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Abstract. Let β ≡ β(2n) be a real bivariate sequence of degree 2n. We study the
existence of representing measures for β supported in the planar curve y = xd in
the case where the associated moment matrix Mn(β) is (y − xd)-pure. In Section
2 we provide a general necessary and sufficient condition for representing measures
in terms of positive semidefiniteness and recursive generation of the associated core
matrix. In particular, if the core matrix is positive definite, then the core variety
for β, i.e., the union of supports of all finitely atomic representing measures, is the
whole curve y = xd. In later sections, we provide various other concrete necessary
or sufficient conditions for measures. For d = 3, we provide a core-variety proof of
the result of [F2] characterizing the existence of representing measures. For d ≥ 4
we develop a sufficient condition for the core variety to be finite or empty. For
d = 4, we adapt the technique of [Z1], involving positive completions of partially-
defined Hankel matrices, to provide necessary and sufficient numerical conditions
for representing measures. We conclude with an example showing that in the d = 4
case, the core variety can be finite, with a unique representing measure, which
cannot occur for d < 4.

1. Introduction.

Given a bivariate sequence of degree 2n,

β ≡ β(2n) = {βij : i, j ≥ 0, i+ j ≤ 2n}, β00 = 1,

and a closed set K ⊆ R2, the Truncated K-Moment Problem (TKMP) seeks condi-
tions on β such that there exists a positive Borel measure µ on R2, with suppµ ⊆ K,
satisfying

βij =

∫
R2

xiyjdµ(x, y) (i, j ≥ 0, i+ j ≤ 2n);

µ is a K-representing measure for β. A comprehensive reference for all aspects of the
Moment Problem is the recent treatise of K. Schmüdgen [Sch]. Apart from solutions
based on semidefinite programming and optimization, several different abstract solu-
tions to TKMP appear in the literature, including the Flat Extension Theorem [CF5],
the Truncated Riesz-Haviland Theorem [CF7], the idempotent approach of [Vas], and,
more recently, the Core Variety Theorem [BF]. By a concrete solution to TKMP we
mean an implementation of one of the abstract theories involving only basic linear
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algebra and solving algebraic equations (or estimating the size of the solution set).
The ease with which any of the abstract results can be applied to solve particular
moment problems in concrete terms varies considerably depending on the problem,
with most concrete results attributable to the Flat Extension Theorem and very few
to the other approaches. In this note we show how the Core Variety Theorem (Theo-
rem 1.5 below) can indeed be applied to certain concrete moment problems, namely
when K is the planar curve y = xd (d ≥ 1).

In the classical literature TKMP has been solved concretely in terms of positive
Hankel matrices when K is the real line, the half-line [0,+∞), or the closed interval
[a, b] (cf. [ST, CF1]). For the case when K is a planar curve p(x, y) = 0 with deg p ≤
2, TKMP has been solved concretely in terms of moment matrix extensions (see
Theorem 1.1 below, [CF3, CF4, CF6, F3]). In [F2] moment matrix extensions are
used to concretely solve the truncated moment problem for y = x3 and to solve (in
a less concrete sense) truncated moment problems on curves of the form y = g(x)
and yg(x) = 1 (g ∈ R[x]). More recently, several authors have intensively studied
TKMP on certain planar curves of higher degree, using moment matrix extensions
and a “reduction of degree” technique to improve and extend the results of [F2] (cf.
[Z1, Z2, Z3, Z4, YZ]). We also note that for closed planar sets K that are merely
semi-algebraic, such as the closed unit disk, very little is known concerning concrete
solutions to TKMP (cf. [CF2]).

The results cited just above do not provide concrete solutions to TKMP for
planar curves of the form y = xd (d ≥ 4). The aim of this note is to illustrate
how the core variety, described in Theorem 1.5, can be used to study TKMP for
K = Γ, the planar curve y = xd (d ≥ 1), when the associated moment matrix
Mn(β) is (y − xd)-pure, i.e., the column dependence relations in Mn(β) are precisely
those that can be derived from the column relation Y = Xd by recursiveness and
linearity (see just below for terminology and notation). In Sections 2 and 3 we
develop a core variety framework for studying TKMP in the (y−xd)-pure case, and in
Theorem 2.13 we present general necessary and sufficient conditions for Γ-representing
measures in terms of positivity and recursiveness properties of the associated core
matrix . In particular, if the core matrix is positive definite, then the core variety
is the entire curve y = xd. In Section 4 (Theorem 4.1) we apply Theorem 2.13 and
core variety methods to present necessary and sufficient conditions for representing
measures in the (y − x3)–pure truncated moment problem. An equivalent version
of this result was first proved in [F2] (see Theorem 1.2 below). The proof in [F2]
entailed a lengthy construction involving flat extensions; the new core variety proof
is short and more transparent. In Section 5 (Theorem 5.4), for the (y − xd)–pure
truncated moment problem with d ≥ 4, we prove a concrete sufficient condition for the
core variety to be finite, and also a concrete sufficient condition for the nonexistence
of representing measures. In Section 6 we present concrete necessary and sufficient
conditions for representing measures in the (y−x4)–pure truncated moment problem.
The proof of Theorem 6.3 combines core variety results with an approach adapted
from [Z1] involving positive completions of partially defined Hankel matrices. Finally,
we demonstrate by an example that in the (y − x4)-pure case the core variety can
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be finite, with a unique representing measure, something that cannot occur in the
(y − xd)-pure truncated moment problem for d < 4.

Let P := R[x, y] and let Pk := {q ∈ P : deg q ≤ k}. Given β ≡ β(2n), define the
Riesz functional Lβ : P2n −→ R by∑

aijx
iyj 7−→

∑
aijβij.

For a sequence β ≡ β(2n) with Riesz functional Lβ, the moment matrix Mn has rows
and columns indexed by the monomials in Pn in degree-lexicographic order, i.e., 1,
X, Y , X2, XY , Y 2,. . . , Xn, . . ., Y n. In this case, the element of Mn in row X iY j,
column XkY l is βi+k,j+l. More generally, for r, s ∈ Pn, with coefficient vectors r̂, ŝ
relative to the basis of monomials, we have

⟨Mnr̂, ŝ⟩ := Lβ(rs).

In the sequel, for q ∈ Pn, q =
∑
aijx

iyj, we set q(X, Y ) :=
∑
aijX

iY j (=Mnq̂).

If β has a K-representing measure µ, then Lβ is K-positive, i.e., q ∈ P2n, q|K ≥
0 =⇒ Lβ(q) ≥ 0 (since Lβ(q) =

∫
K
qdµ). The converse is not true; instead, the Trun-

cated Riesz-Haviland Theorem [CF7] shows that β admits a K-representing measure
if and only if Lβ admits an extension to a K-positive linear functional on P2n+2. In
[B] G. Blekherman proved that if Mn is positive semidefinite and rankMn ≤ 3n− 3,
then Lβ is R2-positive, so the Truncated Riesz-Haviland Theorem then implies that
β(2n−1) has a representing measure. Using special features of the proof of Theorem 1.2
(below), in [EF] C. Easwaran and the first-named author exhibited a class of Riesz
functionals that are positive but have no representing measure. Apart from these
results, it seems very difficult to verify positivity of Riesz functionals in examples
without first proving the existence of representing measures.

Several basic necessary conditions for a representing measures µ can be ex-
pressed in terms related to moment matrices (cf. [CF5]); we will refer to these with-
out further reference in the sequel:
i) Mn(β) is positive semidefinite: ⟨Mnr̂, r̂⟩ = Lβ(r

2) =
∫
r2dµ ≥ 0 (∀r ∈ Pn).

ii) For any representing measure µ, card(suppµ) ≥ rankMn.
iii) Note that a dependence relation in the column space of Mn can be expressed
as r(X, Y ) = 0, where r ∈ Pn. Define the variety of Mn, V(Mn), as the common
zeros of the polynomials r ∈ Pn such that r(X, Y ) = 0. Then suppµ ⊆ V(Mn), so
cardV(Mn) ≥ rankMn.
iv) Mn is recursively generated : whenever r, s, and rs are in Pn and r(X, Y ) = 0,
then (rs)(X, Y ) = 0.
v) Mn (or Lβ) is consistent : for p ∈ P2n, p|V(Mn) ≡ 0 =⇒ Lβ(p) = 0; consistency
implies recursiveness [CFM].

The Flat Extension Theorem [CF5] shows that β admits a representing measure
if and only if Mn admits a positive semidefinite moment matrix extension Mn+k (for
some k ≥ 0) for which there is a rank-preserving (i.e., flat) moment matrix extension
Mn+k+1. Using this result, in a series of papers R. Curto and the first author solved
TKMP for planar curves of degrees 1 and 2 as follows.
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Theorem 1.1 ([CF3, CF4, CF6, F3, Degree-2 Theorem]). Suppose r(x, y) ∈ P with
deg r ≤ 2. For n ≥ deg r, Mn has a representing measure supported in the curve
r(x, y) = 0 if and only if r(X, Y ) = 0 and Mn is positive semidefinite, recursively
generated, and satisfies cardV(Mn) ≥ rankMn.

In [CFM] it was shown that this result does not extend to deg r > 2. The example
in [CFM] concerns an M3 that is positive and recursively generated, with cardVβ =
rankM3, but which has no measure. In this example, there is no measure because
Lβ is not consistent. In [F2] we showed that positivity, the variety condition, and
consistency are still not sufficient for representing measures, as we next describe.

For Mn ⪰ 0, consider the (y − x3)-pure case, when the column dependence
relations in Mn are precisely those given by Y = X3, recursiveness, and linearity, i.e.,
column relations of the form (s(x, y)(y − x3))(X, Y ) = 0 (deg s ≤ n − 3). Thus Mn

is positive, rankMn ≤ cardV(Mn) (= card Γ = +∞), and it follows from Lemma 3.1
in [F2] that Mn is consistent. In [F2] we described a particular, easily computable,
rational expression in the moment data, ψ, and solved the (y − x3)-pure TKMP as
follows.

Theorem 1.2. If Mn ⪰ 0 is (y− x3)-pure, then β has a representing measure if and
only if β1,2n−1 > ψ.

In the proof of Theorem 1.2, the numerical test β1,2n−1 > ψ leads to a flat extension
Mn+1. By contrast with this result, the other existence results in [F2, Z4] generally
presuppose the existence of a certain positive moment matrix extension of Mn, but
do not give an explicit test for the extension. The proof of Theorem 1.2 in [F2] is
quite lengthy. In the sequel we will use the core variety to present a shorter, more
transparent proof. This approach also provides a core variety framework for studying
the (y − xd)-pure truncated moment problem.

The core variety provides an approach to establishing the existence of repre-
senting measures based on methods of convex analysis. For the polynomial case, this
was introduced in [F4], and some of the ideas go back to [FN]. The discussion below
is based on joint work of the first author with G. Blekherman [BF], which treats
general Borel measurable functions, although here we only require polynomials. The
core variety has also been studied by P. di Dio and K. Schmüdgen [DDS] and in
Schmüdgen’s book [Sch].

Given β ≡ β(2n) and its Riesz functional L ≡ Lβ, define V0 := V(Mn) and for
i ≥ 0, define

Vi+1 :=
⋂

f∈kerL, f |Vi≥0

Z(f),

where Z(f) denotes the set of zeros of f(x, y) in R2 (or, equivalently, in Vi).
We define the core variety of L by

CV(L) :=
⋂
i≥0

Vi.

Proposition 1.3 ([F4]). If µ is a representing measure for L, then suppµ ⊆ CV(L).
4



If µ is a representing measure, then

rankMn(β) ≤ card(suppµ) ≤ card CV(Lβ) ≤ cardVi (for every i ≥ 0).

We thus have the following test for the nonexistence of representing measures.

Corollary 1.4 ([F4]). If cardVi < rankMn for some i, then β has no representing
measure.

Proposition 1.3 shows that if β has a representing measure, then CV(L) is
nonempty. The main result concerning the core variety is the following converse.

Theorem 1.5 ([BF, Core Variety Theorem]). L ≡ Lβ has a representing measure
if and only if CV(L) is nonempty. In this case, CV(L) coincides with the union of
supports of all finitely atomic representing measures for L.

In view of Proposition 1.3, CV(L) is also the union of supports of all repre-
senting measures. In general, it may be difficult to compute the core variety, due
to the difficulty of characterizing the nonnegative polynomials on V0, V1, V2, . . ., but
Theorem 1.5 leads to the following criterion for stability.

Proposition 1.6 ([BF, DDS]). If Vk is finite, then CV(L) = Vk or CV(L) = Vk+1.

Although our focus in the sequel is TKMP for the planar curves y = xd, we
note that the results cited from [B, BF, CF5, CF7, DDS, F4] apply to the general
multivariable truncated moment problem.

Acknowledgement. The first-named author is grateful to Raúl Curto for helpful
discussions concerning core varieties for TKMP for certain quadratic planar curves
during a visit to the University of Iowa in Fall, 2019.

2. A core variety approach to the pure Y = Xd moment problem.

Suppose Mn(β) is positive semidefinite and (y − xd)-pure, i.e., the column de-
pendence relations inMn are precisely the linear combinations of the column relations

(2.1) XrY s+1 = Xr+dY s for r, s ≥ 0, r + s ≤ n− d.

In this section we introduce a core matrix C associated to β; the main result of this
section, Theorem 2.13, characterizes the existence of representing measures for β in
terms of the positivity properties of C and “recursiveness” in its kernel. Using the
Core Variety Theorem we show that in the positive definite case the union of supports
of all representing measures is the curve Γ := Z(y−xd) = {(x, xd) : x ∈ R}. Namely,
we employ the connection between the existence of representing measures for β ≡ β(2n)

and the core variety of the Riesz functional L ≡ Lβ. Setting V0 = V(Mn) = Γ, we
seek to compute V1 := Z(p ∈ kerL : p|V0 ≥ 0), the common zeros of the polynomials
in kerL that are nonnegative on V0. To this end, we require a concrete description of
kerL.
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Lemma 2.1. SupposeMn(β) satisfies column relations (2.1). Let fij(x, y) = xiyj−βij
for 0 ≤ i < d, j ≥ 0, and 0 < i + j ≤ 2n. Let gkl(x, y) = (y − xd)xkyl for
k, l ≥ 0, k + l ≤ 2n− d. Then B := {fij}

⋃
{gkl} is a basis for kerLβ.

Conversely, let L : P2n → R be a linear functional such that B is a basis for
kerL. Then the moment matrix Mn(β) of the sequence β, such that L = Lβ, satisfies
column relations (2.1).

Remark 2.2. In the statement of Lemma 2.1, Mn(β) does not have to be (y − xd)-
pure for B to be the basis for kerLβ. There may be column relations other than the
linear combinations of (2.1), but B will still be a basis. Another choice of a basis for
kerLβ, which works for any sequence β, is {fij} for 0 ≤ i, j, 0 < i + j ≤ 2n, where
fij are defined as in the statement of the lemma. However, this basis tells us nothing
about the column relations of Mn(β). To explicitly determine column relations from
the basis for kerLβ, in addition to a “good” choice of the basis, the rank of Mn(β)
must also be given.

Proof of Lemma 2.1. Clearly, each fij ∈ kerLβ. For k, l ≥ 0 with k + l ≤ 2n − d,

gkl ∈ P2n. If k+ l ≤ n, then Lβ(gkl) = ⟨Mn
ÿ�(y − xd),‘xkyl⟩ = ⟨Mnŷ−Mn

“xd,‘xkyl⟩ = 0,
so gkl ∈ kerLβ in this case. In the remaining case, n < k + l ≤ 2n − d, so there
exist integers r, s, t, u ≥ 0 such that r + t = k, s + u = l, r + s = n − d, and thus
t+ u = (k + l)− (r + s) ≤ 2n− d− (n− d) = n. Now

Lβ(gkl) = Lβ((y − xd)xrys · xtyu) = ⟨Mn
¤�(y − xd)xrys,‘xtyu⟩

= ⟨Mn
÷xrys+1 −Mn

÷xd+rys,‘xtyu⟩,
so (2.1) implies Lβ(gkl) = 0.

