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Notation

〈X ,Y 〉 . . . the free monoid generated by the
noncommuting letters X ,Y , i.e., words in X ,Y .
R〈X ,Y 〉 . . . the free algebra of polynomials in X ,Y
(noncommutative (nc) polynomials), endowed with the
involution p 7→ p∗ fixing R ∪ {X ,Y} and reversing the order
of letters in each word.

Example

(XY 2 − YX )∗ = Y 2X − XY .

The degree |p| of p ∈ R〈X ,Y 〉 is the length of the longest
word in p. We write R〈X ,Y 〉≤n for the set of all polynomials
of degree at most n.

A word v is cyclically equivalent to w (v
cyc∼ w) iff v is a

cyclic permutation of w , i.e., there exist words u1,u2 such
that v = u1u2, w = u2u1.
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Bivariate truncated tracial sequence

Bivariate truncated tracial sequence (BTTS) of order n is a
sequence of real numbers,

β ≡ β(2n) = (βw )|w |≤2n,

indexed by words w in X ,Y of length at most 2n such that
1 βv = βw whenever v

cyc∼ w ,
2 βw = βw∗ for all |w | ≤ 2n,

Example

For t ∈ N and (A,B) ∈ (SRt×t )2 (where SRt×t denotes
symmetric real t × t matrices), the sequence

βw = tr(w(A,B)) where |w | ≤ 2n

is a BTTS of order n.
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Bivariate truncated tracial moment problem

Question
Which TTS’s are convex combinations of TTS’s as in the
example above?

We call β a bivariate truncated tracial moment sequence
(BTTMS) of order n if there exist N ∈ N, ti ∈ N, λi ∈ R>0 with
N∑

i=1

λi = 1 and pairs of ti × ti real symmetric matrices (Ai ,Bi ),

such that

βw =
N∑

i=1

λi ·
1
ti

tr(w(Ai ,Bi )), for all |w | ≤ 2n.

Remark
Restricting ti ’s to 1 we get the classical truncated moment
problem studied extensively by Curto and Fialkow.
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Bivariate truncated tracial moment problem

If such representation for β exists, then we say β admits a
measure. The matrices (Ai ,Bi ) are called atoms of size ti
and the numbers λi are densities.

The measure is of type (m1,m2, . . . ,mr ) if it consists of
exactly mi ∈ N ∪ {0} atoms of size i and mr 6= 0.

A measure for β of type (m(1)
1 ,m(1)

2 , . . . ,m(1)
r1 ) is minimal, if

there does not exist another measure for β of type (m(2)
1 ,

m(2)
2 ,. . ., m(2)

r2 ) such that

(0, . . . ,0︸ ︷︷ ︸
r1−r2

,m(2)
r2 ,m

(2)
r2−1, . . . ,m

(2)
1 ) ≺lex (m(1)

r1 ,m
(1)
r1−1, . . . ,m

(1)
1 ).
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Bivariate truncated tracial moment problem

Remark
1 Replacing an atom (A,B) ∈ (SRt×t )2 with any atom

(UAU t ,UBU t ) ∈ (SRt×t )2

where U ∈ Rt×t is an orthogonal matrix, generates the
same BTTS.

2 By the tracial version of Bayer-Teichmann theorem,
studying finite atomic measures is equivalent to studying
probability measures on (SRt×t )2 such that

βw =
∫

(SRt×t )2
tr(w(A,B)) dµ(A,B).
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Bivariate quartic tracial moment problem (BQTMP)

For n = 2 the sequence β(4) has 16 parameters:

3 of degree 1: β1, βX , βY

3 of degree 2: βX 2 , βXY = βYX , βY 2

4 of degree 3: βX 3 , βX 2Y = βXYX = βYX 2 , βXY 2 = βYXY = βY 2X , βY 3 ,

6 of degree 4: βX 4 , βX 3Y = βX 2YX = βXYX 2 = βYX 3 ,

βX 2Y 2 = βXY 2X = βY 2X 2 = βYX 2Y ,

βXYXY = βYXYX ,

βXY 3 = βYXY 2 = βY 2XY = βY 3X , βY 4 .
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Truncated moment matrixMn

Index rows and columns ofMn by words in R〈X ,Y 〉≤n in the
degree-lexicographic order.

