The truncated moment problem on quadratic, cubic and some higher degree curves

Aljaž Zalar, University of Ljubljana, Slovenia

IWOTA 2022, Krakow, September 9th, 2022

Bivariate truncated moment problem

Let $k \in \mathbb{N}$ and

$$\beta = \beta^{(k)} = (\beta_{i,j})_{i,j \in \mathbb{Z}_+, i+j \le k}$$

a bivariate sequence of real numbers of degree k.

 $K \subseteq \mathbb{R}^2$ is a closed subset.

The **bivariate truncated moment problem on** *K* (*K*–**TMP**): characterize the existence of a positive Borel measure μ on \mathbb{R}^2 with support in *K*, such that

$$\beta_{i,j} = \int_K x^i y^j d\mu(x)$$

for $i, j \in \mathbb{Z}_+$, $i + j \le k$.

 μ is called a *K*-representing measure (*K*-RM) of β .

Bivariate moment matrix

The moment matrix M(k) associated to β with the rows and columns indexed by $X^i Y^j$, $i + j \le k$, in degree-lexicographic order

 $1, X, Y, X^2, XY, Y^2, \ldots, X^k, X^{k-1}Y, \ldots, Y^k$

is defined by

$$M(k) = (\beta_{i+j})_{i,j=0}^{k} = \begin{bmatrix} M[0,0](\beta) & M[0,1](\beta) & \cdots & M[0,k](\beta) \\ M[1,0](\beta) & M[1,1](\beta) & \cdots & M[1,k](\beta) \\ \vdots & \vdots & \ddots & \vdots \\ M[k,0](\beta) & M[k,1](\beta) & \cdots & M[k,k](\beta) \end{bmatrix},$$

where

are Hankel matrices.

Necessary conditions

• To every polynomial $p := \sum_{i,j} a_{i,j} x^i y^j \in \mathbb{R}[x, y]_k$, we associate the vector $p(X, Y) = \sum_{i,j} a_{i,j} X^i Y^j$

from the column space of the matrix M(k).

• The matrix M(k) is recursively generated (RG) if for $p, q, pq \in \mathbb{R}[x, y]_k$ $p(X, Y) = \mathbf{0} \implies (pq)(X, Y) = \mathbf{0}.$

• The matrix M(k) satisfies the variety condition (VC) if rank $M(k) \leq \text{card } \mathcal{V}$,

where
$$\mathcal{V} := \bigcap_{\substack{g \in \mathbb{R}[x,y] \leq k, \\ g(X,Y) = \mathbf{0} \text{ in } M(k)}} \underbrace{\{(x,y) \in \mathbb{R}^2 \colon g(x,y) = \mathbf{0}\}}_{\mathcal{Z}(p)}.$$

Proposition (Curto and Fialkow, 96')

If $\beta^{(2k)}$ has a representing measure μ , then

M(k) is positive semidefinite (PSD), RG and satisfies VC.

Solving the TMP by reduction to the univariate case

Basic ideas:

- For irreducible curve C:
 - Get rid of one variable (use parametrization of the curve).
 - Solve the corresponding univariate TMP.
- **2** For reducible curve C:
 - Study decompositions $\beta = \beta^{(1)} + \beta^{(2)}$, where $\beta^{(1)}$ is a moment sequence on one irreducible component of C and $\beta^{(2)}$ on the complement.
 - Apply the solution of the TMP on each summand $\beta^{(i)}$, i = 1, 2.

Outcomes of this approach:

- Concrete solution to the TMP on quadratic (Curto and Fialkow) and some cubic curves.
- For some higher degree curves two abstract solutions, which are probably most concrete one can hope for, are obtained.

The univariate reduction solving TMP on some cubics

IWOTA 2022 6/27

The TMP on $y = x^3$ through the flat extension theorem

Let
$$k \geq 3$$
, $p(X, Y) = Y - X^3$ and $\beta := \beta^{(2k)} = (\beta_{i,j})_{i,j \in \mathbb{Z}^*, i+j \leq 2k}$.

