A CORE VARIETY APPROACH TO THE PURE Y = x4
TRUNCATED MOMENT PROBLEM: PART 1

LAWRENCE FIALKOW AND ALJAZ ZALAR

ABSTRACT. Let 3 = 52" be a real bivariate sequence of degree 2n. We study the
existence of representing measures for 8 supported in the curve y = ¢ (d>1)in
the case when all column dependence relations in the moment matrix M, (8) are
generated by the relation Y = X?. We prove that the core variety of 3, CV(Lg), is
nonempty (equivalently, representing measures exist) if and only if C, the partially
defined core matriz of 3, admits a positive, recursively generated completion C[A].
Moreover, CV(Lg) is the entire curve y = 2¢ if and only if there is a positive
definite completion C[A]. In the remaining case, if there is a measure, it is unique
and finitely atomic. For d = 3, we use these results to compute the core variety of
B and give new characterizations of the existence of representing measures, which
complement a result of [F2].

1. INTRODUCTION.

Given a bivariate sequence of degree 2n,

(1.1) B= B ={By:4,5>0,i+7<2n}, foo =1,
and a closed set K C R? the Truncated K-Moment Problem (TKMP) seeks condi-

tions on /3 such that there exists a positive Borel measure p on R?, with supp u C K,
satisfying

Bij :/ 'y du(z,y) (i,5 > 0,5+ j < 2n);
RQ

i is a K -representing measure for 3. A comprehensive reference for all aspects of the
Moment Problem is the recent treatise of K. Schmiidgen [Sch]. Apart from solutions
based on semidefinite programming and optimization, several different abstract solu-
tions to TKMP appear in the literature, including the Flat Extension Theorem [CF5],
the Truncated Riesz-Haviland Theorem [CF7], the idempotent approach of [Vas|, and,
more recently, the Core Variety Theorem [BF|. By a concrete solution to TKMP we
mean an implementation of one of the abstract theories involving only basic linear
algebra and solving algebraic equations (or estimating the size of the solution set).
The ease with which any of the abstract results can be applied to solve particular
moment problems in concrete terms varies considerably depending on the problem,
with most concrete results attributable to the Flat Extension Theorem and very few
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to the other approaches. In the sequel we show how the Core Variety Theorem (The-
orem 2.5 below) can indeed be applied to certain concrete moment problems, namely
when K is the planar curve y = z¢ (d > 1).

In the classical literature TKMP has been solved concretely in terms of positive
Hankel matrices when K is the real line, the half-line [0, 4-00), or the closed interval
[a,b] (cf. [ST, CF1]). For the case when K is a planar curve p(z,y) = 0 with degp <
2, TKMP has been solved concretely in terms of moment matrix extensions (see
Theorem 2.1 below, [CF3, CF4, CF6, F3]). In [F2] moment matrix extensions are
used to concretely solve the truncated moment problem for y = z3 and to solve (in
a less concrete sense) truncated moment problems on curves of the form y = g(x)
and yg(z) = 1 (g € Rlz]). More recently, several authors have intensively studied
TKMP on certain planar curves of higher degree, using moment matrix extensions
and a “reduction of degree” technique to improve and extend the results of [F2] (cf.
[Z1, 72, 73, 74, YZ]). We also note that for closed planar sets K that are merely
semi-algebraic, such as the closed unit disk, very little is known concerning concrete
solutions to TKMP (cf. [CF2)).

The results cited just above do not provide concrete solutions to TKMP for planar
curves of the form y = x¢ (d > 4). The aim of this note is to illustrate how the
core variety, described in Theorem 2.5, can be used to study TKMP for K =T, the
planar curve y = ¢ (d > 1), when the associated moment matrix M, (3) is (y — z¢)-
pure, i.e., the column dependence relations in M, () are precisely those that can be
derived from the column relation Y = X% by recursiveness and linearity (see just
below for terminology and notation). The core variety of § coincides with the union
of supports of all representing measures for 3, and in Section 3 we develop a core
variety framework for studying TKMP in the (y — 2¢)-pure case. In Theorem 3.10
we prove that 8 has a representing measure if and only if C, the partially defined
core matriz for 5, admits a positive semidefinite, recursively generated completion
C[A]. The core variety of 3 coincides with the entire curve y = 2¢ if and only if there
exists positive definite completion C[A]. In the remaining case of a measure, it is
unique, with support a finite subset of I'. In Section 4 we apply the results of Section
3 to compute the core variety of 3 in the (y — 23)-pure truncated moment problem
(see Theorem 4.1); this result subsumes a result of [F2] which used a lengthy flat
extension construction to give a necessary and sufficient condition for the existence
of a representing measure.

2. PRELIMINARIES

Although our focus in the sequel is TKMP for the planar curves y = 2%, we note

that the following discussion, and the results we cite from [B, BF, CF5, CF7, F4],
generalize to the multivariable truncated moment problem.

Let P := Rz, y] and let Py, := {q € P: degq < k}. Given 8 = p® as in (1.1),
define the Riesz functional Lg : Pa, — R by

E a; 'y’ — Z i Bij-
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For a sequence = 3" with Riesz functional Lg, the moment matriz M, has
rows and columns indexed by the monomials in P, in degree-lexicographic order, i.e.,
1,X,YV, X2 XY, Y2 ..., X" ...,Y" In this case, the element of M, in row X?Y7J,
column X*Y"is B; 4 4. More generally, for r,s € P, with coefficient vectors 7,5
relative to the basis of monomials, we have

(2.1) (M,7,3) = Ly(rs).
In the sequel, for ¢ € P,,, ¢ =Y a;;a'y’, we set
(2.2) ¢(X.Y) = a; X'V (= M,q).

If 8 has a K-representing measure i, then Lg is K-positive, i.e., ¢ € Pay,, q|K >
0= Lg(q) > 0 (since Lg(q) = [, qdp). The converse is not true; instead, the Trun-
cated Riesz-Haviland Theorem [CF7] shows that § admits a K-representing measure
if and only if Lz admits an extension to a K-positive linear functional on Py,4o. In
[B] G. Blekherman proved that if M,, is positive semidefinite and rank M,, < 3n — 3,
then Lg is R%-positive, so the Truncated Riesz-Haviland Theorem then implies that
£~ has a representing measure. Using special features of the proof of Theorem 2.2
(below), in [EF] C. Easwaran and the first-named author exhibited a class of Riesz
functionals that are positive but have no representing measure. Apart from these
results, it seems very difficult to verify positivity of Riesz functionals in examples
without first proving the existence of representing measures.

Several basic necessary conditions for a representing measures p can be expressed
in terms related to moment matrices (cf. [CF5]); we will refer to these without further
reference in the sequel:

i) M,(B) is positive semidefinite: (M,7,7) = Lg(r?) = [r?*du >0 (Vr € P,).

ii) For any representing measure pu, card(supp p) > rank M,,.

iii) Note that a dependence relation in the column space of M, can be expressed
as 7(X,Y) = 0, where r € P,. Define the variety of M,, V(M,), as the common
zeros of the polynomials r» € P, such that 7(X,Y) = 0. Then suppu C V(M,), so
card V(M,,) > rank M,,.

iv) M, is recursively generated: whenever r, s, and rs are in P, and r(X,Y) = 0,
then (rs)(X,Y) =0.

v) M, (or Lg) is consistent: for p € Py, p|V(M,) = 0 = Lg(p) = 0; consistency
implies recursiveness [CFM].

The Flat Extension Theorem [CF5] shows that 5 admits a representing measure
if and only if M,, admits a positive semidefinite moment matrix extension M,, ;. (for
some k > 0) for which there is a rank-preserving (i.e., flat) moment matrix extension
M, x+1. Using this result, in a series of papers R. Curto and the first-named author
solved TKMP for planar curves of degrees 1 and 2 as follows.