The entry in a row w1 and a column w2 ofMn is βw∗1 w2 :

Mn =

1 X · · · w2 · · · Yn



1 β1 βX · · · βw2 · · · βY n

X βX βX 2 · · · βXw2 · · · βXY n

...
...

...
...

...
...

...
w1 βw1 βw∗1 X · · · βw∗1 w2 · · · βw∗1 Y n

...
...

...
...

...
...

...
Yn βY n βXY n · · · βY nw2 · · · βY 2n

.
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n = 2: 7× 7 moment matrixM2

1 X Y X2 XY YX Y2



1 β1 βX βY βX 2 βXY βXY βY 2

X βX βX 2 βXY βX 3 βX 2Y βX 2Y βXY 2

Y βY βXY βY 2 βX 2Y βXY 2 βXY 2 βY 3

X2 βX 2 βX 3 βX 2Y βX 4 βX 3Y βX 3Y βX 2Y 2

XY βXY βX 2Y βXY 2 βX 3Y βX 2Y 2 βXYXY βXY 3

YX βXY βX 2Y βXY 2 βX 3Y βXYXY βX 2Y 2 βXY 3

Y2 βY 2 βXY 2 βY 3 βX 2Y 2 βXY 3 βXY 3 βY 4

If βX 2Y 2 = βXYXY , then the BQTMP reduces to the classical
bivariate quartic moment problem.

Aljaž Zalar, University of Ljubljana, Slovenia The singular bivariate quartic tracial moment problem



n = 2: 7× 7 moment matrixM2

1 X Y X2 XY YX Y2



1 β1 βX βY βX 2 βXY βXY βY 2

X βX βX 2 βXY βX 3 βX 2Y βX 2Y βXY 2

Y βY βXY βY 2 βX 2Y βXY 2 βXY 2 βY 3

X2 βX 2 βX 3 βX 2Y βX 4 βX 3Y βX 3Y βX 2Y 2

XY βXY βX 2Y βXY 2 βX 3Y βX 2Y 2 βXYXY βXY 3

YX βXY βX 2Y βXY 2 βX 3Y βXYXY βX 2Y 2 βXY 3

Y2 βY 2 βXY 2 βY 3 βX 2Y 2 βXY 3 βXY 3 βY 4

If βX 2Y 2 = βXYXY , then the BQTMP reduces to the classical
bivariate quartic moment problem.

Aljaž Zalar, University of Ljubljana, Slovenia The singular bivariate quartic tracial moment problem



Bivariate quartic moment problem - results

Curto, Fialkow (1996-2014): a complete solution of the
classical singular case, i.e.,M2 is non-invertible.

Main tool: a rank-preserving extension ofM2 toM3.

Fialkow, Nie (2010): the classical non-singular case
always admits a measure, i.e.,M2 is positive definite.

Proof: not constructive (uses convex analysis).

Curto, Yoo (2016): a concrete construction of a measure
for a positive definiteM2.

Measure: 6-atomic.

Burgdorf, Klep (2010, 2012): a generalization of the
classical results on solvability to the tracial case and a
solution for non-singular M2 - the measure always exists.

Proof: not constructive (duality with trace polynomials) but
15 atoms of size 2 are sufficient.
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Our motivation

Motivation: Solve a singular tracial moment problem for
M2.

?? Main tool: a rank-preserving extension ofM2 toM3 ??

Burgdorf, Klep (2010, 2012): a generalization of the
classical results on solvability to the tracial case and a
solution for non-singular M2 - the measure always exists.

Proof: not constructive (duality with trace polynomials) but
15 atoms of size 2 are sufficient.
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Our results

We assume thatMn, n ≥ 2, is such thatM2 is non-invertible
and βX 2Y 2 6= βXYXY .

1 For n = 2 the existence of a rank-preserving extension of
M2 toM3 is mostly not a necessary condition for the
existence of a measure.

2 If rank(M2) ≤ 3, then β does not admit a measure.

3 For rank(M2) ∈ {4,5}, we can characterize exactly when a
measure exists, what is the type of a minimal measure and
describe its uniqueness.

4 If rank(M2) = 6, then the existence of a measure is almost
always equivalent to the feasibilty of certain linear matrix
inequalities and atoms of size 2 suffice.
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Main techical tools

Assume that β(2n) admits a measure consisting of atoms

(X1,Y1) ∈ (SRt1×t1)2, . . . , (XN ,YN ) ∈ (SRtN×tN )2.

