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Bivariate truncated moment problem (TMP)
Question

Let k ∈ N and

β = β(k) = (βi,j)i,j∈Z+,i+j≤k

a bivariate sequence of real numbers of degree k .

K ⊆ R2 is a closed subset.

The bivariate truncated moment problem on K (K –TMP): characterize the
existence of a positive Borel measure µ on R2 with support in K , such that

βi,j =
∫

K x iy jdµ(x)
for i , j ∈ Z+, i + j ≤ k .

µ is called a K –representing measure (K –RM) of β.



Bivariate moment matrix

The moment matrix M(k) associated to β with the rows and columns indexed by
X iY j , i + j ≤ k , in degree-lexicographic order

1,X ,Y ,X 2,XY ,Y 2, . . . ,X k ,X k−1Y , . . . ,Y k

is defined by where

M(k) :=



1 X Y ··· X i2 Y j2 ··· Y k

1 β0,0 β1,0 β0,1 · · · βi2,j2 · · · β0,k
X β1,0 β2,0 β1,1 · · · βi2+1,j2 · · · β1,k
Y β0,1 β1,1 β0,2 · · · βi2,j2+1 · · · β0,k+1

...
...

. . .
...

X i1 Y j1 βi1,j1 βi1+1,j1 βi1,j1+1 · · · βi1+i2,j1+j2 · · · βi1,j1+k

...
...

...
. . .

...
Y k β0,k β1,k β0,k+1 · · · βi2,j2+k · · · β0,2k





Known results on the bivariate TMP
1. Quadratic TMP, i.e. β = β(2): Completely solved. Curto & Fialkow, ’96

2. Cubic TMP, i.e. β = β(3): Completely solved. Kimsey, ’14, Curto & Yoo, ’18

3. Quartic TMP, i.e. β = β(4): Completely solved.
M(2) singular: Curto & Fialkow, ’02
M(2) nonsingular: Fialkow & Nie, ’10, Curto & Yoo, ’16

4. Quintic TMP, i.e. β = β(5): Completely solved. El Azhar, Harrat, Idrissi, Zerouali, ’19

5. Sextic TMP, i.e. β = β(6): Partially solved.
▶ Extremal case - rankM(3) = cardV

Curto & Fialkow & Möller, ’05
▶ On variety y = x3 Fialkow, ’11
▶ rankM(3) ∈ {7, 8} Curto, Yoo, ’14, ’15
▶ On special cases of reducible varieties Yoo, ’17
▶ M(3) invertible Fialkow, ’17, Fialkow & Blekherman, ’20

6. TMP on quadratic curves: Completely solved. Curto & Fialkow, ’02, ’04, ’05, ’14

7. TMP on cubic curves, i.e. β = β(2k): Cases solved.
▶ Infinite variety: y = x3 Fialkow, ’11
▶ Finite variety: z3 = itz + uz̄, t , u ∈ R Curto, Yoo ’14, ’15

8. Bounds on the number of atoms: Riener & Schweighofer, ’18, di Dio & Schmüdgen, ’18



K –TMP for K being a curve p(x , y) = 0

Explicit solution

This is the solution in terms
of numerical conditions on β
and is most desired.

Solution based on
feasibility of a LMI

If an explicit solution does
not exist, then we are sat-
isfied with a LMI based so-
lution with bounded sizes
of LMIs.

Solution based on the
size of PSD extensions

Existence of such solution
gives bounds on the de-
grees in the sum of squares
certificates of positivity of
polynomials on the curve or
disproves the existence of
these bounds.
Special case of feasibility of
a LMI based solution.



