Matrix Fejér-Riesz theorem with gaps

Aljaž Zalar, University of Ljubljana, Slovenia

Auckland, 9 October 2015

Notation

Let $\mathbb{C}[x]$ be the ring of complex polynomials equipped with involution

$$
\left(\sum_{j=0}^{m} a_{j} x^{j}\right)^{*}:=\sum_{j=0}^{m} \overline{\bar{a}_{j}} x^{j} .
$$

Let $M_{n}(\mathbb{C}[x])$ be the ring of matrix polynomials equipped with involution

$$
G(x)^{*}:=\left(\sum_{j=0}^{m} G_{j} x^{j}\right)^{*}=\sum_{j=0}^{m}{\overline{G_{j}}}^{T} x^{j}=\overline{G(x)}{ }^{T}
$$

Let $\mathbb{H}_{n}(\mathbb{C}[x])$ be the set of hermitian matrix polynomials, i.e. $F \in \mathbb{H}_{n}(\mathbb{C}[x])$ iff $F^{*}=F$.

Let $\sum M_{n}(\mathbb{C}[x])^{2}$ be the the set of finite sums of the elements of the form $A_{i}^{*} A_{i}$, where $A_{i} \in M_{n}(\mathbb{C}[x])$.

Matrix Fejér-Riesz theorem

Theorem (Fejér-Riesz theorem on \mathbb{R})

Let

$$
F(x)=\sum_{m=0}^{2 N} F_{m} x^{m} \in M_{n}(\mathbb{C}[x])
$$

be a $n \times n$ matrix polynomial, such that $F(x)$ is positive semidefinite for every $x \in \mathbb{R}$. Then there exists a matrix polynomial $G(x)=\sum_{m=0}^{N} G_{m} x^{m} \in M_{n}(\mathbb{C}[x])$, such that

$$
F(x)=G(x)^{*} G(x) .
$$

Main problem

Problem

Characterize univariate matrix polynomials, which are positive semidefinite on a union of points and intervals (not necessarily bounded) in \mathbb{R}.

Notation

A closed semialgebraic set $K_{S} \subseteq \mathbb{R}$ associated to a finite subset $S=\left\{g_{1}, \ldots, g_{s}\right\} \subset \mathbb{R}[x]$ is given by

$$
K_{S}=\left\{x \in \mathbb{R}: g_{j}(x) \geq 0, j=1, \ldots, s\right\}
$$

We define the n-th matrix quadratic module M_{S}^{n} by

$$
\begin{aligned}
M_{S}^{n}:= & \left\{\sigma_{0}+\sigma_{1} g_{1}+\ldots+\sigma_{s} g_{s}:\right. \\
& \left.\sigma_{j} \in \sum M_{n}(\mathbb{C}[x])^{2} \text { for } j=0, \ldots, s\right\}
\end{aligned}
$$

Notation

Let $\Pi S:=\left\{g_{1}^{e_{1}} \cdots g_{s}^{e_{s}}: e_{j} \in\{0,1\}, j=1, \ldots, s\right\}$. The n-th matrix preordering T_{s}^{n} is $M_{\prod s}^{n}$.

Let $\operatorname{Pos}_{\succeq 0}^{n}\left(K_{S}\right)$ be the set of all $n \times n$ hermitian matrix polynomials, which are positive semidefinite on K_{S}.

We say a matrix quadratic module M_{S}^{n} is saturated if $M_{S}^{n}=\operatorname{Pos}_{\cong}^{n}\left(K_{S}\right)$.

Notation

Let $K \subseteq \mathbb{R}$ be a closed semialgebraic set.
A set $S=\left\{g_{1}, \ldots, g_{s}\right\} \subset \mathbb{R}[x]$ is the natural description of K, if it satisfies the following conditions:
(a) If K has the least element a, then $x-a \in S$.
(b) If K has the greatest element a, then $a-x \in S$.
(c) For every $a \neq b \in K$, if $(a, b) \cap K=\emptyset$, then $(x-a)(x-b) \in S$
(d) These are the only elements of S.

Notation

Let $K=\cup_{j=1}^{m}\left[x_{j}, y_{j}\right] \subseteq \mathbb{R}$ be a compact semialgebraic set.
A set $S=\left\{g_{1}, \ldots, g_{s}\right\} \subset \mathbb{R}[x]$ with $K=K_{S}$ is the saturated description of K, if it satisfies the following conditions:
(a) For every left endpoint x_{j} there exists $k \in\{1, \ldots, s\}$, such that $g_{k}\left(x_{j}\right)=0$ and $g_{k}^{\prime}\left(x_{j}\right)>0$.
(b) For every right endpoint y_{j} there exists $k \in\{1, \ldots, s\}$, such that $g_{k}\left(y_{j}\right)=0$ and $g_{k}^{\prime}\left(y_{j}\right)<0$.