Theorem (Fialkow, 11')

Assume β is a p-pure sequence, i.e., p generates all column relations of M_k by RG. TFAE:

- (1) β has a $\mathcal{Z}(p)$ –*RM*.
- (2) β has a (rank M_k)-atomic $\mathcal{Z}(p)$ -RM.
- (3) CONCRETE SOLUTION: *M_k* is *PSD* and

$$\beta_{1,2k-1} > \psi(\beta) ,$$

where ψ is a rational function in $\beta_{i,j}$.

(4) ABSTRACT SOLUTION: M_k admits a PSD, RG extension M_{k+1} .

Remark: The solution of the nonpure situation is partly algorithmic.

The TMP on $y = x^3$ through the univariate reduction

Every atom must be of the form (t, t^3) for some $t \in \mathbb{R}$. So $\beta_{i,j}$ corresponds to the moment of

 Z^{i+3j} .

As *i*, *j* run over 0, 1, ..., 2k such that $i + j \le 2k$, the sum i + 3j runs over the set

 $\{0, 1, \ldots, 6k - 2, 6k\}.$

The problem is equivalent to the

truncated Hamburger MP (THMP) with a gap γ_{6k-1} ,

i.e., does there exist $x \in \mathbb{R}$ such that

$$(\gamma_0,\gamma_1,\ldots,\gamma_{6k-2},{\color{black}{x}},\gamma_{6k})$$

admits a measure on \mathbb{R} . This is a

PSD matrix completion problem with constraints.

PSD matrix completion result

Proposition

Let

2

$$A(?) := \begin{bmatrix} A_1 & a & b \\ a^T & \alpha & ? \\ b^T & ? & \beta \end{bmatrix} = \begin{bmatrix} A_1 & a & * \\ a^T & \alpha & * \\ * & * & * \end{bmatrix} = \begin{bmatrix} A_1 & * & b \\ * & * & * \\ b^T & * & \beta \end{bmatrix}$$

be a $n \times n$ matrix, where A_1 is a symmetric matrix, $a, b \in \mathbb{R}^{n-2}$ are vectors, $\alpha, \beta \in \mathbb{R}$ real numbers and x is a variable. Let A_2 and A_3 be the colored submatrices of A(x) and

$$x_{\pm} \coloneqq b^T A_1^{\dagger} a \pm \sqrt{(A_2/A_1)(A_3/A_1)} \in \mathbb{R},$$

where $A_2/A_1 = \alpha - a^T A^{\dagger} a$ and $A_3/A_1 = \beta - b^T B^{\dagger} b$. Then:

• $A(x_0)$ is PSD if and only if A_2 , A_3 are PSD and $x_0 \in [x_-, x_+]$.

rank $A(x_0) = \max \{ \operatorname{rank} A_2, \operatorname{rank} A_3 \} + \begin{cases} 0, & \text{for } x_0 \in \{x_-, x_+\}, \\ 1, & \text{for } x_0 \in (x_-, x_+). \end{cases}$

Let $k \in \mathbb{N}$. For

$$\gamma = (\gamma_0, \ldots, \gamma_{2k}) \in \mathbb{R}^{2k+1}$$

we define the corresponding Hankel matrix as

$$\boldsymbol{A}_{\gamma} := \begin{pmatrix} \gamma_{0} & \gamma_{1} & \gamma_{2} & \cdots & \gamma_{k} \\ \gamma_{1} & \gamma_{2} & \ddots & \ddots & \gamma_{k+1} \\ \gamma_{2} & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \gamma_{2k-1} \\ \gamma_{k} & \gamma_{k+1} & \cdots & \gamma_{2k-1} & \gamma_{2k} \end{pmatrix}$$

٠

THMP of degree 2k with a gap γ_{2k-1}

Theorem

Let k > 1 and

$$\gamma(\mathbf{x}) := (\underbrace{\gamma_0, \gamma_1, \ldots, \gamma_{2k-4}}_{\gamma_0, \gamma_1, \ldots, \gamma_{2k-4}}, \gamma_{2k-3}, \gamma_{2k-2}, \mathbf{x}, \gamma_{2k}),$$