K –TMP for K being a curve p(x , y) = 0
Explicit solution

Irreducible curves:
1. deg p = 1 (Curto-Fialkow,’96)

2. deg p = 2 (Curto-Fialkow,’02-’14)

3. p = y − x3 (Fialkow,’11)

4. p = y2 − x3 (Z.,’21)

5. p = xy2 − 1 (Z.,’22)

6. ‘symmetric’ Weierstrass case
p = y2 − x3 − ax − b

(with Bhardwaj,’23-)

Reducible curves:

1. deg p = 2 (Curto-Fialkow,’05,’15)

2. p = y(1 + yq(x , y)) (Z.,’22)

3. p = y(x + yq(x , y))
4. p = y(x2 + yq(x , y))

Solution based on feasibility of a
LMI:

1. x = r(t), y = q(t),
r , q ∈ R[t], gcd(deg r , deg q) = 1

2. x = t i , y =
( 1

t

)j
, gcd(i, j) = 1

3. p = y(1 + ax2 + yq(x , y))

Solution based on the size m of
PSD extensions of M(k):

1. y = q(x)
2. y jx i = 1, irred.

}
m = ⌈ deg p−1

2 ⌉
(Z.,’23)

3. yq(x) = 1 :
m = O(k deg(q)) (Fialkow,11’)

y j = x i , irred., i , j > 1



Column relations of a moment matrix

To every polynomial p :=
∑

i,j ai,jx iy j ∈ R[x , y ]k , we associate the vector

p(X ,Y ) =
∑
i,j

ai,jX iY j = a0,0 ·

1


β0,0
β1,0
β0,1
...
β0,k

+ a1,0 ·

X


β1,0
β2,0
β1,1
...
β1,k

+ · · ·+ a0,k ·

Y k


β0,k
β1,k
β0,k+1
...

β0,2k

from the column space of the matrix M(k).

If p(X ,Y ) = 0, then p is a column relation.



Necessary conditions for the existence of a RM

The matrix M(k) is recursively generated (RG) if for p,q,pq ∈ R[x , y ]k

p(X ,Y ) = 0 ⇒ (pq)(X ,Y ) = 0.

The matrix M(k) is p–pure, if there are no other column relations expect those
coming from p by RG.

Proposition (Curto and Fialkow, 96’)

If β(2k) has a representing measure µ, then

M(k) is positive semidefinite (PSD) and RG.



Bivariate p–pure TMPs with concrete solutions
p irreducible

p–pure . . . only relations are those coming from p by RG

NC . . . numerical conditions, FE . . . flat extension

#atoms = rankM(k) + i

proved by FE technique proved by univariate reduction technique

deg p p Solution FE exists i
1 y PSD ✓ 0

2
x2 + y2 − 1 PSD ✓ 0

y − x2 PSD ✓ 0
xy − 1 PSD ✓ 0

3

y − x3 NC ✓ 0
y2 − x3 NC ✓ 0
xy2 − 1 NC ✓ 0

‘symmetric’

y2 − x3 − ax − b NC ≤ 3



p–pure TMP for p(x , y) = y2 − x3 − ax − b
k ≥ 3, β := {βij}i,j∈Z+,i+j≤2k , analysis of the existence of a flat extension

M(k + 1) =
(

M(k) B(k + 1)
(B(k + 1))T C(k + 1)

)

of M(k) following Fialkow’s p(x , y) = y − x3 approach:

1. The block B(k + 1) restricted to rows of degree k is of the form :
X k+1 X k Y . . . . . . X 2Y k−1 XY k Y k+1



X k β2k+1,0 β2k,1 . . . . . . βk+2,k−1 βk+1,k βk,k+1

X k−1Y β2k,1 β2k−1,2 . .
.

. .
.

βk+1,k βk,k+1 βk−1,k+2
...

... . .
.

. .
.

. .
.

. .
.

. .
. ...

...
... . .

.
. .
.

. .
.

. .
.

. .
. ...

X 2Y k−2 βk+3,k−2 βk+2,k−1 . .
.

. .
.

. .
.

. .
.

θ

XY k−1 βk+2,k−1 βk+1,k . .
.

. .
.

. .
.

θ ϕ
Y k βk+1,k βk,k+1 . . . . . . θ ϕ ψ

,

where

βi,2k+1−i = βi−3,2k+3−i − aβi−2,2k+1−i − bβi−3,2k+1−i for 3 ≤ i ≤ 2k + 1

and θ, ϕ, ψ are arbitrary.