Known results - scalar case

1 (Kuhlmann, Marshall, 2002) If S is the natural description of K, then the preordering $T_{S}^{1}=M_{\prod}^{1}$ is saturated.

Known results - scalar case

1 (Kuhlmann, Marshall, 2002) If S is the natural description of K, then the preordering $T_{S}^{1}=M_{\prod S}^{1}$ is saturated.

- K not compact: T_{S}^{1} is saturated if and only if S contains each of the polynomials in the natural description of K up to scaling by positive constants.
- K compact (Scheiderer, 2003): T_{S}^{1} is saturated if and only if S is a saturated description of K. Moreover, $T_{S}^{1}=M_{S}^{1}$.

Known results - matrix case

(1) (Gohberg, Krein, 1958) For $K=\mathbb{R}, M_{\emptyset}^{n}$ is saturated for every $n \in \mathbb{N}$.
(2) (Dette, Studden, 2002) For $K=K_{\{x, 1-x\}}=[0,1], M_{\{x, 1-x\}}^{n}$ is saturated for every $n \in \mathbb{N}$.
(3) (Schmüdgen, Savchuk, 2012) For $K=K_{\{x\}}=[0, \infty), M_{\{x\}}^{n}$ is saturated for every $n \in \mathbb{N}$.
(9) (Hol, Scherer, 2006) For a finite set $S \subseteq \mathbb{R}[x]$ with a compact set $K=K_{S}, M_{S}^{n}$ contains every $F \in M_{n}(\mathbb{R}[x])$ such that $\left.F\right|_{K} \succ 0$.

New results

Theorem (Compact Nichtnegativstellensatz for \mathbb{R})

Let $K \subset \mathbb{R}$ be compact. The n-th matrix quadratic module M_{S}^{n} is saturated for every $n \in \mathbb{N}$ if and only if S is a saturated description of K.

Sketch of the proof of compact Nsatz

Proposition ($h^{2} F$-proposition)

Suppose K is a non-empty closed semialgebraic set in \mathbb{R} and S a saturated description of K. Then for every $F \in \operatorname{Pos}_{\succeq 0}^{n}(K)$ and every $w \in \mathbb{C}$ there exists $h \in \mathbb{R}[x]$ such that $h(w) \neq 0$ and

$$
h^{2} F \in M_{S}^{n} .
$$

Sketch of the proof of compact Nsatz

Proposition ($h^{2} F$-proposition)

Suppose K is a non-empty closed semialgebraic set in \mathbb{R} and S a saturated description of K. Then for every $F \in \operatorname{Pos}_{\succeq 0}^{n}(K)$ and every $w \in \mathbb{C}$ there exists $h \in \mathbb{R}[x]$ such that $h(w) \neq 0$ and

$$
h^{2} F \in M_{S}^{n} .
$$

Proof of $h^{2} F$-proposition.

The proof is by induction on the size of matrix polynomials n. We write $F(x)=p(x)^{m} G(x)$, where
$p(x)=\left\{\begin{array}{cc}x-w, & w \in \mathbb{R} \\ (x-w)(x-\bar{w}), & w \notin \mathbb{R}\end{array}, m \in \mathbb{N}_{0}, G(w) \neq 0\right.$.

Introduction

Sketch of the proof of Compact Nsatz

Proof of $h^{2} F$-proposition.

Writing $G=\left[\begin{array}{cc}a & \beta \\ \beta^{*} & C\end{array}\right] \in M_{n}(\mathbb{C}[x])$, where $a=a^{*} \in \mathbb{R}[x]$,
$\beta \in M_{1, n-1}(\mathbb{C}[x])$ and $C \in H_{n-1}(\mathbb{C}[x])$ it holds
(i) $a^{4} \cdot G=\left[\begin{array}{cc}a^{*} & 0 \\ \beta^{*} & a^{*} I_{n-1}\end{array}\right]\left[\begin{array}{cc}a^{3} & 0 \\ 0 & a\left(a C-\beta^{*} \beta\right)\end{array}\right]\left[\begin{array}{cc}a & \beta \\ 0 & a I_{n-1}\end{array}\right]$
(ii) $\left[\begin{array}{cc}a^{3} & 0 \\ 0 & a\left(a C-\beta^{*} \beta\right)\end{array}\right]=\left[\begin{array}{cc}a^{*} & 0 \\ -\beta^{*} & a^{*} I_{n-1}\end{array}\right] \cdot G \cdot\left[\begin{array}{cc}a & -\beta \\ 0 & a I_{n-1}\end{array}\right.$

Sketch of the proof of compact Nsatz

Proof of $h^{2} F$-proposition.