To show that B is a linearly independent set of elements of P2n, suppose {aij}
and {bkl} are sequences of real scalars (indexed as in the statement of the lemma)
such that in P2n,

(2.2)
∑

0≤i<d, j≥0,
0<i+j≤2n

aijfij +
∑
k,l≥0,

k+l≤2n−d

bklgkl = 0.

For every (x, y) ∈ R2,
∑
aijfij(x, y)+

∑
bklgkl(x, y) = 0, so with y = xd, (2.2) implies∑

aijFij(x) = 0 ∀x ∈ R, where Fij(x) := fij(x, x
d) = xi+dj − βij (0 ≤ i < d, j ≥ 0,

0 < i + j ≤ 2n). Suppose that 0 ≤ i, i′ < d, j, j′ ≥ 0, 0 < i + j, i′ + j′ ≤ 2n and
i+ dj = i′ + dj′. Then |i− i′| = d|j − j′|, and since |i− i′| < d, it follows that j = j′

and i = i′. Thus, the x-exponents appearing in

Q(x) ≡
∑

0≤i<d, j≥0,
0<i+j≤2n

aij(x
i+dj − βij)

are distinct, and since Q(x) = 0 for every real x, it follows that each aij = 0. Now
(2.2) implies

∑
bklx

kyl(y − xd) = 0 for all x, y ∈ R. Thus, for y ̸= xd,
∑
bklx

kyl = 0,
so by continuity we have

∑
bklx

kyl = 0 for all x, y ∈ R. It now follows that each
bkl = 0, so B is linearly independent.
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Next we show that B spans kerLβ. We need to prove that cardB = dimP2n−1

(= dimkerLβ). Recall that dimP2n = (2n+1)(2n+2)
2

. Note that B is the disjoint union

of the sets C := {fij} and D := {gkl}. Clearly, cardD = dimP2n−d =
(2n−d+1)(2n−d+2)

2
.

To compute card C, notice that card C = card E , where E is the index set equal to

E := {(i, j) : 0 ≤ i < d, j ≥ 0, 0 < i+ j ≤ 2n}
= {(0, 1), . . . , (0, 2n)︸ ︷︷ ︸

i=0

, (1, 0), . . . , (1, 2n− 1)︸ ︷︷ ︸
i=1

, . . . , (d− 1, 0), . . . , (d− 1, 2n− d+ 1)︸ ︷︷ ︸
i=d−1

}.

It follows that

card C = card E = 2n+ 2n+ (2n− 1) + . . .+ (2n− d+ 2)

= −1 +
d−1∑
i=0

(2n+ 1− i) = −1 +
2n+1∑
i=1

i−
2n−d+1∑

i=1

i

= −1 +
(2n+ 1)(2n+ 2)

2
− (2n− d+ 1)(2n− d+ 2)

2
= −1 + cardP2n − cardD,

whence

cardB = card C + cardD = −1 + cardP2n,

which shows that B is a basis for kerLβ.
The converse part is clear. Namely, L determines the sequence β by βij =

L(xiyj) for 0 ≤ i, j, i + j ≤ 2n. (Note that by fij ∈ kerL for 0 ≤ i < d, j ≥ 0,
and 0 < i + j ≤ 2n, for these indices, βij are precisely constant terms in fij.) By
gkl ∈ kerL for k, l ≥ 0, k + l ≤ 2n − d, all linear combinations of (2.1) are column
relations of Mn(β). □

Suppose p ∈ kerL satisfies p|Γ ≥ 0, i.e., p(x, xd) ≥ 0 ∀x ∈ R. From Lemma
2.1, we may write

(2.3) p = F +G ≡
∑

0≤i<d, j≥0,
0<i+j≤2n

aijfij +
∑
k,l≥0,

k+l≤2n−d

bklgkl.

Since p|Γ ≥ 0 and G|Γ ≡ 0, then

(2.4) Q(x) := F (x, xd) =
∑

0≤i<d, j≥0,
0<i+j≤2n

aij(x
i+dj − βij)

satisfies Q(x) ≥ 0 ∀x ∈ R. Since degQ ≤ 2nd, there exist

r̂ ≡ (r0, . . . , rnd), ŝ ≡ (s0, . . . , snd) ∈ Rnd+1 such that

R(x) := r0 + r1x+ · · ·+ rndx
nd and S(x) := s0 + s1x+ · · ·+ sndx

nd
(2.5)

satisfy

(2.6) Q(x) = R(x)2 + S(x)2.
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Comparing coefficients on both sides of (2.6), we see that each aij, which is the
coefficient in Q of xi+dj, admits a unique expression as a homogeneous quadratic
polynomial h(r̂, ŝ) in the rk and sl. Indeed, for i, j ≥ 0, with i < d and 0 < i+j ≤ 2n,
we have

(2.7) aij = hi,j(r̂, ŝ) :=
∑

0≤k,l≤nd,
0<k+l=i+dj

rkrl + sksl.

Moreover, a comparison of the constant terms in (2.6) gives

(2.8) −
∑

0≤i<d, j≥0,
0<i+j≤2n

aijβij = r20 + s20.

Example 2.3. Let n = d = 3. Then Q (cf. (2.6)) is of the form

Q(x) =
∑

0≤i<3, j≥0,
0<i+j≤6

aij(x
i+3j − βij) =:

18∑
ℓ=0

qℓx
ℓ ∈ P18.

Note that q17 = 0 since 17 ̸= i+3j for some 0 ≤ i < 3, j > 0, i+ j ≤ 6. For example,
the coefficient q4, which is equal to a11, may be expressed by (2.7) as

h1,1(r̂, ŝ) = r0r4 + r1r3 + r2r2 + r3r1 + r4r0 + s0s4 + s1s3 + s2s2 + s3s1 + s4s0

= 2(r0r4 + s0s4 + r1r3 + s1s3) + r22 + s22.

Now suppose i, j ≥ 0, with i < d and i + dj ≤ 2nd, but i + j > 2n. The index
set F of all such pairs is equal to

F := {(i, j) : 2n− (d− 2) ≤ j ≤ 2n− 1, 2n+ 1− j ≤ i ≤ d− 1} =
d−2⋃
j=1

Fj(2.9)

where each Fj is equal to

Fj =

®
{(j + 1, 2n− j), . . . , (d− 1, 2n− j)}, if j + 1 ≤ d− 1,

∅, otherwise.

Hence cardF =
∑d−2

i=1 i =
(d−1)(d−2)

2
. Note that F = ∅ for n = 1, 2. Although for

(i, j) ∈ F , terms xi+dj appear in R(x)2 and S(x)2, since i + j > 2n, xi+dj cannot
appear in Q with a nonzero coefficient. For the sequel, it is convenient to extend the
definition of hij in (2.7) to include these cases, together with the requirement

(2.10) 0 = hi,j(r̂, ŝ) whenever (i, j) ∈ F .

Also, we introduce an arbitrary constant Aij for each (i, j) ∈ F to denote the moment
βij, which is not present in β(2n). We will call every such moment an auxiliary moment
in the sequel.
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Example 2.4. Let n = d = 3. Note that F = {(2, 5)}, since for i = 2 and j = 5,
we have i + 3j = 17 < 2nd = 18 but 7 = i + j > 2n = 6. Thus x17 does not appear
in Q(x), so, from (2.7), using h2,5(r̂, ŝ) = r8r9 + s8s9, it follows that r8r9 + s8s9 = 0.
The auxiliary moment in this case is β2,5, which we denote by A2,5.

For d = 3 and arbitrary n ∈ N, which we study in Section 4, we have F =
{(2, 2n− 1)} and the condition in (2.10) is equal to

(2.11) 0 = h2,2n−1(r̂, ŝ) = 2(r3nr3n−1 + s3ns3n−1),

with the “missing” monomial in Q(x) being x2+3(2n−1) = x6n−1. △

Let ⌊·⌋ denote the floor function. Namely, ⌊k⌋ is the greatest integer not larger
than k. The next lemma will be essential for Section 5 to justify that the conditions
(2.10) are satisfied, as part of the argument that (2.6) holds (see Lemma 5.3 below).

Lemma 2.5. Assume that (i, j) ∈ F and let 0 ≤ k, l ≤ nd such that k + l = i + dj.

Let k̃ := k + nd and l̃ := l + nd. Then at least one of the pairs K = (k̃ mod d, ⌊ k̃
d
⌋)

and L = (l̃ mod d, ⌊ l̃
d
⌋) belongs to F . Equivalently, at least one of the moments

βk mod d,⌊ k
d
⌋+n and βl mod d,⌊ l

d
⌋+n is auxiliary.

Proof. Recall that membership of a pair (p, q) in F requires p, q ≥ 0, p < d, p+ dq ≤
2nd, and p + q > 2n. For p = k mod d, q = ⌊k

d
⌋ + n, the first two reqirements

for membership in F are clearly satisfied. Now k = k mod d + d⌊k
d
⌋, and since

k ≤ nd, it follows that p + dq ≤ 2nd. Therefore, if we assume that K /∈ F , then
k mod d + ⌊k

d
⌋ + n ≤ 2n. A similar argument holds for L. If we now assume that

K /∈ F and L /∈ F , then

(2.12) k mod d+
⌊k
d

⌋
≤ n and l mod d+

⌊ l
d

⌋
≤ n.

If k mod d+ l mod d < d, then

i = (k + l) mod d = k mod d+ l mod d and j =
⌊k + l

d

⌋
=

⌊k
d

⌋
+
⌊ l
d

⌋
.

Hence,

i+ j = k mod d+ l mod d+
⌊k
d

⌋
+
⌊ l
d

⌋
≤︸︷︷︸

(2.12)

2n

which is a contradiction to the assumption (i, j) ∈ F .
If k mod d+ l mod d ≥ d, then

i = (k + l) mod d = k mod d+ l mod d− d and j =
⌊k + l

d

⌋
=

⌊k
d

⌋
+
⌊ l
d

⌋
+ 1.

Hence,

i+ j = k mod d+ l mod d+
⌊k
d

⌋
+
⌊ l
d

⌋
− d+ 1 ≤︸︷︷︸

(2.12)

2n

which is a contradiction to the assumption (i, j) ∈ F . □
9



Remark 2.6. Another way of stating Lemma 2.5 is by saying that at least one of

the monomials xk mod dy⌊
k
d
⌋ and xl mod dy⌊

l
d
⌋ has total degree more than n.

We next introduce the core matrix C ≡ Cβ; in the sequel we show that positivity
properties of C determine the core variety of β. Our immediate goal is to use (2.7) and
the core matrix to derive an inner product expression (see (2.25)) which can be used to
characterize whether (2.8) holds. This will permit us to provide a sufficient condition
for representing measures via the core variety. The core matrix, a (dn+1)× (dn+1)
matrix C ≡ (Cij)i,j, is defined by

(2.13) Cij = β(i+j−2) mod d,⌊(i+j−2)/d⌋ (1 ≤ i, j ≤ dn+ 1).

Let

(2.14) Kij := (i+ j − 2) mod d and Lij := ⌊(i+ j − 2)/d⌋,

so that Cij = βKij ,Lij
; however, if βKij ,Lij

is an auxiliary moment because (Kij, Lij) ∈
F , we redefine βKij ,Lij

as βKij ,Lij
= AKij ,Lij

, where AKij ,Lij
is an arbitrary constant.

To emphasize the dependence of C on the choice of the constants Aij for (i, j) ∈
F , we sometimes denote C by C[{Aij}(i,j)∈F ]. From (2.13), C is clearly a Hankel
matrix.

Example 2.7. For n = d = 4 the core matrix

C ≡ C[A3,2n−2,A2,2n−1,A3,2n−1]

is the following

β00 β10 β20 β30 β01 β11 β21 β31 β02 β12 β22 β32 β03 β13 β23 β33 β04

β10 β20 β30 β01 β11 β21 β31 β02 β12 β22 β32 β03 β13 β23 β33 β04 β14

β20 β30 β01 β11 β21 β31 β02 β12 β22 β32 β03 β13 β23 β33 β04 β14 β24

β30 β01 β11 β21 β31 β02 β12 β22 β32 β03 β13 β23 β33 β04 β14 β24 β34

β01 β11 β21 β31 β02 β12 β22 β32 β03 β13 β23 β33 β04 β14 β24 β34 β05

β11 β21 β31 β02 β12 β22 β32 β03 β13 β23 β33 β04 β14 β24 β34 β05 β15

β21 β31 β02 β12 β22 β32 β03 β13 β23 β33 β04 β14 β24 β34 β05 β15 β25

β31 β02 β12 β22 β32 β03 β13 β23 β33 β04 β14 β24 β34 β05 β15 β25 β35

β02 β12 β22 β32 β03 β13 β23 β33 β04 β14 β24 β34 β05 β15 β25 β35 β06

β12 β22 β32 β03 β13 β23 β33 β04 β14 β24 β34 β05 β15 β25 β35 β06 β16

β22 β32 β03 β13 β23 β33 β04 β14 β24 β34 β05 β15 β25 β35 β06 β16 β26

β32 β03 β13 β23 β33 β04 β14 β24 β34 β05 β15 β25 β35 β06 β16 β26 A36

β03 β13 β23 β33 β04 β14 β24 β34 β05 β15 β25 β35 β06 β16 β26 A36 β07

β13 β23 β33 β04 β14 β24 β34 β05 β15 β25 β35 β06 β16 β26 A36 β07 β17

β23 β33 β04 β14 β24 β34 β05 β15 β25 β35 β06 β16 β26 A36 β07 β17 A27

β33 β04 β14 β24 β34 β05 β15 β25 β35 β06 β16 β26 A36 β07 β17 A27 A37

β04 β14 β24 β34 β05 β15 β25 β35 β06 β16 β26 A36 β07 β17 A27 A37 β08



The rows and columns of C are indexed by the ordered set

{1, X,X2, X3, Y,XY,X2Y,X3Y, . . . , Y k, XY k, X2Y k, X3Y k, . . . ,

Y n−1, XY n−1, X2Y n−1, X3Y n−1, Y n}.

Note that the columns X3Y n−2, X2Y n−1, X3Y n−1 are not among columns of Mn but
of its extensionMn+2. So these columns are auxiliary ones in C and contain auxiliary
moments.
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The next two results provide an alternate description of the core matrix in terms
of moment matrix extensions. Let d ≥ 2 and Mn+d−2 be some recursively generated

extension of the positive (y−xd)-pure moment matrix Mn. Let β̃ ≡ β̃(2n+2d−4) be the
extended sequence and let Lβ̃ : P2(n+d−2) → R be the corresponding Riesz functional.
Define the ordered set of monomials

M := {1, x, . . . , xd−1, y, xy, . . . , xd−1y, . . . , yi, yxi, . . . , xd−1yi,

yn−1, xyn−1, . . . , xd−1yn−1, yn},
(2.15)

and the vector space

U := Span {s : s ∈ M} ⊂ Pn+d−2,(2.16)

We next define an (nd + 1)× (nd + 1) matrix M [β̃,U ] with rows and columns
indexed by the monomials in M in the order

(2.17) 1, X, . . . , Xd−1, Y,XY, . . . , Xd−1Y, . . . Y n−1, XY n−1, . . . , Xd−1Y n−1, Y n

(i.e., for 1 ≤ k ≤ nd+ 1, the k-th element of this order is equal to XIkY Jk where

Ik := (k − 1) mod d and Jk := ⌊k − 1

d
⌋).

