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Classical truncated moment problem

Let β = β(2k ) = (βi )i∈Zd
+ ,|i|≤2k be a d-dimensional multisequence of

real numbers of degree 2k .

Example

For d = 2 and k = 2, β is a 15-parametric sequence

β = (β0,0, β1,0, β0,1, β2,0, β1,1, β0,2, β3,0, β2,1, β1,2, β0,3, β4,0, β3,1, β2,2, β1,3, β0,4).

The truncated moment problem (TMP): characterize the
existence of a positive Borel measure µ on Rd with support in the
closed set K , such that

βi =
∫

K
x idµ(x) for i ∈ Zd

+ , |i | ≤ 2k ,

where x i := x i1
1 · · · x

id
d .

Theorem (Richter, 1957; Bayer,Teichmann, 2006)

It suffices to study finitely atomic measures in the TMP.
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Tracial truncated moment problem

Let β ≡ β(2k ) = (βw )|w|≤2k be a d-dimensional multisequence
indexed by words w in noncommuting letters X1, X2, . . ., Xd of
length at most 2k such that

βv1v2 = βv2v1 and βw = βw∗ ,

for every words v1, v2,w and w∗ is the reverse of w .

The tracial truncated moment problem (TTMP): characterize
the existence of a positive Borel measure µ on the set of tuples
of real symmetric matrices Sn(R)d of some size n, such that

βw =
∫

Sn(R)d
Tr(w(A))dµ(A) for every word w , |w | ≤ 2k ,

where Tr denotes the normalized trace of a matrix.

Theorem (Burgdorf, Cafuta, Klep, Povh, 2013)

It suffices to study finitely atomic measures in the TTMP.
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Tracial truncated moment problem

Example

For d = 2 and k = 2, β is a 16-parametric sequence

β =
(
β1, βX , βY , βX2 , βXY = βYX , βY 2 , βX3 , βX2Y = βXYX = βYX2 ,

βXY 2 = βYXY = βY 2X , βY 3 , βX4 , βX3Y = βX2YX = βXYX2 = βYX3 ,

βX2Y 2 = βXY 2X = βY 2X2 = βYX2Y , βXYXY = βYXYX ,

βXY 3 = βYXY 2 = βY 2XY = βY 3X , βY 4

)
,

Remark
If βX 2Y 2 = βXYXY , then every atom (X ,Y ) in the measure must satisfy
XY = YX , and the problem becomes a classical moment problem.
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Classical truncated moment matrix
The moment matrix (mm) M(k ) associated with a commutative
sequence β with the rows and columns indexed by monomials X i ,
|i | ≤ k , in degree-lexicographic order, is defined by

M(k ) = (βi+j )i,j∈Zd
+ ,|i|,|j|≤k .

Example

d = 1, k = 4 : M(4) =

1 X X 2 X 3 X 4


1 β0 β1 β2 β3 β4
X β1 β2 β3 β4 β5
X 2 β2 β3 β4 β5 β6
X 3 β3 β4 β5 β6 β7
X 4 β4 β5 β6 β7 β8

.

d = k = 2 : M(2) =

1 X Y X 2 XY Y 2


1 β0,0 β1,0 β0,1 β2,0 β1,1 β0,2
X β1,0 β2,0 β1,1 β3,0 β2,1 β1,2
Y β0,1 β1,1 β0,2 β2,1 β1,2 β0,3
X 2 β2,0 β3,0 β2,1 β4,0 β3,1 β2,2
XY β1,1 β2,1 β1,2 β3,1 β2,2 β1,3
Y 2 β0,2 β1,2 β0,3 β2,2 β1,3 β0,4

.
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Tracial truncated moment matrix

The tracial moment matrix Mtr(k ) associated with a tracial sequence β
with the rows and columns indexed by words w in nc letters
X1, . . . ,Xd , |w | ≤ k , in degree-lexicographic order, is defined by

Mtr(k ) = (βw∗1 w2 )w1,w2 .

Example

For d = k = 2 we have:

Mtr(2) =

1 X Y X 2 XY YX Y 2


1 β1 βX βY βX2 βXY βXY βY 2

X βX βX2 βXY βX3 βX2Y βX2Y βXY 2

Y βY βXY βY 2 βX2Y βXY 2 βXY 2 βY 3

X 2 βX2 βX3 βX2Y βX4 βX3Y βX3Y βX2Y 2

XY βXY βX2Y βXY 2 βX3Y βX2Y 2 βXYXY βXY 3

YX βXY βX2Y βXY 2 βX3Y βXYXY βX2Y 2 βXY 3

Y 2 βY 2 βXY 2 βY 3 βX2Y 2 βXY 3 βXY 3 βY 4

.

Aljaž Zalar, University of Ljubljana, Slovenia



Properties of the classical moment matrix
To every polynomial p :=

∑
i∈Zd

+ ,|i|≤k aix i ∈ R[x ]k , we associate
the vector

p(X ) =
∑

i∈Zd
+ ,|i|≤k

aiX
i

from the column space C(M(k )) of the matrix M(k ).

