Operator Positivstellensätze for noncommutative polynomials positive on matrix convex sets

Aljaž Zalar, University of Ljubljana, Slovenia

Auckland, 23 March 2016

Free sets and matrix convex sets

We use \mathbb{S}_n to denote real symmetric $n \times n$ matrices and \mathbb{S}^g for the sequence $(\mathbb{S}_n^g)_n$. A **subset** Γ of \mathbb{S}^g is a sequence $\Gamma = (\Gamma(n))_n$, where $\Gamma(n) \subseteq \mathbb{S}_n^g$ for each n. The subset Γ is **closed with respect** to **direct sums** if $A = (A_1, \ldots, A_g) \in \Gamma(n)$ and $B = (B_1, \ldots, B_g) \in \Gamma(m)$ implies

$$A \oplus B = \left(\left[\begin{array}{cc} A_1 & 0 \\ 0 & B_2 \end{array} \right], \ldots, \left[\begin{array}{cc} A_g & 0 \\ 0 & B_g \end{array} \right] \right) \in \Gamma(n+m).$$

It is closed with respect to **simultaneous unitary conjugation** if for each n, each $A \in \Gamma(n)$ and each $n \times n$ unitary matrix U,

$$U^*AU = (U^*A_1U, \ldots, U^*A_gU) \in \Gamma(n).$$

Free sets and matrix convex sets

The set Γ is a **free set** if it is closed with respect to direct sums and simultaneous unitary conjugation. If in addition it is closed with respect to **simultaneous isometric conjugation**, i.e., if for each $m \leq n$, each $A = (A_1, \ldots, A_g) \in \Gamma(n)$, and each isometry $V : \mathbb{R}^m \to \mathbb{R}^n$,

$$V^*AV = (V^*A_1V, \ldots, V^*A_gV) \in \Gamma(m),$$

then Γ is matrix convex.

Linear pencils and LOI sets

Let \mathscr{H} be a separable real Hilbert space and $I_{\mathscr{H}}$ the identity operator on \mathscr{H} . For self-adjoint operators $A_0,A_1,\ldots,A_g\in\mathbb{S}_{\mathscr{H}}$, the expression

$$L(x) = A_0 + \sum_{j=1}^g A_j x_j$$

is a **linear operator pencil**. If \mathscr{H} is finite-dimensional, then L(x) is a **linear matrix pencil**. If $A_0 = I_{\mathscr{H}}$, then L is **monic**. To every tuple $A = (A_1, \ldots, A_g) \in \mathbb{S}_{\mathscr{H}}^g$ we associate a monic linear pencil L_A by

$$L_A(x) := I_{\mathscr{H}} + \Lambda_A(x), \quad \text{where} \quad \Lambda_A(x) := \sum_{j=1}^g A_j x_j.$$

Linear pencils and LOI sets

Given a tuple of self-adjoint matrices $X=(X_1,\ldots,X_g)\in\mathbb{S}_n^g$, the **evaluation** L(X) is defined as

$$L(X) = A_0 \otimes I_n + \sum_{j=1}^g A_j \otimes X_j.$$

We call the set

$$D_L(1) = \{x \in \mathbb{R}^g \colon L(x) \succeq 0\}$$

a Hilbert spectrahedron or a LOI domain, the set

$$D_L = (D_L(n))_n$$
 where $D_L(n) = \{X \in \mathbb{S}_n^g : L(X) \succeq 0\},$

a free Hilbert spectrahedron or a free LOI set.

Matrix convex sets and LOI sets

Remark

- The set $D_L(1) \subseteq \mathbb{R}^g$ is a closed convex set and by the classical Hahn-Banach theorem every convex closed subset of \mathbb{R}^g is of this form.
- 2 By Effros-Winkler Hahn-Banach theorem every closed matrix convex set which contains 0 is a matrix solution set of a LOI.

