The singular bivariate quartic tracial moment problem

Aljaž Zalar, University of Ljubljana, Slovenia

IWOTA, Lisbon, Portugal July 2019

joint work with Abhishek Bhardwaj, Australian National University

A I > A I > A

Notation

- (X, Y) ... the free monoid generated by the noncommuting letters X, Y, i.e., words in X, Y.
- ℝ⟨X, Y⟩... the free algebra of polynomials in X, Y
 (noncommutative (nc) polynomials), endowed with the
 involution p → p* fixing ℝ ∪ {X, Y} and reversing the order
 of letters in each word.

Example

$$(XY^2 - YX)^* = Y^2X - XY.$$

- The degree |p| of p ∈ ℝ⟨X, Y⟩ is the length of the longest word in p. We write ℝ⟨X, Y⟩_{≤n} for the set of all polynomials of degree at most n.
- A word v is cyclically equivalent to w (v ^{cyc} w) iff v is a cyclic permutation of w, i.e., there exist words u₁, u₂ such that v = u₁u₂, w = u₂u₁.

(日)

Bivariate truncated tracial sequence

Bivariate truncated tracial sequence (BTTS) of order *n* is a sequence of real numbers,

$$\beta \equiv \beta^{(2n)} = (\beta_w)_{|w| \le 2n},$$

indexed by words w in X, Y of length at most 2n such that

Example

For $t \in \mathbb{N}$ and $(A, B) \in (\mathbb{SR}^{t \times t})^2$ (where $\mathbb{SR}^{t \times t}$ denotes symmetric real $t \times t$ matrices), the sequence

$$\beta_w = \operatorname{tr}(w(A, B))$$
 where $|w| \leq 2n$

is a BTTS of order n.

Question

Which TTS's are convex combinations of TTS's as in the example above?

Question

Which TTS's are convex combinations of TTS's as in the example above?

We call β a **bivariate truncated tracial moment sequence** (BTTMS) of order *n* if there exist $N \in \mathbb{N}$, $t_i \in \mathbb{N}$, $\lambda_i \in \mathbb{R}_{>0}$ with $\sum_{i=1}^{N} \lambda_i = 1$ and pairs of $t_i \times t_i$ real symmetric matrices (A_i, B_i) , such that

$$\beta_w = \sum_{i=1}^N \lambda_i \cdot \frac{1}{t_i} \operatorname{tr}(w(A_i, B_i)), \quad \text{for all } |w| \le 2n.$$

Question

Which TTS's are convex combinations of TTS's as in the example above?

We call β a **bivariate truncated tracial moment sequence** (BTTMS) of order *n* if there exist $N \in \mathbb{N}$, $t_i \in \mathbb{N}$, $\lambda_i \in \mathbb{R}_{>0}$ with $\sum_{i=1}^{N} \lambda_i = 1$ and pairs of $t_i \times t_i$ real symmetric matrices (A_i, B_i) , such that

$$\beta_{w} = \sum_{i=1}^{N} \lambda_{i} \cdot \frac{1}{t_{i}} \operatorname{tr}(w(A_{i}, B_{i})), \text{ for all } |w| \leq 2n.$$

Remark

Restricting t_i 's to 1 we get the classical truncated moment problem studied extensively by Curto and Fialkow.

Aljaž Zalar, University of Ljubljana, Slovenia The singular bivariate quartic tracial moment problem

If such representation for β exists, then we say β admits a measure. The matrices (A_i, B_i) are called atoms of size t_i and the numbers λ_i are densities.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

- If such representation for β exists, then we say β admits a measure. The matrices (A_i, B_i) are called atoms of size t_i and the numbers λ_i are densities.
- The measure is of type (m₁, m₂,..., m_r) if it consists of exactly m_i ∈ N ∪ {0} atoms of size i and m_r ≠ 0.

< 同 > < 三 > < 三 >

- If such representation for β exists, then we say β admits a measure. The matrices (A_i, B_i) are called atoms of size t_i and the numbers λ_i are densities.
- The measure is of type (m₁, m₂,..., m_r) if it consists of exactly m_i ∈ N ∪ {0} atoms of size i and m_r ≠ 0.
- A measure for β of type (m₁⁽¹⁾, m₂⁽¹⁾, ..., m_{r1}⁽¹⁾) is minimal, if there does not exist another measure for β of type (m₁⁽²⁾, m₂⁽²⁾,..., m_{r2}⁽²⁾) such that

$$(\underbrace{0,\ldots,0}_{r_1-r_2},m_{r_2}^{(2)},m_{r_2-1}^{(2)},\ldots,m_1^{(2)})\prec_{\mathsf{lex}}(m_{r_1}^{(1)},m_{r_1-1}^{(1)},\ldots,m_1^{(1)}).$$

Remark

O Replacing an atom $(A, B) \in (\mathbb{SR}^{t \times t})^2$ with any atom

 $(\textit{UAU}^t,\textit{UBU}^t) \in (\mathbb{SR}^{t \times t})^2$

where $U \in \mathbb{R}^{t \times t}$ is an orthogonal matrix, generates the same BTTS.

A (1) > A (2) > A

Remark

O Replacing an atom $(A, B) \in (\mathbb{SR}^{t \times t})^2$ with any atom

 $(\textit{UAU}^t,\textit{UBU}^t) \in (\mathbb{SR}^{t \times t})^2$

where $U \in \mathbb{R}^{t \times t}$ is an orthogonal matrix, generates the same BTTS.

By the tracial version of Bayer-Teichmann theorem, studying finite atomic measures is equivalent to studying probability measures on (SR^{t×t})² such that

$$\beta_{\boldsymbol{w}} = \int_{(\mathbb{SR}^{t \times t})^2} \operatorname{tr}(\boldsymbol{w}(\boldsymbol{A}, \boldsymbol{B})) \, \mathrm{d}\mu(\boldsymbol{A}, \boldsymbol{B}).$$

A (10) A (10)

For n = 2 the sequence $\beta^{(4)}$ has 16 parameters:

3 of degree 1: $\beta_1, \beta_X, \beta_Y$ 3 of degree 2: $\beta_{X^2}, \beta_{XY} = \beta_{YX}, \beta_{Y^2}$ 4 of degree 3: $\beta_{X^3}, \beta_{X^2Y} = \beta_{XYX} = \beta_{YX^2}, \beta_{XY^2} = \beta_{YXY} = \beta_{Y^2X}, \beta_{Y^3},$ 6 of degree 4: $\beta_{X^4}, \beta_{X^3Y} = \beta_{X^2YX} = \beta_{XYX^2} = \beta_{YX^3},$ $\beta_{X^2Y^2} = \beta_{XY^2X} = \beta_{Y^2X^2} = \beta_{YX^2Y},$ $\beta_{XYXY} = \beta_{YXYX},$ $\beta_{XY3} = \beta_{YXY^2} = \beta_{Y^2XY} = \beta_{Y^3X}, \beta_{Y^4}.$

• (1) • (1) • (1)

Index rows and columns of \mathcal{M}_n by words in $\mathbb{R}\langle X, Y \rangle_{\leq n}$ in the degree-lexicographic order.

The entry in a row w_1 and a column w_2 of \mathcal{M}_n is $\beta_{w_1^*w_2}$:

Aljaž Zalar, University of Ljubljana, Slovenia The singular bivariate quartic tracial moment problem

・ロト ・四ト ・ヨト ・ヨト

n = 2: 7 × 7 moment matrix \mathcal{M}_2

Y ∑2 XY¥5 X YX YX $\beta_{X^2Y^2}$ β_{XY^3} ¥2 β_{Y^3} $\beta_{X^2Y^2}$ β_{XY^3} β_{XY^3} Bv4

n = 2: 7 × 7 moment matrix \mathcal{M}_2

If $\beta_{X^2Y^2} = \beta_{XYXY}$, then the BQTMP reduces to the classical bivariate quartic moment problem.

Curto, Fialkow (1996-2014): a complete solution of the classical *singular* case, i.e., M₂ is *non-invertible*.
 Main tool: a rank-preserving extension of M₂ to M₃.

- Curto, Fialkow (1996-2014): a complete solution of the classical *singular* case, i.e., M₂ is *non-invertible*.
 Main tool: a rank-preserving extension of M₂ to M₃.
- Fialkow, Nie (2010): the classical *non-singular* case always admits a measure, i.e., M₂ is *positive definite*.
 Proof: not constructive (uses convex analysis).

- Curto, Fialkow (1996-2014): a complete solution of the classical *singular* case, i.e., M₂ is *non-invertible*.
 Main tool: a rank-preserving extension of M₂ to M₃.
- Fialkow, Nie (2010): the classical *non-singular* case always admits a measure, i.e., M₂ is *positive definite*.
 Proof: not constructive (uses convex analysis).
- Curto, Yoo (2016): a concrete construction of a measure for a positive definite M₂.