be a sequence, where *x* is a variable, with the moment matrix

$$\boldsymbol{A}_{\gamma(\boldsymbol{x})} = \begin{bmatrix} \boldsymbol{A}_{\gamma^{(1)}} & \boldsymbol{v} \\ \boldsymbol{X} \\ \hline \boldsymbol{v}^{T} & \boldsymbol{x} & \gamma_{2k} \end{bmatrix} = \begin{bmatrix} \boldsymbol{A}_{\gamma^{(2)}} & \boldsymbol{u} & \boldsymbol{v} \\ \boldsymbol{u}^{T} & \gamma_{2k-2} & \boldsymbol{x} \\ \hline \boldsymbol{v}^{T} & \boldsymbol{x} & \gamma_{2k} \end{bmatrix},$$

where $v = (\gamma_k, \dots, \gamma_{2k-2})$ and $u = (\gamma_{k-1}, \dots, \gamma_{2k-3})$. TFAE: There exists $x_0 \in \mathbb{R}$ and a \mathbb{R} -RM for $\gamma(x_0)$. A_{$\gamma^{(1)}</sub> and A := \begin{bmatrix} A_{\gamma^{(2)}} & v \\ v^T & \gamma_{2k} \end{bmatrix}$ are PSD and one of the following holds: a) $A_{\gamma^{(1)}}$ is PD. b) rank $A_{\gamma^{(1)}}$ = rank A.</sub> The TMP on $y = x^3$ through the univariate reduction

Let $k \ge 3$, $p(X, Y) = Y - X^3$ and $\beta := \beta^{(2k)}$ a p(x, y)-pure sequence. Let

$$\gamma(\mathbf{x}) := (\underbrace{\gamma_0, \gamma_1, \dots, \gamma_{6k-4}}_{\gamma^{(2)}}, \gamma_{6k-3}, \gamma_{6k-2}, \mathbf{x}, \gamma_{6k}), \quad \text{where } \gamma_{i+3j} = \beta_{i,j}.$$

Theorem (Fialkow, 11')

The following statements are equivalent:

- (1) β has a $\mathcal{Z}(p)$ –*RM*.
- (2) β has a (rank M_k)-atomic $\mathcal{Z}(p)$ -RM.
- (3) M_k is PSD and

$$\beta_{1,2k-1} > u^T A_{\gamma^{(2)}}^{-1} u$$
, where $u = (\gamma_{k-1}, \dots, \gamma_{2k-3})$.

(4) M_k admits a PSD, RG extension M_{k+1} .

The TMP on $y = x^3$ through the univariate reduction

Let
$$k \ge 3$$
, $p(X, Y) = Y - X^3$ and $\beta := \beta^{(2k)}$ a sequence. Let
 $\gamma(x) := (\gamma_0, \gamma_1, \dots, \gamma_{6k-4}, \gamma_{6k-3}, \gamma_{6k-2}, x, \gamma_{6k}), \text{ where } \gamma_{i+3j} = \beta_{i,j}.$

Theorem

TFAE:

- (1) β has a $\mathcal{Z}(p)$ –RM.
- (2) β has a (rank M_k) or (rank M_k + 1) atomic $\mathcal{Z}(p)$ RM.
- (3) M_k is PSD, p-RG (pq = 0 if $pq \in \mathbb{R}[X, Y]_{2k}$) and:

a) $A_{\gamma^{(1)}}$ is PD. or b) $A_{\gamma^{(1)}}$ is PSD and rank $M_k = \operatorname{rank} A_{\gamma^{(1)}}$. holds.

(4) M_k admits a PSD, RG extension M_{k+1} .

Moreover, if the $\mathcal{Z}(p)$ –RM for β exists:

- There is a (rank M_k)-atomic $\mathcal{Z}(p)$ -RM unless rank $M_k = 3k 1$ and $A_{\gamma^{(1)}}$ is PD.
- The $\mathcal{Z}(p)$ –RM is unique if rank $M_k < 3k$. Otherwise two minimal $\mathcal{Z}(p)$ –RM exist.

イロン イヨン イヨン イヨ

The TMP on $yx^2 = 1$ through the univariate reduction

Every atom must be of the form $(t, \frac{1}{t^2})$ for some $t \in \mathbb{R}$. So $\beta_{i,j}$ corresponds to the moment of

 z^{i-2j} .

