The singular bivariate quartic tracial moment problem

Aljaž Zalar, University of Ljubljana, Slovenia

IWOTA, Lisbon, Portugal July 2019

joint work with
Abhishek Bhardwaj, Australian National University

Notation

- $\langle X, Y\rangle \ldots$ the free monoid generated by the noncommuting letters X, Y, i.e., words in X, Y.
- $\mathbb{R}\langle X, Y\rangle \ldots$ the free algebra of polynomials in X, Y (noncommutative (nc) polynomials), endowed with the involution $p \mapsto p^{*}$ fixing $\mathbb{R} \cup\{X, Y\}$ and reversing the order of letters in each word.

Example

$$
\left(X Y^{2}-Y X\right)^{*}=Y^{2} X-X Y
$$

- The degree $|p|$ of $p \in \mathbb{R}\langle X, Y\rangle$ is the length of the longest word in p. We write $\mathbb{R}\langle X, Y\rangle_{\leq n}$ for the set of all polynomials of degree at most n.
- A word v is cyclically equivalent to $w(v \stackrel{\text { cyc }}{\sim} w)$ iff v is a cyclic permutation of w, i.e., there exist words u_{1}, u_{2} such that $v=u_{1} u_{2}, w=u_{2} u_{1}$.

Bivariate truncated tracial sequence

Bivariate truncated tracial sequence (BTTS) of order n is a sequence of real numbers,

$$
\beta \equiv \beta^{(2 n)}=\left(\beta_{w}\right)_{|w| \leq 2 n}
$$

indexed by words w in X, Y of length at most $2 n$ such that
(1) $\beta_{v}=\beta_{w}$ whenever $v \stackrel{\text { cyc }}{\sim} w$,
(2) $\beta_{w}=\beta_{w^{*}}$ for all $|w| \leq 2 n$,

Example

For $t \in \mathbb{N}$ and $(A, B) \in\left(\mathbb{S}^{t \times t}\right)^{2}$ (where $\mathbb{S R}^{t \times t}$ denotes symmetric real $t \times t$ matrices), the sequence

$$
\beta_{w}=\operatorname{tr}(w(A, B)) \quad \text { where } \quad|w| \leq 2 n
$$

is a BTTS of order n.

Bivariate truncated tracial moment problem

Question

Which TTS's are convex combinations of TTS's as in the example above?

Bivariate truncated tracial moment problem

Question

Which TTS's are convex combinations of TTS's as in the example above?

We call β a bivariate truncated tracial moment sequence (BTTMS) of order n if there exist $N \in \mathbb{N}, t_{i} \in \mathbb{N}, \lambda_{i} \in \mathbb{R}_{>0}$ with $\sum^{N} \lambda_{i}=1$ and pairs of $t_{i} \times t_{i}$ real symmetric matrices $\left(A_{i}, B_{i}\right)$, $i=1$
such that

$$
\beta_{w}=\sum_{i=1}^{N} \lambda_{i} \cdot \frac{1}{t_{i}} \operatorname{tr}\left(w\left(A_{i}, B_{i}\right)\right), \quad \text { for all }|w| \leq 2 n
$$

Bivariate truncated tracial moment problem

Question

Which TTS's are convex combinations of TTS's as in the example above?

We call β a bivariate truncated tracial moment sequence (BTTMS) of order n if there exist $N \in \mathbb{N}, t_{i} \in \mathbb{N}, \lambda_{i} \in \mathbb{R}_{>0}$ with $\sum^{N} \lambda_{i}=1$ and pairs of $t_{i} \times t_{i}$ real symmetric matrices $\left(A_{i}, B_{i}\right)$, $i=1$
such that

$$
\beta_{w}=\sum_{i=1}^{N} \lambda_{i} \cdot \frac{1}{t_{i}} \operatorname{tr}\left(w\left(A_{i}, B_{i}\right)\right), \quad \text { for all }|w| \leq 2 n
$$

Remark

Restricting t_{i} 's to 1 we get the classical truncated moment problem studied extensively by Curto and Fialkow.

Bivariate truncated tracial moment problem

- If such representation for β exists, then we say β admits a measure. The matrices $\left(A_{i}, B_{i}\right)$ are called atoms of size t_{i} and the numbers λ_{i} are densities.

Bivariate truncated tracial moment problem

- If such representation for β exists, then we say β admits a measure. The matrices $\left(A_{i}, B_{i}\right)$ are called atoms of size t_{i} and the numbers λ_{i} are densities.
- The measure is of type $\left(m_{1}, m_{2}, \ldots, m_{r}\right)$ if it consists of exactly $m_{i} \in \mathbb{N} \cup\{0\}$ atoms of size i and $m_{r} \neq 0$.

Bivariate truncated tracial moment problem

- If such representation for β exists, then we say β admits a measure. The matrices $\left(A_{i}, B_{i}\right)$ are called atoms of size t_{i} and the numbers λ_{i} are densities.
- The measure is of type $\left(m_{1}, m_{2}, \ldots, m_{r}\right)$ if it consists of exactly $m_{i} \in \mathbb{N} \cup\{0\}$ atoms of size i and $m_{r} \neq 0$.
- A measure for β of type $\left(m_{1}^{(1)}, m_{2}^{(1)}, \ldots, m_{r_{1}}^{(1)}\right)$ is minimal, if there does not exist another measure for β of type $\left(m_{1}^{(2)}\right.$, $m_{2}^{(2)}, \ldots, m_{r_{2}}^{(2)}$) such that

$$
(\underbrace{0, \ldots, 0}_{r_{1}-r_{2}}, m_{r_{2}}^{(2)}, m_{r_{2}-1}^{(2)}, \ldots, m_{1}^{(2)}) \prec_{\text {lex }}\left(m_{r_{1}}^{(1)}, m_{r_{1}-1}^{(1)}, \ldots, m_{1}^{(1)}\right) .
$$

Bivariate truncated tracial moment problem

Remark

(1) Replacing an atom $(A, B) \in\left(\mathbb{S R}^{t \times t}\right)^{2}$ with any atom

$$
\left(U A U^{t}, U B U^{t}\right) \in\left(\mathbb{S R}^{t \times t}\right)^{2}
$$

where $U \in \mathbb{R}^{t \times t}$ is an orthogonal matrix, generates the same BTTS.

Bivariate truncated tracial moment problem

Remark

(1) Replacing an atom $(A, B) \in\left(\mathbb{S R}^{t \times t}\right)^{2}$ with any atom

$$
\left(U A U^{t}, U B U^{t}\right) \in\left(\mathbb{S R}^{t \times t}\right)^{2}
$$

where $U \in \mathbb{R}^{t \times t}$ is an orthogonal matrix, generates the same BTTS.
(2) By the tracial version of Bayer-Teichmann theorem, studying finite atomic measures is equivalent to studying probability measures on $\left(\mathbb{S R}^{t \times t}\right)^{2}$ such that

$$
\beta_{w}=\int_{\left(\mathbb{S R}^{t \times t}\right)^{2}} \operatorname{tr}(w(A, B)) \mathrm{d} \mu(A, B) .
$$

Bivariate quartic tracial moment problem (BQTMP)

For $n=2$ the sequence $\beta^{(4)}$ has 16 parameters:
3 of degree 1: $\beta_{1}, \beta_{X}, \beta_{Y}$
3 of degree 2: $\beta_{X^{2}}, \beta_{X Y}=\beta_{Y X}, \beta_{Y^{2}}$
4 of degree 3: $\beta_{X^{3}}, \beta_{X^{2} Y}=\beta_{X Y X}=\beta_{Y X^{2}}, \beta_{X Y^{2}}=\beta_{Y X Y}=\beta_{Y^{2} X}, \beta_{Y^{3}}$,
6 of degree 4: $\beta_{X^{4}}, \beta_{X^{3} Y}=\beta_{X^{2} Y X}=\beta_{X Y X^{2}}=\beta_{Y X^{3}}$,

$$
\begin{aligned}
& \beta_{X^{2} Y^{2}}=\beta_{X Y^{2} X}=\beta_{Y^{2} X^{2}}=\beta_{Y X^{2} Y}, \\
& \beta_{X Y X Y}=\beta_{Y X Y X}, \\
& \beta_{X Y^{3}}=\beta_{Y X Y^{2}}=\beta_{Y^{2} X Y}=\beta_{Y^{3} X}, \beta_{Y^{4}} .
\end{aligned}
$$

Index rows and columns of \mathcal{M}_{n} by words in $\mathbb{R}\langle X, Y\rangle_{\leq n}$ in the degree-lexicographic order.
The entry in a row w_{1} and a column w_{2} of \mathcal{M}_{n} is $\beta_{w_{1}^{*} w_{2}}$:

$$
\mathcal{M}_{n}=\begin{gathered}
\\
\mathbb{1} \\
\mathbb{X} \\
\vdots \\
w_{1} \\
\vdots \\
\mathbb{Y}^{n}
\end{gathered}\left(\begin{array}{cccccc}
\mathbb{1} & \mathbb{X} & \cdots & w_{2} & \cdots & \mathbb{Y}^{n} \\
\beta_{1} & \beta_{X} & \cdots & \beta_{w_{2}} & \cdots & \beta_{Y^{n}} \\
\beta_{X} & \beta_{X^{2}} & \cdots & \beta_{X w_{2}} & \cdots & \beta_{X Y^{n}} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\beta_{w_{1}} & \beta_{w_{1}^{*} X} & \cdots & \beta_{w_{1}^{*} w_{2}} & \cdots & \beta_{w_{1}^{*} Y^{n}} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\beta_{Y^{n}} & \beta_{X Y^{n}} & \cdots & \beta_{Y^{n} w_{2}} & \cdots & \beta_{Y^{2 n}}
\end{array}\right) .
$$