2. C(k + 1) := (B(k + 1))T M(k)†B(k + 1) has a moment structure iff:

Ck,k = Ck+1,k−1,

Ck+1,k = Ck+2,k−1,

Ck+1,k+1 = Ck+2,k

3. A short computation shows that the last equation is of the form

α2θ
2 + α1θ + α0 = 0

and a flat extension M(k + 1) exists iff it has a real root θ.



2. C(k + 1) := (B(k + 1))T M(k)†B(k + 1) has a moment structure iff:

Ck,k = Ck+1,k−1,

ϕ = f2θ2 + f1θ + f0
Ck+1,k = Ck+2,k−1,

Ck+1,k+1 = Ck+2,k

3. A short computation shows that the last equation is of the form

α2θ
2 + α1θ + α0 = 0

and a flat extension M(k + 1) exists iff it has a real root θ.



2. C(k + 1) := (B(k + 1))T M(k)†B(k + 1) has a moment structure iff:

Ck,k = Ck+1,k−1,

ϕ = f2θ2 + f1θ + f0
Ck+1,k = Ck+2,k−1,

ψ = j11ϕθ + j10ϕ+ j02θ
2 + j01θ + j00

Ck+1,k+1 = Ck+2,k

3. A short computation shows that the last equation is of the form

α2θ
2 + α1θ + α0 = 0

and a flat extension M(k + 1) exists iff it has a real root θ.



2. C(k + 1) := (B(k + 1))T M(k)†B(k + 1) has a moment structure iff:

Ck,k = Ck+1,k−1,

ϕ = f2θ2 + f1θ + f0
Ck+1,k = Ck+2,k−1,

ψ = j11ϕθ + j10ϕ+ j02θ
2 + j01θ + j00

Ck+1,k+1 = Ck+2,k

k101ψθ + k100ψ + k011ϕθ + k010ϕ+ k002θ
2 + k001θ + k000 =

ℓ20ϕ
2 + ℓ11ϕθ + ℓ10ϕ+ ℓ02θ

2 + ℓ01θ + ℓ00

3. A short computation shows that the last equation is of the form

α2θ
2 + α1θ + α0 = 0

and a flat extension M(k + 1) exists iff it has a real root θ.



2. C(k + 1) := (B(k + 1))T M(k)†B(k + 1) has a moment structure iff:

Ck,k = Ck+1,k−1,

ϕ = f2θ2 + f1θ + f0
Ck+1,k = Ck+2,k−1,

ψ = j11ϕθ + j10ϕ+ j02θ
2 + j01θ + j00

Ck+1,k+1 = Ck+2,k

k101ψθ + k100ψ + k011ϕθ + k010ϕ+ k002θ
2 + k001θ + k000 =

ℓ20ϕ
2 + ℓ11ϕθ + ℓ10ϕ+ ℓ02θ

2 + ℓ01θ + ℓ00

3. A short computation shows that the last equation is of the form

α2θ
2 + α1θ + α0 = 0

and a flat extension M(k + 1) exists iff it has a real root θ.



p–pure TMP for p(x , y) = y2 − x3 − ax − b

Example (A measure exists, but there is no flat extension.)
Generating M(3) with 10 atoms (xi , yi), (xi ,−yi) where

xi =
1
i
, yi =

√
x3

i − 524287
262144

xi + 1, i = 1, . . . , 5,

M(3) is of rank 9 having a column relation

p(X ,Y ) = Y 2 − X 3 +
524287
262144

X − 1 = 0.

A flat extension M(4) does not exist, since in

α2θ
2 + α1θ + α0 = 0

α2, α0 are rationals of the same sign, α1 = 0 and hence a real solution θ does
not exist.



Symmetric p–pure TMP for p(x , y) = y2 − x3 − ax − b
k ≥ 3, β := {βij}i,j∈Z+,i+j≤2k , symmetric: βij = 0 if j is odd.