The (i, j)-th entry of M [β̃,U ] is defined to be equal to

(2.18) Lβ̃(x
Ii+IjyJi+Jj) = β̃Ii+Ij ,Ji+Jj = β̃(i−1) mod d+(j−1) mod d,⌊ i−1

d
⌋+⌊ j−1

d
⌋.

More generally, for r, s ∈ U (cf. (2.16)), with coefficient vectors r̂, ŝ relative to
the ordered basis of monomials in M (cf. (2.15)), we have

(2.19)
〈
M [β̃,U ] r̂, ŝ

〉
:= Lβ̃(rs).

Lemma 2.8. For 1 ≤ i, j ≤ nd+ 1 the following holds:

(2.20) Lβ̃(x
Ii+IjyJi+Jj) = β̃(i+j−2) mod d,⌊ i+j−2

d
⌋.

Proof. From i+ j − 2 = (i− 1) + (j − 1) it follows that

i+ j − 2 = (i+ j − 2) mod d+ d
⌊i+ j − 2

d

⌋
and i+ j − 2 = ((i− 1) mod d+ (j − 1) mod d) + d

Å⌊i− 1

d

⌋
+
⌊j − 1

d

⌋ã
.

(2.21)

We separate two cases:

Case a): (i− 1) mod d+ (j − 1) mod d < d. Then (2.21) implies that

(i+ j − 2) mod d = (i− 1) mod d+ (j − 1) mod d,⌊i+ j − 2

d

⌋
=

⌊i− 1

d

⌋
+
⌊j − 1

d

⌋
.

(2.22)

Using (2.22) in (2.18), (2.20) follows.

11



Case b): (i− 1) mod d+ (j − 1) mod d ≥ d. Then (2.21) implies that

(i+ j − 2) mod d = ((i− 1) mod d+ (j − 1) mod d)− d,⌊i+ j − 2

d

⌋
=

⌊i− 1

d

⌋
+
⌊j − 1

d

⌋
+ 1.

(2.23)

Since Mn+d−2 is recursively generated, we have Xr+dY s = XrY s+1 in the rows and

columns, and therefore β̃r+d,s = β̃r,s+1. The assumption of Case b), and (2.23) used
in (2.18), together with Mn+d−2 being recursively generated, therefore imply that

β̃(i−1) mod d+(j−1) mod d,⌊ i−1
d

⌋+⌊ j−1
d

⌋ = β̃(i+j−2) mod d +d,⌊ i−1
d

⌋+⌊ j−1
d

⌋

= β̃(i+j−2) mod d,⌊ i−1
d

⌋+⌊ j−1
d

⌋+1

= β̃(i+j−2) mod d,⌊ i+j−2
d

⌋ (using (2.23)),

so (2.20) follows. □

Proposition 2.9. Assume the notation above. Then:

(i) If the sequence β̃ has a representing measure, then M [β̃,U ] is positive semidef-
inite.

(ii) Let M̃ [β̃,U ] be obtained fromM [β̃,U ] by replacing each β̃ij satisfying i mod d+
j + ⌊ i

d
⌋ > 2n with the auxiliary moment Aij. Then

C = M̃ [β̃,U ].

Proof. Part (i) follows from the equality (2.19) and Lβ̃(r
2) =

∫
r2dµ ≥ 0. For part

(ii) first note that not all β̃ij with i + j > 2n are auxiliary moments. By recursive

generation we have β̃ij = β̃i−d,j+1 if d ≤ i < 2d− 1 (observe that i is at most 2d− 2)

and so β̃ij is auxiliary only if i mod d + j + ⌊ i
d
⌋ = i− d + j + 1 > 2n in these cases.

If i < d, then the condition i mod d+ j + ⌊ i
d
⌋ > 2n reduces to i+ j > 2n. Now part

(ii) follows from (2.13) and Lemma 2.8. □

If H ≡ (hi+j−1)1≤i,j≤m is any m×m Hankel matrix and t̂ := (t1, . . . , tm) ∈ Rm,

then ⟨Ht̂, t̂⟩ =
m∑
i=1

m∑
j=1

tihi+j−1tj, and, after rearranging terms, we have

(2.24) ⟨Ht̂, t̂⟩ =
2m−1∑
k=1

(
hk ·

∑
1≤i,j≤m,
i+j=k+1

titj

)

(= h1t
2
1 + h2(2t1t2) + h3(2t1t3 + t22) + · · ·+ h2m−2(2tm−1tm) + h2m−1t

2
m).

Lemma 2.10. Let r̂ ≡ (r0, . . . , rnd), ŝ ≡ (s0, . . . , snd) ∈ Rnd+1 satisfy (2.10). For
i, j ≥ 0, with i < d and 0 < i+ j ≤ 2n, define aij by (2.7). Then

(2.25) ⟨Cr̂, r̂⟩+ ⟨Cŝ, ŝ⟩ = 0 ⇐⇒ (2.8) holds.
12



Proof. Let

uk = (k − 1) mod d and vk = ⌊(k − 1)/d⌋ (1 ≤ k ≤ 2nd+ 1).

Further, let

(2.26) hk :=

ß
βukvk , if uk + vk ≤ 2n,

Aukvk , if uk + vk > 2n.

We now apply (2.24) with m = nd + 1, H = C with hk as in (2.26), and with
tp = rp−1 or tp = sp−1 (1 ≤ p ≤ nd+ 1):

⟨Cr̂, r̂⟩+ ⟨Cŝ, ŝ⟩ =

=
2nd+1∑
k=1

(
hk ·

∑
1≤p,q≤nd+1,
p+q=k+1

(rp−1rq−1 + sp−1sq−1)
)

= r20 + s20 +
∑

0≤i<d, j≥0,
0<i+j≤2n

(
βij ·

∑
0≤p,q≤nd,

0<p+q=i+dj

(rprq + spsq)
)
+

+
∑

0≤i<d, j≥0,
i+j>2n

(
Aij ·

∑
0≤p,q≤nd,

0<p+q=i+dj

(rprq + spsq)
)

= r20 + s20 +
∑

0≤i<d, j≥0,
0<i+j≤2n

aijβij

where we used (2.7) and (2.10) in the last equality. Now the equivalence of the lemma
easily follows. □

Remark 2.11. It is important for the sequel to note that the implication (⇐) of
Lemma 2.10 may be used in order to construct elements p of kerL satisfying p|Γ ≥ 0,
so that CV(L) ⊆ Z(p|Γ). For suppose r̂, ŝ ∈ Rnd+1 satisfy (2.10) and ⟨Cr̂, r̂⟩ +
⟨Cŝ, ŝ⟩ = 0. Now define aij = hij(r̂, ŝ) (i, j ≥ 0, i < d, 0 < i + j ≤ 2n). Then p :=∑
aijfij ∈ kerL satisfies p(x, xd) = R(x)2+S(x)2, where R(x) := r0+r1x+· · ·+rndxdn

and S(x) := s0+s1x+· · ·+sndxdn. Now we have CV(L) ⊆ {(x, xd) : R(x) = S(x) = 0}
and card CV(L) ≤ min{degR, degS}.

Let A ≡ {Aij}(i,j)∈F with Aij ∈ R. We say that the core matrix C[A] is re-

cursively generated if for every v ∈ Rnd satisfying

Å
v
0

ã
∈ kerC[A], it follows thatÅ

0
v

ã
∈ kerC[A].

Remark 2.12. Note that the definition above is equivalent to the definition of a “re-
cursively generated” Hankel matrix given in [CF1]. However, it does not encompass
the notion of recursiveness for a general multivariable moment matrix given in item
iv) preceding Theorem 1.1.
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We will show in the next section that C inherits a substantial amount of posi-
tivity from Mn (see Theorem 3.6). The following theorem characterizes the existence
of a representing measure for β in terms of the existence of auxiliary moments such
that the core matrix is positive and recursively generated.

Theorem 2.13. Let β ≡ β(2n) be a given sequence such that Mn ≡Mn(β) is positive
semidefinite and (y − xd)-pure. The following statements are equivalent:

(i) β admits a representing measure (necessarily supported in Γ).

(ii) β admits a finitely atomic representing measure (necessarily supported in Γ).

(iii) There exist auxiliary moments A ≡ {Aij}(i,j)∈F , such that the core matrix
C[A] ≡ C[{Aij}(i,j)∈F ] is positive semidefinite and recursively generated.

Moreover, if the core matrix C[A] is positive definite for some choice of auxiliary
moments A, then β ≡ β(2n) admits finitely atomic representing measures whose union
of supports coincides with Γ.

Proof. The equivalence (i)⇔ (ii) follows from Richter’s Theorem [Ric] (or by Theorem
1.5),

Next we establish the implication (ii) ⇒ (iii). Suppose Mn(β) is (y − xd)-pure
and that β has a finitely atomic representing measure µ supported on Γ. Thus, µ is
of the form

µ =
m∑
k=1

akδ(xk,yk),

where m > 0, each ak > 0, and yk = xdk for each k. Since µ has moments of all
orders, we may consider the moment matrix Mn+t[µ], containing µ-moments up to

degree 2n+ 2t, where t =
⌈
d−2
2

⌉
. Using the moment data β̃(2(n+t)) from Mn+t[µ], i.e.,

β̃ij =
∫
xiyjdµ, (i, j ≥ 0, i+ j ≤ 2(n+ t)), let

(2.27) γp = β̃p mod d,⌊ p
d
⌋ (0 ≤ p ≤ 2nd).

Since Mn[µ] =Mn(β), we have

γp = βp mod d,⌊ p
d
⌋ if 0 ≤ p ≤ 2nd and p mod d+ ⌊p

d
⌋ ≤ 2n.

We next show that µ̃ :=
m∑
k=1

akδxk
is a representing measure for γ := {γp}0≤p≤2nd.

Indeed, for 0 ≤ p ≤ 2nd we have∑
akx

p
k =

∑
akx

p mod d+d⌊ p
d
⌋

k =
∑

akx
p mod d
k y

⌊ p
d
⌋

k = β̃p mod d,⌊ p
d
⌋ = γp.

It now follows that the moment matrix for γ, which is the Hankel matrix H(γ) ≡
(γi+j)0≤i,j≤nd, is positive semidefinite and recursively generated (cf. Section 1). If,

in the core matrix C[A], for each (i, j) ∈ F we set Aij = γi+dj = β̃ij, then C[A]
coincides with H(γ), and is thus positive semidefinite and recursively generated. This
is precisely (iii).
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Next we establish the implication (iii) ⇒ (ii). Suppose the there exist auxiliary
moments A such that C[A] is positive semidefinite and recursively generated. We will
prove that β has a finitely atomic representing measure. Define a univariate sequence

γ ≡ {γp}0≤p≤2nd as in (2.27) above, where β̃ij is either βij or Aij. Since the Hankel
matrix H(γ) ≡ (γi+j)0≤i,j≤nd coincides with C[A] (by definition of γ), it follows that
it is positive semidefinite and recursively generated. By [CF1, Theorem 3.9], γ has a

finitely atomic representing measure µ̃ :=
m∑
k=1

akδxk
. But then µ =

m∑
k=1

akδ(xk,yk) is a

representing measure for β. Indeed, for 0 ≤ i, j ≤ 2n, i+ j ≤ 2n we have∑
akx

i
ky

j
k =

∑
akx

i+dj
k = γi+dj = βi mod d,j+⌊ i

d
⌋ = βi,j,

where in the last equality we used that βr+d,s = βr,s+1 for 0 ≤ r, s such that r+s+d ≤
2n.

It remains to address the case when C[A] is positive definite. Concerning the
core variety of L ≡ Lβ, we have V0 = V(Mn) = Γ, and we now consider V1 :=
Z(p ∈ kerL : p|V0 ≥ 0). For p ∈ kerL with p|V0 ≥ 0, we have p = F +G as in (2.3).
The preceding discussion shows that Q(x) := F (x, xd) satisfies Q(x) = R(x)2+S(x)2,
where r̂ and ŝ satisfy the conditions of (2.7), (2.8) and (2.10). Lemma 2.10 now shows
that ⟨Cr̂, r̂⟩+ ⟨Cŝ, ŝ⟩ = 0, and since C is positive definite, it follows that r̂ = ŝ = 0.
Thus (2.7) implies that each aij = 0, so F = 0. Since Z(G|Γ) = Γ, we now have
Z(p|Γ) = Γ. It follows that V1 = V0 = Γ, so CV(L) = Γ and the Core Variety
Theorem implies that β has finitely atomic representing measures whose union of
supports is Γ. □

The rest of the paper is primarily devoted to developing concrete conditions for
the existence or nonexistence of auxiliary moments satisfying condition (iii).

Theorem 2.13 suggests the following question.

Question 2.14. If β ≡ β(2n) has a representing measure, is there some choice of
auxiliary moments A ≡ {Aij}(i,j)∈F such that C[A] ≻ 0?

In Example 2.15 (just below) we show that the answer is affirmative for d = 1 and
d = 2. In Section 4, we prove an affirmative answer for d = 3. This provides a
new proof of Theorem 1.2. Finally, in Section 6, we prove that the answer is already
negative for d = 4 (see Example 6.6(v)).

In the sequel, for Mn ⪰ 0 and (y − xd)-pure, we denote by ”Mn the central
compression of Mn obtained by deleting all rows and columns Xd+pY q (p, q ≥ 0,

p+ q ≤ n− d). The number of rows and columns in ”Mn is thus dimPn − dimPn−d =
d(2n−d+3)

2
. Since Mn is positive and (y − xd)-pure, it follows immediately that ”Mn is

positive definite and

(2.28) rankMn = rank”Mn =
d(2n− d+ 3)

2
.
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Example 2.15. i) For d = 1, we have C = ”Mn =
(
β0,i+j−2

)
1≤i,j≤n+1

≻ 0, so the

existence of representing measures whose union of supports is the line y = x now fol-
lows from Theorem 2.13. Alternately, using flat extensions, the existence of measures
in this case follows from the solution to the truncated moment problem on a line in
[CF3].

ii) For d = 2, the core matrix C for Mn is (2n+ 1)× (2n+ 1), with

(2.29) Cij = β(i+j−2) mod 2,⌊ i+j−2
2

⌋.

In ”Mn, column j is the truncation to ”Mn of column X(j−1) mod 2Y ⌊(j−1)/2⌋ in Mn.

Likewise, row i of ”Mn is the truncation to ”Mn of row X(i−1) mod 2Y ⌊(i−1)/2⌋ in Mn.
Thus, using the structure of moment matries, we have

(2.30) M̂ij = β(i−1) mod 2+(j−1) mod 2,⌊(i−1)/2⌋+⌊(j−1)/2⌋.

By Proposition 2.9 (or using calculations based on (2.29)), we have C = ”Mn ≻ 0.
Since C is positive definite, Theorem 2.13 now implies that β has representing

measures whose union of supports is the parabola y = x2. The existence of repre-
senting measures also follows from the solution to the Parabolic Truncated Moment
Problem in [CF4], based on flat extensions. △

As we show in the sequel, for d ≥ 3, C ≡ C[{Aij}(i,j)∈F ] does not coincide

with ”Mn and is not necessarily positive definite; nevertheless, we will relate positivity
properties of C[{Aij}(i,j)∈F ] to the existence of representing measures.

We conclude this section with some examples that illustrate Theorem 2.13 for a

positive semidefinite (y−xd)-pureMn(β). Let Ĉ denote the compression of C ≡ C[A]
obtained by deleting each row and each column of C that ends in some auxiliary
moment Aij. In the sequel, for 1 ≤ k ≤ dn + 1, Ck denotes the compression of C to
the first k rows and columns.

Example 2.16. Consider the moment matrix

(2.31) M3(β) =



1 0 0 1 2 5 0 0 0 0
0 1 2 0 0 0 2 5 14 42
0 2 5 0 0 0 5 14 42 132
1 0 0 2 5 14 0 0 0 0
2 0 0 5 14 42 0 0 0 0

5 0 0 14 42 132 0 0 0 0
0 2 5 0 0 0 5 14 42 132

0 5 14 0 0 0 14 42 132 429
0 14 42 0 0 0 42 132 429 s
0 42 132 0 0 0 132 429 s t


.