M(k ) is recursively generated (rg) if:

p,q,pq ∈ R[x ]k and p(X ) = 0, then (pq)(X ) = 0.

M(k ) satisfies the variety condition if

rank M(k ) ≤ card
( ⋂

g∈R[x ]≤k ,
g(X )=0 in M(k )

{
x ∈ Rd : g(x) = 0

} )
.

Proposition

Assume that β has a representing measure µ. Then:
M(k ) is psd, rg and satisfies the variety condition.
The support supp µ is a subset of Zp := {x ∈ Rd : p(x) = 0} if and
only if p(X ) = 0.
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Properties of the tracial moment matrix

To every nc polynomial p :=
∑
|w|≤k aw w , we associate the vector

p(X ) =
∑
|w|≤k

aiw(X )

from the column space C(Mtr(k )) of the matrix Mtr(k ).

The matrix Mtr(k ) is recursively generated (rg) if:

p,q,pq ∈ R〈X 〉k and p(X ) = 0, then (pq)(X ) = 0.

Proposition

Assume that β has a representing measure µ. Then:
Mtr(k ) is psd and rg.
The support supp µ is a subset of
Znc

p :=
⋃∞

n=1

{
X ∈ Sn(R)d : p(X ) = 0

}
if and only if p(X ) = 0.
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Truncated Hamburger moment problem (THMP)

Theorem (Curto & Fialkow, 1991)

For k ∈ N and β = (β0, . . . , β2k ) with β0 > 0, the following statements
are equivalent:

1 There exists a rm for β supported on K = R.
2 There exists a (rank M(k ))-atomic rm for β supported on K = R.
3 One of the following holds:

M(k ) � 0.
M(k ) � 0 and rank M(k ) = rank M(k − 1).

Remark
The tracial THMP in one variable coincides with the classical THMP.
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Bivariate TMP for quadratic varieties

Theorem (Curto & Fialkow, 1996-2015)

Let
β = β(2k ) = (βi,j )i,j∈Z+,i+j≤2k

be a bisequence of real numbers of degree 2k such that the moment
matrix satisfies

p(X ,Y ) = 0,

where p is a quadratic polynomial.

After applying an affine linear transformation p can be assumed to be one of the
polynomials xy, xy − 1, y2 − y, x2 + y2 − 1, y − x2.

Then:
1 There exists a rm for β.
2 M(k ) is psd, rg and satisfies the variety condition.
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Flat extension theorem (FET)
The proof of the previous theorem is based on the following theorem.

Theorem (Curto, Fialkow, 1998)

Let M(k ) be a moment matrix, which has a psd extensions M(k + d)
and M(k + d + 1) for some d ∈ N such that

rank M(k + d) = rank M(k + d + 1).

Then β has a (rank M(k + d))-atomic rm.

The tracial version of this theorem is the following.

Theorem (Burgdorf, Klep, 2012)

Let Mtr(k ) be a tracial moment matrix, which has a psd extensions
Mtr(k + d) and Mtr(k + d + 1) for some d ∈ N such that

rank Mtr(k + d) = rank Mtr(k + d + 1).

Then β has a rm with atoms of size at most rank Mtr(k + d).

Aljaž Zalar, University of Ljubljana, Slovenia



Bivariate TTMP for quadratic varieties

Possible column relations:
after applying an appropriate affine linear transformation.

XY + YX = 0 or X 2 + Y 2 = 1 or Y 2 − X 2 = 1 or Y 2 = 1.

Analysis of flat extensions:

Flat extension Mtr(k + 1) of a psd, rg Mtr(k ) mostly does not exist.

Analyzing further extensions Mtr(k + 2),Mtr(k + 3), . . . is too
demanding due to too many parameters.

Another approach:

First bound the size and the form of possible nc atoms.

Decompose
Mtr(2) = Mcm(2) + Mnc(2),

where Mcm(2) comes from some size 1 atoms and Mnc(2) comes
from all irreducible atoms of size more than 1 and some size 1
atoms, for which you know admit a measure.
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Tracial TMP for Mtr(2) with relation X 2 + Y 2 = 1
1 The bound on the size of the atoms is 2. Moreover, irreducible

size 2 atoms are of the form

X =
(
γ α
α −γ

)
, Y =

(
µ 0
0 −µ

)
where α, γ, µ ∈ R.

Here we used that X 2 and Y commute and use that X 2 + Y 2 = I.

2 It follows that

Mcm(2) =


? βX βY ? ? ?
βX ? ? βX3 βX2Y βX2Y
βY ? ? βX2Y βX − βX3 βX − βX3

? βX3 βX2Y ? ? ?
? βX2Y βX − βX3 ? ? ?
? βX2Y βX − βX3 ? ? ?

