear matrix inequality

degp p ‘ (Sk,m) ‘ m ‘ Solution ‘
¥y —q(x) | v Ok 5] |

¢>4| yx'I—1ired. | v | (51 | M|
yl=x'j>1,ired. | X | X | LM




Hankel matrix

7= (70---

Let k € N. For
we write
1
1T /7
T [
A, =

2 T2 7o
Tk Tk

04
Y2

Yk+1

. Y2k )

T2
Y2

Yok—1

Tk

Vk+A1

Yok—1
Yok



p(x,y) = y'ex" =1, ged(lr,l2) = 1, has (S, ;1))

1. Parametrization: x = t%2, y = t~4.
2. The univariate sequence: f; < Yig—je, -

v = (Y_2ke,, - - - » Y2ke,) NAS SOMeE gaps.
3. 3@ hasa Z(p)-RM < ~yhasa(R)\ {0})-RM.

4. Solution of the strong (R \ {0})-TMP (z,22), i.e., TFAE:
> yhasa (R\ {0})-RM.
> ~ can be extended to the sequence

7 i= (y—2ke;—2, - - -, Y2kep+2)  Without gaps and Ay is PSD.

5. M(k + [432])PSD = A; PSD.



LMI based solution for p(x, y) = y’2x‘ — 1

Theorem
TFAE:

1. 3% has a Z(p)—-RM.

2. 6,’+g1 il = ﬁ,’jj for every i, j € Z., such thati+ j < 2k — ¢, — £, and there exist
missing values ~; in the sequence

~

Y= (7—2/@1 —2, 7V —2kt1—15 - V2klpo+1), 72k£2+2)
generated by

Vieg—je; = Bij
such that

As = 0.

Y —



Example: p(x, y) = yx? — 1

The matrix Ay is equal to

Y —4k—2

Y —4k—1

We need to complete the bold moments such that Ay is PSD.

V—4k Y_ak+1  V—4k+2 Tk Vk+1
Y —4k—1 V—4k Y—ak+1  V—4k+2 Vk+1 Vk+2
Y—4k | Y—4k+1 V—4k+2 Yk+2 :
Y_ak+1 | Bo.2k—1 :
Y—ak+2 Yok
: Y2k | Yok+1
Yik+1 Y2k—1 Y2k  Vok+1 | V2k+2




p(x,y) =y — x", o > (1 > 1, irreducible does not
have property (Sk.m) for every m

1. Parametrization: x = tf, y = t&,
2. The univariate sequence: B < Vig4je,-

¥ =0, - .,Y2ke, NAS SOME gaps.
3. 5®) hasa Z(p)-RM < ~has a R-RM.

4. Solution of the R-TMP: v has a R-RM <~ can be extended to the
sequence

y(@Kt2t2) — (5 ... yoke,i2)  without gaps and A (ke 2 is PSD.

5. One can construct a sequence v such that A, is not even partially PSD, but
it can be extended with ~vyoke, 11, Voke,+2, - - - t0 @ matrix such that the
submatrices corresponding to matrices M(k + m) are PSD.



» Columns of M(¢) correspond to columns
Te={T°:s=aly1+bly, a,b=0,...,0} ={1,T% T%, ... T}

of the univariate Hankel matrix A_z,).

» Then
1 A TS A TS R TSre
T /7 Vsi Vs Vi,
TS Vs V2sy Vsi+sp Vst +sr,
A,Y(zeez) = :
T2 Vso Vsq+sp Y2s, Vsa+sr,
Ts,e ’YSr[ ’YS’K +84 ’Ysr[ +Sp ’YQS,I{

The specified part of A,y(zuz) corresponds to M(€)|rows/columns in the basis -



If M(K)|basis is PD, then Aiis PD and it has infinitely many PD extensions:

1 e TS e T2 e TS TS +1
1 7o Vs Vso rysre rysrz +1
S1
T Vsy V2s4 Vsi+sp Vsi+sr, Vs1+5sr, +1
52
T Vsp Vsi+sz Y2sy Vsotsr,  Vsptsp,+1
S e
T Vsr, Vsr,+s1 Vsry+s2 Vas;, Y257, +1
Sr, +1 ~, N
T*r Vsr,+1 Vsr, +1+5¢ Vsr, +1+8 Vs, +1 Y2s;,+2

> 725, +1 is chosen arbitrarily, while 25, > must be such that the Schur complement is
positive.

» One can continue in this way to determine T *2 T%:*3 _ _ On the side of 8 one
gets a sequence of extensions 2K g(k+2) gk+4)  gych that
M(k +1),M(k +2),... are PSD.

> So one gets a full sequence 3> with M(oc) PSD.



Consequently, we will get 3 with infinitely many extensions but without a measure.

Case 1: One of ¢4, (5 is even. Say ¢ = 2¢,. Then

1 ... TA ... Th L. Tl
1 Ve,
Teq ey Veqe,
Th e,
Ttz Vel e, Ve (e2—1)
1. Generate any sequence v = (70,71, - - - » 725, ) SUch that A, is PD.
2. You decrease v, such that the submatrix (Av)\{r,gq TN is not PSD.

3. Since ~,, occurs in (A,)|7, only twice at non-diagonal places, you can
increase -, such that (A,)|, is PD.



Nonnegative but not sos polynomial on Z(p)

Let (v, v2) € R? be the eigenvector of the negative eigenvalue of
ey Veyeo
Vet Vey(la—1)

Then

is nonnegative on Z(p), but not sos.



Case 2: Both ¢4, /> are odd. Then

1 . TR T+t 2470
1 Ve +2,
z.+/z Lo(l1—1
Th5 Yerrts 2(12 )
T€1 +02 Yoy 10,
] <', —1) _
T4 fa(l=1) G0y — 1)
1. Generate any sequence v = (70,71, - - - » 725, ) SUch that A, is PD.

2. You decrease vy, 1¢, such that the submatrix A\{T[ " is not PSD.
1

I 11 1)}
3. Since vy, 14, 0ccurs in (Ay)|7, only twice at non-diagonal places, you can
increase -, such that (A,)|7; is PD.



Nonnegative but not sos polynomial on Z(p)

Let (v, v2) € R? be the eigenvector of the negative eigenvalue of

Y1+, 7@
7@ Vea(t1-1)
Then
(v1t RERIRYA w)2 = V2Xy + 2vy vgy1# + v2xh 1

is nonnegative on Z(p), but not sos.



Thank you for your attention!



