# The tracial moment problem on quadratic varieties

Aljaž Zalar, University of Ljubljana, Slovenia

8th ECM, Portorož, Slovenia June 2021

> joint work with Abhishek Bhardwaj

## Notation

- ⟨X, Y⟩... the free monoid generated by the noncommuting letters X, Y, i.e., words in X, Y.
- ℝ⟨X, Y⟩... the free algebra of polynomials in X, Y
   (noncommutative (nc) polynomials)
   involution p → p\* fixes ℝ ∪ {X, Y} and reverses words

#### Example

 $(3XY^2 - YX)^* = 3Y^2X - XY.$ 

• A word v is cyclically equivalent to  $w (v \stackrel{\text{cyc}}{\sim} w)$  iff

$$\exists u_1, u_2 : \qquad v = u_1 u_2, \quad w = u_2 u_1.$$

#### **Bivariate truncated tracial sequence**

## **Bivariate truncated tracial sequence (BTTS) of order** *n* is a sequence of real numbers,

$$\beta \equiv \beta^{(2n)} = (\beta_w)_{|w| \le 2n},$$

indexed by words w in X, Y of length at most 2n such that

$$\beta_{w} = \beta_{w^*} \text{ for all } |w| \le 2n,$$

#### Example

For  $t \in \mathbb{N}$  and a pair (*A*, *B*) of symmetric real  $t \times t$  matrices,

$$\beta_w = \operatorname{tr}(w(A, B))$$

is a BTTS of order *n*.

#### Question

Which BTTS's are convex combinations (finite) of BTTS's as in the example above?

#### Remark

- The size of the matrices is not bounded.
- Studying probability measures on pairs of symmetric matrices is not a more general problem *Burgdorf, Cafuta, Klep, Povh, 2013.*

For future reference we call the pairs of matrices in the convex combination **atoms**, and their weights **densities**.

Index rows and columns of  $\mathcal{M}_n$  by words in  $\mathbb{R}\langle X, Y \rangle_{\leq n}$  in the degree-lexicographic order.

The entry in a row  $w_1$  and a column  $w_2$  of  $\mathcal{M}_n$  is  $\beta_{w_1^*w_2}$ :

## n = 2: 7 × 7 moment matrix $\mathcal{M}_2$



If  $\beta_{X^2Y^2} = \beta_{XYXY}$ , then the BQTMP reduces to the classical, commutative bivariate quartic moment problem.

## **Bivariate TMP - known results**

#### Commutative TMP:

• Curto and Fialkow (1996-2014):

a complete solution in case of a singular  $M_2$  using rank-preserving extension of  $M_n$  to  $M_{n+1}$ .

• Fialkow, Nie (2010) and Curto, Yoo (2016):

a solution of the quartic TMP with a non-singular  $\mathcal{M}_2$ .

#### **Tracial TMP:**

• Burgdorf, Klep (2010, 2012):

A solution of the tracial quartic TMP with a non-singular  $\mathcal{M}_2$ .

#### Our motivation:

• Study the tracial TMP with a singular  $M_2$ .

## Our results

 $\mathcal{M}_2$  is *singular* in  $\mathcal{M}_n$  and  $\beta_{X^2Y^2} \neq \beta_{XYXY}$ .

- 1 Already for n = 2 the existence of a rank-preserving extension of  $M_2$  to  $M_3$  is mostly not a necessary condition for the existence of a measure.
- 2 If  $rank(\mathcal{M}_2) \leq 3$ , then  $\beta$  does not admit a measure.

Easy observation: 1, X, Y, XY must be linearly independent.

- 3 For rank( $M_2$ )  $\in$  {4,5}, we characterize when a measure exists, construct the minimal measure and describe its uniqueness.
  - rank 4: 1 atom of size 2
  - rank 5, using ALT: one relation XY + YX = 0 and the second

 $\mathbb{X}^2 + \mathbb{Y}^2 = \mathbb{1} \quad or \quad \mathbb{Y}^2 - \mathbb{X}^2 = \mathbb{1} \quad or \quad \mathbb{Y}^2 = \mathbb{1} \quad or \quad \mathbb{Y}^2 = \mathbb{X}^2.$ 

• rank 5: atoms of size 2 suffice, in the quartic case 1 atom of size 2 and at most 3 atoms of size 1.

## Our results

- 4 If n = 2 and rank $(M_2) = 6$ , then the existence of a measure is almost always equivalent to the feasibility of certain linear matrix inequalities and atoms of size 2 suffice.
  - using ALT: the column relation is one of

 $\mathbb{XY} + \mathbb{YX} = \mathbf{0} \text{ or } \mathbb{X}^2 + \mathbb{Y}^2 = \mathbb{1} \text{ or } \mathbb{Y}^2 - \mathbb{X}^2 = \mathbb{1} \text{ or } \mathbb{Y}^2 = \mathbb{1}.$ 

- first 3 cases: 1 atom of size 2 and at most 6 of size 1
- $\mathbb{Y}^2 = \mathbb{1}$ : size 3 atoms not needed a brute force argument
- 5 For  $M_3$  with  $\mathbb{Y}^2 = 1$  atoms of size 2 not sufficient, on the contrary to the other three rank 6 relations.
- 6 Simplification of the proof of the cm TMP satisfying XY = 0.
  - reduction to one variable and the use of the solution of the truncated Hamburger MP
  - original proof by Curto and Fialkow uses bivariate flat extension theorem

## Our results

- 7 Some statistical analysis for the non-singular case of  $\mathcal{M}_{\text{2}}$  (joint with Nace Gorenc)
  - by Burgdorf and Klep result, at most 15 size 2 atoms needed
  - conjecture: 1 atom of size 2 and up to 6 atoms of size 1 suffice
  - Curto and Yoo constructive proof for non-singular M<sub>2</sub>: subtract M<sub>2</sub><sup>(x,y)</sup> from M<sub>2</sub> for some (x, y) to rank 5 matrix and extend flatly



## Thank you for your attention!