Then:
1 Positive semidefiniteness: Mn is psd.

2 Support of a measure: For p ∈ R〈X ,Y 〉≤n

p(X1,Y1) = . . . = p(XN ,YN ) = 0︸ ︷︷ ︸
usual evaluations

iff p(X,Y) = 0 inMn.︸ ︷︷ ︸
replacing words by columns ofMn

3 Recursive generation: For p,q ∈ R〈X ,Y 〉≤n such that
pq ∈ R〈X ,Y 〉≤n

p(X,Y) = 0 inMn ⇒ pq(X,Y) = 0 inMn.
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Main techical tools

4 Affine linear transformations: For a,b, c,d ,e, f ∈ R with
bf − ce 6= 0 we define

φ(x , y ) = (φ1(x , y ), φ2(x , y )) := (a + bx + cy ,d + ex + fy ).

Let β̃(2n) be the sequence obtained by the rule

β̃w =
∑
w ′

aw ′β
′
w ,

where w(φ1(X ,Y ), φ2(X ,Y )) =
∑
w ′

aw ′w ′.

Solving MP forMn is equivalent to solving MP for M̃n.
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Main techical tools

Example
For

φ(x , y ) = (φ1(x , y ), φ2(x , y )) := (1 + x + y , x − y )

we get

β̃XY = βX − βY + βX 2 − βXβY + βYβX − βY 2

since

XY 7→ (1 + X + Y )(X − Y ) = X − Y + X 2 − XY + YX − Y 2.
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Curto & Fialkow result explicitly

Theorem (Curto, Fialkow)

Suppose β ≡ β(4) is a commutative sequence with the
associated moment matrixM2. Let

V :=
⋂

g∈R[x ,y ]≤2
g(X,Y)=0

V(g)

be the variety associated toM2 and p ∈ R[x , y ] a polynomial of
degree 2. TFAE:

1 β admits a measure supported in V(p).
2 M(2) is positive semidefinite, recursively generated,

satisfies rank(M(2)) ≤ cardV and has a column
dependency relation p(X,Y) = 0.
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Rank-preserving extension ofM2 toM3

M3 =

(
M2 B3
Bt

3 C3

)
where B3 ∈ R7×8 and C3 ∈ R8×8:

X3 X2Y XYX XY2 YX2 YXY Y2X Y3


1 βX3 βX2Y βX2Y βXY 2 βX2Y βXY 2 βXY2 βY3
X βX4 βX3Y βX3Y βX2Y 2 βX3Y βXYXY βX2Y 2 βXY 3
Y βX3Y βX2Y 2 βXYXY βXY 3 βX2Y 2 βXY 3 βXY 3 βY4
X2 βX5 βX4Y βX4Y βX3Y 2 βX4Y βX2YXY βX3Y 2 βX2Y 3
XY βX4Y βX3Y 2 βX2YXY βX2Y 3 βX2YXY βXY 2XY βXY2XY βXY 4
YX βX4Y βX2YXY βX2YXY βXY2XY βX3Y 2 βXY 2XY βX2Y 3 βXY 4
Y2 βX3Y 2 βX2Y 3 βXY 2XY βXY 4 βX2Y 3 βXY4 βXY 4 βY 5

,

X3 X2Y XYX XY2 YX2 YXY Y2X Y3


X3 βX6 βX5Y βX5Y βX4Y 2 βX5Y βX3YXY βX4Y 2 βX3Y 3
X2Y βX5Y βX4Y 2 βX3YXY βX3Y 3 βX2YX2Y βX2Y 2XY βX2Y 2XY βX2Y 4
XYX βX4YX βX3YXY βX2YX2Y βX2Y 2XY βX3YXY βXYXYXY βX2Y2XY βXY 3XY
XY2 βX4Y 2 βX3Y 3 βX2Y 2XY βX2Y 4 βX2Y 2XY βXY 3XY βXY2XY2 βXY5
YX2 βX5Y βX2YX2Y βX3YXY βX2Y2XY βX4Y 2 βX2Y 2XY βX3Y 3 βX2Y 4
YXY βX3YXY βX2Y 2XY βXYXYXY βXY3XY βX2Y 2XY βXY 2XY 2 βXY3XY βXY5
Y2X βX4Y 2 βX2Y 2XY βX2Y 2XY βXY2XY2 βX3Y 3 βXY3XY βX2Y 4 βXY5
Y3 βX3Y 3 βX2Y 4 βXY3XY βXY 5 βX2Y 4 βXY5 βXY 5 βY6 .