Theorem 2.1 ([CF3, CF4, CF6, F3, Degree-2 Theorem)). Suppose r(z,y) € P with
degr < 2. Forn > degr, M, has a representing measure supported in the curve
r(z,y) = 0 if and only if r(X,Y) = 0 and M, is positive semidefinite, recursively
generated, and satisfies card V(M,,) > rank M,,.
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In [CFM] it was shown that this result does not extend to degr > 2. The example
in [CFM] concerns an M3 that is positive and recursively generated, with card Vs =
rank M3, but which has no measure. In this example, there is no measure because Lg
is not consistent. The results of [F2] show that positivity, the variety condition, and
consistency are still not sufficient for representing measures, as we next describe.
For M, = 0, consider the (y—x?)-pure case, when the column dependence relations
in M,, are precisely those given by Y = X3, recursiveness, and linearity, i.e., column
relations of the form (s(x,y)(y—2%))(X,Y) = 0 (deg s < n—3). Thus M, is positive,
rank M,, < cardV(M,,) (= cardT" = 400), and it follows from Lemma 3.1 in [F2]
that M, is consistent. In [F2] we described a particular, easily computable, rational
expression in the moment data, ¢, and solved the (y — 23)-pure TKMP as follows.

Theorem 2.2. If M, = 0 is (y — x3)-pure, then 3 has a representing measure if and
only if Bron—1 > V.

In the proof of Theorem 2.2, the numerical test 3; 2,,—1 > % leads to a flat extension
M, 1. By contrast with this result, the other existence results in [F2, Z4] generally
presuppose the existence of a certain positive moment matrix extension of M, but
do not give an explicit test for the extension. The proof of Theorem 2.2 in [F2] is
quite lengthy. In the sequel we will use the core variety to present a shorter, more
transparent proof. This approach also provides a core variety framework for studying
the (y — 2¢)-pure truncated moment problem.

The core variety provides an approach to establishing the existence of representing
measures based on methods of convex analysis. For the polynomial case, this was
introduced in [F4], and some of the ideas go back to [FN]. The discussion below is
based on joint work of the first author with G. Blekherman [BF], which treats general
Borel measurable functions, although here we only require polynomials.

Given 3 = 8" and its Riesz functional L = Lg, define V; := V(M,,) and for i > 0,

define
‘/;—i-l = ﬂ Z(f)7

fé€ker L,
fIVi>0

where Z(f) denotes the set of zeros of f(x,y) in R? (or, equivalently, in V;). We
define the core variety of L by

CV(L) = (Vi

>0
Proposition 2.3 ([F4]). If i is a representing measure for L, then supp p C CV(L).
If i is a representing measure, then
rank M, (8) < card(supp p) < cardCV(Lg) < cardV; (for every ¢ > 0).
We thus have the following test for the nonexistence of representing measures.

Corollary 2.4 ([F4]). If cardV; < rank M,, for some i, then 5 has no representing

measure.
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Proposition 2.3 shows that if 5 has a representing measure, then CV(L) is nonempty.
The main result concerning the core variety is the following converse.

Theorem 2.5 ([BF, Core Variety Theorem]). L = Lg has a representing measure
if and only if CV(L) is nonempty. In this case, CV(L) coincides with the union of
supports of all finitely atomic representing measures for L.

In view of Proposition 2.3, CV(L) is also the union of supports of all representing
measures. In general, it may be difficult to compute the core variety, due to the dif-
ficulty of characterizing the nonnegative polynomials on Vg, Vi, V5, ..., but Theorem
2.5 leads to the following criterion for stability.

Proposition 2.6 ([BF]). If Vi is finite, then CV(L) =V}, or CV(L) = Viy1.

In the (y — x¢)—pure case for M,(3), V; is clearly the curve y = z¢. Since y — 2% is

irreducible and CV(L) is an algebraic set, it follows that either V; = V; (= CV(L)),
or Vi is finite and Proposition 2.6 implies CV(L) = V; or CV(L) = V4. We conclude
this section by noting the case when M, (3) has the Y = X? column relation but is
not (y — x%)-pure. In this case there is a column relation g(X,Y) = 0, where g(z,y)
is not a multiple of f(z,y) := y — 2% Since f is irreducible, it follows that f and
g are relatively prime, so Bezout’s Theorem implies that card CV(L) < card Vy <
deg f - degg. Examples computing CV(L) in the finite-variety case can be found in

[F4].

3. A CORE VARIETY APPROACH TO THE PURE Y = X? MOMENT PROBLEM.

Suppose M,,(f3) is positive semidefinite and (y — x%)-pure, i.e., the column depen-
dence relations in M,, are precisely the linear combinations of the column relations

(3.1) XYt = XY forr,s >0, r+s<n—d.

In this section we introduce a core matriz C associated to 3; the main result of this
section, Theorem 3.10, characterizes the existence of representing measures for 5 in
terms of the positivity properties of C' and “recursiveness” in its kernel. Using the
Core Variety Theorem we show that the union of supports of all representing measures
is the curve
[=2Zy—2%={(z,2%): 2R}
if and only if there is a positive definite completion of the core matrix. Namely, we
employ the connection between the existence of representing measures for § = g%
and the core variety of the Riesz functional L = Lg.
Setting Vo = V(M,,) = I', we seek to compute

Vi:=Z(p € ker L: p|Vy > 0),

the common zeros of the polynomials in ker L that are nonnegative on V4. To this
end, we require a concrete description of ker L.

Lemma 3.1. Suppose M,(B) satisfies column relations (3.1). Then the polynomials

fii(z,y) = 2"y’ — B for0<i<d,j>0, and 0 <i+j < 2n,
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g, y) = (y — a¥)aby’ fork,1>0, k+1<2n—d.

form a basis B for ker Lg.

Conversely, let L : Py, — R be a linear functional such that B is a basis for ker L.
Then the moment matriz M, (53) of the sequence [, such that L = Lg, satisfies column
relations (3.1).

Remark 3.2. In the statement of Lemma 3.1, M, () does not have to be (y — x%)-
pure for B to be the basis for ker Lg. There may be column relations other than the
linear combinations of (3.1), but B will still be a basis. Another choice of a basis for
ker Lz, which works for any sequence 3, is {fi;} for 0 <i,j, 0 < i+ j < 2n, where
fi; are defined as in the statement of the lemma. However, this basis tells us nothing
about the column relations of M, (3). To explicitly determine column relations from
the basis for ker Lg, in addition to a “good” choice of the basis, the rank of M, (0)
must also be given.

Proof of Lemma 3.1. Clearly, each f;; € ker Lg. For k,l > 0 with & +1 < 2n — d,
i € Po,. If k+1<n, then

Lﬂ(gkl) = <Mn(y - 'rd)a xkyl> = <Mn§_ Mnxdaxkyl> - O’
so gi € ker Lg in this case. In the remaining case, n < k +{ < 2n — d, so there
exist integers r,s,t,u > 0 such that r +¢t =k, s+u =1, r+ s = n —d, and thus
t+u=(k+10)—(r+s)<2n—d—(n—d)=n. Now

Ly(gi) = Ls((y — a®)a"y* - 2'y") = (My(y — 2¥)ary®, aty")
— <Mn$rys+1 _ Mnl.d—I—rys’ @L%
so (3.1) implies Lg(gg) = 0.
To show that B is a linearly independent set of elements of P,,, suppose {a;;} and
{br} are sequences of real scalars (indexed as in the statement of the lemma) such
that in Pa,,

(3.2) Z ag; fij + Z brigr = 0.

