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TRUNCATED MOMENT PROBLEM: PART 1
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Abstract. Let β ≡ β(2n) be a real bivariate sequence of degree 2n. We study the
existence of representing measures for β supported in the curve y = xd (d ≥ 1) in
the case when all column dependence relations in the moment matrix Mn(β) are
generated by the relation Y = Xd. We prove that the core variety of β, CV(Lβ), is
nonempty (equivalently, representing measures exist) if and only if C, the partially
defined core matrix of β, admits a positive, recursively generated completion C[A].
Moreover, CV(Lβ) is the entire curve y = xd if and only if there is a positive
definite completion C[A]. In the remaining case, if there is a measure, it is unique
and finitely atomic. For d = 3, we use these results to compute the core variety of
β and give new characterizations of the existence of representing measures, which
complement a result of [F2].

1. Introduction.

Given a bivariate sequence of degree 2n,

(1.1) β ≡ β(2n) = {βij : i, j ≥ 0, i+ j ≤ 2n}, β00 = 1,

and a closed set K ⊆ R2, the Truncated K-Moment Problem (TKMP) seeks condi-
tions on β such that there exists a positive Borel measure µ on R2, with suppµ ⊆ K,
satisfying

βij =

∫
R2

xiyjdµ(x, y) (i, j ≥ 0, i+ j ≤ 2n);

µ is a K-representing measure for β. A comprehensive reference for all aspects of the
Moment Problem is the recent treatise of K. Schmüdgen [Sch]. Apart from solutions
based on semidefinite programming and optimization, several different abstract solu-
tions to TKMP appear in the literature, including the Flat Extension Theorem [CF5],
the Truncated Riesz-Haviland Theorem [CF7], the idempotent approach of [Vas], and,
more recently, the Core Variety Theorem [BF]. By a concrete solution to TKMP we
mean an implementation of one of the abstract theories involving only basic linear
algebra and solving algebraic equations (or estimating the size of the solution set).
The ease with which any of the abstract results can be applied to solve particular
moment problems in concrete terms varies considerably depending on the problem,
with most concrete results attributable to the Flat Extension Theorem and very few
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to the other approaches. In the sequel we show how the Core Variety Theorem (The-
orem 2.5 below) can indeed be applied to certain concrete moment problems, namely
when K is the planar curve y = xd (d ≥ 1).

In the classical literature TKMP has been solved concretely in terms of positive
Hankel matrices when K is the real line, the half-line [0,+∞), or the closed interval
[a, b] (cf. [ST, CF1]). For the case when K is a planar curve p(x, y) = 0 with deg p ≤
2, TKMP has been solved concretely in terms of moment matrix extensions (see
Theorem 2.1 below, [CF3, CF4, CF6, F3]). In [F2] moment matrix extensions are
used to concretely solve the truncated moment problem for y = x3 and to solve (in
a less concrete sense) truncated moment problems on curves of the form y = g(x)
and yg(x) = 1 (g ∈ R[x]). More recently, several authors have intensively studied
TKMP on certain planar curves of higher degree, using moment matrix extensions
and a “reduction of degree” technique to improve and extend the results of [F2] (cf.
[Z1, Z2, Z3, Z4, YZ]). We also note that for closed planar sets K that are merely
semi-algebraic, such as the closed unit disk, very little is known concerning concrete
solutions to TKMP (cf. [CF2]).

The results cited just above do not provide concrete solutions to TKMP for planar
curves of the form y = xd (d ≥ 4). The aim of this note is to illustrate how the
core variety, described in Theorem 2.5, can be used to study TKMP for K = Γ, the
planar curve y = xd (d ≥ 1), when the associated moment matrix Mn(β) is (y − xd)-
pure, i.e., the column dependence relations in Mn(β) are precisely those that can be
derived from the column relation Y = Xd by recursiveness and linearity (see just
below for terminology and notation). The core variety of β coincides with the union
of supports of all representing measures for β, and in Section 3 we develop a core
variety framework for studying TKMP in the (y − xd)-pure case. In Theorem 3.10
we prove that β has a representing measure if and only if C, the partially defined
core matrix for β, admits a positive semidefinite, recursively generated completion
C[A]. The core variety of β coincides with the entire curve y = xd if and only if there
exists positive definite completion C[A]. In the remaining case of a measure, it is
unique, with support a finite subset of Γ. In Section 4 we apply the results of Section
3 to compute the core variety of β in the (y − x3)-pure truncated moment problem
(see Theorem 4.1); this result subsumes a result of [F2] which used a lengthy flat
extension construction to give a necessary and sufficient condition for the existence
of a representing measure.

2. Preliminaries

Although our focus in the sequel is TKMP for the planar curves y = xd, we note
that the following discussion, and the results we cite from [B, BF, CF5, CF7, F4],
generalize to the multivariable truncated moment problem.

Let P := R[x, y] and let Pk := {q ∈ P : deg q ≤ k}. Given β ≡ β(2n) as in (1.1),
define the Riesz functional Lβ : P2n −→ R by∑

aijx
iyj 7−→

∑
aijβij.
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For a sequence β ≡ β(2n) with Riesz functional Lβ, the moment matrix Mn has
rows and columns indexed by the monomials in Pn in degree-lexicographic order, i.e.,
1, X, Y,X2, XY, Y 2, . . . , Xn, . . . , Y n. In this case, the element of Mn in row X iY j,
column XkY l is βi+k,j+l. More generally, for r, s ∈ Pn, with coefficient vectors r̂, ŝ
relative to the basis of monomials, we have

(2.1) ⟨Mnr̂, ŝ⟩ := Lβ(rs).

In the sequel, for q ∈ Pn, q =
∑
aijx

iyj, we set

(2.2) q(X, Y ) :=
∑

aijX
iY j (=Mnq̂).

If β has a K-representing measure µ, then Lβ is K-positive, i.e., q ∈ P2n, q|K ≥
0 =⇒ Lβ(q) ≥ 0 (since Lβ(q) =

∫
K
qdµ). The converse is not true; instead, the Trun-

cated Riesz-Haviland Theorem [CF7] shows that β admits a K-representing measure
if and only if Lβ admits an extension to a K-positive linear functional on P2n+2. In
[B] G. Blekherman proved that if Mn is positive semidefinite and rankMn ≤ 3n− 3,
then Lβ is R2-positive, so the Truncated Riesz-Haviland Theorem then implies that
β(2n−1) has a representing measure. Using special features of the proof of Theorem 2.2
(below), in [EF] C. Easwaran and the first-named author exhibited a class of Riesz
functionals that are positive but have no representing measure. Apart from these
results, it seems very difficult to verify positivity of Riesz functionals in examples
without first proving the existence of representing measures.

Several basic necessary conditions for a representing measures µ can be expressed
in terms related to moment matrices (cf. [CF5]); we will refer to these without further
reference in the sequel:
i) Mn(β) is positive semidefinite: ⟨Mnr̂, r̂⟩ = Lβ(r

2) =
∫
r2dµ ≥ 0 (∀r ∈ Pn).

ii) For any representing measure µ, card(suppµ) ≥ rankMn.
iii) Note that a dependence relation in the column space of Mn can be expressed
as r(X, Y ) = 0, where r ∈ Pn. Define the variety of Mn, V(Mn), as the common
zeros of the polynomials r ∈ Pn such that r(X, Y ) = 0. Then suppµ ⊆ V(Mn), so
cardV(Mn) ≥ rankMn.
iv) Mn is recursively generated : whenever r, s, and rs are in Pn and r(X, Y ) = 0,
then (rs)(X,Y ) = 0.
v) Mn (or Lβ) is consistent : for p ∈ P2n, p|V(Mn) ≡ 0 =⇒ Lβ(p) = 0; consistency
implies recursiveness [CFM].

The Flat Extension Theorem [CF5] shows that β admits a representing measure
if and only if Mn admits a positive semidefinite moment matrix extension Mn+k (for
some k ≥ 0) for which there is a rank-preserving (i.e., flat) moment matrix extension
Mn+k+1. Using this result, in a series of papers R. Curto and the first-named author
solved TKMP for planar curves of degrees 1 and 2 as follows.

Theorem 2.1 ([CF3, CF4, CF6, F3, Degree-2 Theorem]). Suppose r(x, y) ∈ P with
deg r ≤ 2. For n ≥ deg r, Mn has a representing measure supported in the curve
r(x, y) = 0 if and only if r(X, Y ) = 0 and Mn is positive semidefinite, recursively
generated, and satisfies cardV(Mn) ≥ rankMn.
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In [CFM] it was shown that this result does not extend to deg r > 2. The example
in [CFM] concerns an M3 that is positive and recursively generated, with cardVβ =
rankM3, but which has no measure. In this example, there is no measure because Lβ

is not consistent. The results of [F2] show that positivity, the variety condition, and
consistency are still not sufficient for representing measures, as we next describe.