.
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Rank-preserving extension ofM2 toM3

M2 of rank 6 satisfying the relation X2 + Y2 = 1.

B3 must satisfy

βX 2Y 3 = βXY 2XY = βX 2Y − q,
βX 3Y 2 = βX 2YXY = βX 3 − p,

βXY 4 = βX − 2βX 3 + p,

βY 5 = βY − 2βX 2Y + q,
βX 5 = p,
βX 4Y = q,

where p,q ∈ R are parameters.

Define

M1 := {1,X,Y,X2,XY,YX}
M2 := {X3,X2Y,XYX,XY2,YX2,YXY,Y2X,Y3}.

and calculate 6× 10 matrix

W = (M2|M1)−1B3|M1,M2 .
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Rank-preserving extension ofM2 toM3

Then the only candidate for C3 is equal to

C3 := W tM2|M1W

andM3 has a moment structure if and only if

C47 = C66,

C25 = C33,

C12 = C13,

C16 = C23,

C48 = C68,

C14 = C22,

C28 = C44,

C26 = C27.
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Rank 6: X2 + Y2 = 1, example

For βX 4 ∈
(1

4 ,
1
2
)
, the following matrices are psd moment

matrices of rank 6 satisfying the relation X2 + Y2 = 1,

M2(βX 4) =



1 0 0 1
2 0 0 1

2
0 1

2 0 0 0 0 0
0 0 1

2 0 0 0 0
1
2 0 0 βX4 0 0 1

2 − βX4

0 0 0 0 1
2 − βX4 0 0

0 0 0 0 0 1
2 − βX4 0

1
2 0 0 1

2 − βX4 0 0 βX4

.

None of them admit a rank-preserving extension toM3, but it
turns out that they all admit a measure of type (4,1).

However, the relation X2 + Y2 = 1 does not imply there always
exists a measure.
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M2 of rank at most 3

Proposition

Suppose n ≥ 2 and β(2n) is a sequence such that
βX 2Y 2 6= βXYXY and admits a measure. Then the columns

1,X,Y,XY

ofMn are linearly independent.

Proof.
0 = a · 1 + b · X + c · Y + d · XY

where a,b, c,d ∈ R.
If d 6= 0, then βX 2Y 2 = βXYXY . →←
If d = 0, the recursive generation implies that

0 = a · X + b · X2 + c · XY = a · Y + b · XY + c · Y2.

If b 6= 0 or c 6= 0, it follows that βX 2Y 2 = βXYXY . →← Hence
b = c = 0. Finally 0 = a · 1 implies that a = 0.
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b = c = 0. Finally 0 = a · 1 implies that a = 0.
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M2 of rank 4

Theorem
Assume that 1,X,Y,XY are linearly independent and write

X2 = a1 · 1 + b1 · X + c1 · Y + d1 · XY,
YX = a2 · 1 + b2 · X + c2 · Y + d2 · XY,
Y2 = a3 · 1 + b3 · X + c3 · Y + d3 · XY

where aj ,bj , cj ,dj ∈ R for j = 1,2,3.
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M2 of rank 4

Theorem
Assume that 1,X,Y,XY are linearly independent and write

X2 = a1 · 1 + b1 · X + c1 · Y + d1 · XY,
YX = a2 · 1 + b2 · X + c2 · Y + d2 · XY,
Y2 = a3 · 1 + b3 · X + c3 · Y + d3 · XY

where aj ,bj , cj ,dj ∈ R for j = 1,2,3. Then
1 d1 = d3 = 0, d2 = −1.