As i, j run over 0, 1, ..., 2k such that $i + j \le 2k$, the difference i - 2j runs over the set

$$\{-4k, -4k+2, \ldots, -1, 0, 1, \ldots, 2k\}.$$

The problem is equivalent to the

strong THMP of degree (-4k, 2k) with a gap γ_{-4k+1} ,

i.e., does there exist $x \in \mathbb{R}$ such that

$$(\gamma_{-4k}, \mathbf{X}, \gamma_{-4k+2}, \ldots, \gamma_{-1}, \gamma_0, \gamma_1, \ldots, \gamma_{2k})$$

admits a measure on

 $\mathbb{R} \setminus \{\mathbf{0}\}.$

Strong THMP of degree $(-2k_1, 2k_2)$ with a gap γ_{-2k_1+1}

Theorem

Let k > 1 and

$$\gamma(\mathbf{x}) := (\gamma_{-2k_1}, \mathbf{x}, \overline{\gamma_{-2k_1+2}, \gamma_{-2k_1+3}}, \underbrace{\gamma_{-2k_1+4}, \ldots, \gamma_{2k_2}}_{\gamma^{(2)}}),$$

be a sequence, where x is a variable, with the moment matrix

$$A_{\gamma(x)} := \begin{bmatrix} \frac{\gamma_{-2k_1} & x & u^T}{x} \\ \frac{x}{u} & A_{\gamma^{(1)}} \end{bmatrix} = \begin{bmatrix} \frac{\gamma_{-2k_1} & x & u^T}{x} \\ \frac{x}{u} & \gamma_{-2k_1+2} & w^T \\ \frac{u}{w} & A_{\gamma^{(2)}} \end{bmatrix}$$

where $u^T = (\gamma_{-2k_1+2}, \dots, \gamma_{-k_1+k_2+1})$ and $w^T = (\gamma_{-2k_1+2}, \dots, \gamma_{-k_1+k_2})$. TFAE:

• There exists $x_0 \in \mathbb{R}$ and a $(\mathbb{R} \setminus \{0\})$ –*RM* for $\gamma(x_0)$.

• A_{$\gamma^{(1)}$} and A := $\begin{bmatrix} \gamma_{-2k_1} & u^T \\ u & A_{\gamma^{(2)}} \end{bmatrix}$ are PSD and one of the following holds:

a) $A_{\gamma^{(1)}}$ and A without the last row and column are PD.

b) rank $A_{\gamma^{(1)}} = \operatorname{rank}(A_{\gamma^{(1)}} \text{ without the last row and column}) = \operatorname{rank} A$.

The TMP on $YX^2 = 1$

Let
$$k \ge 3$$
, $p(x, y) = yx^2 - 1$ and $\beta := \beta^{(2k)}$ a sequence. Let
 $\gamma(x) := (\gamma_{-4k}, x, \overline{\gamma_{-4k+2}, \gamma_{-4k+3}, \gamma_{-4k+4}, \dots, \gamma_{2k}})$, where $\gamma_{i-2j} = \beta_{i,j}$.

Theorem

TFAE:

(1) β has a $\mathcal{Z}(p)$ -representing measure.

(2) β has a (rank M_k) – or (rank M_k + 1)–atomic $\mathcal{Z}(p)$ –representing measure.

(3) M_k is PSD and p–RG, $A_{\gamma^{(1)}}$ is PSD and one of the following holds:

a) $A_{\gamma^{(1)}}$ is PD and rank $(M_k \text{ without column/row } X^k) = 3k - 1$.

b) rank $A_{\gamma^{(1)}}$ = rank (M_k without columns/rows X^k , Y^k) = rank M_k .

(4) M_k admits a PSD, RG extension M_{k+2} .

Moreover, if the $\mathcal{Z}(p)$ –RM for β exists:

- There is a (rank M_k)-atomic $\mathcal{Z}(p)$ -RM unless rank $M_k = 3k 1$ and $A_{\gamma^{(1)}}$ is PD.
- The $\mathcal{Z}(p)$ –RM is unique if rank $M_k < 3k$. Otherwise two minimal $\mathcal{Z}(p)$ –RM exist.