ForMn ⪰ 0, consider the (y−x3)-pure case, when the column dependence relations
in Mn are precisely those given by Y = X3, recursiveness, and linearity, i.e., column
relations of the form (s(x, y)(y−x3))(X, Y ) = 0 (deg s ≤ n−3). ThusMn is positive,
rankMn ≤ cardV(Mn) (= card Γ = +∞), and it follows from Lemma 3.1 in [F2]
that Mn is consistent. In [F2] we described a particular, easily computable, rational
expression in the moment data, ψ, and solved the (y − x3)-pure TKMP as follows.

Theorem 2.2. If Mn ⪰ 0 is (y− x3)-pure, then β has a representing measure if and
only if β1,2n−1 > ψ.

In the proof of Theorem 2.2, the numerical test β1,2n−1 > ψ leads to a flat extension
Mn+1. By contrast with this result, the other existence results in [F2, Z4] generally
presuppose the existence of a certain positive moment matrix extension of Mn, but
do not give an explicit test for the extension. The proof of Theorem 2.2 in [F2] is
quite lengthy. In the sequel we will use the core variety to present a shorter, more
transparent proof. This approach also provides a core variety framework for studying
the (y − xd)-pure truncated moment problem.

The core variety provides an approach to establishing the existence of representing
measures based on methods of convex analysis. For the polynomial case, this was
introduced in [F4], and some of the ideas go back to [FN]. The discussion below is
based on joint work of the first author with G. Blekherman [BF], which treats general
Borel measurable functions, although here we only require polynomials.

Given β ≡ β(2n) and its Riesz functional L ≡ Lβ, define V0 := V(Mn) and for i ≥ 0,
define

Vi+1 :=
⋂

f∈kerL,
f |Vi≥0

Z(f),

where Z(f) denotes the set of zeros of f(x, y) in R2 (or, equivalently, in Vi). We
define the core variety of L by

CV(L) :=
⋂
i≥0

Vi.

Proposition 2.3 ([F4]). If µ is a representing measure for L, then suppµ ⊆ CV(L).

If µ is a representing measure, then

rankMn(β) ≤ card(suppµ) ≤ card CV(Lβ) ≤ cardVi (for every i ≥ 0).

We thus have the following test for the nonexistence of representing measures.

Corollary 2.4 ([F4]). If cardVi < rankMn for some i, then β has no representing
measure.
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Proposition 2.3 shows that if β has a representing measure, then CV(L) is nonempty.
The main result concerning the core variety is the following converse.

Theorem 2.5 ([BF, Core Variety Theorem]). L ≡ Lβ has a representing measure
if and only if CV(L) is nonempty. In this case, CV(L) coincides with the union of
supports of all finitely atomic representing measures for L.

In view of Proposition 2.3, CV(L) is also the union of supports of all representing
measures. In general, it may be difficult to compute the core variety, due to the dif-
ficulty of characterizing the nonnegative polynomials on V0, V1, V2, . . ., but Theorem
2.5 leads to the following criterion for stability.

Proposition 2.6 ([BF]). If Vk is finite, then CV(L) = Vk or CV(L) = Vk+1.

In the (y− xd)–pure case for Mn(β), V0 is clearly the curve y = xd. Since y− xd is
irreducible and CV(L) is an algebraic set, it follows that either V1 = V0 (= CV(L)),
or V1 is finite and Proposition 2.6 implies CV(L) = V1 or CV(L) = V2. We conclude
this section by noting the case when Mn(β) has the Y = Xd column relation but is
not (y − xd)–pure. In this case there is a column relation g(X, Y ) = 0, where g(x, y)
is not a multiple of f(x, y) := y − xd. Since f is irreducible, it follows that f and
g are relatively prime, so Bezout’s Theorem implies that card CV(L) ≤ cardV0 ≤
deg f · deg g. Examples computing CV(L) in the finite-variety case can be found in
[F4].

3. A core variety approach to the pure Y = Xd moment problem.

Suppose Mn(β) is positive semidefinite and (y − xd)-pure, i.e., the column depen-
dence relations in Mn are precisely the linear combinations of the column relations

(3.1) XrY s+1 = Xr+dY s for r, s ≥ 0, r + s ≤ n− d.

In this section we introduce a core matrix C associated to β; the main result of this
section, Theorem 3.10, characterizes the existence of representing measures for β in
terms of the positivity properties of C and “recursiveness” in its kernel. Using the
Core Variety Theorem we show that the union of supports of all representing measures
is the curve

Γ := Z(y − xd) = {(x, xd) : x ∈ R}
if and only if there is a positive definite completion of the core matrix. Namely, we
employ the connection between the existence of representing measures for β ≡ β(2n)

and the core variety of the Riesz functional L ≡ Lβ.
Setting V0 = V(Mn) = Γ, we seek to compute

V1 := Z(p ∈ kerL : p|V0 ≥ 0),

the common zeros of the polynomials in kerL that are nonnegative on V0. To this
end, we require a concrete description of kerL.

Lemma 3.1. Suppose Mn(β) satisfies column relations (3.1). Then the polynomials

fij(x, y) = xiyj − βij for 0 ≤ i < d, j ≥ 0, and 0 < i+ j ≤ 2n,
5



gkl(x, y) = (y − xd)xkyl for k, l ≥ 0, k + l ≤ 2n− d.

form a basis B for kerLβ.
Conversely, let L : P2n → R be a linear functional such that B is a basis for kerL.

Then the moment matrix Mn(β) of the sequence β, such that L = Lβ, satisfies column
relations (3.1).

Remark 3.2. In the statement of Lemma 3.1, Mn(β) does not have to be (y − xd)-
pure for B to be the basis for kerLβ. There may be column relations other than the
linear combinations of (3.1), but B will still be a basis. Another choice of a basis for
kerLβ, which works for any sequence β, is {fij} for 0 ≤ i, j, 0 < i + j ≤ 2n, where
fij are defined as in the statement of the lemma. However, this basis tells us nothing
about the column relations of Mn(β). To explicitly determine column relations from
the basis for kerLβ, in addition to a “good” choice of the basis, the rank of Mn(β)
must also be given.

Proof of Lemma 3.1. Clearly, each fij ∈ kerLβ. For k, l ≥ 0 with k + l ≤ 2n − d,
gkl ∈ P2n. If k + l ≤ n, then

Lβ(gkl) = ⟨Mn
ÿ�(y − xd),‘xkyl⟩ = ⟨Mnŷ −Mn

“xd,‘xkyl⟩ = 0,

so gkl ∈ kerLβ in this case. In the remaining case, n < k + l ≤ 2n − d, so there
exist integers r, s, t, u ≥ 0 such that r + t = k, s + u = l, r + s = n − d, and thus
t+ u = (k + l)− (r + s) ≤ 2n− d− (n− d) = n. Now

Lβ(gkl) = Lβ((y − xd)xrys · xtyu) = ⟨Mn
¤�(y − xd)xrys,‘xtyu⟩

= ⟨Mn
÷xrys+1 −Mn

÷xd+rys,‘xtyu⟩,
so (3.1) implies Lβ(gkl) = 0.

To show that B is a linearly independent set of elements of P2n, suppose {aij} and
{bkl} are sequences of real scalars (indexed as in the statement of the lemma) such
that in P2n,

(3.2)
∑

0≤i<d, j≥0,
0<i+j≤2n

aijfij +
∑
k,l≥0,

k+l≤2n−d

bklgkl = 0.

Plugging y = xd in (3.2), it follows that

(3.3)
∑

0≤i<d, j≥0,
0<i+j≤2n

aij(x
i+dj − βij) ≡ 0

Suppose that 0 ≤ i, i′ < d, j, j′ ≥ 0, 0 < i+ j, i′ + j′ ≤ 2n and i+ dj = i′ + dj′. Then
|i − i′| = d|j − j′|, and since |i − i′| < d, it follows that j = j′ and i = i′. Thus, the
x-exponents appearing in (3.3) are distinct, and since (3.3) holds for every real x, it
follows that each aij = 0. Now (3.2) implies∑

k,l≥0,
k+l≤2n−d

bklx
kyl(y − xd) ≡ 0
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Thus, for y ̸= xd,
∑
bklx

kyl = 0, so by continuity we have
∑
bklx

kyl = 0 for all
x, y ∈ R. It now follows that each bkl = 0, so B is linearly independent.

Next we show that B spans kerLβ. We need to prove that cardB = dimP2n − 1

(= dimkerLβ). Recall that dimP2n = (2n+1)(2n+2)
2

. Note that B is the disjoint
union of the sets C and D, consisting of all fij and gkl from the lemma, respectively.

