The tracial moment problem on quadratic varieties

Aljaž Zalar, University of Ljubljana, Slovenia

8th ECM, Portorož, Slovenia June 2021
joint work with
Abhishek Bhardwaj

Notation

- $\langle X, Y\rangle \ldots$ the free monoid generated by the noncommuting letters X, Y, i.e., words in X, Y.
- $\mathbb{R}\langle X, Y\rangle \ldots$ the free algebra of polynomials in X, Y (noncommutative (nc) polynomials) involution $p \mapsto p^{*}$ fixes $\mathbb{R} \cup\{X, Y\}$ and reverses words

Example

$$
\left(3 X Y^{2}-Y X\right)^{*}=3 Y^{2} X-X Y
$$

- A word v is cyclically equivalent to $w(v \stackrel{\text { cyc }}{\sim} w)$ iff

$$
\exists u_{1}, u_{2}: \quad v=u_{1} u_{2}, \quad w=u_{2} u_{1}
$$

Bivariate truncated tracial sequence

Bivariate truncated tracial sequence (BTTS) of order n is a sequence of real numbers,

$$
\beta \equiv \beta^{(2 n)}=\left(\beta_{w}\right)_{|w| \leq 2 n},
$$

indexed by words w in X, Y of length at most $2 n$ such that
(1) $\beta_{v}=\beta_{w}$ whenever $v \stackrel{\text { cyc }}{\sim} w$,
(2) $\beta_{w}=\beta_{w^{*}}$ for all $|w| \leq 2 n$,

Example

For $t \in \mathbb{N}$ and a pair (A, B) of symmetric real $t \times t$ matrices,

$$
\beta_{w}=\operatorname{tr}(w(A, B))
$$

is a BTTS of order n.

Bivariate truncated tracial moment problem

Question

Which BTTS's are convex combinations (finite) of BTTS's as in the example above?

Remark

- The size of the matrices is not bounded.
- Studying probability measures on pairs of symmetric matrices is not a more general problem Burgdorf, Cafuta, Klep, Povh, 2013.

For future reference we call the pairs of matrices in the convex combination atoms, and their weights densities.

Index rows and columns of \mathcal{M}_{n} by words in $\mathbb{R}\langle X, Y\rangle_{\leq n}$ in the degree-lexicographic order.
The entry in a row w_{1} and a column w_{2} of \mathcal{M}_{n} is $\beta_{w_{1}^{*} w_{2}}$:

$$
\mathcal{M}_{n}=\begin{gathered}
\\
\mathbb{1} \\
\mathbb{X} \\
\vdots \\
w_{1} \\
\vdots \\
\mathbb{Y}^{n}
\end{gathered}\left(\begin{array}{cccccc}
\mathbb{1} & \mathbb{X} & \cdots & w_{2} & \cdots & \mathbb{Y}^{n} \\
\beta_{1} & \beta_{X} & \cdots & \beta_{w_{2}} & \cdots & \beta_{Y^{n}} \\
\beta_{X} & \beta_{X^{2}} & \cdots & \beta_{X w_{2}} & \cdots & \beta_{X Y^{n}} \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
\beta_{w_{1}} & \beta_{w_{1}^{*} X} & \cdots & \beta_{w_{1}^{*} w_{2}} & \cdots & \beta_{w_{1}^{*} Y^{n}} \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
\beta_{Y_{n}} & \beta_{X Y^{n}} & \cdots & \beta_{Y^{n} w_{2}} & \cdots & \beta_{Y^{2 n}}
\end{array}\right) .
$$

$n=2: 7 \times 7$ moment matrix \mathcal{M}_{2}

	1	\mathbb{X}	\mathbb{Y}	\mathbb{X}^{2}	XY	YX	\mathbb{Y}^{2}
1	β_{1}	β_{χ}	β_{Y}	$\beta_{x}{ }^{2}$	$\beta_{X Y}$	$\beta_{X Y}$	$p_{Y^{2}}$
X	β_{X}	$\beta^{\text {x }}$	$\beta_{X Y}$	$\beta_{\chi}{ }^{3}$	$\beta_{X 2 Y}$	$\beta_{X 2}{ }^{2}$	$\beta_{X Y 2}$
\mathbb{Y}	β_{r}	$\beta_{X Y}$	$\beta_{Y^{2}}$	$\beta_{X 2}{ }^{2}$	$\beta_{X Y 2}$	$\beta_{X Y 2}$	$\beta_{\gamma 3}$
\mathbb{X}^{2}	β^{2}	$\beta_{\chi}{ }^{3}$	$\beta_{X 2}{ }^{2}$	$\beta_{X^{4}}$	$\beta_{X 3}{ }^{\text {r }}$	$\beta^{\text {x }}$ Y	$\beta_{x} y^{2}$
Y	$\beta_{X Y}$	$\beta^{2} 2 Y$	$\beta_{X Y 2}$	$\beta^{3}{ }^{3} Y$	$\beta_{x 2} y^{2}$	$\beta_{\text {XYXY }}$	$\beta_{x y}$
X	$\beta_{X Y}$	$\beta_{X 2}{ }^{2}$	$\beta_{x y 2}$	$\beta_{X 3}{ }^{3}$	$\beta_{X Y X Y}$	$\beta_{x} y_{2}$	$\beta_{x y}$
\mathbb{Y}^{2}	$\beta_{Y 2}$	$\beta_{X Y 2}$	$\beta_{Y}{ }^{3}$	$\beta_{X 2}{ }^{2}$	$\beta_{X Y 3}$	$\beta_{X Y}{ }^{3}$	$\beta_{Y 4}$