$n=2: 7 \times 7$ moment matrix \mathcal{M}_{2}

	1	\mathbb{X}	Y	\mathbb{X}^{2}	$X \mathbb{Y}$	$\mathbb{Y} X$	Y^{2}
1	β_{1}	β_{X}	β_{Y}	$\beta_{X^{2}}$	$\beta_{X Y}$	$\beta_{X Y}$	$\beta_{Y^{2}}$
\mathbb{X}	β_{X}	$\beta_{X^{2}}$	$\beta_{X Y}$	$\beta_{X^{3}}$	$\beta_{X^{2} Y}$	$\beta_{X^{2} Y}$	$\beta_{X Y^{2}}$
\mathbb{Y}	β_{Y}	$\beta_{X Y}$	$\beta_{Y^{2}}$	$\beta_{X^{2} Y}$	$\beta_{X Y^{2}}$	$\beta_{X Y^{2}}$	$\beta_{Y^{3}}$
\mathbb{X}^{2}	$\beta_{X}{ }^{2}$	$\beta_{X^{3}}$	$\beta_{X^{2} Y}$	$\beta_{X^{4}}$	$\beta_{X^{3} Y}$	$\beta_{X^{3} Y}$	$\beta_{X^{2} Y^{2}}$
$\mathbb{X Y}$	$\beta_{X Y}$	$\beta_{X^{2} Y}$	$\beta_{X Y^{2}}$	$\beta_{X^{3} Y}$	$\beta_{X 2}{ }^{2}{ }^{2}$	$\beta_{X Y X Y}$	$\beta_{X Y 3}$
$\mathbb{Y} X$	$\beta_{X Y}$	$\beta_{X^{2} Y}$	$\beta_{X Y{ }^{2}}$	$\beta_{X^{3} Y}$	$\beta_{X Y X Y}$	$\beta_{X^{2} Y^{2}}$	$\beta_{X Y^{3}}$
\mathbb{Y}^{2}	$\beta_{Y^{2}}$	$\beta_{X Y^{2}}$	$\beta_{Y}{ }^{3}$	$\beta_{X^{2} Y^{2}}$	$\beta_{X Y{ }^{3}}$	$\beta_{X Y^{3}}$	$\beta_{Y^{4}}$

$n=2: 7 \times 7$ moment matrix \mathcal{M}_{2}

	1	\mathbb{X}		\mathbb{X}^{2}	XY	$\mathbb{X X}$	
	β_{1}	β_{X}	β_{Y}	$\beta^{\chi}{ }^{2}$	$\beta_{X Y}$	$\beta_{X Y}$	$\beta_{Y^{2}}$
X	β_{X}	$\beta_{X}{ }^{2}$	$\beta_{X Y}$	$\beta_{X 3}$	$\beta_{X^{2} Y}$	$\beta_{X^{2} Y}$	$\beta_{X Y^{2}}$
\underline{Y}	β_{Y}	$\beta_{X Y}$	$\beta_{Y^{2}}$	$\beta^{X^{2} Y}$	$\beta_{X Y{ }^{2}}$	$\beta_{X Y 2}$	$\beta_{Y^{3}}$
\mathbb{X}^{2}	$\beta_{X^{2}}$	$\beta_{X^{3}}$	$\beta_{X^{2} Y}$	$\beta_{X^{4}}$	$\beta_{X^{3} Y}$	$\beta_{X^{3} Y}$	$\beta_{X^{2} Y^{2}}$
XY	$\beta_{X Y}$	$\beta_{X^{2} Y}$	$\beta_{X Y{ }^{2}}$	$\beta_{X^{3} Y}$	$\beta^{X^{2} Y^{2}}$	$\beta_{X Y X Y}$	$\beta_{X Y}{ }^{3}$
YX	$\beta_{X Y}$	β_{X}	$\beta_{X Y{ }^{2}}$		$\beta_{X Y X Y}$	$\beta_{\chi 2}{ }^{2}$	$\beta_{X Y^{3}}$
	$\beta_{\gamma^{2}}$	$\beta_{X Y^{2}}$	$\beta_{Y 3}$	$\beta^{2}{ }^{2}{ }^{2}$	$\beta_{X Y 3}$	$\beta_{X Y}{ }^{3}$	

If $\beta_{X^{2} Y^{2}}=\beta_{X Y X Y}$, then the BQTMP reduces to the classical bivariate quartic moment problem.

Bivariate quartic moment problem - results

- Curto, Fialkow (1996-2014): a complete solution of the classical singular case, i.e., \mathcal{M}_{2} is non-invertible. Main tool: a rank-preserving extension of \mathcal{M}_{2} to \mathcal{M}_{3}.

Bivariate quartic moment problem - results

- Curto, Fialkow (1996-2014): a complete solution of the classical singular case, i.e., \mathcal{M}_{2} is non-invertible.

Main tool: a rank-preserving extension of \mathcal{M}_{2} to \mathcal{M}_{3}.

- Fialkow, Nie (2010): the classical non-singular case always admits a measure, i.e., \mathcal{M}_{2} is positive definite.

Proof: not constructive (uses convex analysis).

Bivariate quartic moment problem - results

- ${ }^{7}$ Curto, Fialkow (1996-2014): a complete solution of the classical singular case, i.e., \mathcal{M}_{2} is non-invertible.

Main tool: a rank-preserving extension of \mathcal{M}_{2} to \mathcal{M}_{3}.

- Fialkow, Nie (2010): the classical non-singular case always admits a measure, i.e., \mathcal{M}_{2} is positive definite.

Proof: not constructive (uses convex analysis).

- Curto, Yoo (2016): a concrete construction of a measure for a positive definite \mathcal{M}_{2}.

Measure: 6-atomic.

Bivariate quartic moment problem - results

- ${ }_{\text {C }}$ Curto, Fialkow (1996-2014): a complete solution of the classical singular case, i.e., \mathcal{M}_{2} is non-invertible.

Main tool: a rank-preserving extension of \mathcal{M}_{2} to \mathcal{M}_{3}.

- Fialkow, Nie (2010): the classical non-singular case always admits a measure, i.e., \mathcal{M}_{2} is positive definite.

Proof: not constructive (uses convex analysis).

- Curto, Yoo (2016): a concrete construction of a measure for a positive definite \mathcal{M}_{2}.

Measure: 6-atomic.

- Burgdorf, Klep (2010, 2012): a generalization of the classical results on solvability to the tracial case and a solution for non-singular \mathcal{M}_{2} - the measure always exists.

Proof: not constructive (duality with trace polynomials) but 15 atoms of size 2 are sufficient.

- Motivation: Solve a singular tracial moment problem for \mathcal{M}_{2}.
?? Main tool: a rank-preserving extension of \mathcal{M}_{2} to \mathcal{M}_{3} ??
- Burgdorf, Klep (2010, 2012): a generalization of the classical results on solvability to the tracial case and a solution for non-singular \mathcal{M}_{2} - the measure always exists.

Proof: not constructive (duality with trace polynomials) but 15 atoms of size 2 are sufficient.

Our results

We assume that $\mathcal{M}_{n}, n \geq 2$, is such that \mathcal{M}_{2} is non-invertible and $\beta_{X^{2} Y^{2}} \neq \beta_{X Y X Y}$.

We assume that $\mathcal{M}_{n}, n \geq 2$, is such that \mathcal{M}_{2} is non-invertible and $\beta_{X^{2} Y^{2}} \neq \beta_{X Y X Y}$.
(1) For $n=2$ the existence of a rank-preserving extension of \mathcal{M}_{2} to \mathcal{M}_{3} is mostly not a necessary condition for the existence of a measure.

We assume that $\mathcal{M}_{n}, n \geq 2$, is such that \mathcal{M}_{2} is non-invertible and $\beta_{X^{2} Y^{2}} \neq \beta_{X Y X Y}$.
(1) For $n=2$ the existence of a rank-preserving extension of \mathcal{M}_{2} to \mathcal{M}_{3} is mostly not a necessary condition for the existence of a measure.
(2) If $\operatorname{rank}\left(\mathcal{M}_{2}\right) \leq 3$, then β does not admit a measure.

We assume that $\mathcal{M}_{n}, n \geq 2$, is such that \mathcal{M}_{2} is non-invertible and $\beta_{X^{2} Y^{2}} \neq \beta_{X Y X Y}$.
(1) For $n=2$ the existence of a rank-preserving extension of \mathcal{M}_{2} to \mathcal{M}_{3} is mostly not a necessary condition for the existence of a measure.
(2) If $\operatorname{rank}\left(\mathcal{M}_{2}\right) \leq 3$, then β does not admit a measure.
(3) For $\operatorname{rank}\left(\mathcal{M}_{2}\right) \in\{4,5\}$, we can characterize exactly when a measure exists, what is the type of a minimal measure and describe its uniqueness.

Our results

We assume that $\mathcal{M}_{n}, n \geq 2$, is such that \mathcal{M}_{2} is non-invertible and $\beta_{X^{2} Y^{2}} \neq \beta_{X Y X Y}$.
(1) For $n=2$ the existence of a rank-preserving extension of \mathcal{M}_{2} to \mathcal{M}_{3} is mostly not a necessary condition for the existence of a measure.
(2) If $\operatorname{rank}\left(\mathcal{M}_{2}\right) \leq 3$, then β does not admit a measure.
(3) For $\operatorname{rank}\left(\mathcal{M}_{2}\right) \in\{4,5\}$, we can characterize exactly when a measure exists, what is the type of a minimal measure and describe its uniqueness.
(0) If $\operatorname{rank}\left(\mathcal{M}_{2}\right)=6$, then the existence of a measure is almost always equivalent to the feasibilty of certain linear matrix inequalities and atoms of size 2 suffice.

Main techical tools

Assume that $\beta^{(2 n)}$ admits a measure consisting of atoms

$$
\left(X_{1}, Y_{1}\right) \in\left(\mathbb{S}^{t_{1} \times t_{1}}\right)^{2}, \ldots,\left(X_{N}, Y_{N}\right) \in\left(\mathbb{S}^{t_{N} \times t_{N}}\right)^{2} .
$$

Then:
(1) Positive semidefiniteness: \mathcal{M}_{n} is psd.