Clearly, cardD = dimP2n−d = (2n−d+1)(2n−d+2)
2

. To compute card C, notice that
card C = card E , where E is the index set equal to

E := {(i, j) : 0 ≤ i < d, j ≥ 0, 0 < i+ j ≤ 2n}
= {(0, 1), . . . , (0, 2n)︸ ︷︷ ︸

i=0

, (1, 0), . . . , (1, 2n− 1)︸ ︷︷ ︸
i=1

, . . . , (d− 1, 0), . . . , (d− 1, 2n− d+ 1)︸ ︷︷ ︸
i=d−1

}.

It follows that

card C = card E = 2n+ 2n+ (2n− 1) + . . .+ (2n− d+ 2)

= −1 +
d−1∑
i=0

(2n+ 1− i) = −1 +
2n+1∑
i=1

i−
2n−d+1∑

i=1

i

= −1 +
(2n+ 1)(2n+ 2)

2
− (2n− d+ 1)(2n− d+ 2)

2
= −1 + cardP2n − cardD,

whence
cardB = card C + cardD = −1 + cardP2n,

which shows that B is a basis for kerLβ.
The converse part is clear. Namely, L determines the sequence β by βij = L(xiyj)

for 0 ≤ i, j, i + j ≤ 2n. (Note that by fij ∈ kerL for 0 ≤ i < d, j ≥ 0, and
0 < i + j ≤ 2n, for these indices the βij are precisely the constant terms in the
respective fij.) Recall from (2.1)–(2.2) that for q ∈ Pn,

q(X, Y ) = 0 ⇐⇒ Lβ(qx
iyj) = 0 for all i, j ≥ 0, i+ j ≤ n.

Since gkl ∈ kerL for k, l ≥ 0, k + l ≤ 2n − d, it now follows that all of the relations
of (3.1), as well as their linear combinations, are column relations of Mn(β). □

Returning to the computation of V1, suppose p ∈ kerL satisfies p|Γ ≥ 0, i.e.,
p(x, xd) ≥ 0 ∀x ∈ R. From Lemma 3.1, we may write

(3.4) p = F +G ≡
∑

0≤i<d, j≥0,
0<i+j≤2n

aijfij +
∑
k,l≥0,

k+l≤2n−d

bklgkl.

Since p|Γ ≥ 0 and G|Γ ≡ 0, then

(3.5) Q(x) := F (x, xd) =
∑

0≤i<d, j≥0,
0<i+j≤2n

aij(x
i+dj − βij)

satisfies Q(x) ≥ 0 ∀x ∈ R. Since degQ ≤ 2nd, there exist

r̂ ≡ (r0, . . . , rnd) ∈ Rnd+1, ŝ ≡ (s0, . . . , snd) ∈ Rnd+1
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such that

R(x) := r0 + r1x+ · · ·+ rndx
nd and S(x) := s0 + s1x+ · · ·+ sndx

nd(3.6)

satisfy

(3.7) Q(x) = R(x)2 + S(x)2.

In the sequel (and moreso in Part 2 [FZ-]) we will require detailed information about
the coefficients of F , R and S. By comparing coefficients on both sides of (3.8), we
see that each aij, which is the coefficient in Q of xi+dj, admits a unique expression as
a homogeneous quadratic polynomial in the rk and sl. Indeed,

(3.8) aij = hi,j(r̂, ŝ) :=
∑

0≤k,l≤nd,
0<k+l=i+dj

rkrl + sksl, i, j ≥ 0, i < d, i+ j ≤ 2n.

Moreover, a comparison of the constant terms in (3.7) gives

(3.9) −
∑

0≤i<d, j≥0,
0<i+j≤2n

aijβij = r20 + s20.

Note also that if i, j ≥ 0, i < d, i + dj ≤ 2nd, but i + j > 2n, then since there is no
moment βij, the coefficient of xi+dj in R(x)2 + S(x)2 must be 0. Let F denote the
set of all such pairs (i, j). It is convenient to extend the definition of hi,j in (3.8) to
include these cases, together with the requirements

(3.10) 0 = hi,j(r̂, ŝ) whenever (i, j) ∈ F .
We call each such requirement an auxiliary requirement. Also, we introduce an arbi-
trary constant Aij for each (i, j) ∈ F to denote the moment βij, which is not present
in β(2n). We refer to Aij as an auxiliary moment. In the sequel (particularly in Part
2 [FZ-]) we require the number and location of the Aij. To this end, note that:

F := {(i, j) : i, j ≥ 0, i < d, i+ dj ≤ 2nd, i+ j > 2n}

= {(i, j) : 2n− (d− 2) ≤ j ≤ 2n− 1, 2n+ 1− j ≤ i ≤ d− 1} =
d−2⋃
j=1

Fj

(3.11)

where each Fj is equal to

Fj =

®
{(j + 1, 2n− j), . . . , (d− 1, 2n− j)}, if j + 1 ≤ d− 1,

∅, otherwise.

Hence, cardF =
∑d−2

i=1 i =
(d−1)(d−2)

2
. Note that F = ∅ for n = 1, 2.

Example 3.3. Let n = d = 3. Then Q (cf. (3.8)) is of the form

Q(x) =
∑

0≤i<3, j≥0,
0<i+j≤6

aij(x
i+3j − βij) =:

18∑
ℓ=0

qℓx
ℓ ∈ P18.
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To illustrate (3.8), note that q4, which is equal to a11, may be expressed as

h1,1(r̂, ŝ) = r0r4 + r1r3 + r2r2 + r3r1 + r4r0 + s0s4 + s1s3 + s2s2 + s3s1 + s4s0

= 2(r0r4 + s0s4 + r1r3 + s1s3) + r22 + s22.

Note that F = {(2, 5)}, since for i = 2 and j = 5, we have i+3j = 17 < 2nd = 18,
but 7 = i + j > 2n = 6. Thus x17 does not appear in Q(x), so, from (3.10), using
h2,5(r̂, ŝ) = r8r9 + s8s9, it follows that 0 = r8r9 + s8s9 = q17. The auxiliary moment
in this case is β2,5, which we denote by A2,5.
For d = 3 and arbitrary n ∈ N, which we study in Section 4, we have F =

{(2, 2n− 1)} and the auxiliary requirement (cf. (3.10)) is equal to

(3.12) 0 = h2,2n−1(r̂, ŝ) = 2(r3nr3n−1 + s3ns3n−1),

with the “missing” monomial in Q(x) being x2+3(2n−1) = x6n−1. △

We next introduce the core matrix C ≡ Cβ; in the sequel we show that positivity
properties of C determine the core variety of β. Our immediate goal is to use (3.8)
and the core matrix to derive an inner product expression (see (3.25)) which can be
used to characterize whether (3.9) holds. This will permit us to provide a sufficient
condition for representing measures via the core variety.

Let ⌊·⌋ denote the floor function. Namely, ⌊k⌋ is the greatest integer not larger
than k. For 1 ≤ i, j ≤ dn+ 1, let

(3.13) Kij := (i+ j − 2) mod d and Lij := ⌊(i+ j − 2)/d⌋,

The core matrix, a (dn+ 1)× (dn+ 1) matrix, is defined by

(3.14) C ≡ (Cij)
dn+1
i,j=1 := (βKij ,Lij

)dn+1
i,j=1.

However, if βKij ,Lij
is an auxiliary moment because (Kij, Lij) ∈ F , we redefine βKij ,Lij

as

βKij ,Lij
:= AKij ,Lij

,

where AKij ,Lij
is an arbitrary constant. To emphasize the dependence of C on the

choice of the constants Aij for (i, j) ∈ F , we sometimes denote C by

C ≡ C[{Aij}(i,j)∈F ].

From (3.14), C is clearly a Hankel matrix.