0<i<d, 7>0, k>0,
0<i+j<2n k+1<2n—d

Plugging y = 2 in (3.2), it follows that
(3.3) Z aij (Y = By) =0

0<i<d, j>0,
0<i+j<2n

Suppose that 0 < i, <d, j,7>0,0<i+j,i' +7 <2nand i+ dj =i+ dj’. Then
li — | =d|j — j'|, and since |i — | < d, it follows that j = j’ and ¢ = ¢’. Thus, the
z-exponents appearing in (3.3) are distinct, and since (3.3) holds for every real z, it
follows that each a;; = 0. Now (3.2) implies

5 bklxkyl(y — xd) =
k>0,
k+1<2n—d



Thus, for y # 2%, > buz®y' = 0, so by continuity we have > by’ = 0 for all
x,y € R. It now follows that each by = 0, so B is linearly independent.

Next we show that B spans ker Lg. We need to prove that card B = dim Py, — 1
(= dimker Lg). Recall that dimPy, = @2 - Note that B is the disjoint
union of the sets C and D, consisting of all f;; and g from the lemma, respectively.
Clearly, cardD = dim Py, 4q = (2n7d+1)2(2n7d+2). To compute cardC, notice that
card C = card £, where £ is the index set equal to

E:={(i,j):0<i<d, j>0,0<i+j<2n}
= {(0,1),...,(0,2n),(1,0),...,(1,2n —1),...,(d—1,0),...,(d— 1,2n — d + 1)}.

. J/ S

-~ -~

i=0 =1 i=d—1
It follows that
cardC =card€ =2n+2n+ (2n—1)+...+ (2n —d + 2)

d—1 2n+1 2n—d+1
=—1+) @n+l-i)=-1+> i— Y i

i=0 i=1 i=1
B 1+(2n+1)(2n+2) (2n—d+1)(2n—d+2)

2 2
= —1 4 card P»,, — card D,
whence
card B = cardC + card D = —1 + card P»,,,
which shows that B is a basis for ker Lg.

The converse part is clear. Namely, L determines the sequence § by 8;; = L(z'y’)
for 0 < 4,7, i +j < 2n. (Note that by fi; € ker L for 0 < i < d, j > 0, and
0 < ¢+ 7 < 2n, for these indices the f3;; are precisely the constant terms in the
respective f;;.) Recall from (2.1)-(2.2) that for g € P,

¢(X,Y)=0 <= Lg(qr'y’) =0 foralli,j>0,i+j<n.

Since g, € ker L for k,1 > 0, k+ 1 < 2n — d, it now follows that all of the relations
of (3.1), as well as their linear combinations, are column relations of M, (). O

Returning to the computation of Vi, suppose p € ker L satisfies p|I' > 0, i.e.,
p(z,z%) > 0 Vz € R. From Lemma 3.1, we may write

0<i<d, j>0, k>0,
0<i+j<2n k+l<2n—d
Since p|I' > 0 and G|I" = 0, then
(3.5) Q(x) := F(x,2%) = Z ai (9 — Bij)
0<i<d, j>0,
0<i+j<2n
satisfies Q(x) > 0 Vz € R. Since deg @ < 2nd, there exist
7= (ro,..., na) € R T=(s0,...,804) € R™!
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such that

(3.6) R(x) :=rg+ 1+ +rpqx™ and S(x):=sg+ 510+ + g2
satisfy

(3.7) Q(z) = R(x)* + S(x)*.

In the sequel (and moreso in Part 2 [FZ-]) we will require detailed information about
the coefficients of F', R and S. By comparing coefficients on both sides of (3.8), we
see that each a;;, which is the coefficient in @ of "% admits a unique expression as
a homogeneous quadratic polynomial in the r; and s;. Indeed,

(3.8) a;; = h; ;(7,5) == Z rET + SLSI, ,j>0,i1<d, 1+ j < 2n.
0<k,I<nd,
0<k-+H=i+dj

Moreover, a comparison of the constant terms in (3.7) gives

2 : 2 2
(39) — (Zijﬁij =T + So-
0<i<d, j >0,
0<i+75<2n

Note also that if 5,7 > 0,7 < d, 1 + dj < 2nd, but ¢ + 7 > 2n, then since there is no
moment f3;;, the coefficient of % in R(z)?> + S(z)? must be 0. Let F denote the
set of all such pairs (7,7). It is convenient to extend the definition of h; ; in (3.8) to
include these cases, together with the requirements

(3.10) 0= h;;(7,5) whenever (i,j) € F.

We call each such requirement an auziliary requirement. Also, we introduce an arbi-
trary constant A;; for each (4, j) € F' to denote the moment f;;, which is not present
in ™. We refer to A;; as an auziliary moment. In the sequel (particularly in Part
2 [FZ-]) we require the number and location of the A;;. To this end, note that:

F={(,75):4,7>0,i<d, i+dj <2nd, i+j>2n}

(3.11) o ' o d—2
={(,j):2m—(d—2)<j<2n—-1,2m+1—-j<i<d—1}=|]JF

j=1
where each F; is equal to

! (), otherwise.

Hence, card F = Z?:—fi = &2(‘1_2). Note that F = () for n = 1, 2.

Example 3.3. Let n = d = 3. Then @ (cf. (3.8)) is of the form

18

Qr) = Z g5 (2" — Bij) =: Z gzt € Pis.

0<i<3, j>0, =0
0<i+j<6



To illustrate (3.8), note that g4, which is equal to a;;, may be expressed as

hl,l(?a §> = ToT4 + rrs “+ roro + 31 + 470 + S0S4 + 51853 + S989 + 5351 + S450

= 2(rory + SoS4 + ri73 + S183) + r:j + sg.

Note that F = {(2,5)}, since for i = 2 and j = 5, we have i + 35 = 17 < 2nd = 18,
but 7 =17+ j > 2n = 6. Thus z'” does not appear in Q(z), so, from (3.10), using
ho5(T,5) = 1319 + S8S9, it follows that 0 = rgrg + sgsg = ¢i7. The auxiliary moment
in this case is 25, which we denote by Aj 5.

For d = 3 and arbitrary n € N, which we study in Section 4, we have F =
{(2,2n — 1)} and the auxiliary requirement (cf. (3.10)) is equal to

(3.12) 0= ho2,-1(7,8) = 2(730730-1 + S3053n-1),
with the “missing” monomial in Q(z) being 22+3(n=1) = gon—1, JAN

We next introduce the core matriz C' = Cj; in the sequel we show that positivity
properties of C' determine the core variety of 5. Our immediate goal is to use (3.8)
and the core matrix to derive an inner product expression (see (3.25)) which can be
used to characterize whether (3.9) holds. This will permit us to provide a sufficient
condition for representing measures via the core variety.