Main techical tools

Assume that $\beta^{(2 n)}$ admits a measure consisting of atoms

$$
\left(X_{1}, Y_{1}\right) \in\left(\mathbb{S R}^{t_{1} \times t_{1}}\right)^{2}, \ldots,\left(X_{N}, Y_{N}\right) \in\left(\mathbb{S}^{t_{N} \times t_{N}}\right)^{2} .
$$

Then:
(1) Positive semidefiniteness: \mathcal{M}_{n} is psd.
(3) Support of a measure: For $p \in \mathbb{R}\langle X, Y\rangle_{\leq n}$

$$
\underbrace{p\left(X_{1}, Y_{1}\right)=\ldots=p\left(X_{N}, Y_{N}\right)=0}_{\text {usual evaluations }} \text { iff } \underbrace{p(\mathbb{X}, \mathbb{Y})=0 \text { in } \mathcal{M}_{n} .}_{\text {replacing words by columns of } \mathcal{M}_{n}}
$$

Main techical tools

Assume that $\beta^{(2 n)}$ admits a measure consisting of atoms

$$
\left(X_{1}, Y_{1}\right) \in\left(\mathbb{S R}^{t_{1} \times t_{1}}\right)^{2}, \ldots,\left(X_{N}, Y_{N}\right) \in\left(\mathbb{S}^{t_{N} \times t_{N}}\right)^{2} .
$$

Then:
(1) Positive semidefiniteness: \mathcal{M}_{n} is psd.
(2) Support of a measure: For $p \in \mathbb{R}\langle X, Y\rangle_{\leq n}$

$$
\underbrace{p\left(X_{1}, Y_{1}\right)=\ldots=p\left(X_{N}, Y_{N}\right)=0}_{\text {usual evaluations }} \text { iff } \underbrace{p(\mathbb{X}, \mathbb{Y})=0 \text { in } \mathcal{M}_{n} .}_{\text {replacing words by columns of } \mathcal{M}_{n}}
$$

(3) Recursive generation: For $p, q \in \mathbb{R}\langle X, Y\rangle_{\leq n}$ such that $p q \in \mathbb{R}\langle X, Y\rangle_{\leq n}$

$$
p(\mathbb{X}, \mathbb{Y})=0 \text { in } \mathcal{M}_{n} \quad \Rightarrow \quad p q(\mathbb{X}, \mathbb{Y})=0 \text { in } \mathcal{M}_{n} .
$$

(4) Affine linear transformations: For $a, b, c, d, e, f \in \mathbb{R}$ with $b f-c e \neq 0$ we define

$$
\phi(x, y)=\left(\phi_{1}(x, y), \phi_{2}(x, y)\right):=(a+b x+c y, d+e x+f y) .
$$

Let $\widetilde{\beta}^{(2 n)}$ be the sequence obtained by the rule

$$
\widetilde{\beta}_{w}=\sum_{w^{\prime}} a_{w^{\prime}} \beta_{w}^{\prime}
$$

where $w\left(\phi_{1}(X, Y), \phi_{2}(X, Y)\right)=\sum_{w^{\prime}} a_{w^{\prime}} w^{\prime}$.
Solving MP for \mathcal{M}_{n} is equivalent to solving MP for $\widetilde{\mathcal{M}}_{n}$.

Main techical tools

Example

For

$$
\phi(x, y)=\left(\phi_{1}(x, y), \phi_{2}(x, y)\right):=(1+x+y, x-y)
$$

we get

$$
\widetilde{\beta}_{X Y}=\beta_{X}-\beta_{Y}+\beta_{X^{2}}-\beta_{X} \beta_{Y}+\beta_{Y} \beta_{X}-\beta_{Y^{2}}
$$

since

$$
X Y \mapsto(1+X+Y)(X-Y)=X-Y+X^{2}-X Y+Y X-Y^{2}
$$

Curto \& Fialkow result explicitly

Theorem (Curto, Fialkow)

Suppose $\beta \equiv \beta^{(4)}$ is a commutative sequence with the associated moment matrix \mathcal{M}_{2}. Let

$$
\mathcal{V}:=\bigcap_{\substack{g \in \mathbb{R}[x, y] \leq 2 \\ g(\mathbb{X}, \mathbb{Y})=0}} \mathcal{V}(g)
$$

be the variety associated to \mathcal{M}_{2} and $p \in \mathbb{R}[x, y]$ a polynomial of degree 2. TFAE:
(1) β admits a measure supported in $\mathcal{V}(p)$.
(2) $\mathcal{M}(2)$ is positive semidefinite, recursively generated, satisfies rank $(M(2)) \leq \operatorname{card} \mathcal{V}$ and has a column dependency relation $p(\mathbb{X}, \mathbb{Y})=0$.

Rank-preserving extension of \mathcal{M}_{2} to \mathcal{M}_{3}

Rank-preserving extension of \mathcal{M}_{2} to \mathcal{M}_{3}

\mathcal{M}_{2} of rank 6 satisfying the relation $\mathbb{X}^{2}+\mathbb{Y}^{2}=\mathbb{1}$.

Rank-preserving extension of \mathcal{M}_{2} to \mathcal{M}_{3}

\mathcal{M}_{2} of rank 6 satisfying the relation $\mathbb{X}^{2}+\mathbb{Y}^{2}=\mathbb{1}$.

- B_{3} must satisfy

$$
\begin{array}{rr}
\beta_{X^{2} Y^{3}}=\beta_{X Y^{2} X Y}=\beta_{X^{2} Y}-q, & \beta_{Y^{5}}=\beta_{Y}-2 \beta_{X^{2} Y}+q, \\
\beta_{X^{3} Y^{2}}=\beta_{X^{2} Y X Y}=\beta_{X^{3}}-p, & \beta_{X^{5}}=p, \\
\beta_{X Y^{4}}=\beta_{X}-2 \beta_{X^{3}}+p, & \beta_{X^{4} Y}=q,
\end{array}
$$

where $p, q \in \mathbb{R}$ are parameters.

Rank-preserving extension of \mathcal{M}_{2} to \mathcal{M}_{3}

\mathcal{M}_{2} of rank 6 satisfying the relation $\mathbb{X}^{2}+\mathbb{Y}^{2}=\mathbb{1}$.

- B_{3} must satisfy

$$
\begin{array}{rr}
\beta_{X^{2} Y^{3}}=\beta_{X Y^{2} X Y}=\beta_{X^{2} Y}-q, & \beta_{Y^{5}}=\beta_{Y}-2 \beta_{X^{2} Y}+q, \\
\beta_{X^{3} Y^{2}}=\beta_{X^{2} Y X Y}=\beta_{X^{3}}-p, & \beta_{X^{5}}=p, \\
\beta_{X Y^{4}}=\beta_{X}-2 \beta_{X^{3}}+p, & \beta_{X^{4} Y}=q,
\end{array}
$$

where $p, q \in \mathbb{R}$ are parameters.

- Define

$$
\begin{aligned}
& M_{1}:=\left\{\mathbb{1}, \mathbb{X}, \mathbb{Y}, \mathbb{X}^{2}, \mathbb{X} \mathbb{Y}, \mathbb{Y} \mathbb{X}\right\} \\
& M_{2}:=\left\{\mathbb{X}^{3}, \mathbb{X}^{2} \mathbb{Y}, \mathbb{X} \mathbb{Y} \mathbb{X}, \mathbb{X} \mathbb{Y}^{2}, \mathbb{Y} \mathbb{X}^{2}, \mathbb{Y} \mathbb{X} \mathbb{Y}, \mathbb{Y}^{2} \mathbb{X}, \mathbb{Y}^{3}\right\}
\end{aligned}
$$

and calculate 6×10 matrix

$$
W=\left.\left(\mathcal{M}_{2} \mid M_{1}\right)^{-1} B_{3}\right|_{M_{1}, M_{2}} .
$$

Rank-preserving extension of \mathcal{M}_{2} to \mathcal{M}_{3}

- Then the only candidate for C_{3} is equal to

$$
C_{3}:=\left.W^{t} \mathcal{M}_{2}\right|_{M_{1}} W
$$

and \mathcal{M}_{3} has a moment structure if and only if
$C_{47}=C_{66}$,
$C_{16}=C_{23}$,
$C_{28}=C_{44}$,
$C_{25}=C_{33}$,
$C_{48}=C_{68}$,
$C_{26}=C_{27}$.
$C_{12}=C_{13}$,
$C_{14}=C_{22}$,

Rank 6: $\mathbb{X}^{2}+\mathbb{Y}^{2}=1$, example

For $\beta_{X^{4}} \in\left(\frac{1}{4}, \frac{1}{2}\right)$, the following matrices are psd moment matrices of rank 6 satisfying the relation $\mathbb{X}^{2}+\mathbb{Y}^{2}=\mathbb{1}$,

$$
\mathcal{M}_{2}\left(\beta_{X^{4}}\right)=\left(\begin{array}{ccccccc}
1 & 0 & 0 & \frac{1}{2} & 0 & 0 & \frac{1}{2} \\
0 & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\
\frac{1}{2} & 0 & \frac{1}{2} & \beta_{X^{4}} & 0 & 0 & \frac{1}{2}-\beta_{X^{4}} \\
0 & 0 & 0 & 0 & \frac{1}{2}-\beta_{X^{4}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{2}-\beta_{X^{4}} & 0 \\
\frac{1}{2} & 0 & 0 & \frac{1}{2}-\beta_{X^{4}} & 0 & 0 & \beta_{X^{4}}
\end{array}\right) .
$$

Rank 6: $\mathbb{X}^{2}+\mathbb{Y}^{2}=\mathbb{1}$, example

For $\beta_{X^{4}} \in\left(\frac{1}{4}, \frac{1}{2}\right)$, the following matrices are psd moment matrices of rank 6 satisfying the relation $\mathbb{X}^{2}+\mathbb{Y}^{2}=\mathbb{1}$,

$$
\mathcal{M}_{2}\left(\beta_{X^{4}}\right)=\left(\begin{array}{ccccccc}
1 & 0 & 0 & \frac{1}{2} & 0 & 0 & \frac{1}{2} \\
0 & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\
\frac{1}{2} & 0 & \frac{0}{2} & \beta_{X^{4}} & 0 & 0 & \frac{1}{2}-\beta_{X^{4}} \\
0 & 0 & 0 & 0 & \frac{1}{2}-\beta_{X^{4}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{2}-\beta_{X^{4}} & 0 \\
\frac{1}{2} & 0 & 0 & \frac{1}{2}-\beta_{X^{4}} & 0 & 0 & \beta_{X^{4}}
\end{array}\right) .
$$

None of them admit a rank-preserving extension to \mathcal{M}_{3}, but it turns out that they all admit a measure of type $(4,1)$.

Rank 6: $\mathbb{X}^{2}+\mathbb{Y}^{2}=\mathbb{1}$, example

For $\beta_{X^{4}} \in\left(\frac{1}{4}, \frac{1}{2}\right)$, the following matrices are psd moment matrices of rank 6 satisfying the relation $\mathbb{X}^{2}+\mathbb{Y}^{2}=\mathbb{1}$,

$$
\mathcal{M}_{2}\left(\beta_{X^{4}}\right)=\left(\begin{array}{ccccccc}
1 & 0 & 0 & \frac{1}{2} & 0 & 0 & \frac{1}{2} \\
0 & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\
\frac{1}{2} & 0 & \frac{0}{2} & \beta_{X^{4}} & 0 & 0 & \frac{1}{2}-\beta_{X^{4}} \\
0 & 0 & 0 & 0 & \frac{1}{2}-\beta_{X^{4}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{2}-\beta_{X^{4}} & 0 \\
\frac{1}{2} & 0 & 0 & \frac{1}{2}-\beta_{X^{4}} & 0 & 0 & \beta_{X^{4}}
\end{array}\right) .
$$

None of them admit a rank-preserving extension to \mathcal{M}_{3}, but it turns out that they all admit a measure of type $(4,1)$.
However, the relation $\mathbb{X}^{2}+\mathbb{Y}^{2}=\mathbb{1}$ does not imply there always exists a measure.