Inclusion of free Hilbert spectrahedra - problem

Let $\mathcal{H}_1, \mathcal{H}_2$ be separable real Hilbert spaces. Given L_1 and L_2 monic linear operator pencils

$$L_1(x) := I_{\mathscr{H}_1} + \sum_{j=1}^g A_j x_j, \quad L_2(x) := I_{\mathscr{H}_2} + \sum_{j=1}^g B_j x_j,$$

where $A_j \in \mathbb{S}_{\mathscr{H}_1}$ and $B_j \in \mathbb{S}_{\mathscr{H}_2}$ for j = 1, ..., g, we are interested in the algebraic characterization of the inclusion of the free LOI sets

$$D_{L_1}\subseteq D_{L_2}$$
.

Inclusion of free Hilbert spectrahedra - solution

Theorem (Operator linear Positivstellensatz)

Let L_j , j=1,2, be monic linear operator pencils with coefficients from $B(\mathcal{H}_j)$, j=1,2. Then $D_{L_1}\subseteq D_{L_2}$ if and only if there exist a separable real Hilbert space \mathcal{H} , a contraction $V:\mathcal{H}_2\to\mathcal{H}$, a positive semidefinite operator $S\in B(\mathcal{H}_2)$ and a *-homomorphism $\pi:B(\mathcal{H}_1)\to B(\mathcal{H})$ such that

$$L_2 = S + V^*\pi(L_1)V.$$

Moreover, if $D_{L_1}(1)$ is bounded, then V can be chosen to be isometric and π a unital *-homomorphism, i.e.,

$$L_2 = V^*\pi(L_1)V.$$

Proof.

We define the operator systems:

$$\widetilde{\mathcal{S}_1} := \operatorname{span}\{I_{\mathscr{H}_1} \oplus 1, A_1 \oplus 0, \dots, A_g \oplus 0\} \subseteq B(\mathscr{H}_1 \oplus \mathbb{R}),$$

$$\mathcal{S}_2 := span\{I_{\mathscr{H}_2}, B_1, \dots, B_g\} \subseteq B(\mathscr{H}_2),$$

and the unital *-linear map

$$\widetilde{\tau}:\widetilde{\mathcal{S}_1}\to\mathcal{S}_2,\quad A_j\oplus 1\mapsto B_j.$$

Proof.

For $n \in \mathbb{N}$, $\tilde{\tau}$ induces the map

$$ilde{ au}_n \left(\left[egin{array}{cccc} T_{11} & \cdots & T_{1n} \ draphi & \ddots & draphi \ T_{n1} & \cdots & T_{nn} \end{array}
ight]
ight) = \left[egin{array}{cccc} ilde{ au}(T_{11}) & \cdots & ilde{ au}(T_{1n}) \ draphi & \ddots & draphi \ ilde{ au}(T_{n1}) & \cdots & ilde{ au}(T_{nn}) \end{array}
ight].$$

 $\tilde{\tau}_n: \mathcal{S}_1^{n\times n} \to \mathcal{S}_2^{n\times n}$

We say that $\tilde{\tau}$ is *n*-positive if $\tilde{\tau}_n$ is a positive map. If $\tilde{\tau}$ is *n*-positive for every $n \in \mathbb{N}$, then $\tilde{\tau}$ is **completely positive (cp)**.

Proof.

Lemma

The map $\tilde{\tau}$ is cp if and only if $D_{L_1} \subseteq D_{L_2}$.

Proof.

Lemma

The map $\tilde{\tau}$ is cp if and only if $D_{L_1} \subseteq D_{L_2}$.

By the real version of Arveson's extension theorem there exists a cp extension $\widetilde{\tau}: B(\mathcal{H}_1) \to B(\mathcal{H}_2)$ for $\widetilde{\tau}: \widetilde{\mathcal{S}_1} \to \mathcal{S}_2$.

Proof.

Lemma

The map $\tilde{\tau}$ is cp if and only if $D_{L_1} \subseteq D_{L_2}$.

By the real version of Arveson's extension theorem there exists a cp extension $\widetilde{\tau}: B(\mathcal{H}_1) \to B(\mathcal{H}_2)$ for $\widetilde{\tau}: \widetilde{\mathcal{S}_1} \to \mathcal{S}_2$.