Measure: 6-atomic.

- Curto, Fialkow (1996-2014): a complete solution of the classical *singular* case, i.e., M₂ is *non-invertible*.
 Main tool: a rank-preserving extension of M₂ to M₃.
- Fialkow, Nie (2010): the classical *non-singular* case always admits a measure, i.e., M₂ is *positive definite*.
 Proof: not constructive (uses convex analysis).
- Curto, Yoo (2016): a concrete construction of a measure for a positive definite M₂.

Measure: 6-atomic.

Burgdorf, Klep (2010, 2012): a generalization of the classical results on solvability to the tracial case and a solution for *non-singular* M₂ - the measure always exists.
 Proof: not constructive (duality with trace polynomials) but 15 atoms of size 2 are sufficient.

Our motivation

Motivation: Solve a singular tracial moment problem for \mathcal{M}_2 .

?? Main tool: a rank-preserving extension of \mathcal{M}_2 to \mathcal{M}_3 ??

Burgdorf, Klep (2010, 2012): a generalization of the classical results on solvability to the tracial case and a solution for *non-singular* M₂ - the measure always exists.
 Proof: not constructive (duality with trace polynomials) but 15 atoms of size 2 are sufficient.

We assume that \mathcal{M}_n , $n \ge 2$, is such that \mathcal{M}_2 is *non-invertible* and $\beta_{\chi^2 \gamma^2} \neq \beta_{\chi \gamma \chi \gamma}$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

We assume that \mathcal{M}_n , $n \ge 2$, is such that \mathcal{M}_2 is *non-invertible* and $\beta_{\chi^2 Y^2} \neq \beta_{\chi Y \chi Y}$.

For n = 2 the existence of a rank-preserving extension of M₂ to M₃ is mostly not a necessary condition for the existence of a measure.

A (1) < A (1) < A (1) </p>

We assume that M_n , $n \ge 2$, is such that M_2 is *non-invertible* and $\beta_{X^2Y^2} \neq \beta_{XYXY}$.

- For n = 2 the existence of a rank-preserving extension of M₂ to M₃ is mostly not a necessary condition for the existence of a measure.
- 2 If $rank(\mathcal{M}_2) \leq 3$, then β does not admit a measure.

We assume that M_n , $n \ge 2$, is such that M_2 is *non-invertible* and $\beta_{X^2Y^2} \neq \beta_{XYXY}$.

- For n = 2 the existence of a rank-preserving extension of M₂ to M₃ is mostly not a necessary condition for the existence of a measure.
- 2 If $rank(\mathcal{M}_2) \leq 3$, then β does not admit a measure.
- Sor rank(M₂) ∈ {4,5}, we can characterize exactly when a measure exists, what is the type of a minimal measure and describe its uniqueness.

(4月) (4日) (4日)

We assume that M_n , $n \ge 2$, is such that M_2 is *non-invertible* and $\beta_{X^2Y^2} \neq \beta_{XYXY}$.

- For n = 2 the existence of a rank-preserving extension of M₂ to M₃ is mostly not a necessary condition for the existence of a measure.
- 2 If $rank(\mathcal{M}_2) \leq 3$, then β does not admit a measure.
- Sor rank(M₂) ∈ {4,5}, we can characterize exactly when a measure exists, what is the type of a minimal measure and describe its uniqueness.
- If rank(M₂) = 6, then the existence of a measure is almost always equivalent to the feasibility of certain linear matrix inequalities and atoms of size 2 suffice.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Assume that $\beta^{(2n)}$ admits a measure consisting of atoms

$$(X_1, Y_1) \in (\mathbb{SR}^{t_1 \times t_1})^2, \ldots, (X_N, Y_N) \in (\mathbb{SR}^{t_N \times t_N})^2$$

Then:

O Positive semidefiniteness: M_n is psd.

Assume that $\beta^{(2n)}$ admits a measure consisting of atoms

$$(X_1, Y_1) \in (\mathbb{SR}^{t_1 \times t_1})^2, \ldots, (X_N, Y_N) \in (\mathbb{SR}^{t_N \times t_N})^2$$

Then:

- **O Positive semidefiniteness:** M_n is psd.
- **2** Support of a measure: For $p \in \mathbb{R}\langle X, Y \rangle_{< n}$

$$\underbrace{p(X_1, Y_1) = \ldots = p(X_N, Y_N) = 0}_{\text{usual evaluations}} \quad \text{iff} \quad \underbrace{p(\mathbb{X}, \mathbb{Y}) = \mathbf{0} \text{ in } \mathcal{M}_n}_{\text{replacing words by columns of } \mathcal{M}_n}$$

▲□ → ▲ □ → ▲ □ →

Assume that $\beta^{(2n)}$ admits a measure consisting of atoms

$$(X_1, Y_1) \in (\mathbb{SR}^{t_1 \times t_1})^2, \ldots, (X_N, Y_N) \in (\mathbb{SR}^{t_N \times t_N})^2$$

Then:

- **O Positive semidefiniteness:** M_n is psd.
- **2** Support of a measure: For $p \in \mathbb{R}\langle X, Y \rangle_{< n}$

$$\underbrace{p(X_1, Y_1) = \ldots = p(X_N, Y_N) = 0}_{\text{usual evaluations}} \quad \text{iff} \quad \underbrace{p(\mathbb{X}, \mathbb{Y}) = \mathbf{0} \text{ in } \mathcal{M}_n}_{\text{replacing words by columns of } \mathcal{M}_n}$$

3 Recursive generation: For $p, q \in \mathbb{R}\langle X, Y \rangle_{\leq n}$ such that $pq \in \mathbb{R}\langle X, Y \rangle_{\leq n}$

$$p(\mathbb{X}, \mathbb{Y}) = \mathbf{0} \text{ in } \mathcal{M}_n \Rightarrow pq(\mathbb{X}, \mathbb{Y}) = \mathbf{0} \text{ in } \mathcal{M}_n$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3 Affine linear transformations: For $a, b, c, d, e, f \in \mathbb{R}$ with $bf - ce \neq 0$ we define

$$\phi(x,y)=(\phi_1(x,y),\phi_2(x,y)):=(a+bx+cy,d+ex+fy).$$

Let $\tilde{\beta}^{(2n)}$ be the sequence obtained by the rule

$$\widetilde{\beta}_{w} = \sum_{w'} a_{w'} \beta'_{w},$$

where
$$w(\phi_1(X, Y), \phi_2(X, Y)) = \sum_{w'} a_{w'} w'$$
.

Solving MP for \mathcal{M}_n is equivalent to solving MP for $\widetilde{\mathcal{M}}_n$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Example

For

$$\phi(x, y) = (\phi_1(x, y), \phi_2(x, y)) := (1 + x + y, x - y)$$

we get

$$\widetilde{\beta}_{XY} = \beta_X - \beta_Y + \beta_{X^2} - \beta_X \beta_Y + \beta_Y \beta_X - \beta_{Y^2}$$

since

$$XY \mapsto (1 + X + Y)(X - Y) = X - Y + X^2 - XY + YX - Y^2.$$

ヘロマ ヘロマ ヘロマ ヘ

Theorem (Curto, Fialkow)

Suppose $\beta \equiv \beta^{(4)}$ is a commutative sequence with the associated moment matrix M_2 . Let

$$\mathcal{V} := igcap_{\substack{g \in \mathbb{R}[x,y] \leq 2 \\ g(\mathbb{X},\mathbb{Y}) = \mathbf{0}}} \mathcal{V}(g)$$

be the variety associated to \mathcal{M}_2 and $p \in \mathbb{R}[x, y]$ a polynomial of degree 2. TFAE:

1 β admits a measure supported in $\mathcal{V}(p)$.

2 *M*(2) is positive semidefinite, recursively generated, satisfies rank(*M*(2)) ≤ card *V* and has a column dependency relation p(X, Y) = 0.