Example 3.4. For n = d = 4 the core matrix

C ≡ C[A3,2n−2,A2,2n−1,A3,2n−1]
9



is the following

β00 β10 β20 β30 β01 β11 β21 β31 β02 β12 β22 β32 β03 β13 β23 β33 β04

β10 β20 β30 β01 β11 β21 β31 β02 β12 β22 β32 β03 β13 β23 β33 β04 β14

β20 β30 β01 β11 β21 β31 β02 β12 β22 β32 β03 β13 β23 β33 β04 β14 β24

β30 β01 β11 β21 β31 β02 β12 β22 β32 β03 β13 β23 β33 β04 β14 β24 β34

β01 β11 β21 β31 β02 β12 β22 β32 β03 β13 β23 β33 β04 β14 β24 β34 β05

β11 β21 β31 β02 β12 β22 β32 β03 β13 β23 β33 β04 β14 β24 β34 β05 β15

β21 β31 β02 β12 β22 β32 β03 β13 β23 β33 β04 β14 β24 β34 β05 β15 β25

β31 β02 β12 β22 β32 β03 β13 β23 β33 β04 β14 β24 β34 β05 β15 β25 β35

β02 β12 β22 β32 β03 β13 β23 β33 β04 β14 β24 β34 β05 β15 β25 β35 β06

β12 β22 β32 β03 β13 β23 β33 β04 β14 β24 β34 β05 β15 β25 β35 β06 β16

β22 β32 β03 β13 β23 β33 β04 β14 β24 β34 β05 β15 β25 β35 β06 β16 β26

β32 β03 β13 β23 β33 β04 β14 β24 β34 β05 β15 β25 β35 β06 β16 β26 A36

β03 β13 β23 β33 β04 β14 β24 β34 β05 β15 β25 β35 β06 β16 β26 A36 β07

β13 β23 β33 β04 β14 β24 β34 β05 β15 β25 β35 β06 β16 β26 A36 β07 β17

β23 β33 β04 β14 β24 β34 β05 β15 β25 β35 β06 β16 β26 A36 β07 β17 A27

β33 β04 β14 β24 β34 β05 β15 β25 β35 β06 β16 β26 A36 β07 β17 A27 A37

β04 β14 β24 β34 β05 β15 β25 β35 β06 β16 β26 A36 β07 β17 A27 A37 β08



The rows and columns of C are indexed by the ordered set

{1, X,X2, X3, Y,XY,X2Y,X3Y, . . . , Y k, XY k, X2Y k, X3Y k, . . . ,

Y n−1, XY n−1, X2Y n−1, X3Y n−1, Y n}.

Note that the columns X3Y n−2, X2Y n−1, X3Y n−1 are not among the columns of Mn

but rather of its extensionMn+2. So these columns are auxiliary ones in C and contain
auxiliary moments. △

The next two results provide an alternate description of the core matrix in terms of
moment matrix extensions. Let d ≥ 2 and let Mn+d−2 be some recursively generated

extension of the positive (y−xd)-pure moment matrix Mn. Let β̃ ≡ β̃(2n+2d−4) be the
extended sequence and let Lβ̃ : P2(n+d−2) → R be the corresponding Riesz functional.
Define the ordered set of monomials

M := {1, x, . . . , xd−1, y, xy, . . . , xd−1y, . . . , yi, xyi, . . . , xd−1yi,

yn−1, xyn−1, . . . , xd−1yn−1, yn},
(3.15)

and the vector space

U := Span {s : s ∈ M} ⊂ Pn+d−2,(3.16)

We next define an (nd + 1) × (nd + 1) matrix M [β̃,U ] with rows and columns
indexed by the monomials in M in the order

(3.17) 1, X, . . . , Xd−1, Y,XY, . . . , Xd−1Y, . . . Y n−1, XY n−1, . . . , Xd−1Y n−1, Y n

i.e., for 1 ≤ k ≤ nd+ 1, the k-th element of this order is equal to XIkY Jk where

(3.18) Ik := (k − 1) mod d and Jk := ⌊(k − 1)/d⌋.

The (i, j)-th entry of M [β̃,U ] is defined to be equal to

(3.19) Lβ̃(x
Ii+IjyJi+Jj) = β̃Ii+Ij ,Ji+Jj .

10



More generally, for r, s ∈ U (cf. (3.16)), with coefficient vectors r̂, ŝ relative to the
ordered basis of monomials in M (cf. (3.15)), we have

(3.20)
〈
M [β̃,U ] r̂, ŝ

〉
:= Lβ̃(rs).

Lemma 3.5. For 1 ≤ i, j ≤ nd+ 1 the following holds:

(3.21) Lβ̃(x
Ii+IjyJi+Jj) = β̃Kij ,Lij

,

where Kij, Lij are as in (3.13).

Proof. We have that

Kij + dLij = i+ j − 2 = Ii + Ij + d(Ji + Jj),(3.22)

where in the second equality we used i+ j − 2 = (i− 1) + (j − 1). We separate two
cases according to the value of the sum Ii + Ij:

Case a): Ii+ Ij < d. Then (3.22) implies that Kij = Ii+ Ij and Lij = Ji+Jj. Using
this in (3.19), (3.21) follows.

Case b): Ii + Ij ≥ d. Then (3.22) implies that

(3.23) Kij = Ii + Ij − d and Lij = Ji + Jj + 1.

Since Mn+d−2 is recursively generated, we have Xr+dY s = XrY s+1 in the rows and

columns, and therefore β̃r+d,s = β̃r,s+1. The assumption of Case b), and (3.23) used
in (3.19), together with Mn+d−2 being recursively generated, therefore imply that

β̃Ii+Ij ,Ji+Jj = β̃Kij+d,Ji+Jj = β̃Kij ,Ji+Jj+1 =︸︷︷︸
(3.23)

β̃Kij ,Lij
.

proving (3.21). □

Proposition 3.6. Assume the notation above. Then:

(i) If the sequence β̃ has a representing measure, then M [β̃,U ] is positive semidef-
inite.

(ii) Let M̃ [β̃,U ] be obtained fromM [β̃,U ] by replacing each β̃ij satisfying i mod d+
j + ⌊ i

d
⌋ > 2n with the auxiliary moment Aij. Then

C[{Aij}(i,j)∈F ] = M̃ [β̃,U ].

Proof. Part (i) follows from the equality (3.20) and Lβ̃(r
2) =

∫
r2dµ ≥ 0, where µ is a

representing measure for β. For part (ii) first note that not all β̃ij with i+ j > 2n are

auxiliary moments. By recursive generation we have β̃ij = β̃i−d,j+1 if d ≤ i < 2d− 1

(observe that i is at most 2d− 2) and so β̃ij is auxiliary only if i mod d+ j + ⌊ i
d
⌋ =

i− d+ j + 1 > 2n in these cases. If i < d, then the condition i mod d+ j + ⌊ i
d
⌋ > 2n

reduces to i+ j > 2n. Now part (ii) follows from (3.14) and Lemma 3.5. □
11



If H ≡ (hi+j−1)
m
i,j=1 is any m×m Hankel matrix and t̂ := (t1, . . . , tm) ∈ Rm, then

(3.24) ⟨Ht̂, t̂⟩ =
m∑
i=1

m∑
j=1

tihi+j−1tj =
2m−1∑
k=1

(
hk ·

∑
1≤i,j≤m,
i+j=k+1

titj

)
.

Lemma 3.7. Let r̂ ≡ (r0, . . . , rnd) ∈ Rnd+1, ŝ ≡ (s0, . . . , snd) ∈ Rnd+1 satisfy (3.10).
For i, j ≥ 0, with i < d and 0 < i+ j ≤ 2n, define aij by (3.8). Then

(3.25) ⟨Cr̂, r̂⟩+ ⟨Cŝ, ŝ⟩ = 0 ⇐⇒ (3.9) holds.

Proof. Let Ik, Jk be as in (3.18). Further, let

(3.26) hk :=

ß
βIk,Jk , if Ik + Jk ≤ 2n,

AIk,Jk , if Ik + Jk > 2n.

We now apply (3.24) with m = nd+1, H = C with hk as in (3.26), and with tp = rp−1

or tp = sp−1 (1 ≤ p ≤ nd+ 1):

⟨Cr̂, r̂⟩+ ⟨Cŝ, ŝ⟩ =

=
2nd+1∑
k=1

(
hk ·

∑
1≤p,q≤nd+1,
p+q=k+1

(rp−1rq−1 + sp−1sq−1)
)

= r20 + s20 +
∑

0≤i<d, j≥0,
0<i+j≤2n

(
βij ·

∑
0≤p,q≤nd,

0<p+q=i+dj

(rprq + spsq)
)
+

+
∑

0≤i<d, j≥0,
i+j>2n

(
Aij ·

∑
0≤p,q≤nd,

0<p+q=i+dj

(rprq + spsq)
)

= r20 + s20 +
∑

0≤i<d, j≥0,
0<i+j≤2n

aijβij

where we used the assumption of the lemma in the last equality. Now the equivalence
of the lemma easily follows. □

Remark 3.8. It is important for the sequel to note that the implication (⇐) of
Lemma 3.7 may be used in order to construct elements p of kerL satisfying p|Γ ≥ 0,
so that CV(L) ⊆ Z(p|Γ). For suppose r̂, ŝ ∈ Rnd+1 satisfy hi,j(r̂, ŝ) = 0 for every
(i, j) ∈ F and ⟨Cr̂, r̂⟩ + ⟨Cŝ, ŝ⟩ = 0. Now define aij = hij(r̂, ŝ) (i, j ≥ 0, i < d,
0 < i+ j ≤ 2n). Then p :=

∑
aijfij ∈ kerL satisfies p(x, xd) = R(x)2 + S(x)2, where

R(x) := r0 + r1x + · · · + rndx
dn and S(x) := s0 + s1x + · · · + sndx

dn. Now we have
CV(L) ⊆ {(x, xd) : R(x) = S(x) = 0} and card CV(L) ≤ min{degR, degS}.