Let |-| denote the floor function. Namely, |k]| is the greatest integer not larger
than k. For 1 <i,5 <dn+1, let

The core matrix, a (dn + 1) x (dn + 1) matrix, is defined by

(3.14) C= (Cz'j)dnJrl = (5Kij,Lij)dn+1

ij=1 ij=1"

However, if B, 1,; is an auxiliary moment because (K, Li;) € F, we redefine Bk, 1.,
as

BKijaLij = AKijaLij )

where Ak, 1, is an arbitrary constant. To emphasize the dependence of C' on the
choice of the constants A;; for (7, j) € F, we sometimes denote C' by

C'= CH{Ai}ajer)
From (3.14), C is clearly a Hankel matrix.
Example 3.4. For n = d = 4 the core matrix

C= C[A3,2n727 A2,2n717 A3,2n71]
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is the following

Boo Pio P20 Bso Bor P11 P21 Ps1 Boz Bz B2z B2z Pos Bz P2s Pzz Boa
Bio B0 Bz Bor P11 P21 Bz Boz Pz Po2 P32 Loz P13 P2z P33 Poa Pua
B20 PBso Por P11 B21 Bz1 Poz P12z B2z Bs2 Bos Pz P23 Bz Poa  Pra Boa
Bso Bor Bir B2r P31 Po2 Pz B2z Bs2 Bos P13 P2z Pz Poa  Pra P2a Psa
Bor P11 P21 Bs1 Boz Biz P22 P32 Bos Bisz B2z Bz Boa Bia Paa Bza Bos
Bi1 B2 Bs1 Boz Piz2 P22 B2 Bos Pz B2z B3z Poa  Pra P2a P3a Pos  Pis
B21 P31 Poz Biz B2z B2 Pos P13 B2z Bsz Boa Pia  B2a Bza Pos P15 Bos
Bs1 Boz Biz B2z P32 Pos P13 B2z Bsz Boa Pira P2a Psa Pos L5 P2z Pss
Boz P12 P22 Bs2 Bos Biz P23 P33 Boa Pia Baa PBaa Bos  Bis P2s Bss Boe
Bi2 B2z B2 Pos P13 P23 B33 PBoa Pia Poa P34 Pos P15 Pos P35 Pos P
B2z PBs2 Poz Biz B2s Bz Poa Pia B2a Bsa Bos Pis  B2s Bz Pos  Bis Bae
Bs2 Bos Bis B2z Psz Poa Pra Baa Bsa Pos Pis P2s Pz Pos  Pie P2 A36
Bos P13 P23 Bzz Boa Pia Poa Psa PBos Bis Bas Bz Pos  Bie P2 A36 Bor
P13 B2s Bsz Boa Pira P2a Bsa Bos Pis Bas Pz Pos  Pie  P2e A36 Por  Pir
B2s B3z Poa Bia B2a Bza Pos P15 B2s Bss Bos Bie  P2s A6 Bor Pz A27
B33z Boa Pia B2a Psa Pos Bis B2s Bss Pos Pis  P2s  A36  Bor  Pir AT A37
Boa Pi1a P2a Bsa Bos Bis P2s Pz Bos Bie B2e A36  Bor  Bir  A27  A3T7T  Bos

The rows and columns of C' are indexed by the ordered set
{1, X, X% X3 Y, XY, X?Y, X3, ..., YY" XY* X?VF X3k
Yn_l,XYn_l,XZYn_17X3Yn_1,Yn}.

Note that the columns X3Y "2 X2Y"~! X3Y""! are not among the columns of M,
but rather of its extension M,, 5. So these columns are auxiliary ones in C' and contain
auxiliary moments. A

The next two results provide an alternate description of the core matrix in terms of
moment matrix extensions. Let d > 2 and let M,,.4 o be some recursively generated
extension of the positive (y — x%)-pure moment matrix M,. Let E = §(2”+2d_4) be the
extended sequence and let LE : Pa(n+a—2) — R be the corresponding Riesz functional.
Define the ordered set of monomials

iy T Ee sty s
(T VA /e T VL

and the vector space

(3.16) U :=Span {s: s € M} C Ppigs,

We next define an (nd + 1) x (nd + 1) matrix M[3,U] with rows and columns
indexed by the monomials in M in the order

(3.17) LX,... XTLy XYy, XTly,yrt xyrt o Xty yn
i.e., for 1 < k < nd+ 1, the k-th element of this order is equal to XY+ where

(3.18) I. :=(k—1)modd and Jg:=|[(k—1)/d].
The (i, j)-th entry of M[3,U] is defined to be equal to
(319) Lg(xli—’_ljyji—’—Jj) = gfi+fj,Ji+Jj'

10



More generally, for r,s € U (cf. (3.16)), with coefficient vectors 7, s relative to the
ordered basis of monomials in M (cf. (3.15)), we have

(3.20) (M[B, U 7,5) == Ls(rs).

Lemma 3.5. For 1 <i,5 <nd+ 1 the following holds:

(3.21) Ly(a" iy’ ) = B, 1.,

where K;;, L;; are as in (3.13).

Proof. We have that

(3.22) Kij+dLy=i+j—2=1L+1+dJ,+J),

where in the second equality we used i +j —2 = (i — 1) + (j — 1). We separate two

cases according to the value of the sum I; + I;:

Case a): I;+1; < d. Then (3.22) implies that K;; = I, 4+ I; and L;; = J;+ J;. Using
this in (3.19), (3.21) follows.

Case b): [; + I; > d. Then (3.22) implies that

Since My14-2 is recursively generated, we have X r+dy’s — X"Y**! in the rows and
columns, and therefore 8,145 = 5, s+1. The assumption of Case b), and (3.23) used
in (3.19), together with M, 4 o being recursively generated, therefore imply that

/BIZ'—I—I]',JZ'—FJ]' - ﬂKij-‘rd,Jq;-i-Jj - /BKij,Ji+Jj+1~ — ,ﬁKij,Lij‘
(3.23)

proving (3.21). O

Proposition 3.6. Assume the notation above. Then:
(i) If the sequence 3 has a representing measure, then M [E ,U] is positive semidef-
inite.
(ii) Let M|[B,U] be obtained from M |3, U] by replacing each (;; satistying ¢ mod d+
j+ 4] > 2n with the auxiliary moment A;;. Then

CHAi;Yager] = M[B, U].
Proof. Part (i) follows from the equality (3.20) and LB(T‘Q) = [r?du > 0, where p is a
representing measure for 5. For part (ii) first note that not all Bij with i+ j > 2n are
auxiliary moments. By recursive generation we have 3;; = 8;_q ;41 if d <i <2d —1
(observe that ¢ is at most 2d — 2) and so 3; is auxiliary only if i mod d + j + [ %] =

i—d+j+1> 2nin these cases. If i < d, then the condition i mod d+ j + 4] > 2n

reduces to ¢ + 7 > 2n. Now part (ii) follows from (3.14) and Lemma 3.5. g
11



If H = (hitj-1);,_, is any m x m Hankel matrix and t:=(t1,...,tp) € R™, then
m m 2m—1
i=1 j=1 k=1 1<i j<m,

itj=k+1

Lemma 3.7. Let 7 = (rg,...,Tpq) € RS = (s0,...,80q) € R satisfy (3.10).
Fori,j >0, withi <d and 0 <i+ j < 2n, define a;; by (3.8). Then

(3.25) (CT, )+ (C5,5) =0 <= (3.9) holds.
Proof. Let Iy, Ji be as in (3.18). Further, let

By — { Blk,Jka if I, + J, < 2n,

b A g, i I+ Jp > 2n.
We now apply (3.24) with m = nd+1, H = C with hy, as in (3.26), and with t, = 7,4
orty = sp-1 (1 <p <nd+1):

(Cr,7) +(C5,5) =

(3.26)

2nd+1
= E , (hk' E (Tpfqufl“‘spflsqfl))
k=1 1<p,g<nd+1,
ptg=k+1
=72+ 55+ Bij - (rprq + 5pSq) |+
=To T 5o ij pTq T SpSq
0<i<d, j>0, 0<p,g<nd,
0<i+j<2n 0<p+g=i-+dj
+ E : <Aij' § o (rprg Spsq))
0<i<d, >0, 0<p,q<nd,
i+j>2m 0<p-+q=itdj
2 | 2
=1yt so+ Z aij Bij
0<i<d, j>0,
0<i+j<2n

where we used the assumption of the lemma in the last equality. Now the equivalence
of the lemma easily follows. U

Remark 3.8. It is important for the sequel to note that the implication (<) of
Lemma 3.7 may be used in order to construct elements p of ker L satisfying p|I" > 0,
so that CV(L) C Z(p|T'). For suppose 7, 5 € R"*! satisfy h, ;(7,5) = 0 for every
(i,j) € F and (CT,7) + (C5,5) = 0. Now define a;; = hy(7,5) (i,5 > 0, i < d,
0 <i+j <2n). Then p:= 3 a;;fi; € ker L satisfies p(z,2?) = R(x)* + S(x)?, where
R(z) == 1o+ 71w+ + rpgr® and S(z) := sg+ 8120 + -+ + 8,929, Now we have
CV(L) C {(z,2%) : R(x) = S(z) = 0} and card CV(L) < min{deg R, deg S}.