\mathcal{M}_{2} of rank at most 3

Proposition

Suppose $n \geq 2$ and $\beta^{(2 n)}$ is a sequence such that $\beta_{X^{2} Y^{2}} \neq \beta_{X Y X Y}$ and admits a measure. Then the columns

$$
\mathbb{1}, \mathbb{X}, \mathbb{Y}, \mathbb{X} \mathbb{Y}
$$

of \mathcal{M}_{n} are linearly independent.

\mathcal{M}_{2} of rank at most 3

Proposition

Suppose $n \geq 2$ and $\beta^{(2 n)}$ is a sequence such that $\beta_{X^{2} Y^{2}} \neq \beta_{X Y X Y}$ and admits a measure. Then the columns

$$
\mathbb{1}, \mathbb{X}, \mathbb{Y}, \mathbb{X} \mathbb{Y}
$$

of \mathcal{M}_{n} are linearly independent.
Proof.

$$
\mathbf{0}=a \cdot \mathbb{1}+b \cdot \mathbb{X}+c \cdot \mathbb{Y}+d \cdot \mathbb{X} \mathbb{Y}
$$

where $a, b, c, d \in \mathbb{R}$.

- If $d \neq 0$, then $\beta_{X^{2} Y^{2}}=\beta_{X Y X Y} . \rightarrow \leftarrow$
- If $d=0$, the recursive generation implies that

$$
0=a \cdot \mathbb{X}+b \cdot \mathbb{X}^{2}+c \cdot \mathbb{X} \mathbb{Y}=a \cdot \mathbb{Y}+b \cdot \mathbb{X} \mathbb{Y}+c \cdot \mathbb{Y}^{2}
$$

If $b \neq 0$ or $c \neq 0$, it follows that $\beta_{X^{2} Y^{2}}=\beta_{X Y X Y} . \rightarrow \leftarrow$ Hence $b=c=0$. Finally $0=a \cdot \mathbb{1}$ implies that $a=0$.

\mathcal{M}_{2} of rank 4

Theorem

Assume that $\mathbb{1}, \mathbb{X}, \mathbb{Y}, \mathbb{X} \mathbb{Y}$ are linearly independent and write

$$
\begin{aligned}
\mathbb{X}^{2} & =a_{1} \cdot \mathbb{1}+b_{1} \cdot \mathbb{X}+c_{1} \cdot \mathbb{Y}+d_{1} \cdot \mathbb{X} \mathbb{Y} \\
\mathbb{Y} \mathbb{X} & =a_{2} \cdot \mathbb{1}+b_{2} \cdot \mathbb{X}+c_{2} \cdot \mathbb{Y}+d_{2} \cdot \mathbb{X} \\
\mathbb{Y}^{2} & =a_{3} \cdot \mathbb{1}+b_{3} \cdot \mathbb{X}+c_{3} \cdot \mathbb{Y}+d_{3} \cdot \mathbb{X} \mathbb{Y}
\end{aligned}
$$

where $a_{j}, b_{j}, c_{j}, d_{j} \in \mathbb{R}$ for $j=1,2,3$.

\mathcal{M}_{2} of rank 4

Theorem

Assume that $\mathbb{1}, \mathbb{X}, \mathbb{Y}, \mathbb{X} \mathbb{Y}$ are linearly independent and write

$$
\begin{aligned}
\mathbb{X}^{2} & =a_{1} \cdot \mathbb{1}+b_{1} \cdot \mathbb{X}+c_{1} \cdot \mathbb{Y}+d_{1} \cdot \mathbb{X} \mathbb{Y} \\
\mathbb{Y} \mathbb{X} & =a_{2} \cdot \mathbb{1}+b_{2} \cdot \mathbb{X}+c_{2} \cdot \mathbb{Y}+d_{2} \cdot \mathbb{X} \\
\mathbb{Y}^{2} & =a_{3} \cdot \mathbb{1}+b_{3} \cdot \mathbb{X}+c_{3} \cdot \mathbb{Y}+d_{3} \cdot \mathbb{X} \mathbb{Y}
\end{aligned}
$$

where $a_{j}, b_{j}, c_{j}, d_{j} \in \mathbb{R}$ for $j=1,2,3$. Then
(1) $d_{1}=d_{3}=0, d_{2}=-1$.

\mathcal{M}_{2} of rank 4

Theorem

Assume that $\mathbb{1}, \mathbb{X}, \mathbb{Y}, \mathbb{X} \mathbb{Y}$ are linearly independent and write

$$
\begin{aligned}
\mathbb{X}^{2} & =a_{1} \cdot \mathbb{1}+b_{1} \cdot \mathbb{X}+c_{1} \cdot \mathbb{Y} \\
\mathbb{X} \mathbb{Y}+\mathbb{Y} \mathbb{X} & =a_{2} \cdot \mathbb{1}+b_{2} \cdot \mathbb{X}+c_{2} \cdot \mathbb{Y} \\
\mathbb{Y}^{2} & =a_{3} \cdot \mathbb{1}+b_{3} \cdot \mathbb{X}+c_{3} \cdot \mathbb{Y}
\end{aligned}
$$

where $a_{j}, b_{j}, c_{j} \in \mathbb{R}$ for $j=1,2,3$. Then
(2) β admits a measure iff \mathcal{M}_{n} is recursively generated, \mathcal{M}_{2} is psd and

$$
\begin{equation*}
c_{1}=b_{3}=0, \quad b_{2}=c_{3}, \quad c_{2}=b_{1} . \tag{1}
\end{equation*}
$$

\mathcal{M}_{2} of rank 4

Theorem

Assume that $\mathbb{1}, \mathbb{X}, \mathbb{Y}, \mathbb{X} \mathbb{Y}$ are linearly independent and write

$$
\begin{aligned}
\mathbb{X}^{2} & =a_{1} \cdot \mathbb{1}+b_{1} \cdot \mathbb{X}+c_{1} \cdot \mathbb{Y} \\
\mathbb{X} \mathbb{Y}+\mathbb{Y} \mathbb{X} & =a_{2} \cdot \mathbb{1}+b_{2} \cdot \mathbb{X}+c_{2} \cdot \mathbb{Y} \\
\mathbb{Y}^{2} & =a_{3} \cdot \mathbb{1}+b_{3} \cdot \mathbb{X}+c_{3} \cdot \mathbb{Y}
\end{aligned}
$$

where $a_{j}, b_{j}, c_{j} \in \mathbb{R}$ for $j=1,2,3$. Then
(2) β admits a measure iff \mathcal{M}_{n} is recursively generated, \mathcal{M}_{2} is psd and

$$
\begin{equation*}
c_{1}=b_{3}=0, \quad b_{2}=c_{3}, \quad c_{2}=b_{1} . \tag{1}
\end{equation*}
$$

Moreover, if $n>2$ then the equations (1) follow from \mathcal{M}_{n} being recursively generated.

\mathcal{M}_{2} of rank 4

Theorem

Assume that $\mathbb{1}, \mathbb{X}, \mathbb{Y}, \mathbb{X} \mathbb{Y}$ are linearly independent, \mathcal{M}_{2} is $p s d$ and there are $a_{1}, a_{2}, a_{3}, b_{1}, b_{2} \in \mathbb{R}$ such that

$$
\begin{aligned}
\mathbb{X}^{2} & =a_{1} \cdot \mathbb{1}+b_{1} \cdot \mathbb{X} \\
\mathbb{X} \mathbb{Y}+\mathbb{Y} \mathbb{X} & =a_{2} \cdot \mathbb{1}+b_{2} \cdot \mathbb{X}+b_{1} \cdot \mathbb{Y} \\
\mathbb{Y}^{2} & =a_{3} \cdot \mathbb{1}+b_{2} \cdot \mathbb{Y}
\end{aligned}
$$

(3) The minimal measure is of type $(0,1)$ with a unique (up to orthogonal equivalence) atom $(X, Y) \in\left(\mathbb{S R}^{2 \times 2}\right)^{2}$ given by

$$
\begin{aligned}
& \quad\left(\left(\begin{array}{cc}
\sqrt{a_{1}+\frac{b_{1}^{2}}{4}+\frac{b_{1}}{2}} & 0 \\
0 & -\sqrt{a_{1}+\frac{b_{1}^{2}}{4}+\frac{b_{1}}{2}}
\end{array}\right), c \cdot\left(\begin{array}{cc}
a+b_{2} & \sqrt{4-a^{2}} \\
\sqrt{4-a^{2}} & -a+b_{2}
\end{array}\right)\right), \\
& \text { where } a=\frac{4 a_{2}+2 b_{1} b_{2}}{\sqrt{\left(4 a_{1}+b_{1}^{2}\right)\left(4 a_{3}+b_{2}^{2}\right)}}, c=\frac{1}{2} \sqrt{a_{3}+\frac{b_{2}^{2}}{4}} .
\end{aligned}
$$

\mathcal{M}_{2} of rank 5 or 6 - basic reduction 1

Proposition (Basic column relations)

Suppose $\beta \equiv \beta^{(2 n)}$ generates \mathcal{M}_{n} with \mathcal{M}_{2} of rank 5 or 6 . If β admits a measure, then we may assume (by applying an affine linear transformation on β) that:
(1) If $\operatorname{rank}\left(\mathcal{M}_{2}\right)=5$, then \mathcal{M}_{n} satisfies

$$
X Y+\mathbb{Y X}=0
$$

and one of

$$
\mathbb{X}^{2}+\mathbb{Y}^{2}=\mathbb{1} \quad \text { or } \quad \mathbb{Y}^{2}-\mathbb{X}^{2}=\mathbb{1} \quad \text { or } \quad \mathbb{Y}^{2}=\mathbb{1} \quad \text { or } \quad \mathbb{Y}^{2}=\mathbb{X}^{2} .
$$