Therefore

$$
a^{4} F=\left[\begin{array}{cc}
a & 0 \\
\beta^{*} & a I_{n-1}
\end{array}\right]\left[\begin{array}{ll}
d & 0 \\
0 & D
\end{array}\right]\left[\begin{array}{cc}
a & \beta \\
0 & a I_{n-1}
\end{array}\right],
$$

where $d=p^{m} a^{3} \in \mathbb{R}[x], D=p^{m}\left(a C-\beta^{*} \beta\right) \in H_{n-1}(\mathbb{C}[x])$. and

$$
\left[\begin{array}{ll}
d & 0 \\
0 & D
\end{array}\right]=\left[\begin{array}{cc}
a & 0 \\
-\beta^{*} & a I_{n-1}
\end{array}\right] F\left[\begin{array}{cc}
a & -\beta \\
0 & a I_{n-1}
\end{array}\right] .
$$

By the induction hypothesis, there exists appropriate $h_{1} \in \mathbb{R}[x]$, such that $h_{1}^{2} D \in M_{S}^{n-1}$ and by $h_{1}^{2} d \in M_{S}^{1}$, it follows that $\left(a^{2} h_{1}\right)^{2} F \in M_{S}^{n}$.

Sketch of the proof of compact Nsatz

To conclude the proof we need the following:

Proposition (Scheiderer, 2006)

Suppose R is a commutative ring with 1 and $\mathbb{Q} \subseteq R$. Let $\Phi: R \rightarrow C(K, \mathbb{R})$ be a ring homomorphism, where K is a topological space which is compact and Hausdorff. Suppose $\Phi(R)$ separates points in K. Suppose $f_{1}, \ldots, f_{k} \in R$ are such that $\Phi\left(f_{j}\right) \geq 0, j=1, \ldots, k$ and $\left(f_{1}, \ldots, f_{k}\right)=(1)$. Then there exist $s_{1}, \ldots, s_{k} \in R$ such that $s_{1} f_{1}+\ldots+s_{k} f_{k}=1$ and such that each $\Phi\left(s_{j}\right)$ is strictly positive.

Sketch of the proof of compact Nsatz

The ideal

$$
I:=\left\langle h^{2}: h \in \mathbb{R}[x], h^{2} F \in M_{S}^{n}\right\rangle
$$

is $\mathbb{R}[x]$. Therefore there exist $s_{1}, \ldots, s_{k} \in \operatorname{Pos}_{\succ 0}^{1}(K)$ and $h_{1}, \ldots, h_{k} \in I$, such that

$$
s_{1} h_{1}^{2}+s_{2} h_{2}^{2}+\ldots+s_{k} h_{k}^{2}=1
$$

Hence,

$$
\sum_{j=1}^{k} s_{j} h_{j}^{2} F=F \in M_{S}^{n},
$$

which concludes the proof.

Counterexample for the non-compact case

Example

The matrix polynomial $F(x):=\left[\begin{array}{cc}x+2 & \sqrt{6} \\ \sqrt{6} & x^{2}-2 x+3\end{array}\right]$ is positive semidefinite on $K:=[-1,0] \cup[1, \infty)$, but $F \notin T_{S}^{2}=M_{\prod}^{2}$, where S is the natural description of K.

Counterexample for the non-compact case

Example

The matrix polynomial $F(x):=\left[\begin{array}{cc}x+2 & \sqrt{6} \\ \sqrt{6} & x^{2}-2 x+3\end{array}\right]$ is positive semidefinite on $K:=[-1,0] \cup[1, \infty)$, but $F \notin T_{S}^{2}=M_{\prod s}^{2}$, where S is the natural description of K.

Proof.

All the principal minors of $F, x+2, x^{2}-2 x+3$ and $\operatorname{det}(F)=x^{3}-x$ are non-negative on K. Suppose

$$
F(x)=\sigma_{0}+\sigma_{1}(x+1)+\sigma_{2} x(x-1)+\sigma_{3}(x+1) x(x-1),
$$

where $\sigma_{i} \in \sum M_{2}(\mathbb{C}[x])^{2}$.

Counterexample for the non-compact case

Proof.

After comparing the degrees of both sides we conclude that

$$
\sigma_{3}=0, \operatorname{deg}\left(\sigma_{0}\right) \leq 2, \operatorname{deg}\left(\sigma_{0}\right)=\operatorname{deg}\left(\sigma_{2}\right)=0
$$

Counterexample for the non-compact case

Proof.