Let A = {A;j}uj)er with A;; € R, We say that the core matrix C[A] is re-

v) € ker C[4], it follows that

cursively generated if for every v € R™ satisfying (0

12



<2> € ker C[A4].

Remark 3.9. Note that the definition above is equivalent to the definition of a “re-
cursively generated” Hankel matrix given in [CF1]. However, it does not encompass
the notion of recursiveness for a general multivariable moment matrix given in item
iv) preceding Theorem 2.1.

Let Opx; € R¥ stand for a zero column vector. By Remark 3.9 and properties of
recursively generated Hankel matrices [CF1], for every singular, recursively generated
C[A] there exists 7 < nd + 1 and a vector v := (v;)_; € R" with v, # 0, such that

0
_ v O(nd+1r)><1> }
ker C[A] = Span{ (O(nd+1r)><1> : v e ( ; .

O(ndfr) x1

If we normalize v so that v, = 1, then v is uniquely determined. We call this unique
v the generating kernel vector of C[A].

Because y — 2% is irreducible, the core variety is either the entire curve or a finite
set of points in the curve. The following theorem characterizes the existence of a
representing measure for 5 in terms of the existence of auxiliary moments such that
the core matrix is positive and recursively generated. It also characterizes the type
of core variety in terms of positive completions of the core matrix.

Theorem 3.10. Let 3 = %™ be a given sequence such that M, = M, (B) is positive
semidefinite and (y — x%)-pure. Let I := Z(y — 2%). The following statements are
equivalent:

(i) B admits a representing measure (necessarily supported in T").

(i1) B admits a finitely atomic representing measure (necessarily supported in T").

i1i) There exist auxiliary moments A = {A;;}iner, such that the core matrix
35 (i.3)

C[A] = Cl{ A} jyer] is positive semidefinite and recursively generated.

Moreover, if B has a representing measure, the core variety coincides with I' if and
only if there is some choice of auziliary moments A such that C[A] is positive definite.
Further, the following are equivalent:

(iv) CV(L) is a nonempty finite subset of T
(v) B has a unique representing measure, which is necessarily finitely atomic.

(vi) There is a unique positive semidefinite, recursively generated completion C[A],
which 1s necessarily singular.

Proof. The equivalence (i) < (ii) follows from Richter’s Theorem [Ric] (or by Theo-
rem 2.5).
Next we establish the implication (ii) = (4ii). Suppose M, (3) is (y — x%)-pure and
that 8 has a finitely atomic representing measure y supported in I'. Thus, p is of the
13



form
(3.27) n = Z ak5($kayk)’
k=1

where m > 0, each a;, > 0, and y;, = x{ for each k. Since yu has moments of all orders,
we may consider the moment matrix M, ;[u], containing p-moments up to degree

2n + 2t, where t = (%-‘ Here, [-] denotes the ceiling function, i.e., the smallest

integer greater than or equal to its argument. Using the moment data §<2<n+t>> from
Mn+t[ﬂ’]a i-e-a Bij = fxzy]dluv (Z7j Z 07 Z+] S 2(” + t))7 let

(328) T = Ep mod d,| & | (0 <p< 2nd)
Since M, [u] = M, (5), we have
p

dJ < 2n.

Y = Bpmodaz) f0<p<2nd and pmodd+ [

We next show that
(3.29) = gy,
k=1

is a representing measure for v := {7, }o<p<2na. Indeed, for 0 < p < 2nd we have

p pmod d+d| 5] pmodd |5l % _
>l =" ar) = @™ Y = By e d) = Y-

It now follows that the moment matrix for v, which is the Hankel matrix H(vy) =
(Vit+j)o<ij<nd, 1S positive semidefinite and recursively generated (cf. Section 2). If,
in the core matrix C[A], for each (i,j) € F we set A;; = vivqj = Bij, then C[A]
coincides with H (), and is thus positive semidefinite and recursively generated. This
is precisely (#i1).

Next we establish the implication (iii) = (i7). Suppose there exist auxiliary mo-
ments A such that C[A] is positive semidefinite and recursively generated. We will
prove that § has a finitely atomic representing measure. Define a univariate sequence
v = {}o<p<zna as in (3.28) above, where §;; is either 3;; or A;;. Since the Hankel
matrix H () = (Vi1 )o<i,j<nd coincides with C[A] (by definition of ), it follows that
it is positive semidefinite and recursively generated. By [CF1, Theorem 3.9], v has a

finitely atomic representing measure g := Zakéxk. But then p = Zaké(%yk) is a

k=1 k=1
representing measure for 5. Indeed, for 0 < i,j < 2n,i+ 7 < 2n we have

o g
Y aiyh =Y aty ¥ = Yita = Bimodagii) = Bigs
where in the last equality we used that 3,4 = B, 41 for 0 < r, s such that r+s+d <
2n.
It remains to address the core variety. First assume that C[A] is positive definite
for some choice of auxiliary moments A. Concerning the core variety of L = Lg, we

have V; = V(M,,) = I', and we now consider V; := Z(p € ker L: p|Vj > 0). For
14



p € ker L with p|Vy > 0, we have p = F + G as in (3.4). The discussion following
the proof of Lemma 3.1 shows that Q(z) := F(z,2?) satisfies Q(z) = R(z)? + S(x)?,
where 7 and § satisfy the conditions of (3.8), (3.9) and (3.10). Lemma 3.7 now shows
that (C7,7) + (CSs,8) = 0, and since C is positive definite, it follows that 7 =35 = 0.
Thus (3.8) implies that each a;; = 0, so F' = 0. Since Z(G|I') = I', we now have
Z(pll') = I'. It follows that V; = V5 = I', so CV(L) = T" and the Core Variety
Theorem implies that § has finitely atomic representing measures whose union of
supports is I".

Assume next that CV(L) = I We need to prove that there exists a choice of
auxiliary moments A such that C[A] is positive definite. We first show that if there
exist distinct completions C[A;] and C[A;] that are positive semidefinite, recursively
generated and singular, then there is a positive definite completion C[A].

Claim. C[%Al + %Ag} is positive definite.
Proof. We have

Cl3A1 + 342] = 3C[A] + 5C[As].
Since all three matrices are positive semidefinite, it follows that
(3.30) ker(C[2A; + 545]) = ker(C[A;]) Nker(C[A,)).

Assume that C[%Al + %AQ} is not positive definite. Let v € R", » < nd + 1, be its
generating kernel vector. By (3.30), the vector

U= (O(nd-l—l—r)xl)
(%

lies in ker(C[A;]) Nker(C[Asz]). Now examine the last column of each of the matrices
ClA;], C[A], C[%Al -+ %Ag}, proceeding from the top to the bottom row. At the
first occurrence of an auxiliary moment, the corresponding entry must be identical
in all three matrices, because u is a common kernel vector and the other entries in
the row of the auxiliray moment coincide in all three matrices. Proceeding to the
second auxiliary moment, we again conclude (using the Hankel structures and that
the first auxiliary moments already coincide) that this entry must also agree in all
three matrices. Continuing inductively, we find that all auxiliary moments coincide,
i.e., A; = A,. This contradicts the assumption A; # A,, completing the proof of the
claim.