A calculation with nested determinants shows that M3 is positive semidefinite and
(y − x3)-pure if and only if s ≡ β15 and t ≡ β06 satisfy

(2.32) t > s2 − 2844s+ 2026881.
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The core matrix is

(2.33) C[A] =



1 0 1 0 2 0 5 0 14 0
0 1 0 2 0 5 0 14 0 42

1 0 2 0 5 0 14 0 42 0

0 2 0 5 0 14 0 42 0 132
2 0 5 0 14 0 42 0 132 0

0 5 0 14 0 42 0 132 0 429

5 0 14 0 42 0 132 0 429 0
0 14 0 42 0 132 0 429 0 s

14 0 42 0 132 0 429 0 s A

0 42 0 132 0 429 0 s A t


.

i) Let s = 1430 and t = 4862, so (2.32) is satisfied. Calculations with nested determi-
nants show that C9 ≻ 0, and therefore a calculation of detC[A] shows that C[A] ≻ 0
if and only if −1 < A < 1. Theorem 2.13 now shows that β has representing measures
and that CV(Lβ) is the curve y = x3.

ii) Consider next s = 1422, t = 4798. Condition (2.32) is satisfied and nested deter-

minants show that Ĉ ≻ 0. In particular, C8 ≻ 0, but we have det C9 = −7, so for no
value of A will C[A] be positive semidefinite. By Theorem 2.13, β has no measure.

iii) Now let s = 1429, t = 4847. Then (2.32) holds, and we have C8 ≻ 0; however,
detC9 = 0, so there exists x ∈ R9 such that C9x = 0. Now r̂ := (xt, 0) ≡ (r0, . . . , r8, 0)
satisfies ⟨Cr̂, r̂⟩ = 0 and, with ŝ ≡ 0, also satisfies the consistency requirement
r8r9+s8s9 = 0 (cf. (2.11)). Remark 2.11 now implies that there exists p ∈ kerLβ such
that Q(x) := p(x, x3) = r(x)2. Therefore, card CV(L) ≤ deg r ≤ 8 < 9 = rankM3, so
CV(Lβ) = ∅ by Corollary 1.4, and thus β has no measure. △

In the next section we will prove that if Mn(β) is positive semidefinite and

(y − xd)-pure, then Ĉ is positive definite. In particular, for d = 3, C3n−1 ≻ 0. It
follows that the method of the preceding example applies to any positive semidefinite
Mn(β) that is (y − x3)-pure, as follows.

Theorem 2.17. Suppose Mn(β) is positive semidefinite and (y − x3)-pure. Then β
has a representing measure if and only if detC3n > 0, in which case CV(Lβ) is the
curve y = x3.

Example 2.18. Consider next the sequence β(8), with M3 given by

1 0 2 1 0 14 0 5 0 132

0 1 0 0 5 0 2 0 42 0
2 0 14 5 0 132 0 42 0 1430

1 0 5 2 0 42 0 14 0 429
0 5 0 0 42 0 14 0 429 0
14 0 132 42 0 1430 0 429 0 16796
0 2 0 0 14 0 5 0 132 0

5 0 42 14 0 429 0 132 0 4862
0 42 0 0 429 0 132 0 4862 0

132 0 1430 429 0 16796 0 4862 0 208012


and the degree 7 and degree 8 blocks given byÜ

0 42 0 1430 0

42 0 1430 0 58786
0 1430 0 58786 0

1430 0 58786 0 2674440

ê
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à
14 0 429 0 16796
0 429 0 16796 0

429 0 16796 0 742900

0 16796 0 742900 0
16796 0 742900 0 353576708

í
The core matrix is a Hankel matrix (see Example 2.7) with anti-diagonals completely
determined in the first row by

β00 = 1, β01 = 2, β02 = 14, β03 = 132,

β10 = 0, β11 = 0, β12 = 0, β13 = 0,

β20 = 1, β21 = 5, β22 = 42, β23 = 429,

β30 = 0, β31 = 0, β32 = 0, β33 = 0,

and the last column by

β04 = 1430, β05 = 16796 β06 = 208012, β07 = 2674440,

β14 = 0, β15 = 0, β16 = 0, β17 = 0,

β24 = 4862, β25 = 58786, β26 = 742900, β27 = A27,

β34 = 0, β35 = 0, β36 = A36, β37 = A37

β08 = 353576708.

It is straightforward to verify thatM4 is positive semidefinite and (y−x4)–pure. Using
nested determinants, it is easy to show that C14 ≻ 0. A further calculation shows that
C15 ≻ 0 if and only if −1 < A36 < 1. Setting A36 = 0, we see that C16 ≻ 0 if and only
if A27 = 9694844+f for f > 0. Now detC = f(318219068−28f −f 2)−A2

37, so there
exists A37 such that C[A] ≻ 0 if and only if 0 < f < 96

√
34529− 14 (≈ 17824.7). In

this case, since C[A] ≻ 0, the core variety coincides with the curve y = x4.

Example 2.19. Consider next the sequence β(8), defined as in Example 2.18, except
for the following 5 differences:

β25 = 0, β06 = 3454708516 β26 = 3448894372, β07 = 0,

β08 = 2640503382173370698906776695725.

It is straightforward to verify that M4 is positive semidefinite and (y − x4)–pure.
Moreover, C[A] can never be positive semidefinite, since β25 = 0 is its 12th diagonal
element, but there are nonzero entries in the 12th row and column. By the converse
in Theorem 2.13, β(8) does not admit a representing measure.

3. A central compression of the core matrix equivalent to ”Mn.

In this section, we describe a central compression of the core matrix C that is

orthogonally equivalent to ”Mn, and is thus positive definite. We will show in Sections
4-6 that this provides a useful tool for studying the (y − xd)-pure truncated moment
problem. Further, for an (nd+ 1)× (nd+ 1) Hankel matrix H, we identify a central

compression “H that uniquely determines Mn of some β satisfying at least the column
relations which are linear combinations of the relations coming from Y = Xd by

recursive generation; additionally, “H ≻ 0 if and only if Mn ⪰ 0 and Mn is (y − xd)-
pure.
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We first require a brief discussion of permutation matrices and orthogonal equiv-
alence. Recall that a realm×mmatrix U is an orthogonal matrix if U t = U−1; equiva-
lently, U maps an orthonormal basis into an orthonormal basis. Let e1, . . . , em denote
the standard orthonormal basis for Rm, and let σ denote a permutation of {1, . . . ,m}.
The permutation matrix Uσ is defined by Uσ(ei) = eσ(i). Clearly, Uσ is invertible, with
U−1
σ = Uσ−1 , and we note that U−1

σ = U t
σ, so that Uσ is real orthogonal. To see this, it

suffices to check that for 1 ≤ j, k ≤ m, ⟨U−1
σ ej, ek⟩ = ⟨U t

σej, ek⟩. Setting i = σ−1(j),
so that σ(i) = j, we have ⟨U−1

σ ej, ek⟩ = ⟨eσ−1(j), ek⟩ = ⟨ei, ek⟩ = δik (where δ denotes
the Kroneker delta). Now, ⟨U t

σej, ek⟩ = ⟨ej, Uσek⟩ = ⟨eσ(i), eσ(k)⟩ = δσ(i)σ(k). Since
σ(i) = σ(k) if and only if i = k, it follows that U−1

σ = U t
σ, so Uσ is real orthogonal.

We note for the sequel (in Sections 4 and 5) that

(3.1) U−1
σ

( m∑
i=1

xiei

)
=

m∑
i=1

xieσ−1(i)

Recall that if H and J are m×m real matrices, H and J are orthogonally equivalent
if H = UJU t for some real orthogonal matrix U ; clearly, H is positive semidefinite
(respectively, positive definite) if and only if J is.

We label the rows and columns of C sequentially from 1 to nd+1. Corresponding
to column k, let

(3.2) Ik := (k − 1) mod d and Jk := ⌊(k − 1)/d⌋,
so that C1,k = βIk,Jk (cf. (2.13)). Now suppose i, j ≥ 0, with i < d and i + dj ≤ nd,

but i+ j > n. The index set “F of all such pairs is equal to“F := {(i, j) : n− (d− 2) ≤ j ≤ n− 1, n+ 1− j ≤ i ≤ d− 1} =
d−2⋃
j=1

“Fj(3.3)

where each “Fj is equal to“Fj =

ß
{(j + 1, n− j), . . . , (d− 1, n− j)}, if j + 1 ≤ d− 1,

∅, otherwise.

Hence, card “F =
∑d−2

i=1 i =
(d−1)(d−2)

2
. We consider the compression Ĉ of C that

is obtained by deleting row k and column k from C in those cases where (Ik, Jk) ∈“F . There are (d−2)(d−1)
2

(=card “F) such cases, so Ĉ has ψn,d := d(2n−d+3)
2

(= (nd +

1) − (d−2)(d−1)
2

) rows and columns, and therefore Ĉ has the same size as ”Mn. In Ĉ,
the compressed rows and columns retain the same row and column numbers as the
corresponding uncompressed rows and columns in C.

Example 3.1. Let n = d = 4. Then C is 17 × 17, and we delete rows and columns
12, 15, and 16, since k = 12 yields (I12, J12) = (3, 2), k = 15 has (I15, J15) = (2, 3),
k = 16 has (I16, J16) = (3, 3), and in each case Ik + Jk > 4. The 14 rows and columns

in Ĉ are numbered 1, . . . , 11, 13, 14, 17.

We next let Ĉ1 denote a copy of Ĉ, but with the row and column numbers
inherited from C replaced by a sequential relabeling, as follows. For each undeleted
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column of C, say column k, let del(k) ≡ deln,d(k) denote the number of columns of

C to the left of column k which are deleted to create Ĉ. Namely,

del(k) = card
(
{j : 1 ≤ j < k, (Ij, Jj) ∈ “F}

)
.

Note that the largest k with del(k) = 0 satisfies (Ik, Jk) = (d − 2, n − d + 2), and is
thus equal to

d− 2 + d(n− d+ 2) + 1 = nd− (d− 2)(d− 1) + 1 =: mn,d.

Moreover, k ≤ mn,d implies that del(k) = 0. For k > mn,d we have that Jk > n−d+2
and Ik ≤ n− Jk (since column k is undeleted) and thus

del(k) =

Jk−(n−d+2)∑
i=1

i =
(Jk − (n− d+ 2))(Jk − (n− d+ 2) + 1)

2

=
(⌊k−1

d
⌋ − n+ d− 2))(⌊k−1

d
⌋ − n+ d− 1)

2

=
(⌊k

d
⌋ − n+ d− 2))(⌊k

d
⌋ − n+ d− 1)

2
.

Note that in the last equality we used that ⌊k−1
d
⌋ = ⌊k

d
⌋ for every undeleted column

k with k > mn,d. Indeed, ⌊k−1
d
⌋ ̸= ⌊k

d
⌋ if and only if k = dk′ for some k′ ∈ N. Since

k > mn,d, we have that k
′ is at least n−d+3. But every column dk′ with k′ ≥ n−d+3

is deleted, since Idk′ = d− 1, Jdk′ = k′ − 1 ≥ n− d+ 2 and hence Idk′ + Jdk′ > n.

The compression of column k of C is now used as column k̂ of Ĉ1, where

k̂ = k − del(k); we also write k = ϕ(k̂) (a relation we will refer to in the sequel). In

this way, the columns of Ĉ1 are numbered sequentially from 1 to ψn,d, and we also

renumber the rows of Ĉ1 in a similar sequential manner.

Example 3.2. Let n = d = 4. We have k̂ = k for 1 ≤ k ≤ 11, k̂ = 12 for k = 13,

k̂ = 13 for k = 14, and k̂ = 14 for k = 17.

We next describe a 2-step transformation of Ĉ1 into a matrix C̃. For 1 ≤ k̂ ≤
ψn,d, note that

(
Ik+Jk+1

2

)
+ Jk + 1 is the column number corresponding to XIkY Jk

in Mn. The column number corresponding to XIkY Jk in ”Mn must, however, take
into account any columns of the form Xd+rY s which precede XIkY Jk in the degree-
lexicographic ordering of the columns of Mn, since every such is deleted from Mn

when forming ”Mn. There are
(
Ik+Jk−d+2

2

)
such columns, so we define

Kk :=

Ç
Ik + Jk + 1

2

å
+ Jk + 1 if Ik + Jk < d,(3.4)

Kk :=

Ç
Ik + Jk + 1

2

å
+ Jk + 1−

Ç
Ik + Jk − d+ 2

2

å
if Ik + Jk ≥ d.(3.5)

We now define column Kk of Ĉ2 to be column k̂ of Ĉ1. We will show just below

that the mapping from k̂ to Kk defines a permutation of the integers 1, . . . , ψn,d, so
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that the columns of Ĉ2 comprise a permutation of the columns of Ĉ1. Finally, we

transform Ĉ2 into C̃ by applying the same permutation to the rows of Ĉ2 that we

just applied to the columns of Ĉ1.

Example 3.3. Let d = 4 and n ≥ d. There are always 3 auxiliary moments, A3,2n−1,
A2,2n−1, A3,2n−2. With n = d = 4, the permutation may thus be described asÇ

row/col Ĉ1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

row/col C̃ 1 2 4 7 3 5 8 11 6 9 12 10 13 14

å
.

To validate the preceding argument we must verify that the mapping from k̂
to Kk is a permutation of the integers 1, . . . , ψn,d. For this aim we first establish an
auxiliary lemma.

Lemma 3.4. Let f : {0, 1, . . . , n} 7→ Z+ be a map defined by

f(p) :=

® (
p+1
2

)
+ 1, p < d,(

p+1
2

)
−
(
p−d+2

2

)
+ 1, p ≥ d.

Then for p ∈ {0, 1, . . . , n− 1} \ {d− 1} we have

f(p+ 1) > f(p) + min(p, d− 1) =: g(p),

while
f(d) = f(d− 1) + d− 1.

Proof. We separate three cases:

Case a) 0 ≤ p < d− 1. Then

f(p+ 1) =
(p+ 1)(p+ 2)

2
+ 1 >

p(p+ 3)

2
+ 1 = f(p) + p = g(p).

Case b) p = d− 1. Then

f(p+ 1) = f(d) =
d(d+ 1)

2
−
Ç
2

2

å
+ 1 =

d(d+ 1)

2

=
(d− 1)d

2
+ d = f(d− 1) + d− 1.

Case c) d ≤ p ≤ n− 1. Then

f(p+ 1) =
(p+ 1)(p+ 2)

2
− (p− d+ 2)(p− d+ 3)

2
+ 1

=
p(p+ 1)

2
− (p− d+ 1)(p− d+ 2)

2
+ d

= f(p) + d− 1 = g(p),

which concludes the proof of the lemma. □

Lemma 3.5. The map π, defined by k̂ 7→ Kk is a permutation of S := (1, . . . , ψn,d).
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Proof. For each k̂ (1 ≤ k̂ ≤ ψn,d), k := ϕ(k̂) satisfies Ik + Jk ≤ n by the construction

of Ĉ. Let f be defined as in Lemma 3.4. Note that Kk = f(Ik + Jk) + Jk. We will
prove the following two facts:

(i) Ik + Jk < Il + Jl implies that Kk < Kl.

(ii) Ik + Jk = Il + Jl and k ̸= l implies that Kk ̸= Kl.

Using (i) and (ii) it is clear that π is 1-to-1 and the largestKk corresponds to Ik+Jk =

n, Jk = n. But then k = nd+ 1 and ÷nd+ 1 = ψn,d = Knd+1. So π is a permuation of
S.