By the Stinespring theorem, there exist a separable real Hilbert space $\mathcal K$, a *-homomorphism π and an isometry $V:\mathcal H_2\to\mathcal K$ such that

$$\tilde{\tau}(C) = V^*\pi(C)V$$

for all $C \in B(\mathscr{H}_1 \oplus \mathbb{R})$.

Monicity necessary

Example

Let $L(y) = \begin{bmatrix} 1 & y \\ y & 0 \end{bmatrix}$ be a linear matrix polynomial with a spectrahedron $D_L = \{0\}$. The polynomial

$$\ell(y) = y$$

is non-negative on $D_L(1)$, but there do not exist a Hilbert space \mathscr{K} , a unital *-homomorphism $\pi:B(\mathbb{R}^2)\to B(\mathscr{K})$, polynomials $r_j\in\mathbb{R}\langle y\rangle$ and operator polynomials $q_k\in B(\mathbb{R},\mathscr{K})\langle y\rangle$ such that

$$y = \sum_{j} r_j^2 + \sum_{k} q_k^* \pi(L) q_k.$$

Equality of free Hilbert spectrahedra - problem

Let $\mathcal{H}_1, \mathcal{H}_2$ be separable real Hilbert spaces. Given L_1 and L_2 monic linear operator pencils

$$L_1(x) := I_{\mathscr{H}_1} + \sum_{j=1}^g A_j x_j, \quad L_2(x) := I_{\mathscr{H}_2} + \sum_{j=1}^g B_j x_j,$$

where $A_j \in \mathbb{S}_{\mathscr{H}_1}$ and $B_j \in \mathbb{S}_{\mathscr{H}_2}$ for j = 1, ..., g, we are interested in the algebraic characterization of the inclusion of the free LOI sets

$$D_{L_1}=D_{L_2}.$$

Equality of free Hilbert spectrahedra - definitions

Let $A_0, A_1, \ldots, A_g \in \mathbb{S}_{\mathscr{H}}$ be self-adjoint operators and $L(x) = A_0 + \sum_{j=1}^g A_j x_j$ a linear pencil. Let $H \subseteq \mathscr{H}$ be a closed subspace of \mathscr{H} which is **invariant** under each A_j , i.e., $A_j H \subseteq H$. Hence, with respect to the decomposition $\mathscr{H} = H \oplus H^{\perp}$, L can be written as the direct sum.

$$L = \tilde{L} \oplus \tilde{L}^{\perp} = \begin{bmatrix} \tilde{L} & 0 \\ 0 & \tilde{L}^{\perp} \end{bmatrix}, \text{ where } \tilde{L} = I_H + \sum_{j=1}^{g} \tilde{A}_j x_j,$$

and \tilde{A}_j is the restriction of A_j to H. We say that \tilde{L} is a **subpencil** of L. If H is a proper closed subspace of \mathscr{H} , then \tilde{L} is a **proper subpencil** of L. If $D_L = D_{\tilde{L}}$, then \tilde{L} is a **whole subpencil** of L. If L has no proper whole subpencil, then L is σ -minimal.

Equality of free spectrahedra - solution

Theorem (Linear Gleichstellensatz)

Let $L_j = I_{d_j} + \sum_{k=1}^g A_{k,j} x_j$, j = 1, 2, $d_j \in \mathbb{N}$, $A_{k,j} \in \mathbb{S}_{d_j}$, be monic linear matrix pencils. Then $D_{L_1} = D_{L_2}$ if and only if every whole subpencils \tilde{L}_1 and \tilde{L}_2 of L_1 and L_2 respectively which are σ -minimal, are unitarily equivalent. That is, there is a unitary matrix U such that

$$\tilde{L}_2 = U^* \tilde{L}_1 U.$$

Nonexistence of σ -minimal operator subpencil

Example

Let

$$L(x) = I_{\ell^2} + \operatorname{diag}(\frac{n}{n+1})_{n \in \mathbb{N}} x$$

be a diagonal linear operator pencil with coefficients from $B(\ell^2(\mathbb{N}))$. Then

$$D_L(m) = \{X \in \mathbb{S}_m \colon X \succeq -I_{\ell^2}\}$$

and there does not exist a σ -minimal whole subpencil of L.