Now let p; be a finitely atomic representing measure for 5 as given by (3.27). As
in the proof of (i7) = (iii), we associate to p; the univariate sequence 7, with Hankel
matrix H(v;) and representing measure iy as in (3.29), and use these to define the
positive semidefinite and recursively generated completion C[A;] := H (7). If C[A4] is
positive definite, we are done, so we may assume C[A;] is singular, in which case v, has
a unique representing measure by [CF1, Theorem 3.10], namely ;. Since CV(L) =T,
there exists a finitely atomic representing measure po for 5 that is distinct from p;.
As above, we may associate to s its univariate sequence 7, with Hankel matrix H(7s)

and representing measure fiz, and use these to define the positive semidefinite and
15



recursively generated completion C[As] := H(vs). If C[Ay] is positive definite, we
are done, so we may assume C[A,] is singular. Now, if C[A4;] and C[As] are distinct
we may apply the Claim to conclude that there is a positive definite completion, as
desired. So we may assume that C[As] = C[A;], whence H(7y2) = H(71). Since H ()
has the unique representing measure fi; and fiy is a representing measure for H(7,),
we have 5 = py. It follows readily that pus = pq, a contradiction. Thus C[A;] and

C'[As] are distinct, which implies that there is a positive definite completion C'[A].
The equivalences among (iv), (v), (vi) follow directly from the reasoning above.
O

Remark 3.11. Note that if there is a positive definite completion C[A], there may
also be positive semidefinite, recursively generated but singular completions. Thus,
for d = 3, the set of A for which C[A] is positive definite forms an open interval,
and at the interval endpoints the completions are positive semidefinite, recursively
generated, but singular.

The rest of this paper and its sequel [FZ-| are primarily devoted to developing
concrete conditions for the existence or nonexistence of auxiliary moments satisfying
condition (iii) of Theorem 3.10. We conclude this section with examples which illus-
trate cases where the core variety is either the entire curve y = % or is empty. These
examples suggest the following question.

Question 3.12. Let 3 = B3 be such that M, (B) is positive semidefinite and (y—=z?)-
pure. Is it possible for B to have a unique representing measure (cf. conditions (iv)-
(vi) of Theorem 3.10)?

In Example 3.13 (just below) we show that the answer is negative for d = 1 and
d = 2. In Section 4 we prove a negative answer for d = 3. This provides a new
proof of Theorem 2.2. Nevertheless, for d = 4 we can establish a positive answer.
The example illustrating this is beyond the scope of this note, as it requires special
techniques, but will appear in [FZ-].

In the sequel, for M,, = 0 and (y — 2¢)-pure, we denote by ]\ZL the central compres-
sion of M, obtained by deleting all rows and columns X4*PY? (p,q > 0, p+q < n—d).

d(2n—d+3
2

The number of rows and columns in M\n is thus dim P,, —dimP,,_4 = ) Since

M, is positive and (y — 2¢)-pure, it follows immediately that ]Ti\n is positive definite
and
d(2n —d+ 3)

5 .

Example 3.13. i) For d = 1, we have C = M, = (60,i+j_2>1§i7j§n+1 > 0, so the
existence of representing measures whose union of supports is the line y = x now fol-
lows from Theorem 3.10. Alternately, using flat extensions, the existence of measures

in this case follows from the solution to the truncated moment problem on a line in
[CF3].

(3.31) rank M, = rank M, =
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ii) For d = 2, the core matrix C for M, is (2n + 1) x (2n + 1), with
(3.32) Cij = 6(i+j—2) mod 2, “H=2 |

In ]T/[\n, column j is the truncation to ]\//[\n of column XU-Dmed2ylG-1/2] in pf,
Likewise, row i of M, is the truncation to M, of row X (-1 med2yG=1/2} ip pp
Thus, using the structure of moment matries, we have

(3.33) Mij = B(i—1) mod 2+(j—1) mod 2, (i—1)/2)+(i—1)/2) -

By Proposition 3.6 (or using calculations based on (3.32) and (3.33)), we have C' =
]\/471 > 0. Since (' is positive definite, Theorem 3.10 now implies that [ has repre-
senting measures whose union of supports is the parabola y = 22. The existence

of representing measures also follows from the solution to the Parabolic Truncated
Moment Problem in [CF4], based on flat extensions. A

Remark 3.14. Note that for d > 3, C' = C[{A;;} i )ecr] does not coincide with M,,.
However, its central compression C', obtained by deleting row k& and column k from C
in those cases where row k ends with an auxiliary moment, is orthogonally equivalent

to JT@, and is therefore positive definite. The details of this will appear in [FZ-].

Here we only explain the case d = 3, since this will be needed in the next section
to provide a core variety-based solution to the (y — z3)-pure TMP. The core matrix
C for M, is (3n+ 1) x (3n + 1) with

(3.34) Cij = 5(z‘+j—2) mod 3, FH2=2 |-

Let C be a 3n x 3n principal submatrix of C' /o\btained by deleting nd-th row and
column. Recall that the rows and columns of M,,, which is also of size 3n x 3n, are
labelled in degree-lexicographic order,

LX,Y, X% XY, Y2 X%, XY?2 Y3, . .. XY 2 Xyrtyn
(there is no row or column X'Y7 with i > 3). Let us permute these to the order

(3.35) LX, X%Y, XY, X?Y, Y2 XY? X?y? . y» !l Xy y"
Then there exists a permutation matrix U of size 3n x 3n such that U TMnU has rows
and columns indexed by (3.35). Note that

(336) (UTMnU>ZJ = ﬁ(z‘—l) mod 3+(5—1) mod 3,[(:—1)/3]+[(j—1)/3]

= Blitj—2) mod 3,|HHL=2 )

where we used Lemma 3.5 in the second equality. By (3.34) and (3.36), C is orthog-
onally equivalent to M,,.

We conclude this section with some examples that illustrate Theorem 3.10 for a
positive semidefinite (y —z¢)-pure M, (/). Let C denote the compression of C' = C [A]
obtained by deleting each row and each column of C' that ends in some auxiliary
moment A;;. In the sequel, for 1 <k < dn + 1, C} denotes the compression of C' to

the first k rows and columns.
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Example 3.15. Consider the moment matrix

1 0 0 1 2 5 0 0 0 0
0 1 2 0 O 0 2 5 14 42
0 2 5 0 O 0 5 14 42 132
1 0 0 2 5 14 0 0 0 0
2 0 0 5 14 42 0 0 0 0
(337) M?’(ﬁ) = 5 0 0 14 42 132 O 0 0 0
0 2 5 0 0 0 5 14 42 132
0 5 14 0 O 0 14 42 132 429
0 14 42 0 O 0 42 132 429 s
0 42 132 0 O 0 132 429 s t

A calculation with nested determinants shows that M;z is positive semidefinite and
(y — z%)-pure if and only if s = 815 and t = [y satisfy

(3.38) t > s* — 28445 4 2026881.