After comparing the degrees of both sides we conclude that

$$
\sigma_{3}=0, \operatorname{deg}\left(\sigma_{0}\right) \leq 2, \operatorname{deg}\left(\sigma_{0}\right)=\operatorname{deg}\left(\sigma_{2}\right)=0
$$

Observing the monomial x^{2} on both side it follows that $\left[\begin{array}{ll}0 & 0 \\ 0 & c\end{array}\right]$ for some $c \in[0,1]$.

Counterexample for the non-compact case

Proof.

After comparing the degrees of both sides we conclude that

$$
\sigma_{3}=0, \operatorname{deg}\left(\sigma_{0}\right) \leq 2, \operatorname{deg}\left(\sigma_{0}\right)=\operatorname{deg}\left(\sigma_{2}\right)=0
$$

Observing the monomial x^{2} on both side it follows that $\left[\begin{array}{ll}0 & 0 \\ 0 & c\end{array}\right]$ for some $c \in[0,1]$. Hence we get

$$
F(x)-\sigma_{2} x(x-1)=\sigma_{0}+\sigma_{1}(x+1)
$$

Counterexample for the non-compact case

Proof.

After comparing the degrees of both sides we conclude that

$$
\sigma_{3}=0, \operatorname{deg}\left(\sigma_{0}\right) \leq 2, \operatorname{deg}\left(\sigma_{0}\right)=\operatorname{deg}\left(\sigma_{2}\right)=0
$$

Observing the monomial x^{2} on both side it follows that $\left[\begin{array}{ll}0 & 0 \\ 0 & c\end{array}\right]$ for some $c \in[0,1]$. Hence we get

$$
F(x)-\sigma_{2} x(x-1)=\sigma_{0}+\sigma_{1}(x+1)
$$

The right-hand side is positive semidefinite on $[-1, \infty)$, while the determinant $q(x)$ of the left-hand side is not. Contradiction.

$$
q(x):=-(-1+x) x(-1+2 c+(-1+c) x)
$$

Classification of non-compact sets K

Let K be a non-compact closed semialgebraic set with a natural description S. The classification of sets K according to the matrix preordering T_{S}^{n} being saturated is the following:

Classification of non-compact sets K

K	T_{S}^{n} sat.
an unbounded interval	Yes
a union of an unbounded interval and an isolated point	$?$
a union of an unbounded interval and m isolated points with $m \geq 2$	No
a union of two unbounded intervals	Yes
a union of two unbounded intervals and an isolated point	$?$
a union of two unbounded intervals and m isolated points with $m \geq 2$	No
includes a bounded and an unbounded interval	No

Classification of compact sets K

Let K be a compact closed semialgebraic set with a natural description S. We say that the matrix preordering T_{S}^{n} is boundedly saturated if every $F \in \operatorname{Pos}_{\succeq 0}^{n}\left(K_{S}\right)$ is of the form $\sum_{e \in\{0,1\}^{s}} \sigma_{e} \underline{g}^{e}$, where

$$
\operatorname{deg}\left(\sigma_{e} \underline{g}^{e}\right) \leq \operatorname{deg}(F)
$$

The classification of sets K according to T_{S}^{n} being boundedly saturated is the following:

Classification of compact sets K

K	T_{S}^{n} sat.	T_{S}^{n} bsat.
a union of at most three points	Yes	Yes
a union of m points with $m \geq 4$	Yes	$\frac{\text { No }}{\text { stable }}$
a bounded interval	Yes	Yes
a union of a bounded interval and an isolated point	Yes	$?$
a union of a bounded interval and m isolated points with $m \geq 2$	Yes	No
a compact set containing at least two intervals	Yes	No

Non-compact Nichtnegativstellensatz

Theorem (Non-compact Nichtnegativstellensatz)

Suppose K is an unbounded closed semialgebraic set in \mathbb{R} and S a saturated description of K. Then, for a hermitian $F \in M_{n}(\mathbb{C}[x])$, the following are equivalent:
(1) $F \in \operatorname{Pos}_{\succeq 0}^{n}(K)$.
(2) $\left(1+x^{2}\right)^{k} F \in T_{S}^{n}$ for some $k \in \mathbb{N} \cup\{0\}$.

Non-compact Nichtnegativstellensatz

Theorem (Non-compact Nichtnegativstellensatz)

Suppose K is an unbounded closed semialgebraic set in \mathbb{R} and S a saturated description of K. Then, for a hermitian $F \in M_{n}(\mathbb{C}[x])$, the following are equivalent:
(1) $F \in \operatorname{Pos}_{\succeq 0}^{n}(K)$.
(2) $\left(1+x^{2}\right)^{k} F \in T_{S}^{n}$ for some $k \in \mathbb{N} \cup\{0\}$.

Introduction

Thank you for your attention!