The TMP on $y^2 = x^3$

Every atom must be of the form (t^2, t^3) for some $t \in \mathbb{R}$. So $\beta_{i,j}$ corresponds to the moment of

 $Z^{2(i \mod 3)+3(j+2\lfloor \frac{i}{3} \rfloor)}.$

As *i*, *j* run over 0, 1, ..., 2k such that $i + j \le 2k$, the sum in z^* runs over the set

 $\{0, 2, 3, \ldots, 6k - 1, 6k\}.$

The problem is equivalent to the

THMP of degree 6k with a gap γ_1 ,

i.e., does there exist $x \in \mathbb{R}$ such that

$$(\gamma_0, \mathbf{X}, \gamma_2, \ldots, \gamma_{6k-1}, \gamma_{6k})$$

admits a measure on

THMP of degree 2k with a gap γ_1

Theorem

Let k > 1 and

$$\gamma(\mathbf{x}) := (\gamma_0, \mathbf{x}, \overline{\gamma_2, \gamma_3, \underbrace{\gamma_4, \ldots, \gamma_{2k}}_{(2)}}),$$

be a sequence, where x is a variable, with the moment matrix

$$\boldsymbol{A}_{\gamma(\boldsymbol{x})} := \begin{bmatrix} \gamma_0 & \boldsymbol{x} & \boldsymbol{u}^T \\ \boldsymbol{x} & \boldsymbol{A}_{\gamma^{(1)}} \end{bmatrix} = \begin{bmatrix} \gamma_0 & \boldsymbol{x} & \boldsymbol{u}^T \\ \boldsymbol{x} & \gamma_2 & \boldsymbol{w}^T \\ \boldsymbol{u} & \boldsymbol{w} & \boldsymbol{A}_{\gamma^{(2)}} \end{bmatrix}$$

where $u^T = (\gamma_2, \ldots, \gamma_k)$ and $w^T = (\gamma_3, \ldots, \gamma_{k+1})$. TFAE:

• There exists $x_0 \in \mathbb{R}$ and a \mathbb{R} -RM for $\gamma(x_0)$. • $A_{\gamma^{(1)}}$ and $A := \begin{bmatrix} \gamma_0 & u^T \\ u & A_{\gamma^{(2)}} \end{bmatrix}$ are PSD and one of the following holds:

a) $A_{\gamma^{(1)}}$ and A without the last row and column are PD.

b) rank $A_{\gamma(1)}$ = rank($A_{\gamma(1)}$ without the last row and column).

イロト イヨト イヨト イヨト

The TMP on $y^2 = x^3$

Let
$$k \ge 3$$
, $p(X, Y) = X^3 - Y^2$ and $\beta := \beta^{(2k)}$ a sequence. Let
 $\gamma(x) := (\gamma_0, x, \overline{\gamma_2, \gamma_3, \gamma_4, \dots, \gamma_{6k}})$, where $\gamma_{i-2j} = \beta_{i,j}$.

Theorem

TFAE:

- (1) β has a $\mathcal{Z}(p)$ -representing measure.
- (2) β has a (rank M_k) or (rank M_k + 1)–atomic $\mathcal{Z}(p)$ –representing measure.
- (3) M_k is PSD and p–RG, $A_{\gamma^{(1)}}$ is PSD and one of the following holds:
 - a) $A_{\gamma^{(1)}}$ is PD and rank $(M_k \text{ without column/row } X^k) = 3k 1$.
 - b) rank $A_{\gamma^{(1)}}$ = rank (M_k without columns/rows X^k , Y^k).

Moreover, if the $\mathcal{Z}(p)$ –RM for β exists:

- There is a (rank M_k)-atomic $\mathcal{Z}(p)$ -RM unless rank $M_k = 3k 1$ and $A_{\gamma^{(1)}}$ is PD.
- The $\mathcal{Z}(p)$ –RM is unique if rank $M_k < 3k$. Otherwise two minimal $\mathcal{Z}(p)$ –RM exist.

The TMP on $y^2 = x^3$

Let
$$k \ge 3$$
, $p(x, y) = y^2 - x^3$ and $\beta := \beta^{(2k)}$.

Proposition

The statement

 β has a $\mathcal{Z}(p)$ –RM.

is stronger than the statement

 M_k admits PSD extensions M_m for every m > k.

Idea of the proof.