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

$\mathcal{M}_3 = egin{pmatrix} \mathcal{M}_2 & B_3 \ B_3^t & C_3 \end{pmatrix}$ where $B_3 \in \mathbb{R}^{7 imes 8}$ and $C_3 \in \mathbb{R}^{8 imes 8}$:									
1 X X ² XY YX YX Y ²	$ \begin{array}{c} \mathbb{X}^{3} \\ \beta_{X3} \\ \beta_{X4} \\ \beta_{X3\gamma} \\ \beta_{X5} \\ \beta_{X4\gamma} \\ \beta_{X4\gamma} \\ \beta_{X3\gamma2} \end{array} $	$ \begin{array}{c} \mathbb{X}^2 \mathbb{Y} \\ \begin{array}{c} \beta_{\chi^2 \gamma} \\ \beta_{\chi^3 \gamma} \\ \beta_{\chi^2 \gamma^2} \\ \end{array} \\ \begin{array}{c} \beta_{\chi^4 \gamma} \\ \beta_{\chi^3 \gamma^2} \\ \end{array} \\ \begin{array}{c} \beta_{\chi^2 \gamma \chi \gamma} \\ \beta_{\chi^2 \gamma^3} \end{array} \end{array} $	XYX $\beta_{\chi^2\gamma}$ $\beta_{\chi^3\gamma}$ $\beta_{\chi\gamma\chi\gamma}$ $\beta_{\chi^4\gamma}$ $\beta_{\chi^2\gamma\chi\gamma}$ $\beta_{\chi^2\gamma\chi\gamma}$ $\beta_{\chi\gamma^2\chi\gamma}$	$ \begin{array}{c} \mathbb{XY}^2 \\ \beta_{XY^2} \\ \beta_{\chi^2 \gamma^2} \\ \beta_{\chi^3 \gamma^3} \\ \beta_{\chi^3 \gamma^2} \\ \beta_{\chi^2 \gamma^3} \\ \beta_{\chi^2 \gamma^3} \\ \beta_{\chi\gamma^2 \chi\gamma} \\ \beta_{\chi\gamma^4} \end{array} $	$\begin{array}{c} \mathbb{Y}\mathbb{X}^2\\ \beta_{\chi^2\gamma}\\ \beta_{\chi^3\gamma}\\ \beta_{\chi^2\gamma^2}\\ \beta_{\chi^4\gamma}\\ \beta_{\chi^2\gamma\chi\gamma}\\ \beta_{\chi^2\gamma\chi\gamma}\\ \beta_{\chi^3\gamma^2}\\ \beta_{\chi^2\gamma^3} \end{array}$	$ \begin{array}{c} \mathbb{YX} \\ \beta_{XY} \\ \beta_{XY} \\ \beta_{XY} \\ \beta_{XY2} \\ \beta_{XY2} \\ \beta_{XY2} \\ \beta_{XY2} \\ \beta_{XY2} \end{array} $	$ \begin{array}{cccc} \mathbb{Y} & \mathbb{Y}^2 \\ \mathbb{Y}^2 & \beta_{XY} \\ \mathbb{X}Y & \beta_{X^2} \\ \mathbb{X}Y & \beta_{XY} \\ \mathbb{X}Y & \beta_{XY2} \\ \mathbb{X}Y & \beta_{XY2} \\ \mathbb{X}Y & \beta_{X^2} \\ \mathbb{X}Y & \beta_{XY} \\ \mathbb{X}Y & \beta_{XY2} \end{array} $	$ \begin{bmatrix} & \mathbb{Y}^3 \\ 2 & \beta_{Y3} \\ \beta_{YY3} \\ 3 & \beta_{Y4} \\ \gamma_2 & \beta_{X2} \\ \gamma_3 & \beta_{XY4} \\ \gamma_3 & \beta_{XY4} \\ \gamma_5 \end{bmatrix} $),
\mathbb{X}^3 $\mathbb{X}^2\mathbb{Y}$ $\mathbb{X}\mathbb{Y}\mathbb{X}$ $\mathbb{X}\mathbb{Y}^2$ $\mathbb{Y}\mathbb{X}^2$ $\mathbb{Y}\mathbb{X}\mathbb{Y}$ $\mathbb{Y}^2\mathbb{X}$ \mathbb{Y}^3	$\begin{matrix} \mathbb{X}^3 \\ & \beta_{\chi 6} \\ & \beta_{\chi 5\gamma} \\ & \beta_{\chi 4\gamma 2} \\ & \beta_{\chi 5\gamma} \\ & \beta_{\chi 3\gamma X\gamma} \\ & \beta_{\chi 3\gamma X\gamma} \\ & \beta_{\chi 4\gamma 2} \\ & \beta_{\chi 3\gamma 3} \end{matrix}$	$\begin{array}{c} \mathbb{X}^2 \mathbb{Y} \\ \begin{array}{c} \beta_{\chi 5 \gamma} \\ \beta_{\chi 4 \gamma 2} \\ \beta_{\chi 3 \gamma 3 \gamma \chi \gamma} \\ \beta_{\chi 3 \gamma 3} \\ \beta_{\chi 2 \gamma 2 \chi 2 \gamma} \\ \beta_{\chi 2 \gamma 2 \chi \gamma} \\ \beta_{\chi 2 \gamma 2 \chi \gamma} \\ \beta_{\chi 2 \gamma 2 \chi \gamma} \end{array}$	XYX ^β _X 5 _Y ^β _X 3 _{YXY} ^β _X 2 _Y 2 _Y 2 _Y ^β _X 3 _{YXY} ^β _X 3 _{YXY} ^β _X 2 _Y 2 _{XY} ^β _X 3 _X 3 _{XY}	$\begin{array}{c} \mathbb{XY}^2\\ \begin{array}{c} \beta_{\chi 4} \gamma_2\\ \beta_{\chi 3} \gamma_3\\ \beta_{\chi 2} \gamma_2 \chi\\ \beta_{\chi 2} \gamma_4\\ \beta_{\chi 2} \gamma_2 \chi\\ \beta_{\chi 2} \gamma_2 \chi\\ \beta_{\chi \gamma 3} \chi\gamma\\ \beta_{\chi \gamma 5} \end{array}$	$\begin{bmatrix} & & & \\ & $	2 ý Y X ² Y (XY ² XY Y ² 2 XY Y ³ Y ⁴	$\begin{array}{c} \mathbb{Y}\mathbb{X}\mathbb{Y}\\ \begin{array}{c} \beta_{\chi^{2}\gamma^{2}\chi\gamma}\\ \beta_{\chi^{2}\gamma^{2}\chi\gamma}\\ \beta_{\chi\gamma\chi\gamma\chi\gamma}\\ \beta_{\chi\gamma^{2}\chi\gamma}\\ \gamma_{\chi\gamma^{2}\chi\gamma}\\ \beta_{\chi\gamma^{2}\chi\gamma^{2}}\\ \beta_{\chi\gamma^{5}}\\ \gamma_{\chi\gamma^{5}}\end{array}$	$\begin{array}{c} \mathbb{Y}^{2}\mathbb{X} \\ & \beta_{\chi^{4}\gamma^{2}} \\ & \beta_{\chi^{2}\gamma^{2}\chi\gamma} \\ & \beta_{\chi^{2}\gamma^{2}\chi\gamma^{2}} \\ & \beta_{\chi\gamma^{3}\chi\gamma} \\ & \beta_{\chi\gamma^{3}\chi\gamma} \\ & \beta_{\chi\gamma^{5}} \end{array}$	

Aljaž Zalar, University of Ljubljana, Slovenia The singular bivariate quartic tracial moment problem

▲□ ▶ ▲ □ ▶ ▲ □

 \mathcal{M}_2 of rank 6 satisfying the relation $\mathbb{X}^2 + \mathbb{Y}^2 = \mathbb{1}$.

< 回 > < 回 > < 回 >

 \mathcal{M}_2 of rank 6 satisfying the relation \mathbb{X}^2 + \mathbb{Y}^2 = 1.

• B₃ must satisfy

$$\begin{array}{ll} \beta_{X^{2}Y^{3}} = \beta_{XY^{2}XY} = \beta_{X^{2}Y} - q, & \beta_{Y^{5}} = \beta_{Y} - 2\beta_{X^{2}Y} + q, \\ \beta_{X^{3}Y^{2}} = \beta_{X^{2}YXY} = \beta_{X^{3}} - p, & \beta_{X^{5}} = p, \\ \beta_{XY^{4}} = \beta_{X} - 2\beta_{X^{3}} + p, & \beta_{X^{4}Y} = q, \end{array}$$

where $p, q \in \mathbb{R}$ are parameters.

・ 戸 ト ・ ヨ ト ・ ヨ ト

 \mathcal{M}_2 of rank 6 satisfying the relation \mathbb{X}^2 + \mathbb{Y}^2 = 1.

B₃ must satisfy

$$\begin{split} \beta_{X^2Y^3} &= \beta_{XY^2XY} = \beta_{X^2Y} - q, \qquad \beta_{Y^5} = \beta_Y - 2\beta_{X^2Y} + q, \\ \beta_{X^3Y^2} &= \beta_{X^2YXY} = \beta_{X^3} - p, \qquad \beta_{X^5} = p, \\ \beta_{XY^4} &= \beta_X - 2\beta_{X^3} + p, \qquad \beta_{X^4Y} = q, \end{split}$$

where $p, q \in \mathbb{R}$ are parameters.