Aljaž Zalar, University of Ljubljana, Slovenia The singular bivariate quartic tracial moment problem



M2 of rank 4

Theorem
Assume that 1,X,Y,XY are linearly independent and write

X2 = a1 · 1 + b1 · X + c1 · Y,
XY + YX = a2 · 1 + b2 · X + c2 · Y,

Y2 = a3 · 1 + b3 · X + c3 · Y

where aj ,bj , cj ∈ R for j = 1,2,3. Then

2 β admits a measure iffMn is recursively generated,M2 is
psd and

c1 = b3 = 0, b2 = c3, c2 = b1. (1)

Moreover, if n > 2 then the equations (1) follow fromMn
being recursively generated.
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M2 of rank 4

Theorem
Assume that 1,X,Y,XY are linearly independent,M2 is psd
and there are a1,a2,a3,b1,b2 ∈ R such that

X2 = a1 · 1 + b1 · X,
XY + YX = a2 · 1 + b2 · X + b1 · Y,

Y2 = a3 · 1 + b2 · Y.
3 The minimal measure is of type (0,1) with a unique (up to

orthogonal equivalence) atom (X ,Y ) ∈ (SR2×2)2 given by√a1 +
b2
1
4 +

b1
2 0

0 −

√
a1 +

b2
1
4 +

b1
2

 , c ·
(

a + b2

√
4− a2√

4− a2 −a + b2

) ,
where a = 4a2+2b1b2√

(4a1+b2
1)(4a3+b2

2)
, c = 1

2

√
a3 + b2

2
4 .
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M2 of rank 5 or 6 - basic reduction 1

Proposition (Basic column relations)

Suppose β ≡ β(2n) generatesMn withM2 of rank 5 or 6. If β
admits a measure, then we may assume (by applying an affine
linear transformation on β) that:

1 If rank(M2) = 5, thenMn satisfies

XY + YX = 0

and one of

X2 + Y2 = 1 or Y2 − X2 = 1 or Y2 = 1 or Y2 = X2.

2 If rank(M2) = 6, thenMn satisfies one of

XY+YX = 0 or X2+Y2 = 1 or Y2−X2 = 1 or Y2 = 1.
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M2 of rank 5 or 6 - basic reduction 1

Proposition (Basic column relations)

Suppose β ≡ β(2n) generatesMn withM2 of rank 5 or 6. If β
admits a measure, then we may assume (by applying an affine
linear transformation on β) that:

1 If rank(M2) = 5, thenMn satisfies

XY + YX = 0 ⇒ many 0’s inM2

and one of

X2 + Y2 = 1 or Y2 − X2 = 1 or Y2 = 1 or Y2 = X2.

2 If rank(M2) = 6, thenMn satisfies one of

XY+YX = 0 or X2+Y2 = 1 or Y2−X2 = 1 or Y2 = 1.
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Basic reduction 1: idea of the proof

Case 1: The set
{
1,X,Y,X2,XY

}
is the basis for CM2 .

∃aj ,bj , cj ,dj ,ej ∈ R for j = 1,2 such that

YX = a11 + b1X + c1Y + d1X2 + e1XY,
Y2 = a21 + b2X + c2Y + d2X2 + e2XY.

Comparing rows XY and YX: e1 = −1 and e2 = 0.
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Basic reduction 1: idea of the proof

Case 1: The set
{
1,X,Y,X2,XY

}
is the basis for CM2 .

∃aj ,bj , cj ,dj ∈ R for j = 1,2 such that

XY + YX = a11 + b1X + c1Y + d1X2,

Y2 = a21 + b2X + c2Y + d2X2.

Focus on Y2:
Case 1.1: d2 < 0:

(Y2 − c2

2︸ ︷︷ ︸
φ2(X ,Y )

)2 = −(
√
|d2|X−

b2

2
√
|d2|︸ ︷︷ ︸

φ1(X ,Y )

)2 + (a2 +
c2

2
4

+
b2

2
4d2︸ ︷︷ ︸

=:C>0

)1.

φ(X ,Y ) = (
1√
C
φ1(X ,Y ),

1√
C
φ2(X ,Y ))
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∃aj ,bj , cj ,dj ∈ R for j = 1,2 such that

XY + YX = a11 + b1X + c1Y + d1X2,
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Focus on Y2:
Case 1.1: d2 < 0:

(Y2 − c2

2︸ ︷︷ ︸
φ2(X ,Y )

)2 = −(
√
|d2|X−

b2

2
√
|d2|︸ ︷︷ ︸

φ1(X ,Y )

)2 + (a2 +
c2

2
4

+
b2

2
4d2︸ ︷︷ ︸

=:C>0

)1.