1. Substitution Z = Y 2:

β̃ := β̃ij = βi,2j for i , j ∈ Z+ with i + 2j ≤ 2k .

Define p̃(x , z) := z − x3 − ax − b and K̃ := Z(p̃) ∩ (R× R+):



2. β has a Z(p)–RM. ⇔ β̃ has a K̃ –RM.

(⇐): If (x1, z1), . . . , (xm, zm) are atoms in the measure for β̃ with densities ρ1, . . . , ρm, then

(x1,
√

z1), (x1,−
√

z1), . . . , (xm,
√

zm), (xm,−
√

zm)

are atoms in the measure for β with densities ρ1
2 ,

ρ1
2 , . . . ,

ρm
2 ,

ρm
2 .



3. Affine linear transformation φ(x , z) = (x , z − ax − b − x0):

β̂ := φ(β̃)

Define p̂(x , z) := z − x3 and K̂ := Z(p̂) ∩ (R+ × R+):

4. β̃ has a K̃ –RM. ⇔ β̂ has a K̂ –RM.



5. The corresponding univariate sequence:

γi+3j = β̂ij , for i , j ∈ Z+ with i + 2j ≤ 2k .

Note that γ := (γt)t≤3k is a degree 3k sequence.

6. β̂ has a K̂ –RM. ⇔ γ has a prx(K̂ )–RM.
prx . . . projection to x-coordinate.

Note that prx(K̂ ) is of the form [0,∞) or [0, c] ∪ [d ,∞).

7.1 prx(K̃ ) = [0,∞): Use the solution to the Stieltjes TMP (Curto, Fialkow, 91’).

7.2 prx(K̃ ) = [0, c] ∪ [d ,∞):

▶ By the truncated Riesz-Haviland theorem (Curto, Fialkow, 08’), the functional
Lγ : R[x ]≤3k → R , defined by

Lγ(p) :=
∑

0≤i≤3k

aiγi , where p =
∑

0≤i≤3k

ai x i ,

must have a prx (K̃ )–positive extension Lγ(3k+2) if k is even and Lγ(3k+1) if k is odd.



7.2 prx(K̃ ) = [0, c] ∪ [d ,∞):

▶ By the Positivstellensatz on prx (K̃ ) (Kuhlmann, Marshall, Schwartz, 05’), f |
prx (K̃ )

≥ 0 if
and only if

f = σ0 + σ1x + σ2(x − c)(x − d) + σ3x(x − c)(x − d),

where σ0, σ1, σ2, σ3 ∈
∑

R[x ]2 and

deg σ0, deg(σ1x), deg(σ2(x − c)(x − d)), deg(σ3x(x − c)(x − d)) ≤ deg f .

▶ Finally, the solution in case of prx (K̃ ) = [0, c] ∪ [d ,∞) can be concretely characterized
in terms of the localizing Hankel matrices at 1, x , (x − c)(x − d), x(x − c)(x − d):γ0 · · · γm

...
...

γm · · · γ2m

 ,

 γ1 · · · γm+1
...

...
γm+1 · · · γ2m+1

 ,

 cdγ0 − (c + d)γ1 + γ2 · · · cdγm−1 − (c + d)γm + γm+1
...

...
cdγm−1 − (c + d)γm + γm+1 · · · cdγ2m−2 − (c + d)γ2m−1 + γ2m

 ,

 cdγ1 − (c + d)γ2 + γ3 · · · cdγm − (c + d)γm+1 + γm+2
...

...
cdγm − (c + d)γm+1 + γm+2 · · · cdγ2m−1 − (c + d)γ2m + γ2m+1

 .



Bivariate p–pure TMPs with concrete solutions
p reducible

p–pure . . . only relations are those coming from p by RG

NC . . . numerical conditions, FE . . . flat extension

#atoms = rankM(k) + i

proved by FE technique proved by univariate reduction technique

deg p p Solution FE exists i

2
xy PSD 1

y2 − 1 PSD ✓ 0

3
y(x + yq(x , y)) PSD ≤ 2
y(1 + yq(x , y)) NC ✓ 0
y(x2 + yq(x , y)) NC ≤ 3



Solving the TMP on reducible rational curves
Basic idea

1. Study decompositions

β = β(1) + β(2),
where

β(1) : a moment sequence on one irreducible component of C,
β(2) : a moment sequence on the complement of C.