Define

$$\begin{split} &M_1 \coloneqq \{\mathbb{1}, \mathbb{X}, \mathbb{Y}, \mathbb{X}^2, \mathbb{X}\mathbb{Y}, \mathbb{Y}\mathbb{X}\} \\ &M_2 \coloneqq \{\mathbb{X}^3, \mathbb{X}^2\mathbb{Y}, \mathbb{X}\mathbb{Y}\mathbb{X}, \mathbb{X}\mathbb{Y}^2, \mathbb{Y}\mathbb{X}^2, \mathbb{Y}\mathbb{X}\mathbb{Y}, \mathbb{Y}^2\mathbb{X}, \mathbb{Y}^3\}. \end{split}$$

and calculate 6×10 matrix

$$W = (\mathcal{M}_2|_{M_1})^{-1} B_3|_{M_1,M_2}$$

• Then the only candidate for C₃ is equal to

$$C_3 := W^t \mathcal{M}_2|_{M_1} W$$

and \mathcal{M}_3 has a moment structure if and only if

<回ト < 回ト < 回ト
For $\beta_{X^4} \in (\frac{1}{4}, \frac{1}{2})$, the following matrices are psd moment matrices of rank 6 satisfying the relation $\mathbb{X}^2 + \mathbb{Y}^2 = \mathbb{1}$,

$$\mathcal{M}_{2}(\beta_{X^{4}}) = \begin{pmatrix} 1 & 0 & 0 & \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\ \frac{1}{2} & 0 & 0 & \beta_{X^{4}} & 0 & 0 & \frac{1}{2} - \beta_{X^{4}} \\ 0 & 0 & 0 & 0 & \frac{1}{2} - \beta_{X^{4}} & 0 & 0 \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} - \beta_{X^{4}} & 0 & 0 \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} - \beta_{X^{4}} & 0 & 0 & \beta_{X^{4}} \end{pmatrix}.$$

Aljaž Zalar, University of Ljubljana, Slovenia The singular bivariate quartic tracial moment problem

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

For $\beta_{X^4} \in (\frac{1}{4}, \frac{1}{2})$, the following matrices are psd moment matrices of rank 6 satisfying the relation $\mathbb{X}^2 + \mathbb{Y}^2 = \mathbb{1}$,

$$\mathcal{M}_{2}(\beta_{X^{4}}) = \begin{pmatrix} 1 & 0 & 0 & \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\ \frac{1}{2} & 0 & 0 & \beta_{X^{4}} & 0 & 0 & \frac{1}{2} - \beta_{X^{4}} \\ 0 & 0 & 0 & 0 & \frac{1}{2} - \beta_{X^{4}} & 0 & 0 \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} - \beta_{X^{4}} & 0 & 0 \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} - \beta_{X^{4}} & 0 & 0 & \beta_{X^{4}} \end{pmatrix}.$$

None of them admit a rank-preserving extension to M_3 , but it turns out that they all admit a measure of type (4, 1).

For $\beta_{X^4} \in (\frac{1}{4}, \frac{1}{2})$, the following matrices are psd moment matrices of rank 6 satisfying the relation $\mathbb{X}^2 + \mathbb{Y}^2 = \mathbb{1}$,

$$\mathcal{M}_{2}(\beta_{X^{4}}) = \begin{pmatrix} 1 & 0 & 0 & \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\ \frac{1}{2} & 0 & 0 & \beta_{X^{4}} & 0 & 0 & \frac{1}{2} - \beta_{X^{4}} \\ 0 & 0 & 0 & 0 & \frac{1}{2} - \beta_{X^{4}} & 0 & 0 \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} - \beta_{X^{4}} & 0 & 0 \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} - \beta_{X^{4}} & 0 & 0 & \beta_{X^{4}} \end{pmatrix}.$$

None of them admit a rank-preserving extension to M_3 , but it turns out that they all admit a measure of type (4, 1).

However, the relation $\mathbb{X}^2 + \mathbb{Y}^2 = \mathbb{1}$ does not imply there always exists a measure.

< 回 > < 回 > < 回 >

\mathcal{M}_2 of rank at most 3

Proposition

Suppose $n \ge 2$ and $\beta^{(2n)}$ is a sequence such that $\beta_{X^2Y^2} \ne \beta_{XYXY}$ and admits a measure. Then the columns

 $\mathbb{1},\mathbb{X},\mathbb{Y},\mathbb{XY}$

of \mathcal{M}_n are linearly independent.

\mathcal{M}_2 of rank at most 3

Proposition

Suppose $n \ge 2$ and $\beta^{(2n)}$ is a sequence such that $\beta_{X^2Y^2} \ne \beta_{XYXY}$ and admits a measure. Then the columns

$$\mathbb{1}, \mathbb{X}, \mathbb{Y}, \mathbb{XY}$$

of \mathcal{M}_n are linearly independent.

Proof.

$$\mathbf{0} = a \cdot \mathbb{1} + b \cdot \mathbb{X} + c \cdot \mathbb{Y} + d \cdot \mathbb{XY}$$

where $a, b, c, d \in \mathbb{R}$.

- If $d \neq 0$, then $\beta_{X^2Y^2} = \beta_{XYXY}$. $\rightarrow \leftarrow$
- If d = 0, the recursive generation implies that

$$\mathbf{0} = a \cdot \mathbb{X} + b \cdot \mathbb{X}^2 + c \cdot \mathbb{X}\mathbb{Y} = a \cdot \mathbb{Y} + b \cdot \mathbb{X}\mathbb{Y} + c \cdot \mathbb{Y}^2.$$

If $b \neq 0$ or $c \neq 0$, it follows that $\beta_{X^2Y^2} = \beta_{XYXY}$. $\rightarrow \leftarrow$ Hence b = c = 0. Finally $\mathbf{0} = a \cdot \mathbb{1}$ implies that a = 0.

Assume that $\mathbb{1},\mathbb{X},\mathbb{Y},\mathbb{XY}$ are linearly independent and write

$$\begin{split} \mathbb{X}^2 &= a_1 \cdot \mathbb{1} + b_1 \cdot \mathbb{X} + c_1 \cdot \mathbb{Y} + d_1 \cdot \mathbb{X} \mathbb{Y}, \\ \mathbb{Y}\mathbb{X} &= a_2 \cdot \mathbb{1} + b_2 \cdot \mathbb{X} + c_2 \cdot \mathbb{Y} + d_2 \cdot \mathbb{X} \mathbb{Y}, \\ \mathbb{Y}^2 &= a_3 \cdot \mathbb{1} + b_3 \cdot \mathbb{X} + c_3 \cdot \mathbb{Y} + d_3 \cdot \mathbb{X} \mathbb{Y} \end{split}$$

where $a_j, b_j, c_j, d_j \in \mathbb{R}$ for j = 1, 2, 3.

< 17 ▶

Assume that $1\!\!1, \mathbb{X}, \mathbb{Y}, \mathbb{X}\mathbb{Y}$ are linearly independent and write

$$\begin{split} \mathbb{X}^2 &= a_1 \cdot \mathbb{1} + b_1 \cdot \mathbb{X} + c_1 \cdot \mathbb{Y} + d_1 \cdot \mathbb{X} \mathbb{Y}, \\ \mathbb{Y}\mathbb{X} &= a_2 \cdot \mathbb{1} + b_2 \cdot \mathbb{X} + c_2 \cdot \mathbb{Y} + d_2 \cdot \mathbb{X} \mathbb{Y}, \\ \mathbb{Y}^2 &= a_3 \cdot \mathbb{1} + b_3 \cdot \mathbb{X} + c_3 \cdot \mathbb{Y} + d_3 \cdot \mathbb{X} \mathbb{Y} \end{split}$$

where
$$a_j, b_j, c_j, d_j \in \mathbb{R}$$
 for $j = 1, 2, 3$. Then
 $d_1 = d_3 = 0, d_2 = -1$.

