THE PURE Y = X¢ TRUNCATED MOMENT PROBLEM
LAWRENCE FIALKOW AND ALJAZ ZALAR?

ABSTRACT. Let 3 = 32" be a real bivariate sequence of degree 2n. We study the
existence of representing measures for 3 supported in the planar curve y = z% in
the case where the associated moment matrix M, (8) is (y — 2¢)-pure. In Section
2 we provide a general necessary and sufficient condition for representing measures
in terms of positive semidefiniteness and recursive generation of the associated core
matriz. In particular, if the core matrix is positive definite, then the core variety
for f3, i.e., the union of supports of all finitely atomic representing measures, is the
whole curve y = 2%. In later sections, we provide various other concrete necessary
or sufficient conditions for measures. For d = 3, we provide a core-variety proof of
the result of [F2] characterizing the existence of representing measures. For d > 4
we develop a sufficient condition for the core variety to be finite or empty. For
d = 4, we adapt the technique of [Z1], involving positive completions of partially-
defined Hankel matrices, to provide necessary and sufficient numerical conditions
for representing measures. We conclude with an example showing that in the d = 4
case, the core variety can be finite, with a unique representing measure, which
cannot occur for d < 4.

1. INTRODUCTION.

Given a bivariate sequence of degree 2n,

B=pC ={Byi,j 2 0,i+j<2n}, foo=1,
and a closed set K C R?, the Truncated K-Moment Problem (TKMP) seeks condi-

tions on 3 such that there exists a positive Borel measure p on R?, with supp pu C K,
satisfying

Bij = / iyl du(z,y) (3,5 > 0,0+ 5 < 2n);
R2

1 is a K -representing measure for 8. A comprehensive reference for all aspects of the
Moment Problem is the recent treatise of K. Schmiidgen [Sch]. Apart from solutions
based on semidefinite programming and optimization, several different abstract solu-
tions to TKMP appear in the literature, including the Flat Extension Theorem [CF5],
the Truncated Riesz-Haviland Theorem [CF7], the idempotent approach of [Vas|, and,
more recently, the Core Variety Theorem [BF|. By a concrete solution to TKMP we
mean an implementation of one of the abstract theories involving only basic linear
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algebra and solving algebraic equations (or estimating the size of the solution set).
The ease with which any of the abstract results can be applied to solve particular
moment problems in concrete terms varies considerably depending on the problem,
with most concrete results attributable to the Flat Extension Theorem and very few
to the other approaches. In this note we show how the Core Variety Theorem (Theo-
rem 1.5 below) can indeed be applied to certain concrete moment problems, namely
when K is the planar curve y = 2¢ (d > 1).

In the classical literature TKMP has been solved concretely in terms of positive
Hankel matrices when K is the real line, the half-line [0, 400), or the closed interval
[a,b] (cf. [ST, CF1]). For the case when K is a planar curve p(z,y) = 0 with degp <
2, TKMP has been solved concretely in terms of moment matrix extensions (see
Theorem 1.1 below, [CF3, CF4, CF6, F3]). In [F2] moment matrix extensions are
used to concretely solve the truncated moment problem for y = z3 and to solve (in
a less concrete sense) truncated moment problems on curves of the form y = g(z)
and yg(z) = 1 (g € Rlz]). More recently, several authors have intensively studied
TKMP on certain planar curves of higher degree, using moment matrix extensions
and a “reduction of degree” technique to improve and extend the results of [F2] (cf.
[Z1, 72, 73, 74, YZ]). We also note that for closed planar sets K that are merely
semi-algebraic, such as the closed unit disk, very little is known concerning concrete
solutions to TKMP (cf. [CF2]).

The results cited just above do not provide concrete solutions to TKMP for
planar curves of the form y = z? (d > 4). The aim of this note is to illustrate
how the core variety, described in Theorem 1.5, can be used to study TKMP for
K = T, the planar curve y = 2% (d > 1), when the associated moment matrix
M,(B) is (y — x%)-pure, i.e., the column dependence relations in M, () are precisely
those that can be derived from the column relation Y = X? by recursiveness and
linearity (see just below for terminology and notation). In Sections 2 and 3 we
develop a core variety framework for studying TKMP in the (yy —2?)-pure case, and in
Theorem 2.13 we present general necessary and sufficient conditions for I'-representing
measures in terms of positivity and recursiveness properties of the associated core
matriz. In particular, if the core matrix is positive definite, then the core variety
is the entire curve y = 2. In Section 4 (Theorem 4.1) we apply Theorem 2.13 and
core variety methods to present necessary and sufficient conditions for representing
measures in the (y — z3)-pure truncated moment problem. An equivalent version
of this result was first proved in [F2] (see Theorem 1.2 below). The proof in [F2]
entailed a lengthy construction involving flat extensions; the new core variety proof
is short and more transparent. In Section 5 (Theorem 5.4), for the (y — x¢)-pure
truncated moment problem with d > 4, we prove a concrete sufficient condition for the
core variety to be finite, and also a concrete sufficient condition for the nonexistence
of representing measures. In Section 6 we present concrete necessary and sufficient
conditions for representing measures in the (y —x*)-pure truncated moment problem.
The proof of Theorem 6.3 combines core variety results with an approach adapted
from [Z1] involving positive completions of partially defined Hankel matrices. Finally,
we demonstrate by an example that in the (y — 2*)-pure case the core variety can
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be finite, with a unique representing measure, something that cannot occur in the
(y — x%)-pure truncated moment problem for d < 4.