φ(X ,Y ) = (
1√
C
φ1(X ,Y ),

1√
C
φ2(X ,Y ))

Aljaž Zalar, University of Ljubljana, Slovenia The singular bivariate quartic tracial moment problem



Basic reduction 1: idea of the proof

Case 1: The set
{
1,X,Y,X2,XY

}
is the basis for CM2 .

∃a1,b1, c1,d1 ∈ R such that

XY + YX = a11 + b1X + c1Y + d1X2,

X2 + Y2 = 1.
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Basic reduction 1: idea of the proof

Case 1: The set
{
1,X,Y,X2,XY

}
is the basis for CM2 .

∃a1,b1, c1,d1 ∈ R such that

XY + YX = a11 + b1X + c1Y + d1X2,

X2 + Y2 = 1.

RG relations:

X2Y + XYX = a1X + b1X2 + c1XY + d1X3,

YXY + Y2X = a1Y + b1YX + c1Y2 + d1YX2,

X3 + Y2X = X, YX2 + Y3 = Y
X2Y + Y3 = Y,
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Basic reduction 1: idea of the proof

Case 1: The set
{
1,X,Y,X2,XY

}
is the basis for CM2 .

∃a1,b1, c1,d1 ∈ R such that

XY + YX = a11 + b1X + c1Y + d1X2,

X2 + Y2 = 1.

RG relations:

X2Y + XYX = a1X + b1X2 + 0XY + d1X3,

YXY + Y2X = a1Y + 0YX + c1Y2 + d1YX2,

X3 + Y2X = X, YX2 + Y3 = Y
X2Y + Y3 = Y,
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Basic reduction 1: idea of the proof

Case 1: The set
{
1,X,Y,X2,XY

}
is the basis for CM2 .

∃a1,d1 ∈ R such that

XY + YX = a11 + d1X2,

X2 + Y2 = 1.

Continue the analysis and we end up with:

XY + YX = 0,

X2 + Y2 = 1,

or

XY + YX = 0,

Y2 = 1,
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Basic reduction 2

Proposition (Form of the atoms)

Suppose β ≡ β(2n) generatesMn satisfying one of:

XY + YX = 0 or X2 + Y2 = 1 or Y2 − X2 = 1.

If β admits a measure, then:

(1) There exists a measure with atoms of the following two
forms:

(xi , yi ) ∈ R2.
(Xi ,Yi ) ∈ (SR2×2)2 such that

Xi =
(
γi bi
bi −γi

)
and Yi =

(
µi 0
0 −µi

)
where γi ≥ 0, µi 6= 0 and bi ∈ R.
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Basic reduction 2

Proposition (Form of the atoms)

Suppose β ≡ β(2n) generatesMn satisfying one of:

XY + YX = 0 or X2 + Y2 = 1 or Y2 − X2 = 1.

If β admits a measure, then:
(2) In the measure from (1) all the moments of the form

βX 2i Y 2j−1 and βX 2i−1Y 2j come from atoms of size 1.
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Basic reduction 2: idea of the proof

Let (X ,Y ) ∈ SRt×t be the atom of a measure.

1 [XY + YX,Y] = 0 : XY + YX and Y simultaneously
diagonalizable.

2 XY + YX diagonal :

X =

(
D1 B
Bt D2

)
and Y =

(
µIn1 0

0 −µIn2

)
,

where µ > 0, n1,n2 ∈ N, D1 ∈ Rn1×n1 and D2 ∈ Rn2×n2 are
diagonal matrices and B ∈ Rn1×n2 .

3 Using the relation we may assume that n1 = n2,
D1 = −D2 = γIn1 for some γ ≥ 0.

4 By a further reduction n1 = 1.
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Mn with relations XY + YX = 0 and X2 + Y2 = 1.

IfMn is recursively generated, then its column space is
spanned by the columns

1,X,X2, . . . ,Xn,Y,XY, . . . ,Xn−1Y.

In this basis the moment matrix has the form

M̃n =

(
MX

n Bn
Bn MY

n

)
whereMX

n ,MY
n and Bn are equal to

1 X X2 · · · X2k · · · Xn



1 β1 βX βX2 · · · βX2k · · ·
X βX βX2 βX · · · βX · · ·
X2 βX2 βX βX4 · · · βX2k+2 · · ·
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

X2k βX2k βX βX2k+2 · · · βX4k · · ·
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

Xn βX2n

,
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spanned by the columns

1,X,X2, . . . ,Xn,Y,XY, . . . ,Xn−1Y.