Assume that 1, X, Y, XY are linearly independent and write

$$\mathbb{X}^{2} = a_{1} \cdot \mathbb{1} + b_{1} \cdot \mathbb{X} + c_{1} \cdot \mathbb{Y},$$
$$\mathbb{X}\mathbb{Y} + \mathbb{Y}\mathbb{X} = a_{2} \cdot \mathbb{1} + b_{2} \cdot \mathbb{X} + c_{2} \cdot \mathbb{Y},$$
$$\mathbb{Y}^{2} = a_{3} \cdot \mathbb{1} + b_{3} \cdot \mathbb{X} + c_{3} \cdot \mathbb{Y}$$

where $a_j, b_j, c_j \in \mathbb{R}$ for j = 1, 2, 3. Then

2 β admits a measure iff \mathcal{M}_n is recursively generated, \mathcal{M}_2 is psd and

$$c_1 = b_3 = 0, \quad b_2 = c_3, \quad c_2 = b_1.$$
 (1)

Assume that $1, \mathbb{X}, \mathbb{Y}, \mathbb{X}\mathbb{Y}$ are linearly independent and write

$$\mathbb{X}^{2} = a_{1} \cdot \mathbb{1} + b_{1} \cdot \mathbb{X} + c_{1} \cdot \mathbb{Y},$$
$$\mathbb{X}\mathbb{Y} + \mathbb{Y}\mathbb{X} = a_{2} \cdot \mathbb{1} + b_{2} \cdot \mathbb{X} + c_{2} \cdot \mathbb{Y},$$
$$\mathbb{Y}^{2} = a_{3} \cdot \mathbb{1} + b_{3} \cdot \mathbb{X} + c_{3} \cdot \mathbb{Y}$$

where $a_j, b_j, c_j \in \mathbb{R}$ for j = 1, 2, 3. Then

2 β admits a measure iff \mathcal{M}_n is recursively generated, \mathcal{M}_2 is psd and

$$c_1 = b_3 = 0, \quad b_2 = c_3, \quad c_2 = b_1.$$
 (1)

Moreover, if n > 2 then the equations (1) follow from M_n being recursively generated.

Assume that 1, X, Y, XY are linearly independent, M_2 is psd and there are $a_1, a_2, a_3, b_1, b_2 \in \mathbb{R}$ such that

$$\mathbb{X}^{2} = a_{1} \cdot \mathbb{1} + b_{1} \cdot \mathbb{X},$$
$$\mathbb{X}\mathbb{Y} + \mathbb{Y}\mathbb{X} = a_{2} \cdot \mathbb{1} + b_{2} \cdot \mathbb{X} + b_{1} \cdot \mathbb{Y},$$
$$\mathbb{Y}^{2} = a_{3} \cdot \mathbb{1} + b_{2} \cdot \mathbb{Y}.$$

③ The minimal measure is of type (0, 1) with a **unique** (up to orthogonal equivalence) atom $(X, Y) \in (SR^{2\times 2})^2$ given by

$$\left(\begin{pmatrix} \sqrt{a_1 + \frac{b_1^2}{4} + \frac{b_1}{2}} & 0\\ 0 & -\sqrt{a_1 + \frac{b_1^2}{4} + \frac{b_1}{2}} \end{pmatrix}, \quad \mathbf{C} \cdot \begin{pmatrix} a + b_2 & \sqrt{4 - a^2} \\ \sqrt{4 - a^2} & -a + b_2 \end{pmatrix} \right)$$

where
$$a = \frac{4a_2 + 2b_1b_2}{\sqrt{(4a_1 + b_1^2)(4a_3 + b_2^2)}}$$
, $C = \frac{1}{2}\sqrt{a_3 + \frac{b_2^2}{4}}$

Proposition (Basic column relations)

Suppose $\beta \equiv \beta^{(2n)}$ generates \mathcal{M}_n with \mathcal{M}_2 of rank 5 or 6. If β admits a measure, then we may assume (by applying an affine linear transformation on β) that:

If rank(
$$\mathcal{M}_2$$
) = 5, then \mathcal{M}_n satisfies

$$XY + YX = 0$$

and one of

$$\mathbb{X}^2 + \mathbb{Y}^2 = \mathbb{1} \quad \text{or} \quad \mathbb{Y}^2 - \mathbb{X}^2 = \mathbb{1} \quad \text{or} \quad \mathbb{Y}^2 = \mathbb{1} \quad \text{or} \quad \mathbb{Y}^2 = \mathbb{X}^2.$$

2 If rank(M_2) = 6, then M_n satisfies one of

$$\mathbb{XY} + \mathbb{YX} = \mathbf{0} \quad \text{or} \quad \mathbb{X}^2 + \mathbb{Y}^2 = \mathbb{1} \quad \text{or} \quad \mathbb{Y}^2 - \mathbb{X}^2 = \mathbb{1} \quad \text{or} \quad \mathbb{Y}^2 = \mathbb{1}$$

Proposition (Basic column relations)

Suppose $\beta \equiv \beta^{(2n)}$ generates \mathcal{M}_n with \mathcal{M}_2 of rank 5 or 6. If β admits a measure, then we may assume (by applying an affine linear transformation on β) that:

If rank(
$$\mathcal{M}_2$$
) = 5, then \mathcal{M}_n satisfies

$$\mathbb{XY} + \mathbb{YX} = \mathbf{0} \Rightarrow \text{many 0's in } \mathcal{M}_2$$

and one of

$$\mathbb{X}^2 + \mathbb{Y}^2 = \mathbb{1} \quad \text{or} \quad \mathbb{Y}^2 - \mathbb{X}^2 = \mathbb{1} \quad \text{or} \quad \mathbb{Y}^2 = \mathbb{1} \quad \text{or} \quad \mathbb{Y}^2 = \mathbb{X}^2.$$

2 If rank(M_2) = 6, then M_n satisfies one of

$$\mathbb{XY} + \mathbb{YX} = \mathbf{0} \quad \text{or} \quad \mathbb{X}^2 + \mathbb{Y}^2 = \mathbb{1} \quad \text{or} \quad \mathbb{Y}^2 - \mathbb{X}^2 = \mathbb{1} \quad \text{or} \quad \mathbb{Y}^2 = \mathbb{1}$$

Case 1: The set $\{1, \mathbb{X}, \mathbb{Y}, \mathbb{X}^2, \mathbb{X}\mathbb{Y}\}$ **is the basis for** $C_{\mathcal{M}_2}$. • $\exists a_j, b_j, c_j, d_j, e_j \in \mathbb{R}$ for j = 1, 2 such that $\mathbb{Y}\mathbb{X} = a_1\mathbb{1} + b_1\mathbb{X} + c_1\mathbb{Y} + d_1\mathbb{X}^2 + e_1\mathbb{X}\mathbb{Y},$ $\mathbb{Y}^2 = a_2\mathbb{1} + b_2\mathbb{X} + c_2\mathbb{Y} + d_2\mathbb{X}^2 + e_2\mathbb{X}\mathbb{Y}.$

< 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > > < 0 > > < 0 > > < 0 > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0

Case 1: The set
$$\{1, \mathbb{X}, \mathbb{Y}, \mathbb{X}^2, \mathbb{X}\mathbb{Y}\}$$
 is the basis for $\mathcal{C}_{\mathcal{M}_2}$.
• $\exists a_j, b_j, c_j, d_j, e_j \in \mathbb{R}$ for $j = 1, 2$ such that
 $\mathbb{Y}\mathbb{X} = a_1\mathbb{1} + b_1\mathbb{X} + c_1\mathbb{Y} + d_1\mathbb{X}^2 + e_1\mathbb{X}\mathbb{Y},$
 $\mathbb{Y}^2 = a_2\mathbb{1} + b_2\mathbb{X} + c_2\mathbb{Y} + d_2\mathbb{X}^2 + e_2\mathbb{X}\mathbb{Y}.$

• Comparing rows XY and YX: $e_1 = -1$ and $e_2 = 0$.

Aljaž Zalar, University of Ljubljana, Slovenia The singular bivariate quartic tracial moment problem

・ロト ・四ト ・ヨト ・ヨト

Case 1: The set $\{1, X, Y, X^2, XY\}$ is the basis for $C_{\mathcal{M}_2}$.

• $\exists a_j, b_j, c_j, d_j \in \mathbb{R}$ for j = 1, 2 such that

$$XY + YX = a_1 1 + b_1 X + c_1 Y + d_1 X^2,$$
$$Y^2 = a_2 1 + b_2 X + c_2 Y + d_2 X^2.$$

Aljaž Zalar, University of Ljubljana, Slovenia The singular bivariate quartic tracial moment problem

★御★★酒★★酒★ 二百

Case 1: The set $\{1, X, Y, X^2, XY\}$ is the basis for $C_{\mathcal{M}_2}$.

• $\exists a_j, b_j, c_j, d_j \in \mathbb{R}$ for j = 1, 2 such that

$$\begin{split} \mathbb{X}\mathbb{Y}+\mathbb{Y}\mathbb{X}&=a_1\mathbb{1}+b_1\mathbb{X}+c_1\mathbb{Y}+d_1\mathbb{X}^2,\\ \mathbb{Y}^2&=a_2\mathbb{1}+b_2\mathbb{X}+c_2\mathbb{Y}+d_2\mathbb{X}^2. \end{split}$$

Focus on Y²:

• Case 1.1: d₂ < 0:

< 回 > < 回 > < 回 >

Case 1: The set $\{1, X, Y, X^2, XY\}$ is the basis for $C_{\mathcal{M}_2}$.