,

Mnc(2) =


? 0 0 ? ? ?
0 ? ? 0 0 0
0 ? ? 0 0 0
? 0 0 ? ? ?
? 0 0 ? ? ?
? 0 0 ? ? ?

.
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Tracial TMP for Mtr(2) with relation X 2 + Y 2 = 1

L(a,b, c,d ,e) :=


a βX βY b c c
βX b c βX3 βX2Y βX2Y
βY c a− b βX2Y βX − βX3 βX − βX3

b βX3 βX2Y d e e
c βX2Y βX − βX3 e b − d b − d
c βX2Y βX − βX3 e b − d b − d

.

Theorem (Bhardway, Z., 2018)

β admits a measure if and only if there exist a,b, c,d ,e ∈ R such that

L(a,b, c,d ,e) � 0, Mtr(2)− L(a,b, c,d ,e) � 0,

(Mtr(2)− L(a,b, c,d ,e)){1,X ,Y ,XY} � 0,

L(a,b, c,d ,e) is rg and satisfies the variety condition.

Remark
Using this theorem examples where Mtr(2) being psd and rg does not
imply the existence of a measure can be obtained.
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Tracial TMP for Mtr(k ) with two quadratic relations

Possible column relations:
after applying an appropriate affine linear transformation.

XY + YX = 0
X 2 + Y 2 = 1 or Y 2 − X 2 = 1 or Y 2 = 1 or Y 2 = X 2.

Analysis of flat extensions: still too demanding

Another approach:
The bound on the size of the atoms is 2 and irreducible size 2
atoms are of the form

X =
(

0 α
α 0

)
, Y =

(
µ 0
0 −µ

)
, where α, µ ∈ R.

It suffices to study the restriction due to column relations

M(k )|{~X ,Y~X ′} =

~X Y ~X ′( )
~X A B

Y ~X ′ B C
,

where ~X := (1,X , . . . ,X k ), Y ~X ′ := (Y ,YX , . . . ,YX k−1).
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Tracial TMP for Mtr(k ) with two quadratic relations
Since there are only 4 possible size 1 atoms ((±1,0), (0,±1)), the
best candidate for Mcm(k ) is

Mcm(k ) = |βX | ·M(k )(sign(βX )1,0) + |βY | ·M(k )(0,sign(βY )1),

where M(k )(x,y ) stands for the mm generated by (x , y ) ∈ R2, and

Mnc(k )|{~X ,Y~X ′} =

~X Y ~X ′( )
~X A1 0

Y ~X ′ 0 C1

.

Solving the TMP Mnc(k )|{~X ,Y~X ′} is in fact the classical TMP on R or
[−1,1]. If the atoms x1, . . . , xm represent A1, then Mnc(k )|{~X ,Y~X ′} is represented by:

if X 2 + Y 2 = 1:
((

0 xi
xi 0

)
,

(√
1− x2

i 0

0 −
√

1− x2
i

))
,

Similarly for the other three cases.

Theorem (Bhardwaj, Z., 2021)

Mtr(k ) admits a nc measure⇔ Mnc(k ) is psd and rg.
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Application of the techniques to the classical TMP

Question
The bivariate tracial TMP with two quadratic column relations can be
reduced to the use of the univariate classical TMP.

1 Is the same true for the bivariate classical TMP with one
quadratic column relation?
Given by p(x , y ) = 0 where p(x , y ) is one of xy , xy − 1, y2 − y , x2 + y2 − 1,
y − x2.

2 If the answer to (1) is yes, can this technique by applied to
cubic/higher degree column relations?

The answer to both questions above is yes.
1 p(x , y ) ∈ {xy , y2 − y , y − x2} . . . reduction to the TMP for R.

p(x , y ) = xy − 1 . . . reduction to the TMP for R \ {0}, where negative
moment are also known.
p(x , y ) = x2 + y2 − 1 . . . reduction to the trigonometric TMP.
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Application of the techniques to the classical TMP
2

p(x , y ) reduces to the TMP of degree with gaps at degrees

y − x3 6k for K = R 6k − 1

y2 − x3 6k for K = R 1

x2y − 1 (−4k ,2k ) for K = R \ {0} −4k + 1

y − x4 8k for K = R 8k − 5,8k − 2,8k − 1

y3 − x4 8k for K = R 1,2,5

x3y − 1 (−6k ,2k ) for K = R \ {0} −6k + 1,−6k + 2,−6k + 5

All problems above are psd matrix completion problems with one
additional constraint in case the completion is only singular:

for K = R: the last column is in the span of the others.

for K = R \ {0}: the last and first column must be in the span of the others.

Also p(x , y ) = y (y − α1)(y − α2) reduces to the TMP for R by decomposing

M(k ) = M1(k ) + M2(k ) + M3(k ),

where each Mi (k ) corresponds to one line.
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Thank you for your attention!
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