If $\beta_{X^{2} Y^{2}}=\beta_{X Y X Y}$, then the BQTMP reduces to the classical, commutative bivariate quartic moment problem.

Bivariate TMP - known results

Commutative TMP:

- Curto and Fialkow (1996-2014):
a complete solution in case of a singular \mathcal{M}_{2} using rank-preserving extension of \mathcal{M}_{n} to \mathcal{M}_{n+1}.
- Fialkow, Nie (2010) and Curto, Yoo (2016):
a solution of the quartic TMP with a non-singular \mathcal{M}_{2}.

Tracial TMP:

- Burgdorf, Klep $(2010,2012)$:

A solution of the tracial quartic TMP with a non-singular \mathcal{M}_{2}.

Our motivation:

- Study the tracial TMP with a singular \mathcal{M}_{2}.

Our results

\mathcal{M}_{2} is singular in \mathcal{M}_{n} and $\beta_{X^{2} Y^{2}} \neq \beta_{X Y X Y}$.
1 Already for $n=2$ the existence of a rank-preserving extension of \mathcal{M}_{2} to \mathcal{M}_{3} is mostly not a necessary condition for the existence of a measure.

2 If $\operatorname{rank}\left(\mathcal{M}_{2}\right) \leq 3$, then β does not admit a measure.
Easy observation: $\mathbb{1}, \mathbb{X}, \mathbb{Y}, \mathbb{X} \mathbb{Y}$ must be linearly independent.
3 For rank $\left(\mathcal{M}_{2}\right) \in\{4,5\}$, we characterize when a measure exists, construct the minimal measure and describe its uniqueness.

- rank 4: 1 atom of size 2
- rank 5, using $A L T$: one relation $\mathbb{X} \mathbb{Y}+\mathbb{Y} \mathbb{X}=0$ and the second

$$
\mathbb{X}^{2}+\mathbb{Y}^{2}=\mathbb{1} \quad \text { or } \quad \mathbb{Y}^{2}-\mathbb{X}^{2}=\mathbb{1} \quad \text { or } \quad \mathbb{Y}^{2}=\mathbb{1} \quad \text { or } \quad \mathbb{Y}^{2}=\mathbb{X}^{2}
$$

- rank 5: atoms of size 2 suffice, in the quartic case 1 atom of size 2 and at most 3 atoms of size 1 .

4 If $n=2$ and $\operatorname{rank}\left(\mathcal{M}_{2}\right)=6$, then the existence of a measure is almost always equivalent to the feasibilty of certain linear matrix inequalities and atoms of size 2 suffice.

- using ALT: the column relation is one of

$$
\mathbb{X} \mathbb{Y}+\mathbb{Y} \mathbb{X}=0 \text { or } \mathbb{X}^{2}+\mathbb{Y}^{2}=\mathbb{1} \text { or } \mathbb{Y}^{2}-\mathbb{X}^{2}=\mathbb{1} \text { or } \mathbb{Y}^{2}=\mathbb{1}
$$

- first 3 cases: 1 atom of size 2 and at most 6 of size 1
- $\mathbb{Y}^{2}=\mathbb{1}$: size 3 atoms not needed - a brute force argument

5 For \mathcal{M}_{3} with $\mathbb{Y}^{2}=1$ atoms of size 2 not sufficient, on the contrary to the other three rank 6 relations.

6 Simplification of the proof of the cm TMP satisfying $\mathbb{X} \mathbb{Y}=0$.

- reduction to one variable and the use of the solution of the truncated Hamburger MP
- original proof by Curto and Fialkow uses bivariate flat extension theorem

Our results

7 Some statistical analysis for the non-singular case of \mathcal{M}_{2} (joint with Nace Gorenc)

- by Burgdorf and Klep result, at most 15 size 2 atoms needed
- conjecture: 1 atom of size 2 and up to 6 atoms of size 1 suffice
- Curto and Yoo constructive proof for non-singular \mathcal{M}_{2} : subtract $\mathcal{M}_{2}^{(x, y)}$ from \mathcal{M}_{2} for some (x, y) to rank 5 matrix and extend flatly

Thank you for your attention!