• $\exists a_j, b_j, c_j, d_j \in \mathbb{R}$ for j = 1, 2 such that

$$\begin{split} \mathbb{X}\mathbb{Y}+\mathbb{Y}\mathbb{X}&=a_1\mathbb{1}+b_1\mathbb{X}+c_1\mathbb{Y}+d_1\mathbb{X}^2,\\ \mathbb{Y}^2&=a_2\mathbb{1}+b_2\mathbb{X}+c_2\mathbb{Y}+d_2\mathbb{X}^2. \end{split}$$

Focus on Y²:

• Case 1.1: *d*₂ < 0:

$$\underbrace{(\underbrace{\mathbb{Y}^2 - \frac{c_2}{2}}_{\phi_2(X,Y)})^2 = -(\underbrace{\sqrt{|d_2|}\mathbb{X} - \frac{b_2}{2\sqrt{|d_2|}}}_{\phi_1(X,Y)})^2 + \underbrace{(\underbrace{a_2 + \frac{c_2^2}{4} + \frac{b_2^2}{4d_2}}_{=:C>0})\mathbb{1}.$$

$$\phi(X,Y) = (\frac{1}{\sqrt{C}}\phi_1(X,Y), \frac{1}{\sqrt{C}}\phi_2(X,Y))$$

▲□ → ▲ □ → ▲ □ → □

Case 1: The set
$$\{1, \mathbb{X}, \mathbb{Y}, \mathbb{X}^2, \mathbb{X}\mathbb{Y}\}$$
 is the basis for $\mathcal{C}_{\mathcal{M}_2}$.
• $\exists a_j, b_j, c_j, d_j \in \mathbb{R}$ for $j = 1, 2$ such that
 $\mathbb{X}\mathbb{Y} + \mathbb{Y}\mathbb{X} = a_1\mathbb{1} + b_1\mathbb{X} + c_1\mathbb{Y} + d_1\mathbb{X}^2$,
 $\mathbb{X}^2 + \mathbb{Y}^2 = \mathbb{1}$.
• Focus on \mathbb{Y}^2 :
• Case 1.1: $d_2 < 0$:
 $(\mathbb{Y}^2 - \frac{c_2}{2})^2 = -(\sqrt{|d_2|}\mathbb{X} - \frac{b_2}{2\sqrt{|d_2|}})^2 + (a_2 + \frac{c_2^2}{4} + \frac{b_2^2}{4d_2})\mathbb{1}$.
 $\phi(X, Y) = (\frac{1}{\sqrt{C}}\phi_1(X, Y), \frac{1}{\sqrt{C}}\phi_2(X, Y))$

Case 1: The set $\{1, X, Y, X^2, XY\}$ is the basis for $C_{\mathcal{M}_2}$.

• $\exists a_1, b_1, c_1, d_1 \in \mathbb{R}$ such that

$$\begin{split} \mathbb{XY} + \mathbb{YX} &= a_1 \mathbb{1} + b_1 \mathbb{X} + c_1 \mathbb{Y} + d_1 \mathbb{X}^2, \\ \mathbb{X}^2 + \mathbb{Y}^2 &= \mathbb{1}. \end{split}$$

Aljaž Zalar, University of Ljubljana, Slovenia The singular bivariate quartic tracial moment problem

< 回 > < 回 > < 回 > -

Case 1: The set $\{1, X, Y, X^2, XY\}$ is the basis for $C_{\mathcal{M}_2}$.

• $\exists a_1, b_1, c_1, d_1 \in \mathbb{R}$ such that

$$\begin{split} \mathbb{XY} + \mathbb{YX} &= a_1 \mathbb{1} + b_1 \mathbb{X} + c_1 \mathbb{Y} + d_1 \mathbb{X}^2, \\ \mathbb{X}^2 + \mathbb{Y}^2 &= \mathbb{1}. \end{split}$$

RG relations:

$$\begin{split} \mathbb{X}^{2}\mathbb{Y} + \mathbb{X}\mathbb{Y}\mathbb{X} &= a_{1}\mathbb{X} + b_{1}\mathbb{X}^{2} + c_{1}\mathbb{X}\mathbb{Y} + d_{1}\mathbb{X}^{3}, \\ \mathbb{Y}\mathbb{X}\mathbb{Y} + \mathbb{Y}^{2}\mathbb{X} &= a_{1}\mathbb{Y} + b_{1}\mathbb{Y}\mathbb{X} + c_{1}\mathbb{Y}^{2} + d_{1}\mathbb{Y}\mathbb{X}^{2}, \\ \mathbb{X}^{3} + \mathbb{Y}^{2}\mathbb{X} &= \mathbb{X}, \quad \mathbb{Y}\mathbb{X}^{2} + \mathbb{Y}^{3} &= \mathbb{Y} \\ \mathbb{X}^{2}\mathbb{Y} + \mathbb{Y}^{3} &= \mathbb{Y}, \end{split}$$

▲□ → ▲ □ → ▲ □ →

 $\label{eq:Case 1: The set } \left\{ \mathbb{1}, \mathbb{X}, \mathbb{Y}, \mathbb{X}^2, \mathbb{X}\mathbb{Y} \right\} \text{ is the basis for } \mathcal{C}_{\mathcal{M}_2}.$

• $\exists a_1, b_1, c_1, d_1 \in \mathbb{R}$ such that

$$\begin{split} \mathbb{XY} + \mathbb{YX} &= a_1 \mathbb{1} + b_1 \mathbb{X} + c_1 \mathbb{Y} + d_1 \mathbb{X}^2, \\ \mathbb{X}^2 + \mathbb{Y}^2 &= \mathbb{1}. \end{split}$$

RG relations:

$$\begin{split} \mathbb{X}^{2}\mathbb{Y} + \mathbb{X}\mathbb{Y}\mathbb{X} &= a_{1}\mathbb{X} + b_{1}\mathbb{X}^{2} + 0\mathbb{X}\mathbb{Y} + d_{1}\mathbb{X}^{3}, \\ \mathbb{Y}\mathbb{X}\mathbb{Y} + \mathbb{Y}^{2}\mathbb{X} &= a_{1}\mathbb{Y} + 0\mathbb{Y}\mathbb{X} + c_{1}\mathbb{Y}^{2} + d_{1}\mathbb{X}\mathbb{X}^{2}, \\ \mathbb{X}^{3} + \mathbb{Y}^{2}\mathbb{X} &= \mathbb{X}, \quad \mathbb{Y}\mathbb{X}^{2} + \mathbb{Y}^{3} = \mathbb{Y}, \\ \mathbb{X}^{2}\mathbb{Y} + \mathbb{Y}^{3} &= \mathbb{Y}, \end{split}$$

▲□ → ▲ □ → ▲ □ →

 $\label{eq:Case 1: The set } \left\{ \mathbb{1}, \mathbb{X}, \mathbb{Y}, \mathbb{X}^2, \mathbb{X}\mathbb{Y} \right\} \text{ is the basis for } \mathcal{C}_{\mathcal{M}_2}.$

• $\exists a_1, d_1 \in \mathbb{R}$ such that

$$\begin{split} \mathbb{X}\mathbb{Y} + \mathbb{Y}\mathbb{X} &= a_1\mathbb{1} + d_1\mathbb{X}^2, \\ \mathbb{X}^2 + \mathbb{Y}^2 &= \mathbb{1}. \end{split}$$

Aljaž Zalar, University of Ljubljana, Slovenia The singular bivariate quartic tracial moment problem

<<p>(日) < (日) < (日)</p>

 $\label{eq:case 1: The set } \left\{ \mathbb{1}, \mathbb{X}, \mathbb{Y}, \mathbb{X}^2, \mathbb{X} \mathbb{Y} \right\} \text{ is the basis for } \mathcal{C}_{\mathcal{M}_2}.$

• $\exists a_1, d_1 \in \mathbb{R}$ such that

$$\begin{split} \mathbb{XY} + \mathbb{YX} &= a_1 \mathbb{1} + d_1 \mathbb{X}^2, \\ \mathbb{X}^2 + \mathbb{Y}^2 &= \mathbb{1}. \end{split}$$

Continue the analysis and we end up with:

$$XY + YX = \mathbf{0},$$
$$X^{2} + Y^{2} = 1,$$

or

$$XY + YX = \mathbf{0},$$
$$Y^2 = \mathbf{1},$$

▲□ → ▲ □ → ▲ □ →

Basic reduction 2

Proposition (Form of the atoms)

Suppose $\beta \equiv \beta^{(2n)}$ generates \mathcal{M}_n satisfying one of:

$$\mathbb{XY} + \mathbb{YX} = \mathbf{0}$$
 or $\mathbb{X}^2 + \mathbb{Y}^2 = \mathbb{1}$ or $\mathbb{Y}^2 - \mathbb{X}^2 = \mathbb{1}$.