It remains to prove (i) and (ii). The latter is clear since Ik + Jk = Il + Jl
and Ik + dJk = k − 1 ̸= l − 1 = Il + dJl, implies that Jk ̸= Jl. But then by the
definition of Kk (cf. (3.4), (3.5)) it follows that Kk ̸= Kl. To prove (i) it is enough
to consider the case Il + Jl = Ik + Jk + 1, since then (i) follows inductively. Assume
that Il + Jl = Ik + Jk + 1. We separate three cases according to the value of Ik + Jk:

Case a) Ik + Jk ≤ d− 2. We have that

Kk = f(Ik + Jk) + Jk ≤ f(Ik + Jk) + (Ik + Jk) < f(Ik + Jk + 1)

= f(Il + Jl) ≤ f(Il + Jl) + Jl = Kl,

where we used Lemma 3.4 in the second inequality of the first line.

Case b) Ik + Jk = d− 1. Then

Kk = f(d− 1) + Jk ≤ f(d− 1) + d− 1 = f(d) = f(Il + Jl)

<︸︷︷︸
Jl≥1

f(Il + Jl) + Jl = Kl,

where we used Lemma 3.4 in the second equality. Note also that Jl ≥ 1, since other-
wise Il + Jl = Il ≤ d− 1, which is a contradiction with the assumption of this case.

Case c) d ≤ Ik + Jk. Then

Kk = f(Ik + Jk) + Jk < f(Ik + Jk + 1)− (d− 1) + Jk

= f(Il + Jl)− (d− 1) + Jk < f(Il + Jl) + Jl = Kl,

where we used Lemma 3.4 in the first inequality, while in the second inequality we
used that

Jl = Jk + (Il + Jl − Ik − Jk)︸ ︷︷ ︸
=1

−(Il − Ik) >︸︷︷︸
Il−Ik≤d−1

Jk − (d− 1).

This concludes the proof of the lemma. □

Theorem 3.6. Ĉ is orthogonally equivalent to ”Mn; in particular, Ĉ ≻ 0.
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Proof. The renumbering of the rows and columns of Ĉ to form Ĉ1, followed by the

orthogonal equivalence induced by permutation π (cf. Lemma 3.5), shows that Ĉ

is orthogonally equivalent to C̃, so it suffices to verify that C̃ coincides with ”Mn.

Recall that the rows and columns of ”Mn are labelled in degree-lexicographic order,
1, X, Y, . . . , Xd−1, . . . , Y d−1, Xd−1Y, . . . , Y d, . . . , Xd−1Y n−d+1, . . . , Y n (there is no

row or column X iY j with i ≥ d), so we label the rows and columns of C̃ in the

same way. From the structure of Mn, the entry in row X lY m, column X iY j of ”Mn is

βi+l,j+m, so we seek to show that the entry in row X lY m, column X iY j of C̃ is also
βi+l,j+m.

Since 0 ≤ i < d, then k := i + dj + 1 (≤ nd + 1) is the unique column number
of C satisfying i = (k − 1) mod d and j = ⌊(k − 1)/d⌋. Thus, column k is the

unique column of C (or of Ĉ) that is transformed by compression and permutation

π into column X iY j in the degree-lexicographic ordering of the columns of C̃. Since

π(1) = 1, column X iY j in C̃ starts with C1,k = βij, and the other components

of column X iY j in C̃ are components of column k in C rearranged according to
compression and permutation π. Since 1 ≤ l < d, then, exactly as above, row X lY m

in C̃ originates from row p := l + dm + 1 in C. Therefore, the row X lY m, column

X iY j entry of C̃ is equal to Cp,k. From (2.13), we have

Cp,k = β(p+k−2) mod d, ⌊(p+k−2)/d⌋

= β((d(j+m)+i+l+2)−2) mod d,⌊((d(j+m)+i+l+2)−2)/d⌋

= β(i+l) mod d,j+m+⌊(i+l)/d⌋.

Since Y = Xd inMn, we have βa+db,c = βa,b+c whenever a, b, c ≥ 0 and a+db+c ≤ 2n.
Since i+ l = rd+ s with r = ⌊(i+ l)/d⌋ and s = (i+ l) mod d, it follows that

β(i+l) mod d,j+m+⌊(i+l)/d⌋ = βs+dr,j+m = βi+l,j+m.

Thus, the row X lY m, column X iY j entries of C̃ and ”Mn coincide. □

We conclude the section with a result which, together with Theorem 3.6, shows
that positive definite central compressions of Hankel (nd + 1) × (nd + 1) matrices
are in bijection with positive semidefinite, (y−xd)-pure moment matrices Mn(β) and
can be used as a simple tool to generate examples for these. In Examples 2.18, 2.19,
instead of forming the entire matrix M4(β) and checking positive semidefiniteness

and (y − x4)-pureness, it is sufficient to form only Ĉ using βij, 0 ≤ i < 4, 0 ≤ j,
0 ≤ i + j ≤ 8 and check whether it is positive definite. The following proposition
then uniquely determines M4(β) with the desired properties.

Proposition 3.7. Let H := (Hij)i,j = (hi+j−2)i,j be a (nd + 1) × (nd + 1) Hankel

matrix, where hl ∈ R for 0 ≤ l ≤ 2nd. Let “H be obtained from H by deleting

row k and column k from H if (Ik, Jk) ∈ “F , where Ik, Jk, “F are as in (3.2), (3.3),

respectively. Assume that “H is positive definite. Then there is a unique β such that

Mn(β) is positive semidefinite, (y − xd)-pure and Ĉ = “H.
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Proof. For i, j ≥ 0 and 0 ≤ i+ j ≤ 2n define βij := hi+dj. Let L : P2n → R be a linear
functional, defined by L(xiyj) := βij. Note that kerL contains the polynomials

• fij(x, y) = xiyj − βij, 0 ≤ i < d, j ≥ 0, 0 < i+ j ≤ 2n, and

• gkl = (y − xd)xkyl for k, l ≥ 0, k + l ≤ 2n− d.

Indeed, fij ∈ kerL is clear from the definition of L, while

L(gkl) = L(xkyl+1)− L(xd+kyl) = βk,l+1 − βd+k,l = hk+d(l+1) − h(d+k)+dl = 0.

Since the set B := {fij}∪{gkl} is linearly independent, cardB = dimP2n− 1 (see the
proof of Lemma 2.1) and Lin B ⊆ kerL, it follows that B is a basis for kerL. By the
converse part in Lemma 2.1, Mn(β) satisfies the column relations (2.1). By definition
of the core matrix C (cf. (2.13)), for 1 ≤ i, j ≤ dn+ 1, we have that

Cij = β(i+j−2) mod d,⌊(i+j−2)/d⌋ = h(i+j−2) mod d+d⌊(i+j−2)/d⌋ = hi+j−2 = Hij,

and in particular, Ĉ = “H. The assumption “H ≻ 0 implies that Ĉ ≻ 0 and by

Theorem 3.6, the central compression ”Mn is positive definite, whence Mn is positive
semidefinite and (y − xd)-pure. □

4. The (y − x3)-pure truncated moment problem.

In this section we apply the previous results to the moment problem for β ≡
β(2n) where Mn is positive semidefinite and (y − x3)-pure. In particular, Theorem
4.1 provides a positive answer to Question 2.14 for d = 3. Let Γ stand for the curve
y = x3. Note that in the core matrix C, since Y = Xd with d = 3, (2.10) implies that
there is exactly 1 auxiliary moment, namely β2,2n−1, which we denote by A ≡ A2,2n−1.

Thus, Ĉ is obtained from C by deleting row and column nd. Let H ≡ H[A] denote
the matrix obtained from C ≡ C[A] by interchanging rows and columns nd and
nd + 1 (the last 2 rows and columns), so that H is orthogonally equivalent to C. In
the notation of Section 3, let σ denote the permutation of {1, . . . , nd + 1} such that
σ(i) = i (1 ≤ i ≤ nd− 1), σ(nd) = nd+ 1, σ(nd+ 1) = nd; then H = PσCPσ−1 .

Note that the compression of H to its first nd rows and columns coincides with

Ĉ, and is thus positive definite by Theorem 3.6. We may thus represent H as

(4.1) H =

Å
Ĉ v
vt β1,2n−1

ã
,

with Ĉ ≻ 0 and where v is of the form

(4.2) v =

Å
h
A

ã
.

(Here h ∈ Rdn−1 and vt denotes the row vector transpose of v.) Write

Ĉ =

Å
C1 z
zt β0,2n

ã
,
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where C1 is of size (dn− 1)× (dn− 1) and z ∈ Rdn−1 is of the form z = (k, β1,2n−1)
t

for some k ∈ Rdn−2. We now have

(4.3) H[A] =

Ñ
C1 z h
zt β0,2n A
ht A β1,2n−1

é
.

Since Ĉ ≻ 0, Ĉ−1 exists and has the form

(4.4) Ĉ−1 =

Å
C w
wt ϵ

ã
,

where (see e.g., [F2, p. 3144])

ϵ =
1

β0,2n − ztC−1
1 z

> 0, w = −ϵC−1
1 z ∈ Rdn−1,

C = C−1
1 (1 + ϵzztC−1

1 ) ∈ R(dn−1)×(dn−1).

(4.5)

Now

Ĉ−1v =

Å
Ch+ Aw
wth+ Aϵ

ã
,

and we set

(4.6) A ≡ A0 := −w
th

ϵ
,

so that

(4.7) Ĉ−1v =

Å
Ch− wth

ϵ
w

0

ã
.

With this value of A in C, and thus also in v, let

ϕ := vtĈ−1v = htCh− wthhtw

ϵ
= (htC−1

1 h+ ϵhtC−1
1 zztC−1

1 h)− ϵztC−1
1 hhtC−1

1 z

= htC−1
1 h,

(4.8)

where we used (4.5) in the second equality.
To emphasize the dependence of ϕ on β, we sometimes denote ϕ as ϕ[β]. In

Example 4.4 (below) we will use the fact that ϕ is independent of β1,2n−1 and β0,2n.
To see this, note that β1,2n−1 is an element of vectors z and zt, so (4.3) shows that
C1 and h are independent of β1,2n−1 and β0,2n. It now follows from (4.8) that ϕ is

independent of β1,2n−1 and β0,2n as well. Thus, if β̃(2n) has the property that Mn(β̃)

is positive semidefinite and (y − x3)-pure, and if βij = β̃ij for all (i, j) ̸= (1, 2n − 1)

and (i, j) ̸= (0, 2n), then ϕ[β̃] = ϕ[β]. Note that ϕ would depend on β1,2n−1 and β0,2n
if A0 in (4.6) was chosen differently. This is due to the fact that the last row of Ĉ−1v
in (4.7) would be non-zero.
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Theorem 4.1. Suppose Mn is positive semidefinite and (y − x3)-pure. β ≡ β(2n)

has a representing measure if and only if β1,2n−1 > ϕ (equivalently, C[A0] ≻ 0). In
this case, CV(Lβ) = Γ, which coincides with the union of supports of all representing
measures (respectively, all finitely atomic representing measures).

Proof. Recall from Theorem 3.6 that Ĉ is positive definite. Consider first the case
β1,2n−1 > ϕ. It follows from (4.1) and [A, Theorem 1] that H is positive definite. Since
C is orthogonally equivalent to H, we see that C is positive definite, so the existence
of representing measures and the conclusion concerning supports follow from Theorem
2.13.

We next consider the case when β1,2n−1 = ϕ, so that by [A, Theorem 1], H is

positive semidefinite, but singular. Since Ĉ ≻ 0, it follows from (4.1) and (4.7) that
kerH contains the vector

(4.9) û :=

Å
Ĉ−1v
−1

ã
≡

Ñ
Ch− wth

ϵ
w

0
−1

é
≡ (r0, r1, . . . , rdn−2, udn−1, udn)

t,

where udn−1 = 0 and udn = −1. From the orthogonal equivalence between H and C,
based on the interchange of rows and columns nd and nd+1, it follows that C is posi-
tive semidefinite and that kerC contains the vector r̂ = (r0, r1, . . . , rdn−2, rdn−1, rdn)

t,
where rdn−1 = udn = −1 and rdn = udn−1 = 0. Let ŝ ≡ (s0, . . . , sdn)

t denote
the 0 vector, so that ⟨Cr̂, r̂⟩ + ⟨Cŝ, ŝ⟩ = 0 and the auxiliary condition of (2.11),
rdn−1rdn + sdn−1sdn = 0, is satisfied. Now, following Remark 2.11 and (2.7), de-
fine aij = hij(r̂, ŝ) (0 ≤ i ≤ 2, j ≥ 0, 0 < i + j ≤ 2n). Then p :=

∑
aijfij

is an element of kerLβ which satisfies Q(x) := p(x, x3) = R(x)2, where R(x) :=
r0 + r1x + · · · + rdn−1x

dn−1 + rdnx
dn. Since rdn = 0, R(x) has at most dn − 1 real

zeros, so p has at most dn − 1 zeros in the curve y = x3. Now p ∈ kerLβ satisfies

p|Γ ≥ 0 and cardZ(p|Γ) ≤ dn− 1 < d(2n−d+3)
2

= rankMn (since d = 3), so Corollary
1.4 implies that β has no representing measure.

To complete the proof, we consider the case when β1,2n−1 < ϕ. From (4.1) and
(4.9) we have

⟨Hû, û⟩ = ⟨
Å

0dn×1

vtĈ−1v − β1,2n−1

ã
,

Å
∗dn×1

−1

ã
⟩ = β1,2n−1 − vtĈ−1v = β1,2n−1 − ϕ < 0.

Recall that H = PσCPσ−1 . Setting r̂ := Pσ−1û, we have ⟨Cr̂, r̂⟩ = ⟨Hû, û⟩ < 0, and,

from (4.9), r̂ is of the form r̂ = (r0, . . . , rdn−1, rdn)
t ≡

Ñ
∗(dn−1)×1

−1
0

é
; in particular,

rdn−1rdn = 0. Let ϵ = (ϕ− β1,2n−1)
1/2. Since ⟨Ĉe1, e1⟩ = β00 = 1, then the constant

polynomial S(x) = ϵ, with coefficient vector ŝ = (ϵ, 0, . . . , 0)t, satisfies sdn−1sdn = 0
and we have ⟨Cr̂, r̂⟩ + ⟨Cŝ, ŝ⟩ = 0. So r̂ and ŝ together satisfy the auxiliary
requirements of (2.10). Constructing p(x, y) as in Remark 2.11, (2.10) shows that
p ∈ kerLβ. Now, p(x, x

d) = R(x)2 + S(x)2 ≥ ϵ2 > 0. Since p is strictly positive on Γ,
then CV(Lβ) = ∅, and therefore β has no representing measure. □
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Remark 4.2. In Theorem 4.1, an alternate proof of the case β1,2n−1 < ϕ can be based
on Theorem 2.13, as follows. Let A0 be as in (4.6). If β1,2n−1 < ϕ[A0], then (4.8)
implies that β1,2n−1 < htC−1

1 h. It therefore follows from (4.3) that for every A ∈ R,

the matrix

Å
C1 h
ht β1,2n−1

ã
is a principal submatrix of H[A] that is not positive

semidefinite. Thus, for every A, H[A], and hence C[A], is not positive semidefinite,
so Theorem 2.13 implies that β has no representing measure.

In [F2] a rather lengthy construction with moment matrices is used to derive
a certain rational expression in the moment data, denoted by ψ in [F2], such that β
has a representing measure if and only if β1,2n−1 > ψ, in which case Mn admits a flat
extension Mn+1. In view of Theorem 4.1, it is clear that ψ = ϕ (although this is not
at all apparent from the definitions of these expressions).