- There exists a psd, p-RG matrix M_3 of rank 3k such that $A_{\gamma^{(1)}}$ is not PSD.
- So, M₃ does not admit a Z(p)−RM, but one can easily construct PSD extensions M_m for every m > 3 in the univariate setting.

Corollary

p is not of type A in Stochel's sense.

The TMP on higher degree curves - a new approach

The TMP on $y = x^4$

Every atom must be of the form (t, t^4) for some $t \in \mathbb{R}$. So $\beta_{i,j}$ corresponds to the moment of

z^{i+4j}.

As *i*, *j* run over 0, 1, ..., 2k such that $i + j \le 2k$, the sum i + 4j runs over the set

$$\{0, 1, \ldots, 8k - 6, 8k - 4, 8k - 3, 8k\}.$$

The problem is equivalent to the

THMP of degree 8k with gaps $\gamma_{8k-5}, \gamma_{8k-2}, \gamma_{8k-1}, \gamma_{8k-1}, \gamma_{8k-2}, \gamma_{8k-1}, \gamma_{8k-2}, \gamma_{8k-1}, \gamma_{8k-2}, \gamma_{8k-1}, \gamma_{8k-2}, \gamma_{8k-$

i.e., do there exist $x_1, x_2, x_3 \in \mathbb{R}$ such that

$$(\gamma_0,\gamma_1,\ldots,\gamma_{8k-6}, extsf{X_1},\gamma_{8k-4},\gamma_{8k-3}, extsf{X_2}, extsf{X_3},\gamma_{8k})$$

admits a measure on

The THMP of degree 8k with gaps $\gamma_{8k-5}, \gamma_{8k-2}, \gamma_{8k-1}$

The corresponding Hankel matrix $A_{\gamma(x_1, x_2, x_2)}$ is

This is the linear matrix inequality (LMI) feasibility problem with constraints, i.e., the constraint is that in the corank 1 case the last column must be dependent from the others.

The THMP of degree 8k with gaps $\gamma_{8k-5}, \gamma_{8k-2}, \gamma_{8k-1}$

By a simple trick of adding the next row and column the constraint can be removed and this becomes only a LMI feasibility problem, i.e., do there exist x_1, x_2, x_3 and x_4, x_5 such that

is PSD?

Algebraic certificate of infeasibility of the LMI

One abstract solution to the TMP on $Y = X^4$

(and all curves of the form Y = q(X) or $YX^{\ell} = 1$, where $q \in \mathbb{R}[X], \ell \in \mathbb{N}$),

is the following Nonlinear Farkas lemma.

Theorem (Klep & Schweighofer, 12')

Let

$$A(x) := A_0 + A_1 x_1 + \ldots + A_n x_n,$$

where A_i are real symmetric matrices of size α . TFAE:

•
$$A(x)$$
 is infeasible.
• $-1 \in M_A^{(2^{\ell}-1)}$, where
 $M_A^{(2^{\ell}-1)} = \left\{ \sum_{i=1}^{\ell_1} p_i^2 + \sum_{j=1}^{\ell_2} v_j^T A(x) v_j : p_i \in \mathbb{R}[\underline{x}]_{2^{\ell}-1}, v_j \in (\mathbb{R}[\underline{x}]_{2^{\ell}-1})^{\alpha} \right\}$

is the $(2^{\ell} - 1)$ -th quadratic module associated to A(x) and $\ell = \min(\alpha, n)$.

Another abstract solution to the TMP on

all curves of the form Y = q(X), where $q \in \mathbb{R}[X]$,

is the following:

Theorem (Stochel 92' & Fialkow, 11') *TFAE:*

- M_k admits a PSD, RG extension $M_{(2k+1) \deg q-1}$.
- M_k admits a PSD extension $M_{(2k+1) \deg q}$.

The TMP on y = q(x)

Another abstract solution to the TMP on

all curves of the form Y = q(X), where $q \in \mathbb{R}[X]$,

is the following:

Remark. The improvement using the univariate reduction technique in the size of extension is from quadratic in k, deg q to linear in k, deg q. A similar result holds for curves $yx^{\ell} = 1$, $\ell \in \mathbb{N}$.

Thank you for your attention!