Univariate matrix polynomials positive semidefinite on semialgebraic sets

Aljaž Zalar, University of Ljubljana, Slovenia

Atlanta, July 13, 2016

Notation

Let $\mathbb{R}[x]$ be the ring of real polynomials. We write $M_{n}(\mathbb{R}[x])$ for the ring of matrix polynomials equipped with transposition as the involution.
Let

$$
\mathbb{S}_{n}(\mathbb{R}[x])=\left\{F \in M_{n}(\mathbb{R}[x]): F^{t}=F\right\}
$$

be the set of symmetric matrix polynomials.
Let

$$
\sum M_{n}(\mathbb{R}[x])^{2}=\left\{\sum_{i=1}^{k} A_{i}^{t} A_{i}: k \in \mathbb{N}, A_{i} \in M_{n}(\mathbb{R}[x])\right\}
$$

be the set of sums of hermitian squares of matrix polynomials.

Problem

Problem

Characterize univariate matrix polynomials, which are positive semidefinite on a union of points and intervals (not necessarily bounded) in \mathbb{R}.

Notation

A closed semialgebraic set $K_{S} \subseteq \mathbb{R}$ associated to a finite subset $S=\left\{g_{1}, \ldots, g_{s}\right\} \subset \mathbb{R}[x]$ is given by

$$
K_{S}=\left\{x \in \mathbb{R}: g_{j}(x) \geq 0, j=1, \ldots, s\right\}
$$

We define the n-th matrix quadratic module M_{S}^{n} by

$$
\begin{aligned}
M_{S}^{n}:= & \left\{\sigma_{0}+\sigma_{1} g_{1}+\ldots+\sigma_{s} g_{s}:\right. \\
& \left.\sigma_{j} \in \sum M_{n}(\mathbb{R}[x])^{2} \text { for } j=0, \ldots, s\right\} .
\end{aligned}
$$

Notation

Let

$$
\prod S:=\left\{g_{1}^{e_{1}} \cdots g_{s}^{e_{s}}: e_{j} \in\{0,1\}, j=1, \ldots, s\right\}
$$

The n-th matrix preordering T_{S}^{n} is defined as

$$
T_{S}^{n}=M_{\prod s}^{n}
$$

Let $\operatorname{Pos}_{\succeq 0}^{n}\left(K_{S}\right)$ be the set of all $n \times n$ symmetric matrix polynomials, which are positive semidefinite in every point of K_{S}.

We say a matrix quadratic module M_{S}^{n} is saturated if

$$
M_{S}^{n}=\operatorname{Pos}_{\succeq 0}^{n}\left(K_{S}\right)
$$

Notation

Let $K \subseteq \mathbb{R}$ be a closed semialgebraic set. A set

$$
S=\left\{g_{1}, \ldots, g_{s}\right\} \subset \mathbb{R}[x]
$$

is the natural description of K, if it satisfies the following conditions:
(a) If $a=\min (K)$, then $x-a \in S$.
(b) If $b=\max (K)$, then $b-x \in S$.
(c) If $a, b \in K, a<b$ and $c \notin K$ for every $a<c<b$, then

$$
(x-a)(x-b) \in S
$$

(d) These are the only elements of S.

Known results - scalar case

Theorem (Kuhlmann, Marshall, 2002)

If S is the natural description of K, then the preordering
$T_{S}^{1}=M_{\prod S}^{1}$ is saturated.

Known results - scalar case

Theorem (Kuhlmann, Marshall, 2002)

If S is the natural description of K, then the preordering
$T_{S}^{1}=M_{\prod S}^{1}$ is saturated.

- K not compact: $T_{\widetilde{S}}^{1}$ is saturated if and only if \widetilde{S} contains each of the polynomials in the natural description of K up to scaling by positive constants.
- K compact: Scheiderer classifed in 2003 exactly when $T_{\stackrel{S}{S}}^{1}$ is saturated. Moreover, $T_{\widetilde{S}}^{1}=M_{\widetilde{S}}^{1}$.