Let A ≡ {Aij}(i,j)∈F with Aij ∈ R. We say that the core matrix C[A] is re-

cursively generated if for every v ∈ Rnd satisfying

Å
v
0

ã
∈ kerC[A], it follows that

12



Å
0
v

ã
∈ kerC[A].

Remark 3.9. Note that the definition above is equivalent to the definition of a “re-
cursively generated” Hankel matrix given in [CF1]. However, it does not encompass
the notion of recursiveness for a general multivariable moment matrix given in item
iv) preceding Theorem 2.1.

Let 0k×1 ∈ Rk stand for a zero column vector. By Remark 3.9 and properties of
recursively generated Hankel matrices [CF1], for every singular, recursively generated
C[A] there exists r ≤ nd+ 1 and a vector v := (vi)

r
i=1 ∈ Rr with vr ̸= 0, such that

kerC[A] = span
{Å

v
0(nd+1−r)×1

ã
,

Ñ
0
v

0(nd−r)×1

é
, . . . ,

Å
0(nd+1−r)×1

v

ã}
.

If we normalize v so that vr = 1, then v is uniquely determined. We call this unique
v the generating kernel vector of C[A].

Because y − xd is irreducible, the core variety is either the entire curve or a finite
set of points in the curve. The following theorem characterizes the existence of a
representing measure for β in terms of the existence of auxiliary moments such that
the core matrix is positive and recursively generated. It also characterizes the type
of core variety in terms of positive completions of the core matrix.

Theorem 3.10. Let β ≡ β(2n) be a given sequence such that Mn ≡Mn(β) is positive
semidefinite and (y − xd)-pure. Let Γ := Z(y − xd). The following statements are
equivalent:

(i) β admits a representing measure (necessarily supported in Γ).

(ii) β admits a finitely atomic representing measure (necessarily supported in Γ).

(iii) There exist auxiliary moments A ≡ {Aij}(i,j)∈F , such that the core matrix
C[A] ≡ C[{Aij}(i,j)∈F ] is positive semidefinite and recursively generated.

Moreover, if β has a representing measure, the core variety coincides with Γ if and
only if there is some choice of auxiliary moments A such that C[A] is positive definite.
Further, the following are equivalent:

(iv) CV(L) is a nonempty finite subset of Γ.

(v) β has a unique representing measure, which is necessarily finitely atomic.

(vi) There is a unique positive semidefinite, recursively generated completion C[A],
which is necessarily singular.

Proof. The equivalence (i) ⇔ (ii) follows from Richter’s Theorem [Ric] (or by Theo-
rem 2.5).

Next we establish the implication (ii) ⇒ (iii). Suppose Mn(β) is (y−xd)-pure and
that β has a finitely atomic representing measure µ supported in Γ. Thus, µ is of the

13



form

(3.27) µ =
m∑
k=1

akδ(xk,yk),

where m > 0, each ak > 0, and yk = xdk for each k. Since µ has moments of all orders,
we may consider the moment matrix Mn+t[µ], containing µ-moments up to degree
2n + 2t, where t =

⌈
d−2
2

⌉
. Here, ⌈·⌉ denotes the ceiling function, i.e., the smallest

integer greater than or equal to its argument. Using the moment data β̃(2(n+t)) from

Mn+t[µ], i.e., β̃ij =
∫
xiyjdµ, (i, j ≥ 0, i+ j ≤ 2(n+ t)), let

(3.28) γp = β̃p mod d,⌊ p
d
⌋ (0 ≤ p ≤ 2nd).

Since Mn[µ] =Mn(β), we have

γp = βp mod d,⌊ p
d
⌋ if 0 ≤ p ≤ 2nd and p mod d+ ⌊p

d
⌋ ≤ 2n.

We next show that

(3.29) µ̃ :=
m∑
k=1

akδxk

is a representing measure for γ := {γp}0≤p≤2nd. Indeed, for 0 ≤ p ≤ 2nd we have∑
akx

p
k =

∑
akx

p mod d+d⌊ p
d
⌋

k =
∑

akx
p mod d
k y

⌊ p
d
⌋

k = β̃p mod d,⌊ p
d
⌋ = γp.

It now follows that the moment matrix for γ, which is the Hankel matrix H(γ) ≡
(γi+j)0≤i,j≤nd, is positive semidefinite and recursively generated (cf. Section 2). If,

in the core matrix C[A], for each (i, j) ∈ F we set Aij = γi+dj = β̃ij, then C[A]
coincides with H(γ), and is thus positive semidefinite and recursively generated. This
is precisely (iii).

Next we establish the implication (iii) ⇒ (ii). Suppose there exist auxiliary mo-
ments A such that C[A] is positive semidefinite and recursively generated. We will
prove that β has a finitely atomic representing measure. Define a univariate sequence

γ ≡ {γp}0≤p≤2nd as in (3.28) above, where β̃ij is either βij or Aij. Since the Hankel
matrix H(γ) ≡ (γi+j)0≤i,j≤nd coincides with C[A] (by definition of γ), it follows that
it is positive semidefinite and recursively generated. By [CF1, Theorem 3.9], γ has a

finitely atomic representing measure µ̃ :=
m∑
k=1

akδxk
. But then µ =

m∑
k=1

akδ(xk,yk) is a

representing measure for β. Indeed, for 0 ≤ i, j ≤ 2n, i+ j ≤ 2n we have∑
akx

i
ky

j
k =

∑
akx

i+dj
k = γi+dj = βi mod d,j+⌊ i

d
⌋ = βi,j,

where in the last equality we used that βr+d,s = βr,s+1 for 0 ≤ r, s such that r+s+d ≤
2n.

It remains to address the core variety. First assume that C[A] is positive definite
for some choice of auxiliary moments A. Concerning the core variety of L ≡ Lβ, we
have V0 = V(Mn) = Γ, and we now consider V1 := Z(p ∈ kerL : p|V0 ≥ 0). For

14



p ∈ kerL with p|V0 ≥ 0, we have p = F + G as in (3.4). The discussion following
the proof of Lemma 3.1 shows that Q(x) := F (x, xd) satisfies Q(x) = R(x)2 + S(x)2,
where r̂ and ŝ satisfy the conditions of (3.8), (3.9) and (3.10). Lemma 3.7 now shows
that ⟨Cr̂, r̂⟩+ ⟨Cŝ, ŝ⟩ = 0, and since C is positive definite, it follows that r̂ = ŝ = 0.
Thus (3.8) implies that each aij = 0, so F = 0. Since Z(G|Γ) = Γ, we now have
Z(p|Γ) = Γ. It follows that V1 = V0 = Γ, so CV(L) = Γ and the Core Variety
Theorem implies that β has finitely atomic representing measures whose union of
supports is Γ.

Assume next that CV(L) = Γ. We need to prove that there exists a choice of
auxiliary moments A such that C[A] is positive definite. We first show that if there
exist distinct completions C[A1] and C[A2] that are positive semidefinite, recursively
generated and singular, then there is a positive definite completion C[A].

Claim. C
[
1
2
A1 +

1
2
A2

]
is positive definite.

Proof. We have
C
[
1
2
A1 +

1
2
A2

]
= 1

2
C[A1] +

1
2
C[A2].

Since all three matrices are positive semidefinite, it follows that

(3.30) ker
(
C
[
1
2
A1 +

1
2
A2

])
= ker(C[A1]) ∩ ker(C[A2]).

Assume that C
[
1
2
A1 +

1
2
A2

]
is not positive definite. Let v ∈ Rr, r ≤ nd+ 1, be its

generating kernel vector. By (3.30), the vector

u :=

Å
0(nd+1−r)×1

v

ã
lies in ker(C[A1])∩ ker(C[A2]). Now examine the last column of each of the matrices
C[A1], C[A2], C

[
1
2
A1 +

1
2
A2

]
, proceeding from the top to the bottom row. At the

first occurrence of an auxiliary moment, the corresponding entry must be identical
in all three matrices, because u is a common kernel vector and the other entries in
the row of the auxiliray moment coincide in all three matrices. Proceeding to the
second auxiliary moment, we again conclude (using the Hankel structures and that
the first auxiliary moments already coincide) that this entry must also agree in all
three matrices. Continuing inductively, we find that all auxiliary moments coincide,
i.e., A1 = A2. This contradicts the assumption A1 ̸= A2, completing the proof of the
claim.