In this basis the moment matrix has the form

M̃n =

(
MX

n Bn
Bn MY

n

)
whereMX

n ,MY
n and Bn are equal to

1 X X2 · · · X2k · · · Xn



1 β1 βX βX2 · · · βX2k · · ·
X βX βX2 βX · · · βX · · ·
X2 βX2 βX βX4 · · · βX2k+2 · · ·
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

X2k βX2k βX βX2k+2 · · · βX4k · · ·
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

Xn βX2n

,
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Mn with relations XY + YX = 0 and X2 + Y2 = 1.

Y XY · · · X2k−1Y · · · Xn−1Y


Y β1 − βX2 0 · · · 0 · · ·
XY 0 βX2 − βX4 · · · βX2k − βX2k+2 · · ·

.

.

.
.
.
.

.

.

.
. . .

.

.

. · · ·
X2k−1Y 0 βX2k − βX2k+2 · · · βX4k−2 − βX4k · · ·

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

Xn−1Y

,

Y XY X2Y · · · Xn−1Y


1 βY 0 0 · · · 0
X 0 0 0 · · · 0
...
Xn 0 0 0 · · · 0

.
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Mn with relations XY + YX = 0 and X2 + Y2 = 1.

By the form of the atoms we know that the blue moments must
come from the atoms of size 1.

Hence M̃n admits a measure if and only if

M̂n := M̃n − |βX |M̃
(sign(βX )1,0)
n − |βY |M̃

(0,sign(βY )1)
n

admits a measure where M̃(x ,y )
n is the moment matrix

generated by the atom (x , y ) ∈ R2.

M̂n is of the form

M̂n =

(
M̂X

n 0
0 M̂Y

n

)
,

Aljaž Zalar, University of Ljubljana, Slovenia The singular bivariate quartic tracial moment problem



Mn with relations XY + YX = 0 and X2 + Y2 = 1.

By the form of the atoms we know that the blue moments must
come from the atoms of size 1.

Hence M̃n admits a measure if and only if

M̂n := M̃n − |βX |M̃
(sign(βX )1,0)
n − |βY |M̃

(0,sign(βY )1)
n

admits a measure where M̃(x ,y )
n is the moment matrix

generated by the atom (x , y ) ∈ R2.

M̂n is of the form

M̂n =

(
M̂X

n 0
0 M̂Y

n

)
,

Aljaž Zalar, University of Ljubljana, Slovenia The singular bivariate quartic tracial moment problem



Mn with relations XY + YX = 0 and X2 + Y2 = 1.

By the form of the atoms we know that the blue moments must
come from the atoms of size 1.

Hence M̃n admits a measure if and only if

M̂n := M̃n − |βX |M̃
(sign(βX )1,0)
n − |βY |M̃

(0,sign(βY )1)
n

admits a measure where M̃(x ,y )
n is the moment matrix

generated by the atom (x , y ) ∈ R2.

M̂n is of the form

M̂n =

(
M̂X

n 0
0 M̂Y

n

)
,

Aljaž Zalar, University of Ljubljana, Slovenia The singular bivariate quartic tracial moment problem



Mn with relations XY + YX = 0 and X2 + Y2 = 1.

where M̂X
n , M̂Y

n are equal to

1 X X2 · · · X2k · · · Xn



1 β1 − |βX | − |βY | 0 βX2 − |βX | · · · βX2k − |βX | · · ·
X 0 βX2 − |βX | 0 · · · 0 · · ·
X2 βX2 − |βX | 0 βX4 − |βX | · · · βX2k+2 − |βX | · · ·
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

X2k βX2k − |βX | 0 βX2k+2 − |βX | · · · βX4k − |βX | · · ·
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

Xn βX2n − |βX |

,

Y XY · · · X2k−1Y · · · Xn−1Y


Y β1 − βX2 − |βY | 0 · · · 0 · · ·
XY 0 βX2 − βX4 · · · βX2k − βX2k+2 · · ·

.

.

.
.
.
.

.

.

.
. . .

.

.

. · · ·
X2k−1Y 0 βX2k − βX2k+2 · · · βX4k−2 − βX4k · · ·

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

Xn−1Y

,
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Mn with relations XY + YX = 0 and X2 + Y2 = 1.