The core matrix is

1 0 1 0 2 0 5 0 14 0
01 0 2 0 5 0 14 0 42
1 0 2 0 5 0 14 0 42 0
0 2 0 5 0 14 0 42 0 132
2 0 5 0 14 0 42 0 132 0
(3.39) C[A] = 0 5 0 14 0 42 0 132 0 429
5 0 14 0 42 0 132 0 429 O
0 14 0 42 0 132 0 429 0 s
14 0 42 0 132 0 429 0 s A
0 42 0 132 0 429 0 s A ¢

i) Let s = 1430 and ¢t = 4862, so (3.38) is satisfied. Calculations with nested determi-
nants show that Cy > 0, and therefore a calculation of det C[A] shows that C[A] > 0
if and only if —1 < A < 1. Theorem 3.10 now shows that [ has representing measures
and that CV(Lg) is the curve y = 2.

ii) Consider next s = 1422, t = 4798. Condition (3.38) is satisfied and nested deter-

minants show that C' = 0. In particular, Cs > 0, but we have det Cy = —7, so for no
value of A will C[A] be positive semidefinite. By Theorem 3.10, 5 has no measure.

iii) Now let s = 1429, ¢t = 4847. Then (3.38) holds, and we have Cg > 0; however,
det Cy = 0, so there exists z € R? such that Coz = 0. Now 7 := (2%,0) = (rg,...,73,0)
satisfies (C7,7) = 0 and, with § = 0, also satisfies the consistency requirement
rsrg + sgs9 = 0 (cf. (3.12)). Remark 3.8 now implies that there exists p € ker Lg such
that Q(z) := p(x,23) = r(x)?. Therefore, card CV(L) < degr < 8 < 9 = rank M3, so
CV(Lg) = 0 by Corollary 2.4, and thus / has no measure. A

In next section we will prove that the method of the preceding example applies to
any positive semidefinite M,,(3) that is (y — 2®)-pure. We may therefore formulate
one solution to the (y — 2?®)-pure truncated moment problem as follows (see Corollary
4.3 and its proof).

Theorem 3.16. Suppose M,(B3) is positive semidefinite and (y — x3)-pure. Then (3
has a representing measure if and only if det Cs,, > 0, in which case CV(Lg) is the
curve y = x°.
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Example 3.17. Consider next the sequence 5, with M; given by

1 0o 2 1 0 14 0 5 0 132
o 1 0 0 5 0 20 42 0
2 0 14 5 0 132 0 42 0 1430
1 0o 5 2 0 42 0 14 0 429
0O 5 0 0 42 0 14 0 429 0
14 0 132 42 0 1430 0 429 0 16796
0 2 0 0 14 0 5 0 132 0
5 0 42 14 0 429 0 132 0 4862
0 42 0 0 429 0 132 0 482 0
132 0 1430 429 0 16796 0 4862 0 208012
and the degree 7 and degree 8 blocks given by
0 42 0 1430 0
42 0 1430 0 58786
0 1430 0 58786 0
1430 0 58786 0 2674440
14 0 429 0 16796
0 429 0 16796 0
429 0 16796 0 742900
0 16796 0 742900 0
16796 0 742900 0 353576708

The core matrix is a Hankel matrix (see Example 3.4) with anti-diagonals completely
determined in the first row by

Boo =1, Bo1 = 2, Bo2 = 14, Bosz =132,
B1o =0, B11 =0, P12 =0, B13 =0,
B20 = 1, B21 =5, Bog = 42, Boz = 429,
Bso =0, Bs1 =0, B2 =0, B3z =0,
and the last column by
Boa = 1430, Bos = 16796 Boe = 208012, Bor = 2674440,
B14 =0, B1s =0, Bie =0, Bi7 =0,
B24 = 4862, B25 = 58786, B26 = 742900, Bo7 = Ao,
B34 =0, Bss =0, Bs6 = Ase, Bar = Asz

Bos = 353576708.

It is straightforward to verify that M), is positive semidefinite and (y—a*)-pure. Using
nested determinants, it is easy to show that C4 > 0. A further calculation shows that
Cis = 0if and only if —1 < Az < 1. Setting Azg = 0, we see that Cig > 0 if and only
if Ay; = 9694844+ f for f > 0. Now det C' = f(318219068 — 28 f — f?) — A3., so there
exists Agy such that C[A] > 0 if and only if 0 < f < 961/34529 — 14 (~ 17824.7). In
this case, since C[A] = 0, the core variety coincides with the curve y = z%.

Example 3.18. Consider next the sequence 3%, defined as in Example 3.17, except
for the following 5 differences:

Bas = 0, Bos = 3454708516 Bog = 3448894372,
Bos = 2640503382173370698906776695725.

It is straightforward to verify that M, is positive semidefinite and (y — z*)-pure.

Moreover, C[A] can never be positive semidefinite, since fa5 = 0 is its 12th diagonal
19
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element, but there are nonzero entries in the 12th row and column. By the converse
in Theorem 3.10, 3® does not admit a representing measure.

4. THE (y — 2*)-PURE TRUNCATED MOMENT PROBLEM.

In this section we apply the previous results to the moment problem for g = 32"
where M, is positive semidefinite and (y — 2%)-pure. In particular, Theorem 4.1
provides a positive answer to Question 3.12 for d = 3. Let I' stand for the curve
y = 3. Note that in the core matrix C, since Y = X% with d = 3, there is exactly
1 auxiliary moment, namely /33 9,—1, which we denote by A = As s, (cf. Example

3.3). Let C be the principal submatrix of C' obtained by deleting row and column

nd. Recall from Remark 3.14 that C' = 0. Let H = H [A] denote the matrix obtained
from C' = C[A] by interchanging rows and columns nd and nd + 1 (the last 2 rows
and columns), so that H is orthogonally equivalent to C, i.e.,

(4.1) H=PTCp,

where P is a permutation matrix defined on the standard orthonormal basis ey, . . ., €411
for R+ by
e, 1<nd-—1,
Pe; =< €nar1, 1 =nd,
end, ©=mnd+ 1.

We may thus represent H as
(4.2) H= ( ¢ v )

with 6 > 0 and where v is of the form

(4.3) UZ(Z).

(Here h € R™~1 and v' denotes the row vector transpose of v.) As in Section 3, for
1 <j<dn+1,let C; denote the compression of C' to the first j rows and columns.
Write

~ Cdn—l z )
(44) C_( 24 Boon/’

, &M

for some k € R™=2, We now have

Odn—l z h
(45) H[A] = Zt 5072,1 A
ht A 517271—1
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Since C = 0, O exists and has the form

(4.6) C' = ( € w ) ,

w €

where (see e.g., [F2, p. 3144])
1

p— > 07
‘ 50,271 - ZtC(;nl_lz
(4.7) W= —eCl 2 € R
C= Cczml_l(l + EZZth_nl_l) c R(@n—1)x(dn—1)

Now

- Ch+ Aw

1 —

¢ U_(wth—l—A€>’

and we set
th
<48) A = AO = _w_’
€

so that

A _ w'h
(4.9) -1y — ( Ch — wihy, > |

0
With this value of A in €, and thus also in v, let
~ thit
¢ = Utc_lfy — htCh . w w
€
o = (W'Cgaih + en' Oy 122" Cy k) — €' Cg WGy 2
- htcd_nl—lh’a

where we used (4.7) in the second equality.

To emphasize the dependence of ¢ on (3, we sometimes denote ¢ as ¢[5]. In Example
4.5 (below) we will use the fact that ¢ is independent of £ 2,1 and Spa2,. To see
this, note that 12,1 is an element of vectors z and z*, so (4.5) shows that Cg,—;
and h are independent of (19,1 and fya,. It now follows from (4.10) that ¢ is

independent of 39,1 and By 2, as well. Thus, if 5(2") has the property that M, (5)
is positive semidefinite and (y — 2*)-pure, and if 3;; = §;; for all (4,7) # (1,2n — 1)

and (i, ) # (0,2n), then ¢[5] = ¢[5]. Note that ¢ would depend on S 5,1 and B2,

if Ap in (4.8) was chosen differently. This is due to the fact that the last row of Cv
in (4.9) would be non-zero.