2. Apply the solution to the TMP on each summand β(i), i = 1,2.



Let B be the basis for the column space and X⃗ = (1,X , . . . ,X k ). Then

(M(k))|B =

[ X⃗ B\X⃗

(X⃗)T A11 A12

(B\X⃗)T (A12)
T A22

]
= M1(k) + M2(k),

Due to the relation Ys(X ,Y ) = 0 in M(k):

M1(k) =

[ X⃗ B\X⃗

(X⃗)T ∗ 0

(B\X⃗)T 0 0

]
, M2(k) =

[ X⃗ B\X⃗

(X⃗)T ∗ A12

(B\X⃗)T (A12)
T A22

]
.

There are only two paramaters in ∗, ∗:

1. s(x , y) = x + yq(x , y): β
(2)
0,0, β(2)

2k,0. Easy to analyze.

2. s(x , y) = 1 + q(x , y): β
(2)
2k−1,0, β(2)

2k,0. A bit more demanding.

3. s(x , y) = x2 + q(x , y): β
(2)
0,0, β(2)

1,0. Involved analysis.

4. s(x , y) = 1 + ax2 + q(x , y): β
(2)
0,0, β(2)

1,0 all over ∗. Intractable to analyze.



Property (Sk ,m)
Solution to the TMP based on the size of PSD extensions

Z(p) = {(x , y) ∈ R2 : p(x , y) = 0}

Z(p) has property (Sk,m) if the following are equivalent:

1. β(2k) has a Z(p)–RM.

2. M(k) satisfies p(X ,Y ) = 0 and admits a PSD extension M(k + m).

Z(p) has property (Ak,m) if every f ∈ R[x , y ]≤2k+2 with f |Z(p) > 0 is of the form

f =
∑

i

f 2
i + p

∑
j

g2
j − p

∑
ℓ

h2
ℓ ,

where f 2
i ,pg2

j ,ph2
ℓ ∈ R[x , y ]≤2m.

Theorem (Curto and Fialkow, 08’)

(Ak,k+m) ⇒ (Sk,m) and (Sk,m) ⇒ (Ak−1,k+m).



Bivariate TMP on p(x , y) = 0 with deg p ≥ 4

proved through property (Ak,m(k)) (Fialkow,11’)

proved by univariate reduction technique

LMI . . . feasibility problem of a linear matrix inequality

deg p p (Sk,m) m Solution # atoms

ℓ ≥ 4

y − q(x) ✓ O(kℓ) ⌈ ℓ−1
2 ⌉ LMI kℓ

y jxℓ−j − 1, irred. ✓ ⌈ ℓ−1
2 ⌉ LMI kℓ

y j − xℓ, j > 1, irred. LMI kℓ



Hankel matrix

Let k ∈ N. For

γ = (γ0, . . . , γ2k ) ∈ R2k+1

we write

Aγ =

1 T T 2 · · · T k



1 γ0 γ1 γ2 · · · γk

T γ1 γ2 . .
.

. .
.

γk+1

T 2 γ2 . .
.

. .
.

. .
. ...

...
... . .

.
. .
.

. .
.

γ2k−1
T k γk γk+1 · · · γ2k−1 γ2k



p(x , y) = y ℓ2x ℓ1 − 1, gcd(ℓ1, ℓ2) = 1, has (Sk ,k+⌈ ℓ1+ℓ2
2 ⌉)

1. Parametrization: x = tℓ2 , y = t−ℓ1 .

2. The univariate sequence: βij ↔ γiℓ2−jℓ1 .

γ := (γ−2kℓ1 , . . . , γ2kℓ2) has some gaps.