Let P := Rz, y] and let Py := {q € P: degq < k}. Given 3 = 52", define the
Riesz functional Lg : Pa, — R by

Z a;; 'y’ — Z a;jBij.
For a sequence 3 = 3" with Riesz functional Lg, the moment matriz M, has rows
and columns indexed by the monomials in P, in degree-lexicographic order, i.e., 1,
X,Y, X? XY,Y?..., X" ..., Y" In this case, the element of M, in row X*Y7,
column X*Y' is B,y ;1. More generally, for r,s € P,, with coefficient vectors 7,5
relative to the basis of monomials, we have

(M7,5) = Ly(rs).
In the sequel, for ¢ € P, ¢ =Y ax'y?, we set ¢(X,Y) := > a;; XY (= M,q).

If B has a K-representing measure u, then Lg is K -positive, i.e., ¢ € Pay, q|K >
0= Lg(q) > 0 (since Lg(q) = [, qdu). The converse is not true; instead, the Trun-
cated Riesz-Haviland Theorem [CF7] shows that 8 admits a K-representing measure
if and only if Lz admits an extension to a K-positive linear functional on Pa,49. In
[B] G. Blekherman proved that if M,, is positive semidefinite and rank M,, < 3n — 3,
then Lg is R*-positive, so the Truncated Riesz-Haviland Theorem then implies that
£27=1 has a representing measure. Using special features of the proof of Theorem 1.2
(below), in [EF] C. Easwaran and the first-named author exhibited a class of Riesz
functionals that are positive but have no representing measure. Apart from these
results, it seems very difficult to verify positivity of Riesz functionals in examples
without first proving the existence of representing measures.

Several basic necessary conditions for a representing measures p can be ex-
pressed in terms related to moment matrices (cf. [CF5]); we will refer to these with-
out further reference in the sequel:

i) M, (B) is positive semidefinite: (M,7,7) = Lg(r?) = [r*du >0 (Vr € P,,).

ii) For any representing measure p, card(supp p) > rank M,,.

iii) Note that a dependence relation in the column space of M, can be expressed
as r(X,Y) = 0, where r € P,. Define the variety of M,, V(M,), as the common
zeros of the polynomials r € P, such that r(X,Y) = 0. Then suppp C V(M,), so
card V(M,,) > rank M,,.

iv) M, is recursively generated: whenever r, s, and rs are in P, and r(X,Y) = 0,
then (rs)(X,Y) =0.

v) M, (or Lg) is consistent: for p € Pa,, p|V(M,) = 0 = Lg(p) = 0; consistency
implies recursiveness [CFM].

The Flat Extension Theorem [CF5] shows that § admits a representing measure
if and only if M,, admits a positive semidefinite moment matrix extension M, (for
some k > 0) for which there is a rank-preserving (i.e., flat) moment matrix extension
M, +1. Using this result, in a series of papers R. Curto and the first author solved

TKMP for planar curves of degrees 1 and 2 as follows.
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Theorem 1.1 ([CF3, CF4, CF6, F3, Degree-2 Theorem]). Suppose r(x,y) € P with
degr < 2. Forn > degr, M, has a representing measure supported in the curve
r(x,y) = 0 if and only if r(X,Y) = 0 and M, is positive semidefinite, recursively
generated, and satisfies card V(M,,) > rank M,,.

In [CFM] it was shown that this result does not extend to degr > 2. The example
in [CFM] concerns an Mj that is positive and recursively generated, with card Vs =
rank M3, but which has no measure. In this example, there is no measure because
Lg is not consistent. In [F2] we showed that positivity, the variety condition, and
consistency are still not sufficient for representing measures, as we next describe.

For M, = 0, consider the (y — 2®)-pure case, when the column dependence
relations in M,, are precisely those given by Y = X3, recursiveness, and linearity, i.e.,
column relations of the form (s(z,y)(y — 2%))(X,Y) = 0 (degs < n — 3). Thus M,
is positive, rank M,, < card V(M,,) (= cardI' = +00), and it follows from Lemma 3.1
in [F2] that M, is consistent. In [F2] we described a particular, easily computable,
rational expression in the moment data, v, and solved the (y — 23)-pure TKMP as
follows.