Now let µ1 be a finitely atomic representing measure for β as given by (3.27). As
in the proof of (ii) ⇒ (iii), we associate to µ1 the univariate sequence γ1 with Hankel
matrix H(γ1) and representing measure µ̃1 as in (3.29), and use these to define the
positive semidefinite and recursively generated completion C[A1] := H(γ1). If C[A1] is
positive definite, we are done, so we may assume C[A1] is singular, in which case γ1 has
a unique representing measure by [CF1, Theorem 3.10], namely µ̃1. Since CV(L) = Γ,
there exists a finitely atomic representing measure µ2 for β that is distinct from µ1.
As above, we may associate to µ2 its univariate sequence γ2 with Hankel matrix H(γ2)
and representing measure µ̃2, and use these to define the positive semidefinite and

15



recursively generated completion C[A2] := H(γ2). If C[A2] is positive definite, we
are done, so we may assume C[A2] is singular. Now, if C[A1] and C[A2] are distinct
we may apply the Claim to conclude that there is a positive definite completion, as
desired. So we may assume that C[A2] = C[A1], whence H(γ2) = H(γ1). Since H(γ1)
has the unique representing measure µ̃1 and µ̃2 is a representing measure for H(γ2),
we have µ̃2 = µ̃1. It follows readily that µ2 = µ1, a contradiction. Thus C[A1] and
C[A2] are distinct, which implies that there is a positive definite completion C[A].

The equivalences among (iv), (v), (vi) follow directly from the reasoning above.
□

Remark 3.11. Note that if there is a positive definite completion C[A], there may
also be positive semidefinite, recursively generated but singular completions. Thus,
for d = 3, the set of A for which C[A] is positive definite forms an open interval,
and at the interval endpoints the completions are positive semidefinite, recursively
generated, but singular.

The rest of this paper and its sequel [FZ-] are primarily devoted to developing
concrete conditions for the existence or nonexistence of auxiliary moments satisfying
condition (iii) of Theorem 3.10. We conclude this section with examples which illus-
trate cases where the core variety is either the entire curve y = xd or is empty. These
examples suggest the following question.

Question 3.12. Let β ≡ β(2n) be such thatMn(β) is positive semidefinite and (y−xd)-
pure. Is it possible for β to have a unique representing measure (cf. conditions (iv)-
(vi) of Theorem 3.10)?

In Example 3.13 (just below) we show that the answer is negative for d = 1 and
d = 2. In Section 4 we prove a negative answer for d = 3. This provides a new
proof of Theorem 2.2. Nevertheless, for d = 4 we can establish a positive answer.
The example illustrating this is beyond the scope of this note, as it requires special
techniques, but will appear in [FZ-].

In the sequel, for Mn ⪰ 0 and (y−xd)-pure, we denote by ”Mn the central compres-
sion ofMn obtained by deleting all rows and columns Xd+pY q (p, q ≥ 0, p+q ≤ n−d).
The number of rows and columns in ”Mn is thus dimPn−dimPn−d =

d(2n−d+3)
2

. Since

Mn is positive and (y − xd)-pure, it follows immediately that ”Mn is positive definite
and

(3.31) rankMn = rank”Mn =
d(2n− d+ 3)

2
.

Example 3.13. i) For d = 1, we have C = ”Mn =
(
β0,i+j−2

)
1≤i,j≤n+1

≻ 0, so the

existence of representing measures whose union of supports is the line y = x now fol-
lows from Theorem 3.10. Alternately, using flat extensions, the existence of measures
in this case follows from the solution to the truncated moment problem on a line in
[CF3].
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ii) For d = 2, the core matrix C for Mn is (2n+ 1)× (2n+ 1), with

(3.32) Cij = β(i+j−2) mod 2,⌊ i+j−2
2

⌋.

In ”Mn, column j is the truncation to ”Mn of column X(j−1) mod 2Y ⌊(j−1)/2⌋ in Mn.

Likewise, row i of ”Mn is the truncation to ”Mn of row X(i−1) mod 2Y ⌊(i−1)/2⌋ in Mn.
Thus, using the structure of moment matries, we have

(3.33) M̂ij = β(i−1) mod 2+(j−1) mod 2,⌊(i−1)/2⌋+⌊(j−1)/2⌋.

By Proposition 3.6 (or using calculations based on (3.32) and (3.33)), we have C =”Mn ≻ 0. Since C is positive definite, Theorem 3.10 now implies that β has repre-
senting measures whose union of supports is the parabola y = x2. The existence
of representing measures also follows from the solution to the Parabolic Truncated
Moment Problem in [CF4], based on flat extensions. △

Remark 3.14. Note that for d ≥ 3, C ≡ C[{Aij}(i,j)∈F ] does not coincide with ”Mn.

However, its central compression Ĉ, obtained by deleting row k and column k from C
in those cases where row k ends with an auxiliary moment, is orthogonally equivalent

to ”Mn, and is therefore positive definite. The details of this will appear in [FZ-].
Here we only explain the case d = 3, since this will be needed in the next section

to provide a core variety-based solution to the (y − x3)-pure TMP. The core matrix
C for Mn is (3n+ 1)× (3n+ 1) with

(3.34) Cij = β(i+j−2) mod 3,⌊ i+j−2
3

⌋.

Let Ĉ be a 3n × 3n principal submatrix of C obtained by deleting nd-th row and

column. Recall that the rows and columns of ”Mn, which is also of size 3n × 3n, are
labelled in degree-lexicographic order,

1, X, Y,X2, XY, Y 2, X2Y,XY 2, Y 3, . . . , X2Y n−2, XY n−1, Y n

(there is no row or column X iY j with i ≥ 3). Let us permute these to the order

(3.35) 1, X,X2, Y,XY,X2Y, Y 2, XY 2, X2Y 2, . . . , Y n−1, XY n−1, Y n.

Then there exists a permutation matrix U of size 3n×3n such that UTM̂nU has rows
and columns indexed by (3.35). Note that

(UTM̂nU)ij = β(i−1) mod 3+(j−1) mod 3,⌊(i−1)/3⌋+⌊(j−1)/3⌋

= β(i+j−2) mod 3,⌊ i+j−2
3

⌋.
(3.36)

where we used Lemma 3.5 in the second equality. By (3.34) and (3.36), Ĉ is orthog-

onally equivalent to M̂n.

We conclude this section with some examples that illustrate Theorem 3.10 for a

positive semidefinite (y−xd)-pureMn(β). Let Ĉ denote the compression of C ≡ C[A]
obtained by deleting each row and each column of C that ends in some auxiliary
moment Aij. In the sequel, for 1 ≤ k ≤ dn + 1, Ck denotes the compression of C to
the first k rows and columns.
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Example 3.15. Consider the moment matrix

(3.37) M3(β) =



1 0 0 1 2 5 0 0 0 0
0 1 2 0 0 0 2 5 14 42

0 2 5 0 0 0 5 14 42 132

1 0 0 2 5 14 0 0 0 0
2 0 0 5 14 42 0 0 0 0

5 0 0 14 42 132 0 0 0 0

0 2 5 0 0 0 5 14 42 132
0 5 14 0 0 0 14 42 132 429

0 14 42 0 0 0 42 132 429 s

0 42 132 0 0 0 132 429 s t


.

A calculation with nested determinants shows that M3 is positive semidefinite and
(y − x3)-pure if and only if s ≡ β15 and t ≡ β06 satisfy

(3.38) t > s2 − 2844s+ 2026881.

The core matrix is

(3.39) C[A] =



1 0 1 0 2 0 5 0 14 0
0 1 0 2 0 5 0 14 0 42

1 0 2 0 5 0 14 0 42 0

0 2 0 5 0 14 0 42 0 132
2 0 5 0 14 0 42 0 132 0

0 5 0 14 0 42 0 132 0 429

5 0 14 0 42 0 132 0 429 0
0 14 0 42 0 132 0 429 0 s

14 0 42 0 132 0 429 0 s A

0 42 0 132 0 429 0 s A t


.

i) Let s = 1430 and t = 4862, so (3.38) is satisfied. Calculations with nested determi-
nants show that C9 ≻ 0, and therefore a calculation of detC[A] shows that C[A] ≻ 0
if and only if −1 < A < 1. Theorem 3.10 now shows that β has representing measures
and that CV(Lβ) is the curve y = x3.

ii) Consider next s = 1422, t = 4798. Condition (3.38) is satisfied and nested deter-

minants show that Ĉ ≻ 0. In particular, C8 ≻ 0, but we have detC9 = −7, so for no
value of A will C[A] be positive semidefinite. By Theorem 3.10, β has no measure.

iii) Now let s = 1429, t = 4847. Then (3.38) holds, and we have C8 ≻ 0; however,
detC9 = 0, so there exists x ∈ R9 such that C9x = 0. Now r̂ := (xt, 0) ≡ (r0, . . . , r8, 0)
satisfies ⟨Cr̂, r̂⟩ = 0 and, with ŝ ≡ 0, also satisfies the consistency requirement
r8r9+ s8s9 = 0 (cf. (3.12)). Remark 3.8 now implies that there exists p ∈ kerLβ such
that Q(x) := p(x, x3) = r(x)2. Therefore, card CV(L) ≤ deg r ≤ 8 < 9 = rankM3, so
CV(Lβ) = ∅ by Corollary 2.4, and thus β has no measure. △

In next section we will prove that the method of the preceding example applies to
any positive semidefinite Mn(β) that is (y − x3)-pure. We may therefore formulate
one solution to the (y−x3)-pure truncated moment problem as follows (see Corollary
4.3 and its proof).