3. β(2k) has a Z(p)–RM ⇔ γ has a (R \ {0})–RM.

4. Solution of the strong (R \ {0})-TMP (Z,22’), i.e., TFAE:
▶ γ has a (R \ {0})–RM.
▶ γ can be extended to the sequence

γ̃ := (γ−2kℓ1−2, . . . , γ2kℓ2+2) without gaps and Aγ̃ is PSD.

5. M(k + ⌈ ℓ1+ℓ2
2 ⌉) PSD ⇒ Aγ̃ PSD.



LMI based solution for p(x , y) = y ℓ2x ℓ1 − 1

Theorem
TFAE:

1. β(2k) has a Z(p)–RM.

2. βi+ℓ1,j+ℓ2 = βi,j for every i, j ∈ Z+, such that i + j ≤ 2k − ℓ1 − ℓ2 and there exist
missing values γi in the sequence

γ̃ = (γ−2kℓ1−2, γ−2kℓ1−1, . . . , γ2kℓ2+1, γ2kℓ2+2)
generated by

γiℓ2−jℓ1 = βi,j
such that

Aγ̃ ⪰ 0.



Example: p(x , y) = yx2 − 1

The matrix Aγ̃ is equal to

γ−4k−2 γ−4k−1 γ−4k γ−4k+1 γ−4k+2 · · · γk γk+1

γ−4k−1 γ−4k γ−4k+1 γ−4k+2 . .
.

γk+1 γk+2

γ−4k γ−4k+1 γ−4k+2 . .
.

γk+2
...

γ−4k+1 β0,2k−1 . .
. ...

...

γ−4k+2 . .
. ... γ2k

... γ2k γ2k+1
γk+1 · · · · · · · · · γ2k−1 γ2k γ2k+1 γ2k+2



We need to complete the bold moments such that Aγ̃ is PSD.



p(x , y) = y ℓ2 − x ℓ1, ℓ2 > ℓ1 > 1, irreducible does not
have property (Sk ,m) for every m

1. Parametrization: x = tℓ2 , y = tℓ1 .

2. The univariate sequence: βij ↔ γiℓ2+jℓ1 .

γ := γ0, . . . , γ2kℓ2 has some gaps.

3. β(2k) has a Z(p)–RM ⇔ γ has a R–RM.

4. Solution of the R-TMP: γ has a R–RM ⇔ γ can be extended to the
sequence

γ(2kℓ2+2) = (γ0, . . . , γ2kℓ2+2) without gaps and Aγ(2kℓ2+2) is PSD.

5. One can construct a sequence γ such that Aγ is not even partially PSD, but
it can be extended with γ2kℓ2+1, γ2kℓ2+2, . . . to a matrix such that the
submatrices corresponding to matrices M(k + m) are PSD.



▶ Columns of M(ℓ) correspond to columns

Tℓ = {T s : s = aℓ1 + bℓ2, a,b = 0, . . . , ℓ} = {1,T s1 ,T s2 , . . . ,T srℓ}

of the univariate Hankel matrix Aγ(2ℓℓ2) .

▶ Then

A
γ(2ℓℓ2) =

1 · · · T s1 · · · T s2 · · · T srℓ



1 γ0 γs1 γs2 γsrℓ
...

T s1 γs1 γ2s1 γs1+s2 γs1+srℓ
...

T s2 γs2 γs1+s2 γ2s2 γs2+srℓ
...

T srℓ γsrℓ
γsrℓ+s1 γsrℓ+s2 γ2srℓ

The specified part of A
γ(2ℓℓ2) corresponds to M(ℓ)|rows/columns in the basis.



If M(k)|basis is PD, then A is PD and it has infinitely many PD extensions:

1 · · · T s1 · · · T s2 · · · T srℓ T srℓ+1



1 γ0 γs1 γs2 γsrℓ
γsrℓ+1

...
T s1 γs1 γ2s1 γs1+s2 γs1+srℓ

γs1+srℓ+1
...