Known results - matrix case

By the results of Gohberg \& Krein (1958), Dette \& Studden (2002) and Schmüdgen \& Savchuk (2012), we have the following:

Theorem

Let K be equal to

$$
\mathbb{R} \text { or }[0,1] \text { or }[0, \infty) \text {. }
$$

Suppose S is the natural description K. Then the n-th quadratic module M_{S}^{n} is saturated for every $n \in \mathbb{N}$.

New results

Theorem (Compact Nichtnegativstellensatz for \mathbb{R})
 Let K be a compact semialgebraic set in \mathbb{R} with a natural description S. Then the n-th quadratic module M_{S}^{n} is saturated for every $n \in \mathbb{N}$.

Sketch of the proof of compact Nsatz

Claim: It suffices to prove that for every $F \in \operatorname{Pos}_{\succeq 0}^{n}\left(K_{S}\right)$ the ideal

$$
I_{F}:=\left\langle h^{2}: h \in \mathbb{R}[x], h^{2} F \in M_{S}^{n}\right\rangle
$$

is $\mathbb{R}[x]$.

Sketch of the proof of compact Nsatz

Claim: It suffices to prove that for every $F \in \operatorname{Pos}_{\succeq 0}^{n}\left(K_{S}\right)$ the ideal

$$
I_{F}:=\left\langle h^{2}: h \in \mathbb{R}[x], h^{2} F \in M_{S}^{n}\right\rangle
$$

is $\mathbb{R}[x]$.

Indeed, if $I_{F}=\mathbb{R}[x]$, then by Scheiderer's result there exist $s_{1}, \ldots, s_{k} \in \operatorname{Pos}_{\succ 0}^{1}(K)$ such that

$$
s_{1} h_{1}^{2}+s_{2} h_{2}^{2}+\ldots+s_{k} h_{k}^{2}=1
$$

where $I_{F}=\left\langle h_{1}^{2}, \ldots, h_{k}^{2}\right\rangle$. Hence,

$$
F=\sum_{j=1}^{k} s_{j} h_{j}^{2} F \in M_{S}^{1} \cdot M_{S}^{n} \underbrace{=}_{K \subset \mathbb{R} \text { compact }} M_{S}^{n}
$$

which concludes the proof.

Sketch of the proof of compact Nsatz

To establish the Claim we have to prove that for every $x_{0} \in \mathbb{C}$ there exists $h_{x_{0}} \in \mathbb{R}[x]$ such that

$$
h_{x_{0}}\left(x_{0}\right) \neq 0 \quad \text { and } \quad h_{x_{0}}^{2} F \in M_{S}^{n} .
$$

Sketch of the proof of compact Nsatz

To establish the Claim we have to prove that for every $x_{0} \in \mathbb{C}$ there exists $h_{x_{0}} \in \mathbb{R}[x]$ such that

$$
h_{x_{0}}\left(x_{0}\right) \neq 0 \quad \text { and } \quad h_{x_{0}}^{2} F \in M_{S}^{n} .
$$

The proof of this statement is by induction on the size n of matrix polynomials. For $n=1$ this is true by the scalar case. We write

$$
F(x)=\left\{\begin{aligned}
\underbrace{\left(x-x_{0}\right)^{m}}_{p(x)} \cdot G(x), & \text { if } x_{0} \in \mathbb{R} \\
\underbrace{\left(\left(x-x_{0}\right)\left(x-\overline{x_{0}}\right)\right)^{m}}_{p(x)} \cdot G(x), & \text { if } x_{0} \notin \mathbb{R}
\end{aligned}\right.
$$

where $m \in \mathbb{N}_{0}, G(x) \in M_{n}(\mathbb{R}[x])$ and $G\left(x_{0}\right) \neq 0$.

Sketch of the proof of Compact Nsatz

Writing $G=\left(\begin{array}{cc}a & \beta \\ \beta^{t} & C\end{array}\right)$, where

$$
a \in \mathbb{R}[x], \quad \beta \in M_{1, n-1}(\mathbb{R}[x]), \quad C \in M_{n-1}(\mathbb{R}[x]),
$$