Corollary 4.3. Suppose Mn(β) is positive semidefinite and (y − x3)-pure. The fol-
lowing are equivalent:

(i) β has a representing measure;

(ii) β has a finitely atomic measure;

(iii) Mn(β) has a flat extension Mn+1;

(iv) CV(Lβ) ̸= ∅;
(v) With A defined by (4.6) and ϕ defined by (4.8), β1,2n−1 > ϕ;

(vi) CV(Lβ) = Γ.

Proof. The implications (i) =⇒ (iv) =⇒ (ii) =⇒ (i) follow from the Core Variety
Theorem and its proof. The equivalence of (i) and (iii) is established in [F2], and the
equivalence of (i), (v), and (vi) is Theorem 4.1. □

In [EF] the authors used the results of [F1] to exhibit a family of positive
(y − x3)-pure moment matrices M3(β

(6)) such that β(6) has no representing measure
but the Riesz functional is positive (cf. Section 1). Here, positivity of the functional
cannot be derived from positivity ofM3 using an argument such as L(p) = L(

∑
p2i ) =∑

⟨M3p̂i, p̂i⟩ ≥ 0, because, by the theorem of Hilbert, not every nonnegative polyno-
mial p(x, y) of degree 6 can be represented as a sum of squares. Using Theorem 4.1
we can extend this example to a family of (y − x3)-pure matrices Mn, for n ≥ 3 as
follows.

Example 4.4. Suppose M ≡ Mn(β) is positive semidefinite and (y − x3)-pure. Let
ϕ ≡ ϕ[β] be as in (4.8) and suppose ϕ = β1,2n−1, so that β has no representing

measure by Theorem 4.1. We claim that the Riesz functional Lβ is positive. Let M̂
denote the central compression of M to rows and columns that are of the form X iY j

with 0 ≤ i < 3, so that rankM = rank M̂ and M̂ ≻ 0. Now let β̃ be defined to
coincide with β, except possibly in the β1,2n−1 position. It follows from the structure

of positive matrices that there exists δ > 0 such that if |β̃1,2n−1 − β1,2n−1| < δ, then”Mn(β̃) is positive definite. The structure of positive (y − x3)-pure moment matrices

now implies that Mn(β̃) is positive semidefinite and (y − x3)-pure. Now consider the
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sequence β[m] which coincides with β except that β
[m]
1,2n−1 = β1,2n−1 + 1/m. It follows

that there exists m0 > 0 such that if m > m0, then M [m] ≡ Mn(β
[m]) is positive

semidefinite and (y − x3)-pure. By the remarks preceding Theorem 4.1, we have

β
[m]
1,2n−1 = β1,2n−1 + 1/m > β1,2n−1 = ϕ[M ] = ϕ[Mn(β

[m])], so Theorem 4.1 implies

that β[m] has a representing measure. Thus, Lβ[m] is positive, and since the cone of
sequences with positive functionals is closed, it follows that Lβ is positive.

To exhibitMn(β) as in Example 4.4, we may start with any positive semidefinite
(y−x3)-pureMn(β

′). Define β so that it coincides with β′ except that β1,2n−1 = ϕ[β′].
If necessary, increase β0,2n to insure positivity of Mn(β). Then Mn(β) is positive
semidefinite, (y − x3)-pure, and β1,2n−1 = ϕ[β′] = ϕ[β] by the remarks preceding
Theorem 4.1.

5. A test for finiteness of the core variety in the (y − xd)-pure
truncated moment problem.

In this section we extend the method of the previous section to develop a suffi-
cient condition for finiteness of the core variety in the (y−xd)-pure truncated moment
problem for d ≥ 4. For d = 4, this condition actually implies an empty core variety
and the nonexistence of representing measures. We begin with a construction that
applies to the (y − xd)-pure truncated moment problem for d ≥ 4 (so that there are
at least 3 auxiliary moments).

Using (3.3) note that in the core matrix C, the η ≡ (d−1)(d−2)
2

antidiagonals
with auxiliary moments are contained within the final 2η antidiagonals. Namely,
for 1 ≤ k ≤ d − 2, the auxiliary moments Ak+1,2n−k, . . . , Ad−1,2n−k are contained in
d− 1− k such antidiagonals. We divide the final column f of C into d vectors f [ℓ],
ℓ = 0, . . . , d− 1, such that

(5.1) f ≡


f [d− 1]

...
f [ℓ]
...

f [0]

 ∈ Rnd+1,

where

f [0] =
(
β0,2n

)
, f [ℓ] =



β0,2n−ℓ

β1,2n−ℓ

...
βℓ,2n−ℓ

Aℓ+1,2n−ℓ

...
Ad−1,2n−ℓ


∈ Rd for 1 ≤ ℓ ≤ d− 2
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and

f [d− 1] =

á
g[n]

g[n+ 1]
...

g[2n− d+ 1]

ë
∈ R(n−d+2)d with g[i] =

á
β0,i
β1,i
...

βd−1,i

ë
for each i.

So the first auxiliary moment occurs in the last coordinate of f [d − 2], which is the
antidiagonal (d− 1)(d− 2) of C counted from the final one backwards.

Consider the following permutation σ of the rows of C to form a matrix H1.
The first (nd + 1) − 2η rows and columns of H1 coincide with those of C. The η
rows of C ending in auxiliary moments (as just described above) are shifted into the
final η rows of H1, maintaining the same relative position ordering as in C. The rows
among the final 2η rows of C that do not contain auxiliary moments in the rightmost
position are shifted upward into consecutive rows of H1 beginning in row nd+2− 2η
(and maintaining the same order).

Matrix H is obtained from H1 by permuting the columns of H1 in the same
way as the rows of C were permuted to form H1; thus H = PσCPσ−1 , where Pσ is the
permutation matrix associated with σ (Pσei = eσ(i) (1 ≤ i ≤ dn+ 1), cf. Section 3).

Remark 5.1. Recall from Proposition 2.9(ii) that C = M̃ [β̃,U ], where

• β̃ ≡ β̃(2(n+d−2)) is any extension of β such that Mn+d−2 is recursively generated,
• U is as in (2.16),

• M [β̃,U ] is a matrix with rows and columns indexed in the order (2.17) with the

entry in row X iY j and column XkY l equal to β̃i+k,j+l (cf. (2.18)),

• M̃ [β̃,U ] is obtained fromM [β̃,U ] by replacing each β̃ij such that i mod d+j+⌊ i
d
⌋ >

2n with the auxiliary moment Aij.

Then H is a matrix obtained from M̃ [β̃,U ] by permuting its rows and columns. First,
the rows and columns that are not shifted from C appear, i.e., all X iY j from (2.17)
with i+j ≤ n up to Xd−2Y n−d+2. Then the rows and columns that are shifted upward
from C, i.e., X iY j from (2.17) right to Xd−2Y n−d+2 with i+ j ≤ n. Finally, the rows

and columns that are shifted downward from C follow, i.e., (i, j) ∈ “F (cf. (3.3)) with
their relative position ordering preserved.

From this construction, it is apparent that the first

τ ≡ nd+ 1− card “F (
= nd+ 1− (d− 2)(d− 1)

2
=

2nd− d2 + 3d

2

)
rows and columns of H coincide with Ĉ, and that H admits a decomposition

(5.2) H =

Ñ
Ĉ v B
vt λ D
Bt Dt E

é
,
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where rows and columns of Ĉ are indexed by elements X iY j from (2.17) with (i, j) /∈“F , the row
(
vt λ D

)
has index Xd−1Y n−d+2 and the rows in

(
Bt Dt E

)
run over

X iY j for (i, j) ∈ “F \ {(d− 1, n− d+ 2)}.
Note that v is of the form

(5.3) v =

Å
h

Ã ≡ Ad−1,2n−d+2

ã
,

with h ∈ Rτ−1 and

λ = Hnd+2−η,nd+2−η = Hσ(d(n−d+3)),σ(d(n−d+3)) = Cd(n−d+3),d(n−d+3) = βξ mod d,⌊ ξ
d
⌋,

where ξ = 2nd−2d2+6d−2 and we used (2.13) in the last equality. Note that in the
second and third equality we used the fact that d(n− d+3) is the number of the row
in C (at level d− 2) ending in the first auxiliary moment, Ad−1,2n−d+2, and σ moves
this row to row nd+2− η (= τ +1) in H1 (the first row of H1 ending in an auxiliary
moment). Write

Ĉ =

Å
C1 z
zt β0,2n

ã
,

where C1 is of size (τ − 1)× (τ − 1) and z ∈ Rτ−1. We now have

(5.4) H[Ã] =

á
C1 z h B1

zt β0,2n Ã B2

ht Ã λ D

Bt
1 Bt

2 Dt E

ë
.

In the sequel we will provide a partial analogue to Theorem 4.1 based on the
relative value of λ.

Since Ĉ ≻ 0, Ĉ−1 has the form

(5.5) Ĉ−1 =

Å
C w
wt ϵ

ã
,

where C ≻ 0, ϵ > 0, and w ∈ Rτ−1. Now Ĉ−1v =

Ç
Ch+ Ãw

wth+ Ãϵ

å
, and we set

(5.6) Ã0 := −w
th

ϵ
,

so that

(5.7) Ĉ−1v =

Å
Ch− wthw

ϵ
0

ã
.

With this value of Ã in C, and thus also in v, let

(5.8) ϕ := vtĈ−1v = htCh− wthhtw

ϵ
= htC−1

1 h,
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where the last equality follows by the same computation as for (4.8) above. Let

(5.9) û :=

Ñ
Ĉ−1v
−1

0(nd−τ)×1

é
=

Ü
Ch− wthhtw

ϵ
0
−1

0(nd−τ)×1

ê
≡

á
u0
u1
...
udn

ë
,

where uτ+1 = uτ+2 = · · · = udn = 0. A calculation shows that

(5.10) ⟨Hû, û⟩ = λ− ϕ.

We next apply the inverse permutation σ−1. Let r̂ = Pσ−1û ≡ (r0, . . . , rdn)
t.

Note that decomposing r̂ in the same way as f in (5.1), the nd−τ = (d−2)(d−1)
2

−1 zeros
at the bottom of û correspond to zeros in r̂ as follows: at level k of r̂ (1 ≤ k ≤ d− 3),
zeros appear in the high-indexed d − k − 1 positions of this level, corresponding to
the positions of the auxiliary moments Aij at this level of f . Note that the indices of
these ri are precisely those that satisfy

i mod d+
⌊ i
d

⌋
> n and

(
i mod d, n+

⌊ i
d

⌋)
̸= (d− 1, 2n− d+ 2),

or equivalently, with F as in (2.9),

(5.11)
(
i mod d, n+

⌊ i
d

⌋)
∈ F \ {(d− 1, 2n− d+ 2)}.

Moreover, by the choice of Ã, uτ−1 = 0, (cf. (5.6), (5.9)), and σ−1 shifts this 0
to the end of r̂, so we have

(5.12) rdn = 0.

Further

(5.13) ⟨Cr̂, r̂⟩ = ⟨Hû, û⟩ (= λ− ϕ).

Now suppose λ = ϕ, so that ⟨Cr̂, r̂⟩ = 0. We seek to apply Remark 2.11 to show
that the core variety is at most finite in this case. In order to do so with a polynomial
p ∈ kerL satisfying p(x, xd) = R(x)2, with R(x) = r0 + r1x + · · · rndxnd (using r̂ as
described above), we will show that the auxiliary requirements hij(r̂, ŝ) = 0 of (2.10)
are satisfied with this r̂ and using ŝ ≡ 0.

Example 5.2. Let d = 4. In this case the auxiliary conditions of (2.10) are

h3,2n−1 = 2(r4nr4n−1 + s4ns4n−1) = 0,

h2,2n−1 = 2(r4nr4n−2 + s4ns4n−2) + r24n−1 + s24n−1 = 0,

h3,2n−2 = 2(r4nr4n−5 + r4n−1r4n−4 + r4n−2r4n−3+

+ s4ns4n−5 + s4n−1s4n−4 + s4n−2s4n−3) = 0.

From (5.9) and (5.12) we have r4n = r4n−1 = r4n−2 = 0, and since ŝ = 0, it follows
that h3,2n−1 = h2,2n−1 = h3,2n−2 = 0.
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We now turn to the general case of λ = ϕ for d ≥ 4, and we again utilize r̂ as
described above and ŝ = 0. For each (i, 2n− k) ∈ F (cf. (2.9)), i.e., for 1 ≤ k ≤ d− 2
and k + 1 ≤ i ≤ d− 1, we consider the auxiliary function

hi,2n−k := rndr(n−k)d+i + rnd−1r(n−k)d+i+1 + · · ·+
+ rnd−pr(n−k)d+i+p + · · ·+ r(n−k)d+irnd.

(5.14)

(Here 0 ≤ p ≤ kd− i, so that nd− p ≥ 0 and (n− k)d + i + p ≤ nd.) To show that
hi,2n−k = 0, we will rely on the following result.

Lemma 5.3. For (i, 2n− k) ∈ F (cf. (2.9)) and 0 ≤ p ≤ kd− i, we have

(5.15) rnd−pr(n−k)d+i+p = 0.

Proof. Let (i, 2n − k) ∈ F and let rjrl be one of the terms appearing in the sum of
(5.14); thus

(5.16) j = nd− p for some p, 0 ≤ p ≤ kd− i, and l = (n− k)d+ i+ p.

We seek to utilize Lemma 2.5, and to this end we let i in Lemma 2.5 coincide with i
and let j in Lemma 2.5 correspond to 2n− k. Let k and l in Lemma 2.5 correspond,
respectively, to j and l defined in (5.16). Note that

(5.17)
(
(j + l) mod d, ⌊j + l

d
⌋
)
= (i, 2n− k) ∈ F .

It is not difficult to verify that the values for j and l in (5.16) satisfy the hypotheses
of Lemma 2.5: j ≡ nd− p, l ≡ (n− k)d+ i+ p ≤ nd and j + l = i+ d(2n− k). By

Lemma 2.5, one of J :=
(
j mod d, n +

⌊
j
d

⌋)
∈ F and L :=

(
l mod d, n +

⌊
l
d

⌋)
∈ F

holds. By symmetry with respect to p in (5.14) we may assume that J ∈ F . If
J ∈ F \ {(d− 1, 2n− d+ 2)}, then rj = 0 by (5.9) and (5.11).

Now suppose J = (d − 1, 2n − d + 2), so that j mod d = d − 1 and
⌊
j
d

⌋
=

n − d + 2. An examination of (2.9) shows that for every pair (s, t) ∈ F , we have
s+ dt ≥ d− 1 + d(2n− d+ 2). Now, if l < dn, then

j + l =

Å
(j mod d) + d

⌊ j
d

⌋ã
+ l < (d− 1) + d(n− d+ 2) + dn

= (d− 1) + d(2n− d+ 2).

(5.18)

With s = (j + l) mod d and t = ⌊ j+l
d
⌋, we have s+ dt = j + l, so (5.18) implies that(

(j + l) mod d,
⌊
j+l
d

⌋)
/∈ F , contradicting (5.17). Therefore l = dn, in which case

rl = 0 by (5.12). □

Theorem 5.4. Let d ≥ 4.

(i) If λ = ϕ, then CV(Lβ) is finite or empty.

(ii) If λ = ϕ and d = 4, then there is no representing measure.