Theorem 3.16. Suppose Mn(β) is positive semidefinite and (y − x3)-pure. Then β
has a representing measure if and only if detC3n > 0, in which case CV(Lβ) is the
curve y = x3.
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Example 3.17. Consider next the sequence β(8), with M3 given by

1 0 2 1 0 14 0 5 0 132

0 1 0 0 5 0 2 0 42 0
2 0 14 5 0 132 0 42 0 1430

1 0 5 2 0 42 0 14 0 429

0 5 0 0 42 0 14 0 429 0
14 0 132 42 0 1430 0 429 0 16796

0 2 0 0 14 0 5 0 132 0

5 0 42 14 0 429 0 132 0 4862
0 42 0 0 429 0 132 0 4862 0

132 0 1430 429 0 16796 0 4862 0 208012


and the degree 7 and degree 8 blocks given byÜ

0 42 0 1430 0

42 0 1430 0 58786
0 1430 0 58786 0

1430 0 58786 0 2674440

ê
à

14 0 429 0 16796
0 429 0 16796 0

429 0 16796 0 742900

0 16796 0 742900 0
16796 0 742900 0 353576708

í
The core matrix is a Hankel matrix (see Example 3.4) with anti-diagonals completely
determined in the first row by

β00 = 1, β01 = 2, β02 = 14, β03 = 132,

β10 = 0, β11 = 0, β12 = 0, β13 = 0,

β20 = 1, β21 = 5, β22 = 42, β23 = 429,

β30 = 0, β31 = 0, β32 = 0, β33 = 0,

and the last column by

β04 = 1430, β05 = 16796 β06 = 208012, β07 = 2674440,

β14 = 0, β15 = 0, β16 = 0, β17 = 0,

β24 = 4862, β25 = 58786, β26 = 742900, β27 = A27,

β34 = 0, β35 = 0, β36 = A36, β37 = A37

β08 = 353576708.

It is straightforward to verify thatM4 is positive semidefinite and (y−x4)–pure. Using
nested determinants, it is easy to show that C14 ≻ 0. A further calculation shows that
C15 ≻ 0 if and only if −1 < A36 < 1. Setting A36 = 0, we see that C16 ≻ 0 if and only
if A27 = 9694844+f for f > 0. Now detC = f(318219068−28f −f 2)−A2

37, so there
exists A37 such that C[A] ≻ 0 if and only if 0 < f < 96

√
34529− 14 (≈ 17824.7). In

this case, since C[A] ≻ 0, the core variety coincides with the curve y = x4.

Example 3.18. Consider next the sequence β(8), defined as in Example 3.17, except
for the following 5 differences:

β25 = 0, β06 = 3454708516 β26 = 3448894372, β07 = 0,

β08 = 2640503382173370698906776695725.

It is straightforward to verify that M4 is positive semidefinite and (y − x4)–pure.
Moreover, C[A] can never be positive semidefinite, since β25 = 0 is its 12th diagonal
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element, but there are nonzero entries in the 12th row and column. By the converse
in Theorem 3.10, β(8) does not admit a representing measure.

4. The (y − x3)-pure truncated moment problem.

In this section we apply the previous results to the moment problem for β ≡ β(2n)

where Mn is positive semidefinite and (y − x3)-pure. In particular, Theorem 4.1
provides a positive answer to Question 3.12 for d = 3. Let Γ stand for the curve
y = x3. Note that in the core matrix C, since Y = Xd with d = 3, there is exactly
1 auxiliary moment, namely β2,2n−1, which we denote by A ≡ A2,2n−1 (cf. Example

3.3). Let Ĉ be the principal submatrix of C obtained by deleting row and column

nd. Recall from Remark 3.14 that Ĉ ≻ 0. Let H ≡ H[A] denote the matrix obtained
from C ≡ C[A] by interchanging rows and columns nd and nd + 1 (the last 2 rows
and columns), so that H is orthogonally equivalent to C, i.e.,

(4.1) H = P TCP,

where P is a permutation matrix defined on the standard orthonormal basis e1, . . . , end+1

for Rnd+1 by

Pei =

 ei, i ≤ nd− 1,
end+1, i = nd,
end, i = nd+ 1.

We may thus represent H as

(4.2) H =

Å
Ĉ v
vt β1,2n−1

ã
,

with Ĉ ≻ 0 and where v is of the form

(4.3) v =

Å
h
A

ã
.

(Here h ∈ Rdn−1 and vt denotes the row vector transpose of v.) As in Section 3, for
1 ≤ j ≤ dn+ 1, let Cj denote the compression of C to the first j rows and columns.
Write

(4.4) Ĉ =

Å
Cdn−1 z
zt β0,2n

ã
,

where z ∈ Rdn−1 is of the form

z =

Å
k

β1,2n−1

ã
for some k ∈ Rdn−2. We now have

(4.5) H[A] =

Ñ
Cdn−1 z h
zt β0,2n A
ht A β1,2n−1

é
.
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Since Ĉ ≻ 0, Ĉ−1 exists and has the form

(4.6) Ĉ−1 =

Å
C w
wt ϵ

ã
,

where (see e.g., [F2, p. 3144])

ϵ =
1

β0,2n − ztC−1
dn−1z

> 0,

w = −ϵC−1
dn−1z ∈ Rdn−1,

C = C−1
dn−1(1 + ϵzztC−1

dn−1) ∈ R(dn−1)×(dn−1).

(4.7)

Now

Ĉ−1v =

Å
Ch+ Aw
wth+ Aϵ

ã
,

and we set

(4.8) A ≡ A0 := −w
th

ϵ
,

so that

(4.9) Ĉ−1v =

Å
Ch− wth

ϵ
w

0

ã
.

With this value of A in C, and thus also in v, let

ϕ := vtĈ−1v = htCh− wthhtw

ϵ
= (htC−1

dn−1h+ ϵhtC−1
1 zztC−1

dn−1h)− ϵztC−1
dn−1hh

tC−1
dn−1z

= htC−1
dn−1h,

(4.10)

where we used (4.7) in the second equality.
To emphasize the dependence of ϕ on β, we sometimes denote ϕ as ϕ[β]. In Example

4.5 (below) we will use the fact that ϕ is independent of β1,2n−1 and β0,2n. To see
this, note that β1,2n−1 is an element of vectors z and zt, so (4.5) shows that Cdn−1

and h are independent of β1,2n−1 and β0,2n. It now follows from (4.10) that ϕ is

independent of β1,2n−1 and β0,2n as well. Thus, if β̃(2n) has the property that Mn(β̃)

is positive semidefinite and (y − x3)-pure, and if βij = β̃ij for all (i, j) ̸= (1, 2n − 1)

and (i, j) ̸= (0, 2n), then ϕ[β̃] = ϕ[β]. Note that ϕ would depend on β1,2n−1 and β0,2n
if A0 in (4.8) was chosen differently. This is due to the fact that the last row of Ĉ−1v
in (4.9) would be non-zero.

Theorem 4.1. Suppose Mn is positive semidefinite and (y − x3)-pure. β ≡ β(2n)

has a representing measure if and only if β1,2n−1 > ϕ (equivalently, C[A0] ≻ 0). In
this case, CV(Lβ) = Γ, which coincides with the union of supports of all representing
measures (respectively, all finitely atomic representing measures).
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Proof. Recall from Remark 3.14 that Ĉ is positive definite. Consider first the case
β1,2n−1 > ϕ. It follows from (4.2) and [A, Theorem 1] that H is positive definite. Since
C is orthogonally equivalent to H, we see that C is positive definite, so the existence
of representing measures and the conclusion concerning supports follow from Theorem
3.10.

We next consider the case when β1,2n−1 = ϕ, so that by [A, Theorem 1], H is

positive semidefinite, but singular. Since Ĉ ≻ 0, it follows from (4.2) and (4.9) that
kerH contains the vector

(4.11) û :=

Å
Ĉ−1v
−1

ã
≡

Ñ
Ch− wth

ϵ
w

0
−1

é
≡ (r0, r1, . . . , rdn−2, udn−1, udn)

t,

where udn−1 = 0 and udn = −1. From the orthogonal equivalence between H and
C, based on the interchange of rows and columns nd and nd+ 1, it follows that C is
positive semidefinite and that kerC contains the vector

(4.12) r̂ = (r0, r1, . . . , rdn−2, rdn−1, rdn)
t,

where

(4.13) rdn−1 = udn = −1 and rdn = udn−1 = 0.