(2) If $\operatorname{rank}\left(\mathcal{M}_{2}\right)=6$, then \mathcal{M}_{n} satisfies one of

$$
\mathbb{X} \mathbb{Y}+\mathbb{Y} \mathbb{X}=0 \quad \text { or } \quad \mathbb{X}^{2}+\mathbb{Y}^{2}=\mathbb{1} \quad \text { or } \quad \mathbb{Y}^{2}-\mathbb{X}^{2}=\mathbb{1} \quad \text { or } \quad \mathbb{Y}^{2}=\mathbb{1},
$$

\mathcal{M}_{2} of rank 5 or 6 - basic reduction 1

Proposition (Basic column relations)

Suppose $\beta \equiv \beta^{(2 n)}$ generates \mathcal{M}_{n} with \mathcal{M}_{2} of rank 5 or 6 . If β admits a measure, then we may assume (by applying an affine linear transformation on β) that:
(1) If $\operatorname{rank}\left(\mathcal{M}_{2}\right)=5$, then \mathcal{M}_{n} satisfies

$$
\mathbb{X Y}+\mathbb{Y} \mathbb{X}=\mathbf{0} \quad \Rightarrow \quad \text { many } 0 \text { 's in } \mathcal{M}_{2}
$$

and one of

$$
\mathbb{X}^{2}+\mathbb{Y}^{2}=\mathbb{1} \quad \text { or } \quad \mathbb{Y}^{2}-\mathbb{X}^{2}=\mathbb{1} \quad \text { or } \quad \mathbb{Y}^{2}=\mathbb{1} \quad \text { or } \quad \mathbb{Y}^{2}=\mathbb{X}^{2}
$$

(2) If $\operatorname{rank}\left(\mathcal{M}_{2}\right)=6$, then \mathcal{M}_{n} satisfies one of

$$
\mathbb{X} \mathbb{Y}+\mathbb{Y} X=0 \quad \text { or } \quad \mathbb{X}^{2}+\mathbb{Y}^{2}=\mathbb{1} \quad \text { or } \quad \mathbb{Y}^{2}-\mathbb{X}^{2}=\mathbb{1} \quad \text { or } \quad \mathbb{Y}^{2}=\mathbb{1}
$$

Basic reduction 1: idea of the proof

Case 1: The set $\left\{1, \mathbb{X}, \mathbb{Y}, \mathbb{X}^{2}, \mathbb{X Y}\right\}$ is the basis for $\mathcal{C}_{\mathcal{M}_{2}}$.

- $\exists a_{j}, b_{j}, c_{j}, d_{j}, e_{j} \in \mathbb{R}$ for $j=1,2$ such that

$$
\begin{aligned}
\mathbb{Y} \mathbb{X} & =a_{1} \mathbb{1}+b_{1} \mathbb{X}+c_{1} \mathbb{Y}+d_{1} \mathbb{X}^{2}+e_{1} \mathbb{X} \mathbb{Y} \\
\mathbb{Y}^{2} & =a_{2} \mathbb{1}+b_{2} \mathbb{X}+c_{2} \mathbb{Y}+d_{2} \mathbb{X}^{2}+e_{2} \mathbb{X} \mathbb{Y}
\end{aligned}
$$

Basic reduction 1: idea of the proof

Case 1: The set $\left\{1, \mathbb{X}, \mathbb{Y}, \mathbb{X}^{2}, \mathbb{X Y}\right\}$ is the basis for $\mathcal{C}_{\mathcal{M}_{2}}$.

- $\exists a_{j}, b_{j}, c_{j}, d_{j}, e_{j} \in \mathbb{R}$ for $j=1,2$ such that

$$
\begin{aligned}
\mathbb{Y} \mathbb{X} & =a_{1} \mathbb{1}+b_{1} \mathbb{X}+c_{1} \mathbb{Y}+d_{1} \mathbb{X}^{2}+e_{1} \mathbb{X} \mathbb{Y} \\
\mathbb{Y}^{2} & =a_{2} \mathbb{1}+b_{2} \mathbb{X}+c_{2} \mathbb{Y}+d_{2} \mathbb{X}^{2}+e_{2} \mathbb{X} \mathbb{Y}
\end{aligned}
$$

- Comparing rows $\mathbb{X} \mathbb{Y}$ and $\mathbb{Y} \mathbb{X}: e_{1}=-1$ and $e_{2}=0$.

Basic reduction 1: idea of the proof

Case 1: The set $\left\{1, \mathbb{X}, \mathbb{Y}, \mathbb{X}^{2}, \mathbb{X Y}\right\}$ is the basis for $\mathcal{C}_{\mathcal{M}_{2}}$.

- $\exists a_{j}, b_{j}, c_{j}, d_{j} \in \mathbb{R}$ for $j=1,2$ such that

$$
\begin{aligned}
\mathbb{X}+\mathbb{Y} \mathbb{X} & =a_{1} \mathbb{1}+b_{1} \mathbb{X}+c_{1} \mathbb{Y}+d_{1} \mathbb{X}^{2}, \\
\mathbb{Y}^{2} & =a_{2} \mathbb{1}+b_{2} \mathbb{X}+c_{2} \mathbb{Y}+d_{2} \mathbb{X}^{2} .
\end{aligned}
$$

Basic reduction 1: idea of the proof

Case 1: The set $\left\{1, \mathbb{X}, \mathbb{Y}, \mathbb{X}^{2}, \mathbb{X} \mathbb{Y}\right\}$ is the basis for $\mathcal{C}_{\mathcal{M}_{2}}$.

- $\exists a_{j}, b_{j}, c_{j}, d_{j} \in \mathbb{R}$ for $j=1,2$ such that

$$
\begin{aligned}
\mathbb{X}+\mathbb{Y} \mathbb{X} & =a_{1} \mathbb{I}+b_{1} \mathbb{X}+c_{1} \mathbb{Y}+d_{1} \mathbb{X}^{2}, \\
\mathbb{Y}^{2} & =a_{2} \mathbb{1}+b_{2} \mathbb{X}+c_{2} \mathbb{Y}+d_{2} \mathbb{X}^{2} .
\end{aligned}
$$

- Focus on \mathbb{Y}^{2} :
- Case 1.1: $d_{2}<0$:

Basic reduction 1: idea of the proof

Case 1: The set $\left\{1, \mathbb{X}, \mathbb{Y}, \mathbb{X}^{2}, \mathbb{X Y}\right\}$ is the basis for $\mathcal{C}_{\mathcal{M}_{2}}$.

- $\exists a_{j}, b_{j}, c_{j}, d_{j} \in \mathbb{R}$ for $j=1,2$ such that

$$
\begin{aligned}
\mathbb{X}+\mathbb{Y} \mathbb{X} & =a_{1} \mathbb{1}+b_{1} \mathbb{X}+c_{1} \mathbb{Y}+d_{1} \mathbb{X}^{2}, \\
\mathbb{Y}^{2} & =a_{2} \mathbb{1}+b_{2} \mathbb{X}+c_{2} \mathbb{Y}+d_{2} \mathbb{X}^{2} .
\end{aligned}
$$

- Focus on \mathbb{Y}^{2} :
- Case 1.1: $d_{2}<0$:

$$
\begin{aligned}
(\underbrace{\mathbb{Y}^{2}-\frac{c_{2}}{2}}_{\phi_{2}(X, Y)})^{2} & =-(\underbrace{\sqrt{\left|d_{2}\right| \mathbb{X}}-\frac{b_{2}}{2 \sqrt{\left|d_{2}\right|}}}_{\phi_{1}(X, Y)})^{2}+(\underbrace{\left(a_{2}+\frac{c_{2}^{2}}{4}+\frac{b_{2}^{2}}{4 d_{2}}\right.}_{=: C>0}) 1 . \\
\quad \phi(X, Y) & =\left(\frac{1}{\sqrt{C}} \phi_{1}(X, Y), \frac{1}{\sqrt{C}} \phi_{2}(X, Y)\right)
\end{aligned}
$$

Basic reduction 1: idea of the proof

Case 1: The set $\left\{\mathbb{1}, \mathbb{X}, \mathbb{Y}, \mathbb{X}^{2}, \mathbb{X Y}\right\}$ is the basis for $\mathcal{C}_{\mathcal{M}_{2}}$.

- $\exists \mathrm{a}_{j}, b_{j}, c_{j}, d_{j} \in \mathbb{R}$ for $j=1,2$ such that

$$
\begin{aligned}
\mathbb{X} Y+\mathbb{Y} \mathbb{X} & =a_{1} \mathbb{I}+b_{1} \mathbb{X}+c_{1} \mathbb{Y}+d_{1} \mathbb{X}^{2}, \\
\mathbb{X}^{2}+\mathbb{Y}^{2} & =1 .
\end{aligned}
$$

- Focus on \mathbb{Y}^{2} :
- Case 1.1: $d_{2}<0$:

$$
\begin{aligned}
(\underbrace{\mathbb{Y}^{2}-\frac{c_{2}}{2}}_{\phi_{2}(X, Y)})^{2} & =-(\underbrace{\sqrt{\left|d_{2}\right| \mathbb{X}}-\frac{b_{2}}{2 \sqrt{\left|d_{2}\right|}}}_{\phi_{1}(X, Y)})^{2}+(\underbrace{\left(a_{2}+\frac{c_{2}^{2}}{4}+\frac{b_{2}^{2}}{4 d_{2}}\right.}_{=: C>0}) 1 . \\
\phi(X, Y) & =\left(\frac{1}{\left.\sqrt{C} \phi_{1}(X, Y), \frac{1}{\sqrt{C}} \phi_{2}(X, Y)\right)}\right.
\end{aligned}
$$

Basic reduction 1: idea of the proof

Case 1: The set $\left\{\mathbb{1}, \mathbb{X}, \mathbb{Y}, \mathbb{X}^{2}, \mathbb{X} \mathbb{Y}\right\}$ is the basis for $\mathcal{C}_{\mathcal{M}_{2}}$.

- $\exists a_{1}, b_{1}, c_{1}, d_{1} \in \mathbb{R}$ such that

$$
\begin{aligned}
\mathbb{X} \mathbb{Y}+\mathbb{Y} \mathbb{X} & =a_{1} \mathbb{I}+b_{1} \mathbb{X}+c_{1} \mathbb{Y}+d_{1} \mathbb{X}^{2}, \\
\mathbb{X}^{2}+\mathbb{Y}^{2} & =\mathbb{1} .
\end{aligned}
$$

Basic reduction 1: idea of the proof

Case 1: The set $\left\{1, \mathbb{X}, \mathbb{Y}, \mathbb{X}^{2}, \mathbb{X Y}\right\}$ is the basis for $\mathcal{C}_{\mathcal{M}_{2}}$.