(iii) If λ < ϕ, then there is no representing measure.
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Proof. Let ∆ denote the curve y = xd. We first consider the case when λ = ϕ, so
that ⟨Hû, û⟩ = 0 by (5.10). When we reverse the permutation σ described above to
produce vector r̂, we have ⟨Cr̂, r̂⟩ = 0 by (5.13). Let ŝ = 0. Lemma 5.3 now shows
that all of the auxiliary conditions (2.10) are satisfied. Following Remark 2.11 and
(2.7), define aij = hij(r̂, ŝ) (0 ≤ i ≤ d− 1, i, j ≥ 0, 0 < i+ j ≤ 2n). Then P (x, y) :=∑
aijfij is an element of kerLβ which satisfies Q(x) := P (x, xd) = R(x)2, where

R(x) := r0 + r1x+ · · ·+ rdn−1x
dn−1 + rdnx

dn. Since rdn = rdn−1 = · · · = rdn−(d−2) = 0,
R(x) has at most dn− (d− 1) real zeros, so P has at most dn− (d− 1) zeros in the
curve ∆. Since P ∈ kerLβ satisfies P |∆ ≥ 0 and cardZ(P |∆) ≤ dn − (d − 1), it
follows that card CV(Lβ) ≤ dn− (d− 1). In the case d = 4,

dn− (d− 1) = 4n− 3 < 4n− 2 = rankMn,

so Corollary 1.4 implies that β has no representing measure.
In the case where λ < ϕ, we may construct H, û and then r̂ and R(x) as in the

preceding case, but now ⟨Cr̂, r̂⟩ = ⟨Hû, û⟩ = λ − ϕ < 0. Let ϵ = (ϕ − λ)1/2. Since

⟨Ĉe1, e1⟩ = β00 = 1, then the constant polynomial S(x) = ϵ, with coefficient vector
ŝ = (ϵ, 0, . . . , 0)t, satisfies ⟨Cr̂, r̂⟩+ ⟨Cŝ, ŝ⟩ = 0. As in the first paragraph, r̂ satisfies
(5.15), while from definition of ŝ, the analogue of (5.15) for ŝ clearly holds. So r̂
and ŝ together satisfy the auxiliary requirements of (2.10). Constructing p(x, y) as in
Remark 2.11, (2.10) shows that p ∈ kerLβ. Now, p(x, x

d) = R(x)2 + S(x)2 ≥ ϵ2 > 0.
Since p is strictly positive on ∆, then CV(Lβ) = ∅, and therefore β has no representing
measure. □

Remark 5.5. (i) The content of Remark 4.2 about the alternate proof of the case

β1,2n−1 < ϕ for d = 3 extends to the case λ < ϕ in Theorem 5.4. Let Ã0 be as in (5.6).

Let ϕ[Ã] denote ϕ as in (5.8) where we emphasize the dependence on Ã. If λ < ϕ[Ã0],
then (5.8) implies that λ < htC−1

1 h. It therefore follows from (5.4) that for every

Ã ∈ R, the matrix

Å
C1 h
ht λ

ã
is a principal submatrix of H[Ã] that is independent

of Ã and not positive semidefinite. Thus, for every Ã, H[Ã], and hence C[Ã], is not
positive semidefinite, so Theorem 2.13 implies that β has no representing measure.

(ii) In Section 6, we show that there exists a (y − x4)–pure sequence with a unique
representing measure and therefore a finite core variety (see Example 6.6.v)). By
Theorem 5.4.(ii), it follows that λ > ϕ in every such example.

Theorem 5.4 suggests the following question.

Question 5.6. For d ≥ 5, if λ = ϕ, is it possible for the core variety to be nonempty?

6. The (y − x4)-pure truncated moment problem

In this section we establish a complete solution to the moment problem for
β ≡ β(2n) where Mn is positive semidefinite and (y − x4)-pure (see Theorem 6.3). In
addition to the core variety approach, we also use the method of [Z1] involving positive
completions of partially defined Hankel matrices (see Lemma 6.1 and Theorem 6.2).
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Note that (cf. (2.28))

(6.1) rankMn = 4n− 2.

Recall (cf. Example 2.7) that the core matrix C of β ≡ β(2n) has three auxiliary
moments, i.e., β3,2n−2, β2,2n−1, β3,2n−1, which we denote by A3,2n−2,A2,2n−1,A3,2n−1.

Convention: In what follows we write Aij in bold whenever the auxiliary moment is
meant as a variable. When we use a non-bold notation Aij we mean a specific value
of the variable Aij.

Recall from Examples 2.7 that the rows and columns of the core matrix

C ≡ C[A3,2n−2,A2,2n−1,A3,2n−1]

are indexed by the ordered set

B := {1, X,X2, X3, Y,XY,X2Y,X3Y, . . . , Y k, XY k, X2Y k, X3Y k, . . . ,

Y n−1, XY n−1, X2Y n−1, X3Y n−1, Y n}.

For 1 ≤ k ≤ 4n+ 1 let

(6.2) Ik := (k − 1) mod 4 and Jk :=
⌊(k − 1)

4

⌋
(cf. (3.2) with d = 4). Let A3,2n−2, A2,2n−1, A3,2n−1 ∈ R be such that

C ≡ C[A3,2n−2, A2,2n−1, A3,2n−1]

satisfies a column relation

(6.3) XIkY Jk =
k−1∑
i=1

φiX
IiY Ji for some 2 ≤ k ≤ 4n+ 1 and φi ∈ R.

We say that the column relation (6.3) propagates through C if the relations

(6.4) XIk+ℓY Jk+ℓ =
k−1∑
i=1

φiX
Ii+ℓY Ji+ℓ for ℓ = 1, . . . , 4n+ 1− k

also represent column relations of C.
In what follows we will need a notion of a Schur complement. Let M =Å

A a
at α

ã
be a real matrix where A ∈ R(m−1)×(m−1) is invertible, a ∈ Rm−1 and

α ∈ R. The Schur complement of A in M is defined by M/A = α− atA−1a.
To prove the main result of this section (see Theorem 6.3 below), we will need

the following two results from [Z1]. The first is about the existence of a positive
completion of a partially defined Hankel matrix (see Lemma 6.1), while the other is
about the existence of a measure for a univariate sequence with two missing entries
(see Theorem 6.2).
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Lemma 6.1 ([Z1, Special case of Lemma 2.11]). Let m ∈ N, m ≥ 3 and

A(x) :=

Ñ
A1 a b
aT α x
bT x β

é
be a real symmetric m×m matrix, where A1 is a real symmetric (m− 2)× (m− 2)
matrix, a, b ∈ Rm−2, α, β ∈ R and x is a variable. Assume that A1 is positive

definite and the submatrices A2 :=

Å
A1 a
aT α

ã
, A3 :=

Å
A1 b
bT β

ã
of A(x) are positive

semidefinite. Let

x± := bTA−1
1 a±

»
(A2/A1)(A3/A1) ∈ R.

Then:

(i) A(x0) is positive semidefinite if and only if x0 ∈ [x−, x+].
(ii) If x0 ∈ {x−, x+}, then rankA(x0) = max

{
rankA2, rankA3

}
.

(iii) If x0 ∈ (x−, x+), then rankA(x0) = max
{
rankA2, rankA3

}
+ 1.

Theorem 6.2 ([Z1, Special case of Theorem 3.5]). Let m ∈ N, m > 3, and

γ(x,y) := (γ0, γ1, . . . , γ2m−3,y,x, γ2m)

be a sequence, where each γi is a real number, γ0 > 0 and x,y are variables. Assume
that the Hankel matrices H1 := (γi+j−1)1≤i,j≤m−3 and H2 = (γi+j−1)1≤i,j≤m−2 are
positive definite. Then the following statements are equivalent:

(i) There exist x0, y0 ∈ R such that γ(x0, y0) admits a representing measure sup-
ported in R.

(ii) The matrix Ã :=

Å
H1 u
ut γ2m

ã
, where uT :=

(
γm · · · γ2m−3

)
, is positive

semidefinite and the inequality

(6.5) sH−1
2 sT ≤ uH−1

1 wT +
»(

H2

/
H1

)(
Ã
/
H1

)
holds, where sT :=

(
γm−1 · · · γ2m−3

)
, wT :=

(
γm−2 · · · γ2m−5

)
.

Next we introduce five submatrices of C which occur in the statement of the
solution to the (y − x4)-pure TMP. For S ⊂ B we denote by C|S the restriction of C
to rows and columns indexed by elements from S. Let

S1 := B \ {XY n−1, X2Y n−1, X3Y n−1, Y n},
S2 := B \ {X2Y n−1, X3Y n−1, Y n},
S3 := B \ {XY n−1, X3Y n−1, Y n},
S4 := B \ {X3Y n−1, Y n},
S5 := B \ {X2Y n−1, X3Y n−1}
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and Ci := C|Si
for each i. Note that C1, C2, C3 are completely determined by β, and

we have

C2 =

Å
C1 u
ut β2,2n−2

ã
, C3 =

Å
C1 v
vt β0,2n−1

ã
,

C4[A3,2n−2] =

Å
C2 w
wt β0,2n−1

ã
with w =

Å
w1

A3,2n−2

ã
,

C5[A3,2n−2] =

Å
C2 z
zt β0,2n

ã
with zt =

(
zt1 A3,2n−2 β0,2n−1 β1,2n−1

)
,

(6.6)

where u, v, w1, z1 are independent of the auxiliary moments. Assume that C2 is
positive definite. (Note that by Theorem 6.3 below this is a necessary condition
for the existence of a representing measure for β.) Using C4[A3,2n−2] as A(x) in
Lemma 6.1, it follows that C4[A3,2n−2] is positive semidefinite if and only if A3,2n−2 ∈[
(A3,2n−2)−, (A3,2n−2)+

]
, where

(A3,2n−2)− = vtC−1
1 u−

»
(C2/C1)(C3/C1),

(A3,2n−2)+ = vtC−1
1 u+

»
(C2/C1)(C3/C1).

(6.7)

Moreover, Lemma 6.1.(ii) implies that the last column of C4[(A3,2n−2)−] is linearly
dependent on the previous columns:

X2Y n−1 = φ
(−)
1 1+ φ

(−)
2 X + φ

(−)
3 X2 + . . .+ φ

(−)
4n−3Y

n−1 + φ
(−)
4n−2XY

n−1

=
4n−2∑
i=1

φ
(−)
i XIiY Ji for some φ

(−)
i ∈ R.

(6.8)

Similarly, in C4[(A3,2n−2)+] we have

X2Y n−1 = φ
(+)
1 1+ φ

(+)
2 X + φ

(+)
3 X2 + . . .+ φ

(+)
4n−3Y

n−1 + φ
(+)
4n−2XY

n−1

=
4n−2∑
i=1

φ
(+)
i XIiY Ji for some φ

(+)
i ∈ R.

(6.9)

Let [X iY j]XkY l be the entry in the row XkY l of the column X iY j of C. Assuming
(6.8) and (6.9) we also define

(A2,2n−1)− =
4n−2∑
i=1

φ
(−)
i [XIiY Ji ]Y n , (A3,2n−1)− =

4n−2∑
i=1

φ
(−)
i [XIi+1Y Ji+1 ]Y n(6.10)

and

(A2,2n−1)+ =
4n−2∑
i=1

φ
(+)
i [XIiY Ji ]Y n , (A3,2n−1)+ =

4n−2∑
i=1

φ
(+)
i [XIi+1Y Ji+1 ]Y n .(6.11)

Note that in the definitions of (A3,2n−1)± we used that [X2Y n−1]Y n = (A2.2n−1)±, and
hence (A2,2n−1)± needs to be defined before (A3,2n−1)± in (6.10), (6.11). In the sequel,
for the case when A3,2n−2 = (A3,2n−2)−, (6.10) is used to define A2,2n−1 so that the
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relation (6.8) becomes a full column relation in C. (Similarly for A3,2n−2 = (A3,2n−2)+,
(6.11), (6.9).)

Recall that for S ⊆ B we denote by [X iY j]S the restriction of the column X iY j

of C to the rows indexed by elements of S. The solution to the (y − x4)-pure TMP
is the following.

Theorem 6.3. Suppose Mn is positive semidefinite and (y − x4)-pure. Assume the
notaion above. β ≡ β(2n) has a representing measure if and only if the following
conditions hold:

(i) C2 is positive definite.
(ii) C3 is positive semidefinite.
(iii) One of the following statements holds:

(a) The relation (6.8) propagates through C[(A3,2n−2)−, (A2,2n−1)−, (A3,2n−1)−].
(b) The relation (6.9) propagates through C[(A3,2n−2)+, (A2,2n−1)+, (A3,2n−1)+].
(c) There exists

(6.12) A3,2n−2 ∈
(
(A3,2n−2)−, (A3,2n−2)+

)
such that

(6.13) δ ≤ ρ,

where

δ :=
(
[X3Y n−1]S4

)t(
C4[A3,2n−2]

)−1
[X3Y n−1]S4 ,

ρ := ([Y n]S2

)t
C−1

2 [X2Y n−1]S2 +
»
(C4[A3,2n−2]/C2)(C5[A3,2n−2]/C2).

(6.14)

Remark 6.4. (i) Before we prove Theorem 6.3, let us briefly explain how it is
related to Lemma 6.1 and Theorem 6.2. Theorem 6.3.(i) comes from the as-
sumption that Mn is (y− x4)–pure, while Theorem 6.3.(ii) from Theorem 2.13.
The condition A3,2n−2 ∈

[
(A3,2n−2)−, (A3,2n−2)+

]
comes from Lemma 6.1 as ex-

plained in the paragraph before Theorem 6.3. For

A3,2n−2 ∈ {(A3,2n−2)−, (A3,2n−2)+},
flatness of C4[(A3,2n−2)±] implies that β has a representing measure if and only
if C[(A3,2n−2)±, (A2,2n−1)±, (A3,2n−1)±] is a flat extension of C4, which is equiv-
alent to one of Theorem 6.3.(iiia) or Theorem 6.3.(iiib). For the remaining
cases A3,2n−2 ∈

(
(A3,2n−2)−, (A3,2n−2)+

)
we use Theorem 6.2 for the univariate

sequence

γ = γ(8n) ≡ {γk}8nk=0, where γk :=


βIk+1Jk+1

, if Ik+1 + Jk+1 ≤ 2n,

A3,2n−2, if Ik+1 = 3, Jk+1 = 2n− 2,

A2,2n−1, if Ik+1 = 2, Jk+1 = 2n− 1,

A3,2n−1, if Ik+1 = 3, Jk+1 = 2n− 1,

to obtain Theorem 6.3.(iiic).
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(ii) Observing the proof of Theorem 6.2 in [Z1], it turns out that for A3,2n−2 sat-
isfying (6.12), the inequality (6.13) is equivalent to the existence of a positive
semidefinite completion of C[A3,2n−2,A2,2n−1,A3,2n−1], and is therefore equiva-
lent to the existence of a representing measure µ for β by Theorem 2.13. Namely,
δ comes from the submatrix C|B\{Y n} and is the lower bound on the auxiliary
moment A2,2n−1, so that C|B\{Y n} is positive semidefinite. On the other hand ρ
comes from the submatrix C|B\{X3Y n−1} and is the upper bound on the auxiliary
moment A2,2n−1, so that C|B\{X3Y n−1} is positive semidefinite. Consequently, if
there is only one A3,2n−2 satisfying (6.12) and (6.13), then µ is the unique rep-
resenting measure for β arising from Theorem 6.2. We will show below that µ is
actually the unique representing measure for β. Note first that for this unique
choice of A3,2n−2 ∈

(
(A3,2n−2)−, (A3,2n−2)+

)
, there must be equality in (6.13)

because of the continuity of the condition of being positive definite. If we had
a strict inequality in (6.13) for this A3,2n−2, then a slightly perturbed A3,2n−2

would still satisfy (6.12) and (6.13), yielding a different measure.
Concerning uniqueness, suppose as above thatA3,2n−2 uniquely satisfies (6.12)

and (6.13), and let A2,2n−1 and A3,2n−1 be such that

Cun := C[A3,2n−2, A2,2n−1, A3,2n−1]

is positive semidefinite, with corresponding measure µ. We claim that no mea-
sure can arise as in Theorem 6.3.(iiia). Let

C− := C[(A3,2n−2)−, (A2,2n−1)−, (A3,2n−1)−].