we may assume $a\left(x_{0}\right) \neq 0$. Then

$$
\begin{aligned}
& a^{4} \cdot G=\left(\begin{array}{cc}
a & 0 \\
\beta^{t} & a I_{n-1}
\end{array}\right)\left(\begin{array}{cc}
a^{3} & 0 \\
0 & a\left(a C-\beta^{t} \beta\right)
\end{array}\right)\left(\begin{array}{cc}
a & \beta \\
0 & a I_{n-1}
\end{array}\right), \\
& \left(\begin{array}{cc}
a^{3} & 0 \\
0 & a\left(a C-\beta^{t} \beta\right)
\end{array}\right)=\left(\begin{array}{cc}
a & 0 \\
-\beta^{t} & a I_{n-1}
\end{array}\right) \cdot G \cdot\left(\begin{array}{cc}
a & -\beta \\
0 & a I_{n-1}
\end{array}\right) .
\end{aligned}
$$

Sketch of the proof of Compact Nsatz

Writing $G=\left(\begin{array}{cc}a & \beta \\ \beta^{t} & C\end{array}\right)$, where

$$
a \in \mathbb{R}[x], \quad \beta \in M_{1, n-1}(\mathbb{R}[x]), \quad C \in M_{n-1}(\mathbb{R}[x]),
$$

we may assume $a\left(x_{0}\right) \neq 0$. Then

$$
\begin{aligned}
& a^{4} \cdot F=\left(\begin{array}{cc}
a & 0 \\
\beta^{t} & a l_{n-1}
\end{array}\right)\left(\begin{array}{cc}
p a^{3} & 0 \\
0 & p a\left(a C-\beta^{t} \beta\right)
\end{array}\right)\left(\begin{array}{cc}
a & \beta \\
0 & a l_{n-1}
\end{array}\right), \\
& \left(\begin{array}{cc}
p a^{3} & 0 \\
0 & p a\left(a C-\beta^{t} \beta\right)
\end{array}\right)=\left(\begin{array}{cc}
a & 0 \\
-\beta^{t} & a l_{n-1}
\end{array}\right) \cdot F \cdot\left(\begin{array}{cc}
a & -\beta \\
0 & a l_{n-1}
\end{array}\right) .
\end{aligned}
$$

Sketch of the proof of compact Nsatz

By induction hypothesis there is $\widetilde{h}_{x_{0}} \in \mathbb{R}[x]$ such that

$$
\widetilde{h}_{x_{0}}\left(x_{0}\right) \neq 0, \quad \widetilde{h}_{x_{0}}^{2} p a\left(a C-\beta^{t} \beta\right) \in M_{S}^{n-1} .
$$

We also have

$$
\widetilde{h}_{x_{0}}^{2} p a^{3} \in M_{s}^{1} .
$$

Therefore

$$
a^{2} \widetilde{h}_{x_{0}}\left(x_{0}\right) \neq 0 \quad \text { and } \quad\left(a^{2} \widetilde{h}_{x_{0}}\right)^{2} F \in M_{S}^{n} .
$$

Counterexample for the non-compact case

Example

The matrix polynomial

$$
F(x):=\left[\begin{array}{cc}
x+2 & \sqrt{6} \\
\sqrt{6} & x^{2}-2 x+3
\end{array}\right]
$$

is positive semidefinite on $K:=[-1,0] \cup[1, \infty)$, but

$$
F \notin T_{S}^{2}=M_{\prod s}^{2},
$$

where S is the natural description of K.

Theorem

Let an unbounded closed semialgebraic set $K \subseteq \mathbb{R}$ satisfy either of the following:
(1) K contains at least two intervals with at least one of them bounded.
(2) K is a union of an unbounded interval and m isolated points with $m \geq 2$.
(3) K is a union of two unbounded intervals and m isolated points with $m \geq 2$.
If $S \subseteq \mathbb{R}[x]$ is a finite set with $K_{S}=K$, then the 2-nd matrix preordering T_{S}^{2} is not saturated.

Non-compact Nichtnegativstellensatz

Theorem (Non-compact Nichtnegativstellensatz)

Suppose K is an unbounded closed semialgebraic set in \mathbb{R} and S a natural description of K. Then $F \in \operatorname{Pos}_{\succeq 0}^{n}(K)$ if and only if there exists $k \in \mathbb{N}_{0}$ such that

$$
\left(1+x^{2}\right)^{k} F \in M_{s}^{n} .
$$

Introduction

Thank you for your attention!