- $\exists a_{1}, b_{1}, c_{1}, d_{1} \in \mathbb{R}$ such that

$$
\begin{aligned}
\mathbb{X} \mathbb{Y}+\mathbb{Y} \mathbb{X} & =a_{1} \mathbb{1}+b_{1} \mathbb{X}+c_{1} \mathbb{Y}+d_{1} \mathbb{X}^{2} \\
\mathbb{X}^{2}+\mathbb{Y}^{2} & =\mathbb{1}
\end{aligned}
$$

- RG relations:

$$
\begin{aligned}
\mathbb{X}^{2} \mathbb{Y}+\mathbb{X} \mathbb{X} & =a_{1} \mathbb{X}+b_{1} \mathbb{X}^{2}+c_{1} \mathbb{X} \mathbb{Y}+d_{1} \mathbb{X}^{3} \\
\mathbb{Y} \mathbb{X}+\mathbb{Y}^{2} \mathbb{X} & =a_{1} \mathbb{Y}+b_{1} \mathbb{Y} \mathbb{X}+c_{1} \mathbb{Y}^{2}+d_{1} \mathbb{Y} \mathbb{X}^{2} \\
\mathbb{X}^{3}+\mathbb{Y}^{2} \mathbb{X} & =\mathbb{X}, \quad \mathbb{Y} \mathbb{X}^{2}+\mathbb{Y}^{3}=\mathbb{Y} \\
\mathbb{X}^{2} \mathbb{Y}+\mathbb{Y}^{3} & =\mathbb{Y},
\end{aligned}
$$

Basic reduction 1: idea of the proof

Case 1: The set $\left\{1, \mathbb{X}, \mathbb{Y}, \mathbb{X}^{2}, \mathbb{X Y}\right\}$ is the basis for $\mathcal{C}_{\mathcal{M}_{2}}$.

- $\exists a_{1}, b_{1}, c_{1}, d_{1} \in \mathbb{R}$ such that

$$
\begin{aligned}
\mathbb{X} \mathbb{Y}+\mathbb{Y} \mathbb{X} & =a_{1} \mathbb{1}+b_{1} \mathbb{X}+c_{1} \mathbb{Y}+d_{1} \mathbb{X}^{2} \\
\mathbb{X}^{2}+\mathbb{Y}^{2} & =\mathbb{1}
\end{aligned}
$$

- RG relations:

$$
\begin{aligned}
\mathbb{X}^{2} \mathbb{Y}+\mathbb{X} \mathbb{X} & =a_{1} \mathbb{X}+b_{1} \mathbb{X}^{2}+0 \mathbb{X} \mathbb{Y}+d_{1} \mathbb{X}^{3} \\
\mathbb{Y} \mathbb{Y}+\mathbb{Y}^{2} \mathbb{X} & =a_{1} \mathbb{Y}+0 \mathbb{Y} \mathbb{X}+c_{1} \mathbb{Y}^{2}+d_{1} \mathbb{X} \mathbb{X}^{2} \\
\mathbb{X}^{3}+\mathbb{Y}^{2} \mathbb{X} & =\mathbb{X}, \quad \mathbb{Y}^{2}+\mathbb{Y}^{3}=\mathbb{Y} \\
\mathbb{X}^{2} \mathbb{Y}+\mathbb{Y}^{3} & =\mathbb{Y},
\end{aligned}
$$

Basic reduction 1: idea of the proof

Case 1: The set $\left\{1, \mathbb{X}, \mathbb{Y}, \mathbb{X}^{2}, \mathbb{X Y}\right\}$ is the basis for $\mathcal{C}_{\mathcal{M}_{2}}$.

- $\exists a_{1}, d_{1} \in \mathbb{R}$ such that

$$
\begin{aligned}
\mathbb{X} \mathbb{Y}+\mathbb{Y} \mathbb{X} & =a_{1} \mathbb{1}+d_{1} \mathbb{X}^{2} \\
\mathbb{X}^{2}+\mathbb{Y}^{2} & =\mathbb{1}
\end{aligned}
$$

Basic reduction 1: idea of the proof

Case 1: The set $\left\{1, \mathbb{X}, \mathbb{Y}, \mathbb{X}^{2}, \mathbb{X Y}\right\}$ is the basis for $\mathcal{C}_{\mathcal{M}_{2}}$.

- $\exists a_{1}, d_{1} \in \mathbb{R}$ such that

$$
\begin{aligned}
\mathbb{X} \mathbb{Y}+\mathbb{Y} \mathbb{X} & =a_{1} \mathbb{1}+d_{1} \mathbb{X}^{2} \\
\mathbb{X}^{2}+\mathbb{Y}^{2} & =\mathbb{1}
\end{aligned}
$$

- Continue the analysis and we end up with:

$$
\begin{array}{r}
\mathbb{X}+\mathbb{Y} \mathbb{X}=\mathbf{0} \\
\mathbb{X}^{2}+\mathbb{Y}^{2}=\mathbb{1},
\end{array}
$$

or

$$
\begin{aligned}
\mathbb{X} \mathbb{Y}+\mathbb{Y} \mathbb{X} & =\mathbf{0} \\
\mathbb{Y}^{2} & =\mathbb{1}
\end{aligned}
$$

Basic reduction 2

Proposition (Form of the atoms)

Suppose $\beta \equiv \beta^{(2 n)}$ generates \mathcal{M}_{n} satisfying one of:

$$
\mathbb{X} \mathbb{Y}+\mathbb{Y} \mathbb{X}=0 \quad \text { or } \quad \mathbb{X}^{2}+\mathbb{Y}^{2}=\mathbb{1} \quad \text { or } \quad \mathbb{Y}^{2}-\mathbb{X}^{2}=\mathbb{1}
$$

If β admits a measure, then:
(1) There exists a measure with atoms of the following two forms:

- $\left(x_{i}, y_{i}\right) \in \mathbb{R}^{2}$.
- $\left(X_{i}, Y_{i}\right) \in\left(\mathbb{S R}^{2 \times 2}\right)^{2}$ such that

$$
X_{i}=\left(\begin{array}{cc}
\gamma_{i} & b_{i} \\
b_{i} & -\gamma_{i}
\end{array}\right) \quad \text { and } \quad Y_{i}=\left(\begin{array}{cc}
\mu_{i} & \mathbf{0} \\
\mathbf{0} & -\mu_{i}
\end{array}\right)
$$

where $\gamma_{i} \geq 0, \mu_{i} \neq 0$ and $b_{i} \in \mathbb{R}$.

Basic reduction 2

Proposition (Form of the atoms)

Suppose $\beta \equiv \beta^{(2 n)}$ generates \mathcal{M}_{n} satisfying one of:

$$
\mathbb{X} \mathbb{Y}+\mathbb{Y} \mathbb{X}=0 \quad \text { or } \quad \mathbb{X}^{2}+\mathbb{Y}^{2}=\mathbb{1} \quad \text { or } \quad \mathbb{Y}^{2}-\mathbb{X}^{2}=\mathbb{1}
$$

If β admits a measure, then:
(2) In the measure from (1) all the moments of the form $\beta_{X^{2 i} Y^{2 j-1}}$ and $\beta_{X^{2 i-1} Y^{2 j}}$ come from atoms of size 1.

Basic reduction 2: idea of the proof

Let $(X, Y) \in \mathbb{S R}^{t \times t}$ be the atom of a measure.
(1) $[\mathbf{X Y}+\mathbf{Y X}, \mathbf{Y}]=\mathbf{0}: X Y+Y X$ and Y simultaneously diagonalizable.

Basic reduction 2: idea of the proof

Let $(X, Y) \in \mathbb{S R}^{t \times t}$ be the atom of a measure.
(1) $[\mathbf{X Y}+\mathbf{Y X}, \mathbf{Y}]=\mathbf{0}: X Y+Y X$ and Y simultaneously diagonalizable.
(2) $\mathrm{XY}+\mathrm{YX}$ diagonal :

$$
X=\left(\begin{array}{cc}
D_{1} & B \\
B^{t} & D_{2}
\end{array}\right) \quad \text { and } \quad Y=\left(\begin{array}{cc}
\mu I_{n_{1}} & \mathbf{0} \\
\mathbf{0} & -\mu I_{n_{2}}
\end{array}\right),
$$

where $\mu>0, n_{1}, n_{2} \in \mathbb{N}, D_{1} \in \mathbb{R}^{n_{1} \times n_{1}}$ and $D_{2} \in \mathbb{R}^{n_{2} \times n_{2}}$ are diagonal matrices and $B \in \mathbb{R}^{n_{1} \times n_{2}}$.

Basic reduction 2: idea of the proof

Let $(X, Y) \in \mathbb{S R}^{t \times t}$ be the atom of a measure.
(1) $[\mathbf{X Y}+\mathbf{Y X}, \mathbf{Y}]=\mathbf{0}: X Y+Y X$ and Y simultaneously diagonalizable.
(2) $\mathrm{XY}+\mathrm{YX}$ diagonal :

$$
X=\left(\begin{array}{cc}
D_{1} & B \\
B^{t} & D_{2}
\end{array}\right) \quad \text { and } \quad Y=\left(\begin{array}{cc}
\mu I_{n_{1}} & \mathbf{0} \\
\mathbf{0} & -\mu I_{n_{2}}
\end{array}\right),
$$

where $\mu>0, n_{1}, n_{2} \in \mathbb{N}, D_{1} \in \mathbb{R}^{n_{1} \times n_{1}}$ and $D_{2} \in \mathbb{R}^{n_{2} \times n_{2}}$ are diagonal matrices and $B \in \mathbb{R}^{n_{1} \times n_{2}}$.
(3) Using the relation we may assume that $n_{1}=n_{2}$, $D_{1}=-D_{2}=\gamma I_{n_{1}}$ for some $\gamma \geq 0$.