If (iiia) holds, then C− is positive semidefinite, so

1

2
(C− + Cun) =

=C
[(A3,2n−2)− + A3,2n−2

2
,
(A2,2n−1)− + A2,2n−1

2
,
(A3,2n−1)− + A3,2n−1

2

]
is positive semidefinite as well. But then

δ
((A3,2n−2)− + A3,2n−2

2

)
≤ ρ

((A3,2n−2)− + A3,2n−2

2

)
and (A3,2n−2)−+A3,2n−2

2
also satisfies (6.12) and (6.13), which is a contradiction

with the uniqueness of A3,2n−2. So C− is not positive semidefinite and does not
admit a representing measure. Analogously, the same holds for

C+ := C[(A3,2n−2)+, (A2,2n−1)+, (A3,2n−1)+].

We now conclude that µ is the unique representing measure for β. In Example
6.6(v) below we show that there are pure sequences with a unique representing
measure, as just described.

Proof of Theorem 6.3. Let Γ be the curve y = x4. First we prove the implication
(⇒). Assume that β has a representing measure µ. By Theorem 1.5, β admits a

finitely atomic representing measure µ, necessarily supported in Γ. Let β̃ ≡ β(2n+4) =

{β̃ij : i, j ≥ 0, i+ j ≤ 2n+ 4} be the extension of β generated by µ. By Proposition
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2.9, C ≡ C[β̃3,2n−2, β̃2,2n−1, β̃3,2n−1] is positive semidefinite, which implies that C2 and
C3 are positive semidefinite.

Next we show that C2 is positive definite. Assume that C2 is not definite.
Then there is a column relation in C2 of the form

∑4n−3
k=0 rkX

Ik+1Y Jk+1 = 0 for
some rk ∈ R, not all equal to 0. By the extension principle [F1, Proposition
2.4], this column relation must also hold in Mn+1 and in particular in C. Hence,
r̂ = (r0, r1, . . . , r4n−3, 0, 0, 0)

t ∈ kerC. Thus, ⟨Cr̂, r̂⟩+ ⟨Cŝ, ŝ⟩ = 0, where ŝ is the zero
vector, and the auxiliary conditions (2.10) (see Example 5.2) are satisfied. Following
Remark 2.11 and (2.7), define aij = hij(r̂, ŝ) (0 ≤ i ≤ 3, i, j ≥ 0, 0 < i + j ≤ 2n)

to obtain P (x, y) :=
∑
aijfij ∈ kerLβ and P (x, x4) =

(∑4n−3
k=0 rkx

k
)2
. Since P (x, x4)

has at most 4n− 3 real zeros, P has at most 4n− 3 zeros in the curve y = x4. It fol-
lows that card CV(Lβ) ≤ 4n− 3, which contradicts 4n− 2 = rankMn ≤ card CV(Lβ),
where the equality is (6.1). Hence, C2 must be definite.

It remains to prove (iii). Let A3,2n−2 = β̃3,2n−2, A2,2n−1 = β̃2,2n−1, A3,2n−1 =

β̃3,2n−1, where β̃ and C are as in the first paragraph above. Since C is positive semi-
definite, so also is its central compression C4[A3,2n−2]. Using C4[A3,2n−2] as A(x) in
Lemma 6.1, it follows that A3,2n−2 ∈

[
(A3,2n−2)−, (A3,2n−2)+

]
where (A3,2n−2)± are as

in (6.7). We separate three cases according to the value of A3,2n−2.

Case 1: A3,2n−2 = (A3,2n−2)−. Then in C4[(A3,2n−2)−] there is a column rela-
tion of the form (6.8). By the extension principle [F1, Proposition 2.4], this col-
umn relation also holds in C. In particular, observing row Y n, it follows that
A2,2n−1 = (A2,2n−1)− (cf. (6.10)). Since Mn+1 is recursively generated, this column
relation propagates through C[(A3,2n−2)−, (A2,2n−1)−, (A3,2n−1)−] in the sense of (6.4).

Therefore X3Y n−1 =
∑4n−2

i=1 φ
(−)
i XIi+1Y Li+1 holds. Observing row Y n, it follows that

A3,2n−1 = (A3,2n−1)− (cf. (6.10)). So C[(A3,2n−2)−, (A2,2n−1)−, (A3,2n−1)−] has the
propagating relation (6.8), which is (iiia).

Case 2: A3,2n−2 = (A3,2n−2)+. The proof is analogous to the case A3,2n−2 =
(A3,2n−2)−, implying (iiib) holds.

Case 3: (6.12) holds. Note that the existence of a representing measure for β is
equivalent to the existence of a representing measure for a univariate sequence

(6.15) γ = γ(8n) ≡ {γk}8nk=0, where γk :=

ß
βIk+1Jk+1

, if Ik+1 + Jk+1 ≤ 2n,

AIk+1Jk+1
, if Ik+1 + Jk+1 > 2n.

Indeed,
∑r

ℓ=1 ρℓδ(xℓ,x
4
ℓ )

is a representing measure for β if and only if
∑r

ℓ=1 ρℓδxℓ
is a

representing measure for γ (cf. (6.2) and the proof of Theorem 2.13). Finally, (iiic)
follows by applying Theorem 6.2 to γ. Namely, γ corresponds to γ(x0, y0); A2,2n−1,

A3,2n−1 to x0, y0, respectively; C4[A3,2n−2] to H2; C5[A3,2n−2] to Ã; [X
3Y n−1]S4 to s;

[Y n]S2 to ut; [X2Y n−1]S2 to wt; and C2 to H1.
This concludes the proof of the implication (⇒).
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It remains to prove the implication (⇐). Let γ be as in (6.15). By Lemma 6.1
with C4[A3,2n−2] as A(x), (i) and (ii) imply that for A3,2n−2 ∈

[
(A3,2n−2)−, (A3,2n−2)+

]
,

the submatrix C4[A3,2n−2] is positive semidefinite. We separate three cases acccording
to the assumption in Theorem 6.3:

If (iiia) holds, then (γi+j−1)1≤i+j≤8k−6 is positive definite and

rank(γi+j−1)1≤i+j≤8k = rank(γi+j−1)1≤i+j≤8k−6.

Therefore C[(A3,2n−2)−, (A2,2n−1)−, (A3,2n−1)−] is positive semidefinite and recursively
generated, so Theorem 2.13 implies that β has a representing measure.

If (iiib) holds, then the proof is analogous to the proof in the case (iiia) above.
Finally, if (iiic) holds, then Theorem 6.2 implies the existence of A3,2n−2, A2,2n−1,

A3,2n−1, such that (γi+j−1)1≤i,j≤8k as in (6.15) is positive semidefinite and recursively
generated, whence the same is true for C[A3,2n−2, A2,2n−1, A3,2n−1]. By Theorem 2.13,
β has a representing measure.

This concludes the proof of the implication (⇐). □

Remark 6.5. Let us comment the type of the inequality in (6.13) when regarding
A3,2n−2 as a variable A3,2n−2 in (6.14).

First we observe the left hand side of (6.13). [X3Y n−1]S4 has one coordinate

equal to A3,2n−2, while by [F2, p. 3144],
(
C4[A3,2n−2]

)−1
is equal to

(
C4[A3,2n−2]

)−1
=

Å
C−1

2 0
0 0

ã
+

1

C4[A3,2n−2]/C2

Ç
C−1

2 wwTC−T
2 −C−1

2 w

−wTC−T
2 1

å
,

where w =

Å
w1

A3,2n−2

ã
and C4/C2 = β0,2n−1 − wTC−1

2 w. So the left hand side of

(6.13) is a rational function in A3,2n−2 with the numerator being of degree 4, while
the denominator of degree 2.

Now observe the right hand side of (6.13). Note that all terms

([Y n]S2

)t
C−1

2 [X2Y n−1]S2 , C4[A3,2n−2]/C2 and C5[A3,2n−2]/C2

are quadratic inA3,2n−2. Hence, the right hand side is a sum of a quadratic polynomial
and square root of a quartic one.

The following examples demonstrate the statements of Theorem 6.3.

Example 6.6. i) Let β ≡ β(8) as in Example 2.18. It is straightforward to verify
that C2 and C3 from (6.6) are positive definite. A computation of (A36)± by (6.7)
gives (A36)± = ±1. Further, a computation of δ(A36), ρ(A36) by (6.14) gives

δ(A36) =
−9694844 + 9694114A2

36 +A4
36

−1 +A2
36

,

ρ(A36) = 9694830− 12A2
36 +

»
(−1 +A2

36)(−318219264 + 145A2
36).

It turns out that δ(A36) = ρ(A36) for A36,l ≈ −0.943353, A36,u ≈ 0.943353.
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δ

ρ

-1.5 -1.0 -0.5 0.5 1.0 1.5

9.67×106

9.68×106

9.69×106

9.70×106

9.71×106

9.72×106

9.73×106

9.74×106

So the choices for A36 satisfying (6.12) and (6.13) are the ones lying on the interval
[A36,l, A36,u]. By Theorem 6.3, this confirms the existence of a measure for β, in agree-
ment with the conclusion in Example 2.18. Note also that C[(A3,6)−, (A2,7)−, (A3,7)−]
cannot admit a representing measure, since this would imply, by a convexity argu-

ment analogous to the one from Remark 6.4.(ii), that δ
( (A36)−+A36,l

2

)
≤ ρ

( (A36)−+A36,l

2

)
,

which is not true. Similarly, C[(A3,6)+, (A2,7)+, (A3,7)+] does not admit a representing
measure.

ii) Let β ≡ β(8) be as in Example 2.19. Since C2 from (6.6) is not positive definite,
this violates Theorem 6.3.(i), whence the measure for β does not exist, in agreement
with the conclusion in Example 2.19.

iii) Let β ≡ β(8) be as in Example 2.18, except for changing β07 to β07 = 0 and β25
to β25 = 2640503382173370698906776695725. It is straightforward to verify that Ĉ is
positive definite, which implies, by Proposition 3.7, that M4(β) is positive semidef-
inite and (y − x4)-pure. Further, C2 from (6.6) is positive definite, while C3 is not
positive semidefinite. This violates Theorem 6.3.(ii), whence a measure for β does
not exist.

iv) Let β ≡ β(8) be as in Example 2.18 with β17 = 150 instead of β17 = 0. Since Ĉ
is positive definite, Proposition 3.7 implies that M4(β) is positive semidefinite and
(y − x4)-pure. Further, C2 and C3 from (6.6) are positive definite, which satisfies (i)
and (ii) of Theorem 6.3. It turns out that (A36)− = −1, (A36)+ = 1 (A27)− = 9694668,
(A27)+ = 9694968, (A37)− = 2074, (A37)+ = 2126 and the relations (6.8) and (6.9)
are

X2Y 3 = −XY 3 + 13Y 3 + 12X3Y 2 − 66X2Y 2 − 55XY 2 + 165Y 2 + 120X3Y

− 210X2Y − 126XY + 126Y + 56X3 − 28X2 − 7X + 1,

X2Y 3 = XY 3 + 13Y 3 − 12X3Y 2 − 66X2Y 2 + 55XY 2 + 165Y 2 − 120X3Y

− 210X2Y + 126XY + 126Y − 56X3 − 28X2 + 7X + 1,
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respectively. However,

C[(A3,6)−, (A2,7)−, (A3,7)−] = C[−1, 9694668, 2074],

C[(A3,6)+, (A2,7)+, (A3,7)+] = C[1, 9694968, 2126]

do not satisfy the relations

Y 4 = −X3Y 3 + 13X2Y 3 + 12XY 3 − 66Y 3 − 55X3Y 2 + 165X2Y 2 + 120XY 2

− 210Y 2 − 126X3Y + 126X2Y + 56XY − 28Y − 7X3 +X2,

Y 4 = X3Y 3 + 13X2Y 3 − 12XY 3 − 66Y 3 + 55X3Y 2 + 165X2Y 2 − 120XY 2

− 210Y 2 + 126X3Y + 126X2Y − 56XY − 28Y + 7X3 +X2,

respectively. This violates Theorem 6.3.(iiia) and 6.3.(iiib), so the choices A3,6 ∈
{−1, 1} do not lead to a measure. It remains to consider the case A36 ∈ (−1, 1). A
computation of δ(A36), ρ(A36) by (6.14) gives

δ(A36) =
−9717344 + 8100A36 + 9694114A362 +A4

36

−1 +A2
36

,

ρ(A36) = 9694830 + 150A36 − 12A2
36+

+
»
318196764 + 3600A36 − 318196909A2

36 − 3600A3
36 + 145A4

36.

However, there is no A36 ∈ (−1, 1) such that δ > ρ, which violates Theorem 6.3.(iiic).

δ

ρ

-1.5 -1.0 -0.5 0.5 1.0 1.59.60×106

9.65×106

9.70×106

9.75×106

9.80×106

It follows that Theorem 6.3.(iii) is violated, whence the measure for β does not exist.

v) Let β ≡ β(8) be as in Example 2.18 with the difference that β17 is a variable. Since
C2 and C3 do not depend on β17, they are positive definite as in iv) above. It turns
out that (A36)− = −1, (A36)+ = 1 (A27)− = 9.69468 · 106, (A27)+ = 9.69495 · 106,
(A37)− = 1869.46, (A37)+ = 1921.46. Similarly as in iv) above it is easy to check
that C− := C[(A3,6)−, (A2,7)−, (A3,7)−] and C+ := C[(A3,6)+, (A2,7)+, (A3,7)+] do not
satisfy Theorem 6.3.(iiia) and 6.3.(iiib), respectively. (It will also follow from the
uniqueness of the choice of A3,6 ∈ ((A3,6)−, (A3,6)+) such that C[A3,6, A2,7, A3,7] ⪰ 0
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for some A2,7, A3,7 ∈ R, that none of the matrices C−, C+ can be positive semidefinite
due to the convexity of the solution set of C[A3,6,A2,7,A3,7] ⪰ 0.) It remains to
consider the case A36 ∈ (−1, 1). A computation of δ(A36), ρ(A36) by (6.14) gives

δ(A36, β17) =
−β2

17 − 9694844 + 9694114 + 54β17A36 +A2
36 +A4

36

−1 +A2
36

ρ(A36, β17) = 9694830 +A36β17 − 12A2
36

+
»

(−1 +A2
36)(−318219264 + β2

17 + 145A2
36 − 24A36β17).

We are searching for β17 such that the curves δ and ρ would only touch for a unique
A36. Only for this A36 will a representing measure exist. Solving the system

(6.16) ρ(A36, β17) = δ(A36, β17) and
∂ρ(A36, β17)

∂A36

=
∂δ(A36, β17)

∂A36

on A36 and β17, one of the solutions is β17 ≈ 135.39. (The system (6.16) was solved in
exact arithmetic using [Wol].) Choosing this solution and repeating the computations
we get graphs that touch in a single point:

δ

ρ

-1.5 -1.0 -0.5 0.5 1.0 1.5

9.65×106

9.70×106

9.75×106

By Theorem 6.3.(iii) the measure for β exists and is unique as explained in Remark
6.4.(ii). Namely, there is only one good choice for A36 ∈ (−1, 1) such that δ(A36) ≤
ρ(A36), in which case δ(A36) = ρ(A36). For this choice of A36, there is only one choice
for A27, i.e., A27 = δ(A36) = ρ(A36). Finally, A37 such that rankC = rankC|B\{Y 4} =
rankC|B\{X3Y 3,Y 4} is unique. Note that Theorem 1.5 implies the core variety of Lβ is
finite. Moreover, in the notation of Theorem 5.4, in this example we have λ > ϕ.

Finally, this example also shows the answer to Question 2.14 is negative. Namely,
β in this example has (y−x4)-pureM4, and for the unique representing measure C[A]
is not positive definite but of rank 15, since the last two columns do not increase the
rank. This is due to the fact that δ is the smallest such that C|B\{Y n} is positive semi-
definite and the largest such that C|B\{X3Y n−1} is positive semidefinite (cf. Remark
6.4.(ii)).
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