- If β admits a measure, then:
- (1) There exists a measure with atoms of the following two forms:

•
$$(x_i, y_i) \in \mathbb{R}^2$$
.
• $(X_i, Y_i) \in (\mathbb{SR}^{2 \times 2})^2$ such that

$$X_i = \begin{pmatrix} \gamma_i & b_i \\ b_i & -\gamma_i \end{pmatrix}$$
 and $Y_i = \begin{pmatrix} \mu_i & \mathbf{0} \\ \mathbf{0} & -\mu_i \end{pmatrix}$

where $\gamma_i \geq 0$, $\mu_i \neq 0$ and $b_i \in \mathbb{R}$.

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Proposition (Form of the atoms)

Suppose $\beta \equiv \beta^{(2n)}$ generates \mathcal{M}_n satisfying one of:

$$\mathbb{XY} + \mathbb{YX} = \mathbf{0}$$
 or $\mathbb{X}^2 + \mathbb{Y}^2 = 1$ or $\mathbb{Y}^2 - \mathbb{X}^2 = 1$.

If β admits a measure, then:

(2) In the measure from (1) all the moments of the form $\beta_{X^{2i}Y^{2j-1}}$ and $\beta_{X^{2i-1}Y^{2j}}$ come from atoms of size 1.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Let $(X, Y) \in \mathbb{SR}^{t \times t}$ be the atom of a measure.

() [XY + YX, Y] = 0: XY + YX and Y simultaneously diagonalizable.

<回><モン<

Let $(X, Y) \in \mathbb{SR}^{t \times t}$ be the atom of a measure.

- [XY + YX, Y] = 0 : XY + YX and Y simultaneously diagonalizable.
- 2 XY + YX diagonal :

$$X = \begin{pmatrix} D_1 & B \\ B^t & D_2 \end{pmatrix}$$
 and $Y = \begin{pmatrix} \mu I_{n_1} & \mathbf{0} \\ \mathbf{0} & -\mu I_{n_2} \end{pmatrix}$,

where $\mu > 0$, $n_1, n_2 \in \mathbb{N}$, $D_1 \in \mathbb{R}^{n_1 \times n_1}$ and $D_2 \in \mathbb{R}^{n_2 \times n_2}$ are diagonal matrices and $B \in \mathbb{R}^{n_1 \times n_2}$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Let $(X, Y) \in \mathbb{SR}^{t \times t}$ be the atom of a measure.

- [XY + YX, Y] = 0 : XY + YX and Y simultaneously diagonalizable.
- 2 XY + YX diagonal :

$$X = \begin{pmatrix} D_1 & B \\ B^t & D_2 \end{pmatrix}$$
 and $Y = \begin{pmatrix} \mu I_{n_1} & \mathbf{0} \\ \mathbf{0} & -\mu I_{n_2} \end{pmatrix}$,

where $\mu > 0$, $n_1, n_2 \in \mathbb{N}$, $D_1 \in \mathbb{R}^{n_1 \times n_1}$ and $D_2 \in \mathbb{R}^{n_2 \times n_2}$ are diagonal matrices and $B \in \mathbb{R}^{n_1 \times n_2}$.

3 Using the relation we may assume that $n_1 = n_2$, $D_1 = -D_2 = \gamma I_{n_1}$ for some $\gamma \ge 0$.

・ロット (母) ・ ヨ) ・ コ)

Let $(X, Y) \in \mathbb{SR}^{t \times t}$ be the atom of a measure.

- [XY + YX, Y] = 0 : XY + YX and Y simultaneously diagonalizable.
- 2 XY + YX diagonal :

$$X = \begin{pmatrix} D_1 & B \\ B^t & D_2 \end{pmatrix}$$
 and $Y = \begin{pmatrix} \mu I_{n_1} & \mathbf{0} \\ \mathbf{0} & -\mu I_{n_2} \end{pmatrix}$,

where $\mu > 0$, $n_1, n_2 \in \mathbb{N}$, $D_1 \in \mathbb{R}^{n_1 \times n_1}$ and $D_2 \in \mathbb{R}^{n_2 \times n_2}$ are diagonal matrices and $B \in \mathbb{R}^{n_1 \times n_2}$.

- 3 Using the relation we may assume that $n_1 = n_2$, $D_1 = -D_2 = \gamma I_{n_1}$ for some $\gamma \ge 0$.
- By a further reduction $n_1 = 1$.

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

If \mathcal{M}_n is recursively generated, then its column space is spanned by the columns

 $\mathbb{1}, \mathbb{X}, \mathbb{X}^2, \ldots, \mathbb{X}^n, \mathbb{Y}, \mathbb{X}\mathbb{Y}, \ldots, \mathbb{X}^{n-1}\mathbb{Y}.$

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・ ・

If \mathcal{M}_n is recursively generated, then its column space is spanned by the columns

$$\mathbb{1}, \mathbb{X}, \mathbb{X}^2, \dots, \mathbb{X}^n, \mathbb{Y}, \mathbb{X}\mathbb{Y}, \dots, \mathbb{X}^{n-1}\mathbb{Y}.$$

In this basis the moment matrix has the form

$$\widetilde{\mathcal{M}}_n = \begin{pmatrix} \mathcal{M}_n^X & B_n \\ B_n & \mathcal{M}_n^Y \end{pmatrix}$$

where \mathcal{M}_n^X , \mathcal{M}_n^Y and B_n are equal to

	1	X	X ²		X^{2k}		\mathbb{X}^{n}
1	β_1	β_X	β_{χ^2}		$\beta_{\chi 2k}$		``
X	β _X	β_{χ^2}	β_X		β_X)
X ²	β_{χ^2}	β_X	β_{X^4}		$\beta_{\chi^{2k+2}}$		
÷		:	:	·	÷	:	
\mathbb{X}^{2k}	$\beta_{\chi^{2k}}$	β_X	$\beta_{\chi^{2k+2}}$		$\beta_{X^{4k}}$		
÷		÷	:	÷	:	·	
\mathbb{X}^n	1						$\beta_{\gamma 2n}$

▲ 同 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● の Q @

By the form of the atoms we know that the blue moments must come from the atoms of size 1.

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

By the form of the atoms we know that the blue moments must come from the atoms of size 1.

Hence $\widetilde{\mathcal{M}}_n$ admits a measure if and only if

$$\widehat{\mathcal{M}}_n := \widetilde{\mathcal{M}}_n - |\beta_X| \widetilde{\mathcal{M}}_n^{(\operatorname{sign}(\beta_X)1,0)} - |\beta_Y| \widetilde{\mathcal{M}}_n^{(0,\operatorname{sign}(\beta_Y)1)}$$

admits a measure where $\widetilde{\mathcal{M}}_{n}^{(x,y)}$ is the moment matrix generated by the atom $(x, y) \in \mathbb{R}^{2}$.

< 回 > < 回 > < 回 >

By the form of the atoms we know that the blue moments must come from the atoms of size 1.

Hence $\widetilde{\mathcal{M}}_n$ admits a measure if and only if

$$\widehat{\mathcal{M}}_n := \widetilde{\mathcal{M}}_n - |\beta_X| \widetilde{\mathcal{M}}_n^{(\mathsf{sign}(\beta_X)1,0)} - |\beta_Y| \widetilde{\mathcal{M}}_n^{(0,\mathsf{sign}(\beta_Y)1)}$$

admits a measure where $\widetilde{\mathcal{M}}_{n}^{(x,y)}$ is the moment matrix generated by the atom $(x, y) \in \mathbb{R}^{2}$.

 $\widehat{\mathcal{M}}_n$ is of the form

$$\widehat{\mathcal{M}}_n = \begin{pmatrix} \widehat{\mathcal{M}}_n^X & \mathbf{0} \\ \mathbf{0} & \widehat{\mathcal{M}}_n^Y \end{pmatrix},$$

< 回 > < 回 > < 回 >

where $\widehat{\mathcal{M}}_{n}^{X}$, $\widehat{\mathcal{M}}_{n}^{Y}$ are equal to

Aljaž Zalar, University of Ljubljana, Slovenia The singular bivariate quartic tracial moment problem

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ● � � �
By the solution of the truncated Hamburger moment problem (Curto & Fialkow, 1991), $\widehat{\mathcal{M}}_n^X$ admits a measure iff $\widehat{\mathcal{M}}_n^X$ is psd and recursively generated.

By the solution of the truncated Hamburger moment problem (Curto & Fialkow, 1991), $\widehat{\mathcal{M}}_n^X$ admits a measure iff $\widehat{\mathcal{M}}_n^X$ is psd and recursively generated.

Moreover, $\widehat{\mathcal{M}}_n^X$ admits a minimal measure with exactly *m* atoms (say x_1, \ldots, x_m) iff $\widehat{\mathcal{M}}_n^X$ is of rank *m*.