By the solution of the truncated Hamburger moment problem
(Curto & Fialkow, 1991), M̂X

n admits a measure iff M̂X
n is psd

and recursively generated.

Moreover, M̂X
n admits a minimal measure with exactly m atoms

(say x1, . . . , xm) iff M̂X
n is of rank m.

If also M̂Y
n is psd, then the atoms which represent M̂n are(0 xi
xi 0

)
,

√1− x2
i 0

0 −
√

1− x2
i

 i = 1, . . . ,m

Moreover, it can be shown that the minimal measures are of
one of the types

(1,m − 2) or (2,m − 2) or (3,m − 2).
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M2 with relations XY + YX = 0 and X2 + Y2 = 1.

Theorem

For β = β(4) we have:
1 M2 is positive semidefinite if and only if

|βX | < βX 2 < 1, |βY | < (1− βX 2), c < βX 4 < βX 2 ,

where c :=
−β3

X2 +β4
X2−β

2
X +β2

Yβ
2
X +3βX2β

2
X−2β2

X2β
2
X

−βX2 +β2
YβX2 +β2

X2 +β2
X−βX2β

2
X

.

2 β admits a measure if and only if

|βY | < 1− |βX |, |βX | < βX 2 < 1− |βY |, d ≤ βX 4 < βX 2 ,

where d =
−β2

X2−|βX |+2βX2 |βX |+|βYβX |
−1+|βY |+|βX | .

3 Around 70.5% of β-s with psdM2 admit a measure. (We
integrate w.r.t. the Lebesgue measure.)
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M2 with relations XY + YX = 0 and X2 + Y2 = 1.

Theorem
4 The minimal measure is unique (up to orthogonal

equivalence) and of type:
(1,1) if and only if βXβY = 0 and βX 4 = c.

There are two minimal measures (up to orthogonal
equivalence) of type:

(2,1) if and only if βX = βY = 0 or (βXβY 6= 0 and βX 4 = c).
(3,1) if and only if βXβY 6= 0 and βX 4 6= c.
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Rank 6: relation X2 + Y2 = 1

M2 (without Y2 row/column) is of the form
β1 βX βY βX2 βXY βXY

βX βX2 βXY βX3 βX2Y βX2Y
βY βXY β1 − βX2 βX2Y βX − βX3 βX − βX3

βX2 βX3 βX2Y βX4 βX3Y βX3Y
βXY βX2Y βX − βX3 βX3Y βX2 − βX4 βXYXY

βXY βX2Y βX − βX3 βX3Y βXYXY βX2 − βX4

.

By the form of the atoms we know that the blue moments must
come from the atoms of size 1.
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Rank 6: relation X2 + Y2 = 1

We define the linear matrix polynomial L(a,b, c,d ,e) by
a βX βY b c c

βX b c βX3 βX2Y βX2Y
βY c a − b βX2Y βX − βX3 βX − βX3

b βX3 βX2Y d e e
c βX2Y βX − βX3 e b − d b − d
c βX2Y βX − βX3 e b − d b − d

.
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Rank 6: relation X2 + Y2 = 1

Theorem

1 β(6) admits a measure if and only if there exist
a,b, c,d ,e ∈ R such that

L(a,b, c,d ,e) � 0, M2 − L(a,b, c,d ,e) � 0,
(M2 − L(a,b, c,d ,e)){1,X,Y,XY} � 0,

L is recursively generated and

rank(L(a,b, c,d ,e)) ≤ cardVL..

2 If βX = βY = βX 3 = βX 2Y = 0, then the measure always
exists and is of type (4,1).
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Open questions

1 What aboutM2 of rank 6 with the relation Y2 = 1?

(Here we cannot prove that the atoms of size 2 are
sufficient and produce LMI-s as in the other three cases of
rank 6.)

2 Constructive solution for the non-singularM2?
(Since for tracialM2 of rank 6 being psd and rg is not
sufficient for the existence of a measure, Curto-Yoo’s
constructive solution for the nonsingular commutativeM2
does not extend to the tracial case.)

3 Analysis ofM3.
(There are examples ofM3 generated by 1 atom of size 3
with empty commutative variety and without a representing
measure with atoms of size at most 2.)
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Thank you for your attention!
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