Counterexample to operator Linear Gleichstellensatz

Example

Let S_1 and S_2 be bounded operators on $\ell^2(\mathbb{N})$ defined by $e_i\mapsto e_{2i-1}$ for $i\in\mathbb{N}$ and $e_i\mapsto e_{2i}$ for $i\in\mathbb{N}$ respectively. Let $C^*(S_1,S_2)$ be the C^* -algebra generated by S_1 , S_2 (Cuntz C^* -algebra). There is a unique *-isomorphism

$$\theta: C^*(S_1, S_2) \to C^*(S_1, S_2), \quad \theta(S_1) = S_2, \quad \theta(S_2) = S_1.$$

The linear operator pencils

$$L_1(x) = I_{\ell^2} + A_1 x_1 + A_2 x_2 + A_3 x_3 + A_4 x_4,$$

$$L_2(x) = I_{\ell^2} + A_2 x_1 + A_1 x_2 + A_4 x_3 + A_3 x_4,$$

where

Counterexample to operator Linear Gleichstellensatz

Example

$$A_1 := S_1 + S_1^* \in B(\ell^2), \quad A_2 := S_2 + S_2^* \in B(\ell^2),$$

 $A_3 := i(S_1 - S_1^*) \in B(\ell^2), \quad A_4 := i(S_2 - S_2^*) \in B(\ell^2),$

are σ -minimal pencils with $D_{L_1}=D_{L_2}$, but there is no unitary operator $U:\ell^2\to\ell^2$ such that

$$L_2 = U^* L_1 U$$
 or $L_2 = U^* \overline{L_1} U$.

Noncommutative (nc) polynomials

We write $\langle x \rangle$ for the monoid freely generated by $x = (x_1, \ldots, x_g)$, i.e., $\langle x \rangle$ consists of **words** in the g noncommuting letters x_1, \ldots, x_g . Let $\mathbb{R}\langle x \rangle$ denote the associative \mathbb{R} -algebra freely generated by x, i.e., the elements of $\mathbb{R}\langle x \rangle$ are polynomials in the noncommuting variables x with coefficients in \mathbb{R} . The elements are called **noncommutative** (nc) **polynomials**. Endow $\mathbb{R}\langle x \rangle$ with the natural **involution** * which fixes $\mathbb{R} \cup \{\emptyset\}$ pointwise, reverses the order of words, and acts linearly on polynomials. Polynomials invariant under this involution are **symmetric**. The length of the longest word in a nc polynomial $f \in \mathbb{R}\langle x \rangle$ is denoted by $\deg(f)$.

Noncommutative (nc) polynomials

Fix separable Hilbert spaces \mathscr{H}_1 , \mathscr{H}_2 . **Operator-valued nc polynomials** are the elements of $B(\mathscr{H}_1, \mathscr{H}_2) \otimes \mathbb{R}\langle x \rangle$. We write

$$P = \sum_{w \in \langle x \rangle} A_w \otimes w \in B(\mathcal{H}_1, \mathcal{H}_2) \otimes \mathbb{R} \langle x \rangle$$

for an element $P \in B(\mathcal{H}_1, \mathcal{H}_2) \otimes \mathbb{R}\langle x \rangle$, where the sum is finite. The involution * extends to operator-valued polynomials by

$$P^* = \sum_{w \in \langle x \rangle} A_w^* \otimes w^* \in \mathcal{B}(\mathscr{H}_2, \mathscr{H}_1) \otimes \mathbb{R} \langle x \rangle$$
.

If $\mathcal{H}_1 = \mathcal{H}_2$ and $P = P^*$, then we say P is **symmetric**.