Theorem 1.2. If M, = 0 is (y — 2%)-pure, then B has a representing measure if and
only if Bron—1 > .

In the proof of Theorem 1.2, the numerical test 3; 2,—1 > 9 leads to a flat extension
M, 1. By contrast with this result, the other existence results in [F2, Z4] generally
presuppose the existence of a certain positive moment matrix extension of M,,, but
do not give an explicit test for the extension. The proof of Theorem 1.2 in [F2] is
quite lengthy. In the sequel we will use the core variety to present a shorter, more
transparent proof. This approach also provides a core variety framework for studying
the (y — z¢)-pure truncated moment problem.

The core variety provides an approach to establishing the existence of repre-
senting measures based on methods of convex analysis. For the polynomial case, this
was introduced in [F4], and some of the ideas go back to [FN]. The discussion below
is based on joint work of the first author with G. Blekherman [BF], which treats
general Borel measurable functions, although here we only require polynomials. The
core variety has also been studied by P. di Dio and K. Schmiidgen [DDS] and in
Schmiidgen’s book [Sch].

Given 8 = " and its Riesz functional L = Lg, define V; := V(M,,) and for
1 > 0, define

Vigr := ﬂ z (f )7

feker L, f|V;>0
where Z(f) denotes the set of zeros of f(z,y) in R? (or, equivalently, in V}).
We define the core variety of L by
CV(L) = Vi.
i>0

Proposition 1.3 ([F4]). If u is a representing measure for L, then supp u € CV(L).
4



If i is a representing measure, then
rank M, (/) < card(supp p) < cardCV(Lg) < cardV; (for every i > 0).
We thus have the following test for the nonexistence of representing measures.

Corollary 1.4 ([F4]). If cardV; < rank M,, for some i, then [5 has no representing
measure.

Proposition 1.3 shows that if 5 has a representing measure, then CV(L) is
nonempty. The main result concerning the core variety is the following converse.

Theorem 1.5 ([BF, Core Variety Theorem]). L = Lg has a representing measure
if and only if CV(L) is nonempty. In this case, CV(L) coincides with the union of
supports of all finitely atomic representing measures for L.

In view of Proposition 1.3, CV(L) is also the union of supports of all repre-
senting measures. In general, it may be difficult to compute the core variety, due
to the difficulty of characterizing the nonnegative polynomials on V), Vi, V5, ..., but
Theorem 1.5 leads to the following criterion for stability.

Proposition 1.6 ([BF, DDS]). If V}, is finite, then CV(L) =V}, or CV(L) = Vju1.

Although our focus in the sequel is TKMP for the planar curves y = ¢, we

note that the results cited from [B, BF, CF5, CF7, DDS, F4] apply to the general
multivariable truncated moment problem.

Acknowledgement. The first-named author is grateful to Ratil Curto for helpful
discussions concerning core varieties for TKMP for certain quadratic planar curves
during a visit to the University of lowa in Fall, 2019.

2. A CORE VARIETY APPROACH TO THE PURE Y = X% MOMENT PROBLEM.

Suppose M, () is positive semidefinite and (y — x¢)-pure, i.e., the column de-
pendence relations in M,, are precisely the linear combinations of the column relations

(2.1) X'y st = Xy s forr.s >0, r+s<n—d.

In this section we introduce a core matrixz C associated to 3; the main result of this
section, Theorem 2.13, characterizes the existence of representing measures for 3 in
terms of the positivity properties of C' and “recursiveness” in its kernel. Using the
Core Variety Theorem we show that in the positive definite case the union of supports
of all representing measures is the curve I' := Z(y —2¢) = {(z,2?) : 2 € R}. Namely,
we employ the connection between the existence of representing measures for g = (2%
and the core variety of the Riesz functional L = Lg. Setting Vo = V(M,,) =T, we
seek to compute V) := Z(p € ker L: p|Vy > 0), the common zeros of the polynomials
in ker L that are nonnegative on Vj. To this end, we require a concrete description of

ker L.
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Lemma 2.1. Suppose M, (83) satisfies column relations (2.1). Let f;;(x,y) = x'y’— By
for 0 <i<d, j>0, and 0 < i+j < 2n. Let gy(z,y) = (y — 2d)a*y' for
k,0>0, k+1<2n—d. Then B := {fi;} U{gu} is a basis for ker Lg.

Conversely, let L : Po, — R be a linear functional such that B is a basis for
ker L. Then the moment matriz M, (5) of the sequence [3, such that L = Lg, satisfies
column relations (2.1).