A (1) < A (1) < A (1) </p>

By the solution of the truncated Hamburger moment problem (Curto & Fialkow, 1991), $\widehat{\mathcal{M}}_n^X$ admits a measure iff $\widehat{\mathcal{M}}_n^X$ is psd and recursively generated.

Moreover, $\widehat{\mathcal{M}}_n^X$ admits a minimal measure with exactly *m* atoms (say x_1, \ldots, x_m) iff $\widehat{\mathcal{M}}_n^X$ is of rank *m*.

If also $\widehat{\mathcal{M}}_n^{\gamma}$ is psd, then the atoms which represent $\widehat{\mathcal{M}}_n$ are

$$\left(\begin{pmatrix} 0 & x_i \\ x_i & 0 \end{pmatrix}, \begin{pmatrix} \sqrt{1-x_i^2} & 0 \\ 0 & -\sqrt{1-x_i^2} \end{pmatrix}\right) \quad i = 1, \dots, m$$

By the solution of the truncated Hamburger moment problem (Curto & Fialkow, 1991), $\widehat{\mathcal{M}}_{n}^{X}$ admits a measure iff $\widehat{\mathcal{M}}_{n}^{X}$ is psd and recursively generated.

Moreover, $\widehat{\mathcal{M}}_n^X$ admits a minimal measure with exactly *m* atoms (say x_1, \ldots, x_m) iff $\widehat{\mathcal{M}}_n^X$ is of rank *m*.

If also $\widehat{\mathcal{M}}_n^{Y}$ is psd, then the atoms which represent $\widehat{\mathcal{M}}_n$ are

$$\left(\begin{pmatrix} 0 & x_i \\ x_i & 0 \end{pmatrix}, \begin{pmatrix} \sqrt{1-x_i^2} & 0 \\ 0 & -\sqrt{1-x_i^2} \end{pmatrix}\right) \quad i = 1, \dots, m$$

Moreover, it can be shown that the minimal measures are of one of the types

$$(1, m-2)$$
 or $(2, m-2)$ or $(3, m-2)$.

▲御▶ ▲ 理▶ ▲ 理♪

Theorem

For $\beta = \beta^{(4)}$ we have:

1 \mathcal{M}_2 is positive semidefinite if and only if

$$|eta_X|$$

where
$$c := \frac{-\beta_{\chi^2}^3 + \beta_{\chi^2}^4 - \beta_{\chi}^2 + \beta_{Y}^2 \beta_{\chi}^2 + 3\beta_{\chi^2} \beta_{\chi}^2 - 2\beta_{\chi^2}^2 \beta_{\chi}^2}{-\beta_{\chi^2} + \beta_{Y}^2 \beta_{\chi^2} + \beta_{\chi^2}^2 + \beta_{\chi^2}^2 - \beta_{\chi^2} \beta_{\chi}^2}.$$

2 β admits a measure if and only if

$$|\beta_Y| < 1 - |\beta_X|, \ |\beta_X| < \beta_{X^2} < 1 - |\beta_Y|, \ d \le \beta_{X^4} < \beta_{X^2},$$

where
$$d = \frac{-\beta_{X^2}^2 - |\beta_X| + 2\beta_{X^2} |\beta_X| + |\beta_Y \beta_X|}{-1 + |\beta_Y| + |\beta_X|}$$

Around 70.5% of β-s with psd M₂ admit a measure. (We integrate w.r.t. the Lebesgue measure.)

Theorem

The minimal measure is unique (up to orthogonal equivalence) and of type:

• (1, 1) if and only if $\beta_X \beta_Y = 0$ and $\beta_{X^4} = c$.

There are two minimal measures (up to orthogonal equivalence) of type:

• (2, 1) if and only if
$$\beta_X = \beta_Y = 0$$
 or $(\beta_X \beta_Y \neq 0 \text{ and } \beta_{X^4} = c)$.

• (3, 1) if and only if $\beta_X \beta_Y \neq 0$ and $\beta_{X^4} \neq c$.

\mathcal{M}_2 (without \mathbb{Y}^2 row/column) is of the form

\mathcal{M}_2 (without \mathbb{Y}^2 row/column) is of the form

By the form of the atoms we know that the blue moments must come from the atoms of size 1.

We define the linear matrix polynomial L(a, b, c, d, e) by

$$\begin{pmatrix} a & \beta_{X} & \beta_{Y} & b & c & c \\ \beta_{X} & b & c & \beta_{X^{3}} & \beta_{X^{2}Y} & \beta_{X^{2}Y} \\ \beta_{Y} & c & a-b & \beta_{X^{2}Y} & \beta_{X}-\beta_{X^{3}} \\ b & \beta_{X^{3}} & \beta_{X^{2}Y} & d & e & e \\ c & \beta_{X^{2}Y} & \beta_{X}-\beta_{X^{3}} & e & b-d & b-d \\ c & \beta_{X^{2}Y} & \beta_{X}-\beta_{X^{3}} & e & b-d & b-d \end{pmatrix}$$

.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Aljaž Zalar, University of Ljubljana, Slovenia The singular bivariate quartic tracial moment problem

Theorem

- β⁽⁶⁾ admits a measure if and only if there exist a, b, c, d, e ∈ ℝ such that
 - $L(a, b, c, d, e) \succeq 0$, $\mathcal{M}_2 L(a, b, c, d, e) \succeq 0$,
 - $(\mathcal{M}_2 L(a, b, c, d, e))_{\{1, X, Y, XY\}} \succ 0$,
 - L is recursively generated and

 $\operatorname{rank}(L(a, b, c, d, e)) \leq \operatorname{card} \mathcal{V}_{L}..$

A (1) < A (1) < A (1) </p>

Theorem

- $\beta^{(6)}$ admits a measure if and only if there exist *a*, *b*, *c*, *d*, *e* ∈ \mathbb{R} such that
 - $L(a, b, c, d, e) \succeq 0$, $\mathcal{M}_2 L(a, b, c, d, e) \succeq 0$,
 - $(\mathcal{M}_2 L(a, b, c, d, e))_{\{1, X, Y, XY\}} \succ 0$,
 - L is recursively generated and

 $\operatorname{rank}(L(a, b, c, d, e)) \leq \operatorname{card} \mathcal{V}_{L}$.

2 If $\beta_X = \beta_Y = \beta_{X^3} = \beta_{X^2Y} = 0$, then the measure always exists and is of type (4, 1).

(日本) (日本) (日本)

• What about M_2 of rank 6 with the relation $\mathbb{Y}^2 = 1$?

Aljaž Zalar, University of Ljubljana, Slovenia The singular bivariate quartic tracial moment problem

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

 What about M₂ of rank 6 with the relation Y² = 1? (Here we cannot prove that the atoms of size 2 are sufficient and produce LMI-s as in the other three cases of rank 6.)

- What about *M*₂ of rank 6 with the relation 𝔅² = 1? (Here we cannot prove that the atoms of size 2 are sufficient and produce LMI-s as in the other three cases of rank 6.)
- 2 Constructive solution for the non-singular M_2 ?

< 同 > < 三 > <

- What about *M*₂ of rank 6 with the relation 𝔅² = 1? (Here we cannot prove that the atoms of size 2 are sufficient and produce LMI-s as in the other three cases of rank 6.)
- Constructive solution for the non-singular M₂? (Since for tracial M₂ of rank 6 being psd and rg is not sufficient for the existence of a measure, Curto-Yoo's constructive solution for the nonsingular commutative M₂ does not extend to the tracial case.)

- What about *M*₂ of rank 6 with the relation 𝔅² = 𝔅? (Here we cannot prove that the atoms of size 2 are sufficient and produce LMI-s as in the other three cases of rank 6.)
- Constructive solution for the non-singular M₂? (Since for tracial M₂ of rank 6 being psd and rg is not sufficient for the existence of a measure, Curto-Yoo's constructive solution for the nonsingular commutative M₂ does not extend to the tracial case.)
- 3 Analysis of \mathcal{M}_3 .

- What about M₂ of rank 6 with the relation Y² = 1? (Here we cannot prove that the atoms of size 2 are sufficient and produce LMI-s as in the other three cases of rank 6.)
- Constructive solution for the non-singular M₂? (Since for tracial M₂ of rank 6 being psd and rg is not sufficient for the existence of a measure, Curto-Yoo's constructive solution for the nonsingular commutative M₂ does not extend to the tracial case.)
- **3** Analysis of \mathcal{M}_3 .

(There are examples of M_3 generated by 1 atom of size 3 with empty commutative variety and without a representing measure with atoms of size at most 2.)

A (1) > A (2) > A

Thank you for your attention!

Aljaž Zalar, University of Ljubljana, Slovenia The singular bivariate quartic tracial moment problem