T s2 γs2 γs1+s2 γ2s2 γs2+srℓ
γs2+srℓ+1

...
T srℓ γsrℓ

γsrℓ+s1 γsrℓ+s2 γ2srℓ
γ2srℓ+1

T srℓ+1 γsrℓ+1 γsrℓ+1+s1 γsrℓ+1+s2 γ2srℓ+1 γ2srℓ+2

▶ γ2srℓ+1 is chosen arbitrarily, while γ2srℓ+2 must be such that the Schur complement is
positive.

▶ One can continue in this way to determine T srℓ+2,T srℓ+3, . . .. On the side of β one
gets a sequence of extensions β(2k), β(2k+2), β(2k+4), . . . such that
M(k + 1),M(k + 2), . . . are PSD.

▶ So one gets a full sequence β(∞) with M(∞) PSD.



▶ γ can be chosen such that it does not have a measure, even though (A)|Tk

is PD. Consequently, we will get β with infinitely many extensions but without a measure.

Case 1: One of ℓ1, ℓ2 is even. Say ℓ1 = 2ℓ′1. Then

1 · · · T ℓ′1 · · · T ℓ1 · · · T ℓ′1(ℓ2−1) · · ·



1 γ0 γℓ1
...

T ℓ′1 γℓ1 γℓ′1ℓ2
...

T ℓ1 γℓ1
...

T ℓ′1(ℓ2−1) γℓ′1ℓ2
γℓ1(ℓ2−1)

...

.

1. Generate any sequence γ = (γ0, γ1, . . . , γ2srk
) such that Aγ is PD.

2. You decrease γℓ1 such that the submatrix (Aγ)|{T ℓ′1 ,T ℓ′1(ℓ2−1)} is not PSD.

3. Since γℓ1 occurs in (Aγ)|Tk only twice at non-diagonal places, you can
increase γ0 such that (Aγ)|Tk is PD.



Nonnegative but not sos polynomial on Z(p)

Let (v1, v2) ∈ R2 be the eigenvector of the negative eigenvalue of γℓ1 γℓ′1ℓ2

γℓ′1ℓ2 γℓ1(ℓ2−1)

.
Then (

v1tℓ
′
1 + v2tℓ

′
1(ℓ2−1)

)2
= v2

1 y + 2v1v2xℓ′1 + v2
2 y ℓ2−1

is nonnegative on Z(p), but not sos.



Case 2: Both ℓ1, ℓ2 are odd. Then

1 · · · T
ℓ1+ℓ2

2 · · · T ℓ1+ℓ2 · · · T
ℓ2(ℓ1−1)

2 · · ·



1 γ0 γℓ1+ℓ2

...

T
ℓ1+ℓ2

2 γℓ1+ℓ2
ℓ2(ℓ1−1)

2
...

T ℓ1+ℓ2 γℓ1+ℓ2

...

T
ℓ2(ℓ1−1)

2
ℓ2(ℓ1−1)

2 ℓ2(ℓ1 − 1)
...

1. Generate any sequence γ = (γ0, γ1, . . . , γ2srk
) such that Aγ is PD.

2. You decrease γℓ1+ℓ2 such that the submatrix A|{
T ℓ1+ℓ2 ,T

ℓ2(ℓ1−1)
2

} is not PSD.

3. Since γℓ1+ℓ2 occurs in (Aγ)|Tk only twice at non-diagonal places, you can
increase γ0 such that (Aγ)|Tk is PD.



Nonnegative but not sos polynomial on Z(p)

Let (v1, v2) ∈ R2 be the eigenvector of the negative eigenvalue of γℓ1+ℓ2 γ ℓ2(ℓ1−1)
2

γ ℓ2(ℓ1−1)
2

γℓ2(ℓ1−1)

.
Then(

v1t
ℓ1+ℓ2

2 + v2t
ℓ2(ℓ1−1)

2
)2

= v2
1 xy + 2v1v2y

1+ℓ2
2 + v2

2 xℓ1−1

is nonnegative on Z(p), but not sos.



Thank you for your attention!