Polynomial evaluations

If $P \in B(\mathcal{H}_1, \mathcal{H}_2) \otimes \mathbb{R}\langle x \rangle$ is a nc operator-valued polynomial and $X \in B(\mathcal{H})^g$, where \mathcal{H} is a separable Hilbert space, then

$$P(X) \in B(\mathcal{H}_1, \mathcal{H}_2) \otimes B(\mathcal{K})$$

is defined in the natural way by replacing x_i by X_i and sending the empty word to the identity operator on \mathcal{K} .

A symmetric operator-valued nc polynomial P determines the **free Hilbert semialgebraic set** by

$$D_P = (D_P(n))_n$$
 where $D_P(n) = \{X \in \mathbb{S}_n^g : P(X) \succeq 0\}.$

Positivstellensatz problem

Let \mathscr{H} and \mathscr{K} be separable real Hilbert spaces. Suppose $L \in \mathbb{S}_{\mathscr{H}}\langle x \rangle$ is a monic linear operator pencil and

$$P = P^* \in B(\mathscr{K}) \otimes \mathbb{R}\langle x \rangle$$

a symmetric operator-valued nc polynomial such that

$$D_L \subseteq D_P$$
.

The problem is to find an algebraic expression for the polynomial P in terms of the polynomial L.

Operator convex multivariate Positivstellensatz

Theorem

Let $L \in \mathbb{S}_{\mathscr{H}}\langle x \rangle$ be a monic linear operator pencil. Then for every symmetric matrix-valued noncommutative polynomial $P \in \mathbb{R}^{\nu \times \nu}\langle x \rangle$ with $P|_{D_L} \succeq 0$, there is a separable real Hilbert space \mathscr{H} , a *-homomorphism $\pi: B(\mathscr{H}) \to B(\mathscr{H})$, finitely many matrix polynomials $R_j \in \mathbb{R}^{\nu \times \nu}\langle x \rangle$ and operator polynomials $Q_k \in B(\mathbb{R}^{\nu}, \mathscr{H}) \otimes \mathbb{R}\langle x \rangle$ all of degree at most $\frac{\deg(P)+2}{2}$ such that

$$P = \sum_{j} R_j^* R_j + \sum_{k} Q_k^* \pi(L) Q_k.$$

Operator convex univariate Positivstellensatz

Theorem

Suppose $L = I_{\mathscr{H}} + A_1 y \in \mathbb{S}_{\mathscr{H}} \langle y \rangle$ is a univariate monic linear operator pencil. Then for every symmetric operator-valued noncommutative polynomial $P \in B(\mathscr{K}) \otimes \mathbb{R} \langle y \rangle$ with $P|_{D_L} \succeq 0$, there exists a separable real Hilbert space \mathscr{G} , a *-homomorphism $\pi: B(\mathscr{H}) \to B(\mathscr{G})$ and finitely many operator polynomials $R_j \in B(\mathscr{K}) \otimes \mathbb{R} \langle x \rangle$ and $Q_k \in B(\mathscr{K}, \mathscr{G}) \otimes \mathbb{R} \langle x \rangle$ all of degree at most $\frac{\deg(P)+2}{2}$ such that

$$P = \sum_{j} R_j^* R_j + \sum_{k} Q_k^* \pi(L) Q_k.$$

Monicity

Example

Let $L(y) = A_0 + A_1 y \in B(\ell^2)$ be a linear operator pencil, where

$$A_0 = \bigoplus_{n \in \mathbb{N}} \left(-\frac{1}{n}\right), \quad A_1 = \bigoplus_{n \in \mathbb{N}} \left(\frac{1}{n^2}\right).$$

Then the spectrahedron $D_L(1)$ is \emptyset and $\ell(y)=-1$ is non-negative on $D_L(1)$, but there do not exist a Hilbert space $\mathscr K$, a unital *-homomorphism $\pi:B(\ell^2)\to B(\mathscr K)$, polynomials $r_j\in\mathbb R\langle y\rangle$ and operator polynomials $b_k\in B(\mathbb R,\mathscr K)\langle y\rangle$ such that

$$-1 = \sum_{i} r_{j}^{2} + \sum_{k} q_{k}^{*} \pi(L) q_{k}. \tag{1}$$

Thank you for your attention!