Theorem 4.1. Suppose M, is positive semidefinite and (y — x%)-pure. f = B2
has a representing measure if and only if 19,1 > ¢ (equivalently, C[Ao] = 0). In
this case, CV(Lg) = I', which coincides with the union of supports of all representing

measures (respectively, all finitely atomic representing measures).
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Proof. Recall from Remark 3.14 that C is positive definite. Consider first the case
B12n—1 > ¢. It follows from (4.2) and [A, Theorem 1] that H is positive definite. Since
C' is orthogonally equivalent to H, we see that C' is positive definite, so the existence
of representing measures and the conclusion concerning supports follow from Theorem
3.10.

We next consider the case when [;2,-1 = ¢, so that by [A, Theorem 1], H is
positive semidefinite, but singular. Since C' > 0, it follows from (4.2) and (4.9) that
ker H contains the vector

~ Ch — 2he,
~ [ CM ) €
(4.11)  u:= ( 4

= 0 = (7“0, 15«5 Tdn—2, Udn—1, udn)ta
—1
where ug,_1 = 0 and ug, = —1. From the orthogonal equivalence between H and

C, based on the interchange of rows and columns nd and nd + 1, it follows that C' is
positive semidefinite and that ker C' contains the vector

(4.12) T=(T0, 1y Tdn-2, Tdn-1, Tdn)

where

(4.13) Tan-1 = Ugn = —1 and 7y, = Ugn—1 = 0.

Let $ = (S0,..., San)" denote the 0 vector, so that (C7,7) + (CS,5) = 0 and the

auxiliary requirement of (3.10), 7gn—17dn + San—15an = 0, is satisfied. Now, following
Remark 3.8, define a;; = h(7,5) (0 <3 < 2,5 >0,0 < i+ j < 2n). Then
p:= > a;;fi; is an element of ker Lz which satisfies Q(z) := p(z,2*) = R(x)?, where
R(x) =1+ + -+ rgn_12™ " + rga®.
Since 14, = 0, R(z) has at most dn — 1 real zeros, so p has at most dn — 1 zeros
in the curve y = 2°. Now p € ker Ly satisfies p|I' > 0 and card Z(p|l') < dn —1 <
w = rank M, (since d = 3), so Corollary 2.4 implies that /5 has no representing
measure.

To complete the proof, we consider the case when /19,1 < ¢. From (4.2) and
(4.11) we have

o~ Odnxl > < *dnx1 )
H _ N
(Hu, ) << V'C = Bragr /] —1 )
= Bi2n-1 — v'C
= Bron—1— ¢ < 0.
Recall that H = PTCP (cf. (4.1)). Setting 7 := Pu, we have
(CT, Ty = (Hu,u) <0,
where 7 is as in (4.12), (4.13). Let € = (¢—B1.20_1)"/2. Since <661, e1) = Poo = 1, then
the constant polynomial S(z) = ¢, with coefficient vector s = (¢,0,...,0)", satisfies
Sin—1San = 0, and we have (C7, 7) + (Cs, 5) = 0. So 7 and s together satisfy the

auxiliary requirement of (3.10). Constructing p(z,y) as in Remark 3.8, we have that
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p € ker L. Now, p(z,z%) = R(z)?+ S(z)? > €% > 0. Since p is strictly positive on T,
then CV(Lg) = (), and therefore /5 has no representing measure. O

Remark 4.2. In Theorem 4.1, an alternative proof of the case 32,1 < ¢ can
be based on Theorem 3.10, as follows. Let Ay be as in (4.8). If B12,-1 < ¢[Ao],
then (4.10) implies that £ 2,1 < hth’nl_lh. It therefore follows from (4.5) that for

every A € R, the matrix < CC;;;_I 3 iln_l > is a principal submatrix of H[A] that is

not positive semidefinite. Thus, for every A, H[A], and hence C[A], is not positive
semidefinite, so Theorem 3.10 implies that 8 has no representing measure.

Corollary 4.3. Suppose M, () is positive semidefinite and (y — x3)-pure. Then (3
has a representing measure if and only if det Cy, > 0, in which case CV(Lg) is the
curve y = x°.

Proof. Note that Cy, is equal to (C‘ZTI 3 h ) (cf. (4.5)). From C = 0 it follows
1,2n—1

that Cg,—1 > 0 (cf. (4.4)). Using [A], we have that

Cdn =0 <— 51,27171 > htC;rll_lh < ﬁLQn,l > ¢
(4.10)

Now the statement of the corollary follows from Theorem 4.1. O

In [F2] a rather lengthy construction with moment matrices is used to derive a
certain rational expression in the moment data, denoted by ¢ in [F2], such that 3
has a representing measure if and only if 5 2,—1 > %, in which case M,, admits a flat
extension M, 1. In view of Theorem 4.1, it is clear that ) = ¢ (although this is not
at all apparent from the definitions of these expressions).

Corollary 4.4. Suppose M,(f3) is positive semidefinite and (y — 2*)-pure. The fol-
lowing are equivalent:
(i) B has a representing measure;

(i1) B has a finitely atomic measure;

(11i) M,(B) has a flat extension M, 1,

(iv) CV(Ls) £ 0;

(v) With A defined by (4.8) and ¢ defined by (4.10), By on—1 > ¢;

(vi) CV(Lg) =T.

Proof. The implications (i) = (iv) = (it) = (i) follow from the Core Variety
Theorem and its proof. The equivalence of (i) and (7i7) is established in [F2], and the
equivalence of (i), (v), and (vi) is Theorem 4.1. d

In [EF] the authors used the results of [F1] to exhibit a family of positive (y — z3)-
pure moment matrices Ms(3) such that 3© has no representing measure but the
Riesz functional is positive (cf. Section 2). Here, positivity of the functional can-

not be derived from positivity of Mz using an argument such as L(p) = L(>_p?) =
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> (Msp;, p;) > 0, because, by the theorem of Hilbert, not every nonnegative polyno-
mial p(x,y) of degree 6 can be represented as a sum of squares. Using Theorem 4.1
we can extend this example to a family of (y — x3)-pure matrices M, for n > 3 as
follows.

Example 4.5. Suppose M = M, () is positive semidefinite and (y — z3)-pure. Let
¢ = ¢[B] be as in (4.10) and suppose ¢ = [y 2,-1, so that 5 has no representing

measure by Theorem 4.1. We claim that the Riesz functional Lg is positive. Let M
denote the central compression of M to rOwS and ci)lumns that are of the form X iyJ
with 0 < ¢ < 3, so that rank M = rank M and M > 0. Now let § be defined to
coincide with 3, except possibly in the f3; 2,1 position. It follows from the structure

of positive matrices that there exists 6 > 0 such that if ]517%_1 — Bran—1] < ¢, then
]\//E(E) is positive definite. The structure of positive (y — 2%)-pure moment matrices
now implies that Mn(g) is positive semidefinite and (y — z®)-pure. Now consider the
sequence ™ which coincides with 3 except that @{?;L_l = B12n—1 + 1/m. It follows

that there exists mg > 0 such that if m > mg, then MI™ = M, (B") is positive
semidefinite and (y — x3)-pure. By the remarks preceding Theorem 4.1, we have

5{2},1_1 = Bron_1 + 1/m > Bran1 = ¢[M] = ¢[M,(B")], so Theorem 4.1 implies
that ™ has a representing measure. Thus, Lgim is positive, and since the cone of
sequences with positive functionals is closed, it follows that Lg is positive. JAN

To exhibit M, (f) as in Example 4.5, we may start with any positive semidefinite
(y—a3)-pure M, (8'). Define 3 so that it coincides with 3’ except that 81 2,1 = ¢[3'].
If necessary, increase (y2, to insure positivity of M, (5). Then M, (5) is positive
semidefinite, (y — z3)-pure, and B2, 1 = ¢[8'] = ¢[f] by the remarks preceding
Theorem 4.1.
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