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Notation

Let R[x ] be the ring of real polynomials. We write Mn(R[x ]) for
the ring of matrix polynomials equipped with transposition as the
involution.
Let

Sn(R[x ]) =
{
F ∈ Mn(R[x ]) : F t = F

}
be the set of symmetric matrix polynomials.
Let

∑
Mn(R[x ])2 =

{ k∑
i=1

At
i Ai : k ∈ N,Ai ∈ Mn(R[x ])

}

be the set of sums of hermitian squares of matrix polynomials.
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Problem

Characterize univariate matrix polynomials, which are positive
semidefinite on a union of points and intervals (not necessarily
bounded) in R.
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Notation

A closed semialgebraic set KS ⊆ R associated to a finite subset
S = {g1, . . . , gs} ⊂ R [x ] is given by

KS = {x ∈ R : gj(x) ≥ 0, j = 1, . . . , s} .

We define the n-th matrix quadratic module Mn
S by

Mn
S := {σ0 + σ1g1 + . . .+ σsgs :

σj ∈
∑

Mn(R[x ])2 for j = 0, . . . , s
}
.
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Notation

Let ∏
S := {ge1

1 · · · g
es
s : ej ∈ {0, 1}, j = 1, . . . , s} .

The n-th matrix preordering T n
S is defined as

T n
S = Mn∏

S .

Let Posn
�0(KS) be the set of all n × n symmetric matrix

polynomials, which are positive semidefinite in every point of KS .

We say a matrix quadratic module Mn
S is saturated if

Mn
S = Posn

�0(KS).
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Notation

Let K ⊆ R be a closed semialgebraic set. A set

S = {g1, . . . , gs} ⊂ R [x ]

is the natural description of K , if it satisfies the following
conditions:
(a) If a = min(K ), then x − a ∈ S.
(b) If b = max(K ), then b − x ∈ S.
(c) If a, b ∈ K , a < b and c /∈ K for every a < c < b, then

(x − a)(x − b) ∈ S.

(d) These are the only elements of S.
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Theorem (Kuhlmann, Marshall, 2002)
If S is the natural description of K, then the preordering
T 1

S = M1∏
S is saturated.

K not compact: T 1
S̃
is saturated if and only if S̃ contains each

of the polynomials in the natural description of K up to
scaling by positive constants.
K compact: Scheiderer classifed in 2003 exactly when T 1

S̃
is

saturated. Moreover, T 1
S̃

= M1
S̃
.
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By the results of Gohberg & Krein (1958), Dette & Studden
(2002) and Schmüdgen & Savchuk (2012), we have the following:

Theorem
Let K be equal to

R or [0, 1] or [0,∞).

Suppose S is the natural description K. Then the n-th quadratic
module Mn

S is saturated for every n ∈ N.
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Theorem (Compact Nichtnegativstellensatz for R)
Let K be a compact semialgebraic set in R with a natural
description S. Then the n-th quadratic module Mn

S is saturated for
every n ∈ N.
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Sketch of the proof of compact Nsatz
Claim: It suffices to prove that for every F ∈ Posn

�0(KS) the ideal

IF :=
〈
h2 : h ∈ R[x ], h2F ∈ Mn

S

〉
is R[x ].

Indeed, if IF = R[x ], then by Scheiderer’s result there exist
s1, . . . , sk ∈ Pos1

�0(K ) such that

s1h2
1 + s2h2

2 + . . .+ skh2
k = 1,

where IF =
〈
h2

1, . . . , h2
k
〉
. Hence,

F =
k∑

j=1
sjh2

j F ∈ M1
S ·Mn

S =︸︷︷︸
K⊂R compact

Mn
S ,

which concludes the proof.
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Sketch of the proof of compact Nsatz

To establish the Claim we have to prove that for every x0 ∈ C
there exists hx0 ∈ R [x ] such that

hx0(x0) 6= 0 and h2
x0F ∈ Mn

S .

The proof of this statement is by induction on the size n of matrix
polynomials. For n = 1 this is true by the scalar case. We write

F (x) =


(x − x0)m︸ ︷︷ ︸

p(x)

·G(x), if x0 ∈ R

((x − x0)(x − x0))m︸ ︷︷ ︸
p(x)

·G(x), if x0 /∈ R ,

where m ∈ N0, G(x) ∈ Mn(R[x ]) and G(x0) 6= 0.
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Sketch of the proof of Compact Nsatz

Writing G =
(
a β
βt C

)
, where

a ∈ R [x ] , β ∈ M1,n−1 (R [x ]) , C ∈ Mn−1 (R [x ]) ,

we may assume a(x0) 6= 0. Then

a4 · G =
(
a 0
βt aIn−1

)(
a3 0
0 a(aC − βtβ)

)(
a β
0 aIn−1

)
,(

a3 0
0 a(aC − βtβ)

)
=
(

a 0
−βt aIn−1

)
· G ·

(
a −β
0 aIn−1

)
.
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Sketch of the proof of Compact Nsatz

Writing G =
(
a β
βt C

)
, where

a ∈ R [x ] , β ∈ M1,n−1 (R [x ]) , C ∈ Mn−1 (R [x ]) ,

we may assume a(x0) 6= 0. Then

a4 · F =
(
a 0
βt aIn−1

)(
pa3 0
0 pa(aC − βtβ)

)(
a β
0 aIn−1

)
,(

pa3 0
0 pa(aC − βtβ)

)
=
(

a 0
−βt aIn−1

)
· F ·

(
a −β
0 aIn−1

)
.
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Sketch of the proof of compact Nsatz

By induction hypothesis there is h̃x0 ∈ R[x ] such that

h̃x0(x0) 6= 0, h̃2
x0pa(aC − βtβ) ∈ Mn−1

S .

We also have
h̃2

x0pa
3 ∈ M1

S .

Therefore

a2h̃x0(x0) 6= 0 and (a2h̃x0)2F ∈ Mn
S .
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Counterexample for the non-compact case

Example
The matrix polynomial

F (x) :=
[
x + 2

√
6√

6 x2 − 2x + 3

]

is positive semidefinite on K := [−1, 0] ∪ [1,∞), but

F /∈ T 2
S = M2∏

S ,

where S is the natural description of K .
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Theorem
Let an unbounded closed semialgebraic set K ⊆ R satisfy either of
the following:

1 K contains at least two intervals with at least one of them
bounded.

2 K is a union of an unbounded interval and m isolated points
with m ≥ 2.

3 K is a union of two unbounded intervals and m isolated points
with m ≥ 2.

If S ⊆ R[x ] is a finite set with KS = K, then the 2-nd matrix
preordering T 2

S is not saturated.
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Non-compact Nichtnegativstellensatz

Theorem (Non-compact Nichtnegativstellensatz)
Suppose K is an unbounded closed semialgebraic set in R and S a
natural description of K. Then F ∈ Posn

�0(K ) if and only if there
exists k ∈ N0 such that

(1 + x2)kF ∈ Mn
S .
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Thank you for your attention!
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