Basic reduction 2: idea of the proof

Let $(X, Y) \in \mathbb{S R}^{t \times t}$ be the atom of a measure.
(1) $[\mathbf{X Y}+\mathbf{Y X}, \mathbf{Y}]=\mathbf{0}: X Y+Y X$ and Y simultaneously diagonalizable.
(2) $\mathrm{XY}+\mathrm{YX}$ diagonal :

$$
X=\left(\begin{array}{cc}
D_{1} & B \\
B^{t} & D_{2}
\end{array}\right) \quad \text { and } \quad Y=\left(\begin{array}{cc}
\mu I_{n_{1}} & \mathbf{0} \\
\mathbf{0} & -\mu I_{n_{2}}
\end{array}\right),
$$

where $\mu>0, n_{1}, n_{2} \in \mathbb{N}, D_{1} \in \mathbb{R}^{n_{1} \times n_{1}}$ and $D_{2} \in \mathbb{R}^{n_{2} \times n_{2}}$ are diagonal matrices and $B \in \mathbb{R}^{n_{1} \times n_{2}}$.
(3) Using the relation we may assume that $n_{1}=n_{2}$, $D_{1}=-D_{2}=\gamma I_{n_{1}}$ for some $\gamma \geq 0$.
(0) By a further reduction $n_{1}=1$.

\mathcal{M}_{n} with relations $\mathbb{X} \mathbb{Y}+\mathbb{Y} \mathbb{X}=0$ and $\mathbb{X}^{2}+\mathbb{Y}^{2}=1$.

If \mathcal{M}_{n} is recursively generated, then its column space is spanned by the columns

$$
\mathbb{1}, \mathbb{X}, \mathbb{X}^{2}, \ldots, \mathbb{X}^{n}, \mathbb{Y}, \mathbb{X} \mathbb{Y}, \ldots, \mathbb{X}^{n-1} \mathbb{Y}
$$

\mathcal{M}_{n} with relations $\mathbb{X} \mathbb{Y}+\mathbb{Y} \mathbb{X}=0$ and $\mathbb{X}^{2}+\mathbb{Y}^{2}=1$.

If \mathcal{M}_{n} is recursively generated, then its column space is spanned by the columns

$$
\mathbb{1}, \mathbb{X}, \mathbb{X}^{2}, \ldots, \mathbb{X}^{n}, \mathbb{Y}, \mathbb{X} \mathbb{Y}, \ldots, \mathbb{X}^{n-1} \mathbb{Y}
$$

In this basis the moment matrix has the form

$$
\widetilde{\mathcal{M}_{n}}=\left(\begin{array}{cc}
\mathcal{M}_{n}^{X} & B_{n} \\
B_{n} & \mathcal{M}_{n}^{Y}
\end{array}\right)
$$

where $\mathcal{M}_{n}^{X}, \mathcal{M}_{n}^{Y}$ and B_{n} are equal to

\mathcal{M}_{n} with relations $\mathbb{X} \mathbb{Y}+\mathbb{Y} \mathbb{X}=0$ and $\mathbb{X}^{2}+\mathbb{Y}^{2}=1$.

\mathbb{Y}
$\mathbb{X} \mathbb{Y}$
\vdots
$\mathbb{X}^{2 k-1} \mathbb{Y}$
\vdots
$\mathbb{X}^{n-1} \mathbb{Y}$$\left(\begin{array}{cccccc}\beta_{1}-\beta_{X^{2}} & \mathbb{X}_{\mathbb{Y}} & \cdots & \mathbb{X}^{2 k-1} \mathbb{Y} & \cdots & \mathbb{X}^{n-1} \mathbb{Y} \\ 0 & \beta_{X^{2}}-\beta_{X^{4}} & \cdots & \beta_{X^{2 k}}-\beta_{X^{2 k+2}} & \cdots & \\ \vdots & \vdots & \ddots & \vdots & \cdots & \\ 0 & \beta_{X^{2 k}}-\beta_{X^{2 k+2}} & \cdots & \beta_{X^{4 k-2}}-\beta_{X^{4 k}} & \cdots & \\ \vdots & \vdots & \vdots & \vdots & \ddots & \end{array}\right)$

$$
\begin{gathered}
\\
\mathbb{1} \\
\mathbb{X} \\
\mathbb{X} \\
\vdots \\
\mathbb{X}^{n}
\end{gathered}\left(\begin{array}{ccccc}
\beta_{Y} & 0 & \mathbb{X}^{2} \mathbb{Y} & \cdots & \mathbb{X}^{n-1} \mathbb{Y} \\
0 & 0 & 0 & \cdots & 0 \\
& & & & 0 \\
0 & 0 & 0 & \cdots & 0
\end{array}\right)
$$

\mathcal{M}_{n} with relations $\mathbb{X} \mathbb{Y}+\mathbb{Y} \mathbb{X}=0$ and $\mathbb{X}^{2}+\mathbb{Y}^{2}=1$.

By the form of the atoms we know that the blue moments must come from the atoms of size 1.

\mathcal{M}_{n} with relations $\mathbb{X} \mathbb{Y}+\mathbb{Y} \mathbb{X}=0$ and $\mathbb{X}^{2}+\mathbb{Y}^{2}=\mathbb{1}$.

By the form of the atoms we know that the blue moments must come from the atoms of size 1.

Hence $\widetilde{\mathcal{M}}_{n}$ admits a measure if and only if

$$
\widehat{\mathcal{M}}_{n}:=\widetilde{\mathcal{M}}_{n}-\left|\beta_{X}\right| \widetilde{\mathcal{M}}_{n}^{\left(\operatorname{sign}\left(\beta_{X}\right) 1,0\right)}-\left|\beta_{Y}\right| \widetilde{\mathcal{M}}_{n}^{\left(0, \operatorname{sign}\left(\beta_{Y}\right) 1\right)}
$$

admits a measure where $\widetilde{\mathcal{M}}_{n}^{(x, y)}$ is the moment matrix generated by the atom $(x, y) \in \mathbb{R}^{2}$.

\mathcal{M}_{n} with relations $\mathbb{X} \mathbb{Y}+\mathbb{Y} \mathbb{X}=0$ and $\mathbb{X}^{2}+\mathbb{Y}^{2}=\mathbb{1}$.

By the form of the atoms we know that the blue moments must come from the atoms of size 1.
Hence $\widetilde{\mathcal{M}}_{n}$ admits a measure if and only if

$$
\widehat{\mathcal{M}}_{n}:=\widetilde{\mathcal{M}}_{n}-\left|\beta_{X}\right| \widetilde{\mathcal{M}}_{n}^{\left(\operatorname{sign}\left(\beta_{X}\right) 1,0\right)}-\left|\beta_{Y}\right| \widetilde{\mathcal{M}}_{n}^{\left(0, \operatorname{sign}\left(\beta_{Y}\right) 1\right)}
$$

admits a measure where $\widetilde{\mathcal{M}}_{n}^{(x, y)}$ is the moment matrix generated by the atom $(x, y) \in \mathbb{R}^{2}$.
$\widehat{\mathcal{M}}_{n}$ is of the form

$$
\widehat{\mathcal{M}}_{n}=\left(\begin{array}{cc}
\widehat{\mathcal{M}}_{n}^{X} & 0 \\
0 & \widehat{\mathcal{M}}_{n}^{Y}
\end{array}\right)
$$

\mathcal{M}_{n} with relations $\mathbb{X} \mathbb{Y}+\mathbb{Y} \mathbb{X}=0$ and $\mathbb{X}^{2}+\mathbb{Y}^{2}=\mathbb{1}$.

where $\widehat{\mathcal{M}}_{n}^{X}, \widehat{\mathcal{M}}_{n}^{Y}$ are equal to

\mathcal{M}_{n} with relations $\mathbb{X} \mathbb{Y}+\mathbb{Y} \mathbb{X}=0$ and $\mathbb{X}^{2}+\mathbb{Y}^{2}=1$.

By the solution of the truncated Hamburger moment problem (Curto \& Fialkow, 1991), $\widehat{\mathcal{M}}_{n}^{X}$ admits a measure iff $\widehat{\mathcal{M}}_{n}^{X}$ is psd and recursively generated.

\mathcal{M}_{n} with relations $\mathbb{X} \mathbb{Y}+\mathbb{Y} \mathbb{X}=0$ and $\mathbb{X}^{2}+\mathbb{Y}^{2}=\mathbb{1}$.

By the solution of the truncated Hamburger moment problem (Curto \& Fialkow, 1991), $\widehat{\mathcal{M}}_{n}^{X}$ admits a measure iff $\widehat{\mathcal{M}}_{n}^{X}$ is psd and recursively generated.
Moreover, $\widehat{\mathcal{M}}_{n}^{X}$ admits a minimal measure with exactly m atoms (say x_{1}, \ldots, x_{m}) iff $\widehat{\mathcal{M}}_{n}^{X}$ is of rank m.

\mathcal{M}_{n} with relations $\mathbb{X} \mathbb{Y}+\mathbb{Y} \mathbb{X}=0$ and $\mathbb{X}^{2}+\mathbb{Y}^{2}=1$.

By the solution of the truncated Hamburger moment problem (Curto \& Fialkow, 1991), $\widehat{\mathcal{M}}_{n}^{X}$ admits a measure iff $\widehat{\mathcal{M}}_{n}^{X}$ is psd and recursively generated.
Moreover, $\widehat{\mathcal{M}}_{n}^{X}$ admits a minimal measure with exactly m atoms (say x_{1}, \ldots, x_{m}) iff $\widehat{\mathcal{M}}_{n}^{X}$ is of rank m.
If also $\widehat{\mathcal{M}}_{n}^{Y}$ is psd, then the atoms which represent $\widehat{\mathcal{M}}_{n}$ are

$$
\left(\left(\begin{array}{cc}
0 & x_{i} \\
x_{i} & 0
\end{array}\right),\left(\begin{array}{cc}
\sqrt{1-x_{i}^{2}} & 0 \\
0 & -\sqrt{1-x_{i}^{2}}
\end{array}\right)\right) \quad i=1, \ldots, m
$$

\mathcal{M}_{n} with relations $\mathbb{X} \mathbb{Y}+\mathbb{Y} \mathbb{X}=0$ and $\mathbb{X}^{2}+\mathbb{Y}^{2}=\mathbb{1}$.