Let ŝ ≡ (s0, . . . , sdn)
t denote the 0 vector, so that ⟨Cr̂, r̂⟩ + ⟨Cŝ, ŝ⟩ = 0 and the

auxiliary requirement of (3.10), rdn−1rdn + sdn−1sdn = 0, is satisfied. Now, following
Remark 3.8, define aij = hij(r̂, ŝ) (0 ≤ i ≤ 2, j ≥ 0, 0 < i + j ≤ 2n). Then
p :=

∑
aijfij is an element of kerLβ which satisfies Q(x) := p(x, x3) = R(x)2, where

R(x) := r0 + r1x+ · · ·+ rdn−1x
dn−1 + rdnx

dn.

Since rdn = 0, R(x) has at most dn − 1 real zeros, so p has at most dn − 1 zeros
in the curve y = x3. Now p ∈ kerLβ satisfies p|Γ ≥ 0 and cardZ(p|Γ) ≤ dn − 1 <
d(2n−d+3)

2
= rankMn (since d = 3), so Corollary 2.4 implies that β has no representing

measure.
To complete the proof, we consider the case when β1,2n−1 < ϕ. From (4.2) and

(4.11) we have

⟨Hû, û⟩ = ⟨
Å

0dn×1

vtĈ−1v − β1,2n−1

ã
,

Å
∗dn×1

−1

ã
⟩

= β1,2n−1 − vtĈ−1v

= β1,2n−1 − ϕ < 0.

Recall that H = P TCP (cf. (4.1)). Setting r̂ := Pû, we have

⟨Cr̂, r̂⟩ = ⟨Hû, û⟩ < 0,

where r̂ is as in (4.12), (4.13). Let ϵ = (ϕ−β1,2n−1)
1/2. Since ⟨Ĉe1, e1⟩ = β00 = 1, then

the constant polynomial S(x) = ϵ, with coefficient vector ŝ = (ϵ, 0, . . . , 0)t, satisfies
sdn−1sdn = 0, and we have ⟨Cr̂, r̂⟩ + ⟨Cŝ, ŝ⟩ = 0. So r̂ and ŝ together satisfy the
auxiliary requirement of (3.10). Constructing p(x, y) as in Remark 3.8, we have that
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p ∈ kerLβ. Now, p(x, x
d) = R(x)2 + S(x)2 ≥ ϵ2 > 0. Since p is strictly positive on Γ,

then CV(Lβ) = ∅, and therefore β has no representing measure. □

Remark 4.2. In Theorem 4.1, an alternative proof of the case β1,2n−1 < ϕ can
be based on Theorem 3.10, as follows. Let A0 be as in (4.8). If β1,2n−1 < ϕ[A0],
then (4.10) implies that β1,2n−1 < htC−1

dn−1h. It therefore follows from (4.5) that for

every A ∈ R, the matrix

Å
Cdn−1 h
ht β1,2n−1

ã
is a principal submatrix of H[A] that is

not positive semidefinite. Thus, for every A, H[A], and hence C[A], is not positive
semidefinite, so Theorem 3.10 implies that β has no representing measure.

Corollary 4.3. Suppose Mn(β) is positive semidefinite and (y − x3)-pure. Then β
has a representing measure if and only if detCdn > 0, in which case CV(Lβ) is the
curve y = x3.

Proof. Note that Cdn is equal to

Å
Cdn−1 h
ht β1,2n−1

ã
(cf. (4.5)). From Ĉ ≻ 0 it follows

that Cdn−1 ≻ 0 (cf. (4.4)). Using [A], we have that

Cdn ≻ 0 ⇐⇒ β1,2n−1 > htC−1
dn−1h ⇐⇒︸︷︷︸

(4.10)

β1,2n−1 > ϕ.

Now the statement of the corollary follows from Theorem 4.1. □

In [F2] a rather lengthy construction with moment matrices is used to derive a
certain rational expression in the moment data, denoted by ψ in [F2], such that β
has a representing measure if and only if β1,2n−1 > ψ, in which case Mn admits a flat
extension Mn+1. In view of Theorem 4.1, it is clear that ψ = ϕ (although this is not
at all apparent from the definitions of these expressions).

Corollary 4.4. Suppose Mn(β) is positive semidefinite and (y − x3)-pure. The fol-
lowing are equivalent:

(i) β has a representing measure;

(ii) β has a finitely atomic measure;

(iii) Mn(β) has a flat extension Mn+1;

(iv) CV(Lβ) ̸= ∅;
(v) With A defined by (4.8) and ϕ defined by (4.10), β1,2n−1 > ϕ;

(vi) CV(Lβ) = Γ.

Proof. The implications (i) =⇒ (iv) =⇒ (ii) =⇒ (i) follow from the Core Variety
Theorem and its proof. The equivalence of (i) and (iii) is established in [F2], and the
equivalence of (i), (v), and (vi) is Theorem 4.1. □

In [EF] the authors used the results of [F1] to exhibit a family of positive (y− x3)-
pure moment matrices M3(β

(6)) such that β(6) has no representing measure but the
Riesz functional is positive (cf. Section 2). Here, positivity of the functional can-
not be derived from positivity of M3 using an argument such as L(p) = L(

∑
p2i ) =
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∑
⟨M3p̂i, p̂i⟩ ≥ 0, because, by the theorem of Hilbert, not every nonnegative polyno-

mial p(x, y) of degree 6 can be represented as a sum of squares. Using Theorem 4.1
we can extend this example to a family of (y − x3)-pure matrices Mn, for n ≥ 3 as
follows.

Example 4.5. Suppose M ≡ Mn(β) is positive semidefinite and (y − x3)-pure. Let
ϕ ≡ ϕ[β] be as in (4.10) and suppose ϕ = β1,2n−1, so that β has no representing

measure by Theorem 4.1. We claim that the Riesz functional Lβ is positive. Let M̂
denote the central compression of M to rows and columns that are of the form X iY j

with 0 ≤ i < 3, so that rankM = rank M̂ and M̂ ≻ 0. Now let β̃ be defined to
coincide with β, except possibly in the β1,2n−1 position. It follows from the structure

of positive matrices that there exists δ > 0 such that if |β̃1,2n−1 − β1,2n−1| < δ, then”Mn(β̃) is positive definite. The structure of positive (y − x3)-pure moment matrices

now implies that Mn(β̃) is positive semidefinite and (y − x3)-pure. Now consider the

sequence β[m] which coincides with β except that β
[m]
1,2n−1 = β1,2n−1 + 1/m. It follows

that there exists m0 > 0 such that if m > m0, then M [m] ≡ Mn(β
[m]) is positive

semidefinite and (y − x3)-pure. By the remarks preceding Theorem 4.1, we have

β
[m]
1,2n−1 = β1,2n−1 + 1/m > β1,2n−1 = ϕ[M ] = ϕ[Mn(β

[m])], so Theorem 4.1 implies

that β[m] has a representing measure. Thus, Lβ[m] is positive, and since the cone of
sequences with positive functionals is closed, it follows that Lβ is positive. △
To exhibit Mn(β) as in Example 4.5, we may start with any positive semidefinite

(y−x3)-pureMn(β
′). Define β so that it coincides with β′ except that β1,2n−1 = ϕ[β′].

If necessary, increase β0,2n to insure positivity of Mn(β). Then Mn(β) is positive
semidefinite, (y − x3)-pure, and β1,2n−1 = ϕ[β′] = ϕ[β] by the remarks preceding
Theorem 4.1.
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[Sch] K. Schmüdgen, The Moment Problem, Graduate Texts in Mathematics vol. 277, Springer,
2017.

[ST] J. Shohat and J. Tamarkin, The Problem of Moments, Math. Surveys I, Amer. Math. Soc.,
Providence, 1943.

[Vas] F.-H. Vasilescu, An idempotent approach to truncated moment problems, Integ. Equ. Oper.
Theory 79(2014), 301–335.

[Wol] Wolfram Research, Inc., Mathematica, Version 14.2, Wolfram Research, Inc., Champaign,
IL, 2025.

[YZ] S. Yoo, A. Zalar, The truncated moment problem on reducible cubic curves I: Parabolic and
Circular type relations, Complex Anal. Oper. Theory. 18, 111(2024), 54 pp.

[Z1] A. Zalar, The truncated Hamburger moment problems with gaps in the index set, Integ.
Equ. Oper. Theory 93(2021), 36 pp.

[Z2] A. Zalar, The strong truncated Hamburger moment problem with and without gaps, J.
Math. Anal. Appl. 516(2022), 21 pp.

[Z3] A. Zalar, The truncated moment problem on the union of parallel lines, Linear Algebra and
its Applications 649(2022), 186–239.

[Z4] A. Zalar, The truncated moment problem on curves y = q(x) and yxl = 1, Linear and
Multilinear Algebra 72,12(2024), 1922–1966.

25



Lawrence Fialkow, State University of New York, New Paltz, NY, 12561 U.S.A.
Email address: fialkowl@newpaltz.edu
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