By the solution of the truncated Hamburger moment problem (Curto \& Fialkow, 1991), $\widehat{\mathcal{M}}_{n}^{X}$ admits a measure iff $\widehat{\mathcal{M}}_{n}^{X}$ is psd and recursively generated.
Moreover, $\widehat{\mathcal{M}}_{n}^{X}$ admits a minimal measure with exactly m atoms (say x_{1}, \ldots, x_{m}) iff $\widehat{\mathcal{M}}_{n}^{X}$ is of rank m.
If also $\widehat{\mathcal{M}}_{n}^{Y}$ is psd, then the atoms which represent $\widehat{\mathcal{M}}_{n}$ are

$$
\left(\left(\begin{array}{cc}
0 & x_{i} \\
x_{i} & 0
\end{array}\right),\left(\begin{array}{cc}
\sqrt{1-x_{i}^{2}} & 0 \\
0 & -\sqrt{1-x_{i}^{2}}
\end{array}\right)\right) \quad i=1, \ldots, m
$$

Moreover, it can be shown that the minimal measures are of one of the types

$$
(1, m-2) \quad \text { or } \quad(2, m-2) \quad \text { or } \quad(3, m-2)
$$

\mathcal{M}_{2} with relations $\mathbb{X} \mathbb{Y}+\mathbb{Y} \mathbb{X}=0$ and $\mathbb{X}^{2}+\mathbb{Y}^{2}=1$.

Theorem

For $\beta=\beta^{(4)}$ we have:
(1) \mathcal{M}_{2} is positive semidefinite if and only if

$$
\left|\beta_{X}\right|<\beta_{X^{2}}<1, \quad\left|\beta_{Y}\right|<\left(1-\beta_{X^{2}}\right), \quad c<\beta_{X^{4}}<\beta_{X^{2}}
$$

where $c:=\frac{-\beta_{x^{2}}^{3}+\beta_{x^{2}}^{4}-\beta_{X}^{2}+\beta_{Y}^{2} \beta_{X}^{2}+3 \beta_{x^{2}} \beta_{X}^{2}-2 \beta_{X^{2}}^{2} \beta_{X}^{2}}{-\beta_{X^{2}}+\beta_{Y}^{2} \beta_{x^{2}}+\beta_{X^{2}}^{2}+\beta_{X}^{2}-\beta_{x^{2}}^{2} \beta_{X}^{2}}$.
(2) β admits a measure if and only if

$$
\begin{aligned}
& \qquad\left|\beta_{Y}\right|<1-\left|\beta_{X}\right|,\left|\beta_{X}\right|<\beta_{X^{2}}<1-\left|\beta_{Y}\right|, d \leq \beta_{X^{4}}<\beta_{X^{2}} \\
& \text { where } d=\frac{-\beta_{X^{2}}^{2}-\left|\beta_{X}\right|+2 \beta_{X^{2}}\left|\beta_{X}\right|+\left|\beta_{Y} \beta_{X}\right|}{-1+\left|\beta_{Y}\right|+\left|\beta_{X}\right|}
\end{aligned}
$$

(3) Around 70.5% of β-s with psd \mathcal{M}_{2} admit a measure. (We integrate w.r.t. the Lebesgue measure.)

\mathcal{M}_{2} with relations $\mathbb{X} \mathbb{Y}+\mathbb{Y} \mathbb{X}=0$ and $\mathbb{X}^{2}+\mathbb{Y}^{2}=1$.

Theorem

(The minimal measure is unique (up to orthogonal equivalence) and of type:

- $(1,1)$ if and only if $\beta_{X} \beta_{Y}=0$ and $\beta_{X^{4}}=c$.

There are two minimal measures (up to orthogonal equivalence) of type:

- $(2,1)$ if and only if $\beta_{X}=\beta_{Y}=0$ or $\left(\beta_{X} \beta_{Y} \neq 0\right.$ and $\left.\beta_{X^{4}}=c\right)$.
- $(3,1)$ if and only if $\beta_{X} \beta_{Y} \neq 0$ and $\beta_{X^{4}} \neq c$.

Rank 6: relation $\mathbb{X}^{2}+\mathbb{Y}^{2}=\mathbb{1}$

\mathcal{M}_{2} (without \mathbb{Y}^{2} row/column) is of the form

$$
\left(\begin{array}{cccccc}
\beta_{1} & \beta_{X} & \beta_{Y} & \beta_{X^{2}} & \beta_{X Y} & \beta_{X Y} \\
\beta_{X} & \beta_{X^{2}} & \beta_{X Y} & \beta_{X^{3}} & \beta_{X^{2} Y} & \beta_{X^{2} Y} \\
\beta_{Y} & \beta_{X Y} & \beta_{1}-\beta_{X^{2}} & \beta_{X^{2} Y} & \beta_{X}-\beta_{X^{3}} & \beta_{X}-\beta_{X^{3}} \\
\beta_{X^{2}} & \beta_{X^{3}} & \beta_{X^{2} Y} & \beta_{X^{4}} & \beta_{X^{3} Y} & \beta_{X^{3} Y} \\
\beta_{X Y} & \beta_{X^{2} Y} & \beta_{X}-\beta_{X^{3}} & \beta_{X^{3} Y} & \beta_{X^{2}}-\beta_{X^{4}} & \beta_{X Y X Y} \\
\beta_{X Y} & \beta_{X^{2} Y} & \beta_{X}-\beta_{X^{3}} & \beta_{X^{3} Y} & \beta_{X Y X Y} & \beta_{X^{2}}-\beta_{X^{4}}
\end{array}\right) .
$$

Rank 6: relation $\mathbb{X}^{2}+\mathbb{Y}^{2}=\mathbb{1}$

\mathcal{M}_{2} (without \mathbb{Y}^{2} row/column) is of the form

By the form of the atoms we know that the blue moments must come from the atoms of size 1 .

Rank 6: relation $\mathbb{X}^{2}+\mathbb{Y}^{2}=\mathbb{1}$

We define the linear matrix polynomial $L(a, b, c, d, e)$ by

$$
\left(\begin{array}{cccccc}
a & \beta_{X} & \beta_{Y} & b & c & c \\
\beta_{X} & b & c & \beta_{X^{3}} & \beta_{X^{2} Y} & \beta_{X^{2} Y} \\
\beta_{Y} & c & a-b & \beta_{X^{2} Y} & \beta_{X}-\beta_{X^{3}} & \beta_{X}-\beta_{X^{3}} \\
b & \beta_{X^{3}} & \beta_{X^{2} Y} & d & e & e \\
c & \beta_{X^{2} Y} & \beta_{X}-\beta_{X^{3}} & e & b-d & b-d \\
c & \beta_{X^{2} Y} & \beta_{X}-\beta_{X^{3}} & e & b-d & b-d
\end{array}\right)
$$

Rank 6: relation $\mathbb{X}^{2}+\mathbb{Y}^{2}=\mathbb{1}$

Theorem

(1) $\beta^{(6)}$ admits a measure if and only if there exist $a, b, c, d, e \in \mathbb{R}$ such that

- $L(a, b, c, d, e) \succeq 0, \quad \mathcal{M}_{2}-L(a, b, c, d, e) \succeq 0$,
- $\left(\mathcal{M}_{2}-L(a, b, c, d, e)\right)_{\{1, \mathbb{X}, \mathbb{Y}, \mathbb{X Y}\}} \succ 0$,
- L is recursively generated and

$$
\operatorname{rank}(L(a, b, c, d, e)) \leq \operatorname{card} \mathcal{V}_{L . .}
$$

Rank 6: relation $\mathbb{X}^{2}+\mathbb{Y}^{2}=\mathbb{1}$

Theorem

(1) $\beta^{(6)}$ admits a measure if and only if there exist $a, b, c, d, e \in \mathbb{R}$ such that

- $L(a, b, c, d, e) \succeq 0, \quad \mathcal{M}_{2}-L(a, b, c, d, e) \succeq 0$,
- $\left(\mathcal{M}_{2}-L(a, b, c, d, e)\right)_{\{1, \mathbb{X}, \mathbb{Y}, \mathbb{X Y}\}} \succ 0$,
- L is recursively generated and

$$
\operatorname{rank}(L(a, b, c, d, e)) \leq \operatorname{card} \mathcal{V}_{L . .}
$$

(2) If $\beta_{X}=\beta_{Y}=\beta_{X^{3}}=\beta_{X^{2} Y}=0$, then the measure always exists and is of type $(4,1)$.

Open questions

(1) What about \mathcal{M}_{2} of rank 6 with the relation $\mathbb{Y}^{2}=\mathbb{1}$?

Open questions

(1) What about \mathcal{M}_{2} of rank 6 with the relation $\mathbb{Y}^{2}=\mathbb{1}$? (Here we cannot prove that the atoms of size 2 are sufficient and produce LMI-s as in the other three cases of rank 6.)

Open questions

(1) What about \mathcal{M}_{2} of rank 6 with the relation $\mathbb{Y}^{2}=\mathbb{1}$? (Here we cannot prove that the atoms of size 2 are sufficient and produce LMI-s as in the other three cases of rank 6.)
(2) Constructive solution for the non-singular \mathcal{M}_{2} ?

Open questions

(1) What about \mathcal{M}_{2} of rank 6 with the relation $\mathbb{Y}^{2}=\mathbb{1}$? (Here we cannot prove that the atoms of size 2 are sufficient and produce LMI-s as in the other three cases of rank 6.)
(2) Constructive solution for the non-singular \mathcal{M}_{2} ? (Since for tracial \mathcal{M}_{2} of rank 6 being psd and rg is not sufficient for the existence of a measure, Curto-Yoo's constructive solution for the nonsingular commutative \mathcal{M}_{2} does not extend to the tracial case.)

Open questions

(1) What about \mathcal{M}_{2} of rank 6 with the relation $\mathbb{Y}^{2}=\mathbb{1}$? (Here we cannot prove that the atoms of size 2 are sufficient and produce LMI-s as in the other three cases of rank 6.)
(2) Constructive solution for the non-singular \mathcal{M}_{2} ? (Since for tracial \mathcal{M}_{2} of rank 6 being psd and rg is not sufficient for the existence of a measure, Curto-Yoo's constructive solution for the nonsingular commutative \mathcal{M}_{2} does not extend to the tracial case.)
(3) Analysis of \mathcal{M}_{3}.

Open questions

(1) What about \mathcal{M}_{2} of rank 6 with the relation $\mathbb{Y}^{2}=\mathbb{1}$?
(Here we cannot prove that the atoms of size 2 are sufficient and produce LMI-s as in the other three cases of rank 6.)
(2) Constructive solution for the non-singular \mathcal{M}_{2} ? (Since for tracial \mathcal{M}_{2} of rank 6 being psd and rg is not sufficient for the existence of a measure, Curto-Yoo's constructive solution for the nonsingular commutative \mathcal{M}_{2} does not extend to the tracial case.)
(3) Analysis of \mathcal{M}_{3}.
(There are examples of \mathcal{M}_{3} generated by 1 atom of size 3 with empty commutative variety and without a representing measure with atoms of size at most 2.)

Thank you for your attention!