Remark 2.2. In the statement of Lemma 2.1, M, () does not have to be (y — x9)-
pure for B to be the basis for ker Lg. There may be column relations other than the
linear combinations of (2.1), but B will still be a basis. Another choice of a basis for
ker Lz, which works for any sequence 3, is {f;;} for 0 <i,5, 0 < i+ j < 2n, where
fi; are defined as in the statement of the lemma. However, this basis tells us nothing
about the column relations of M, (3). To explicitly determine column relations from
the basis for ker Lg, in addition to a “good” choice of the basis, the rank of M, (3)
must also be given.

Proof of Lemma 2.1. Clearly, each f;; € ker Lg. For k,l > 0 with &k + 1 < 2n — d,

Gkt € Pap. If k+1 < mn, then Lg(gr) = (M,(y — x¢), 2Fy!) = (M,,y — M,x¢, xkyt)y = 0,
so g € ker Lg in this case. In the remaining case, n < k + [ < 2n — d, so there
exist integers r,s,t,u > 0 such that r +t =k, s+u =1, r+ s = n — d, and thus
t+u=((k+1)—(r+s)<2n—d—(n—d)=n. Now

Ls(gu) = La((y — a)a"y* - a'y") = (Ma(y — a¥)ary*, a'y")
(T — M
so (2.1) implies Lg(gi) = 0.
To show that B is a linearly independent set of elements of P, suppose {a;;}
and {by} are sequences of real scalars (indexed as in the statement of the lemma)
such that in Ps,,

(22) Z aijfij + Z bklgkl = 0.

0<i<d, j>0, k,1>0,

0<i+75<2n k+1<2n—d
For every (z,y) € R?, Y a;; fij(x,y) + . bugw(z,y) = 0, so with y = z¢, (2.2) implies
Zaijﬂj(l') =0Vz € R, where Fz](l’) = fij(x,xd) = ZL’H_dj - Bij (0 S 1< d, j Z 0,
0 <i+j < 2n). Suppose that 0 < 4,7/ < d, j,77 > 0,0 < i+ j,i+j < 2n and
i+dj =i +dj’. Then |i — 4| =d|j — j'|, and since |i — | < d, it follows that j = j’
and i = i’. Thus, the z-exponents appearing in

Qz) = Z aij($z+d] — Bij)
0<i<d, j>0,
0<i+j<2n
are distinct, and since Q(x) = 0 for every real z, it follows that each a;; = 0. Now
(2.2) implies >~ baFyl(y — x¢) = 0 for all 2,y € R. Thus, for y # 2%, > byz*y' = 0,
so by continuity we have Y byz*y! = 0 for all z,y € R. It now follows that each

by = 0, so B is linearly independent.
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Next we show that B spans ker Lg. We need to prove that card B = dim Ps,, — 1
(= dimker Lg). Recall that dim Py, = w Note that B is the disjoint union
of the sets C := {f;;} and D := {gy;}. Clearly, card D = dim Py,,_q = (2"7“1)2(2”7“2).

To compute card C, notice that cardC = card £, where £ is the index set equal to
E:={(i,j):0<i<d, j>0 0<i+j<2n}
={(0,1),...,(0,2n),(1,0),...,(1,2n —1),...,(d—1,0),...,(d—1,2n —d + 1)}.

(. J J/

i=0 =1 ’Lz?ir— 1
It follows that

cardC =card€ =2n+2n+ (2n—1)+ ...+ (2n —d + 2)
d—1 2n+1 2n—d+1

= 1+Y @ntl-i=—1+> i >
P i=1 i=1

. (2n—|—1)2(2n+2) ) (2n—d+1)2(2n—d—|—2)

= —1 4 card P»,, — card D,

whence
card B = card C + card D = —1 + card Py,

which shows that B is a basis for ker Lg.

The converse part is clear. Namely, L determines the sequence 8 by f;; =
L(z'y?) for 0 < 4,7, i +j < 2n. (Note that by f;; € ker L for 0 < i < d, j > 0,
and 0 < i+ j < 2n, for these indices, f3;; are precisely constant terms in f;;.) By
gr, € ker L for k,1 > 0, k+ 1 < 2n — d, all linear combinations of (2.1) are column
relations of M, (3). O

Suppose p € ker L satisfies p|I' > 0, i.e., p(x,z%) > 0 Vo € R. From Lemma
2.1, we may write

(23) P = F -+ G = Z (Iijfij —+ Z bklgkl-
0<i<d, j>0, k>0,
0<i4+35<2n k+1<2n—d
Since p|I' > 0 and G|I" = 0, then
(2.4) Q(z) = F(z,a") = Y aya™¥ - py)
0<i<d, j>0,
0<i+5<2n

satisfies Q(z) > 0 Va € R. Since deg Q) < 2nd, there exist

25) 7= (r0,...,Tnd), 5= (S0,...,50q) € R™ such that

R(x) =ro+mz+--+rpgz™ and S(x):=sg+ 512+ + Spgx™
satisfy
(2.6) Q(z) = R(x)* + S(x)%.
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Comparing coefficients on both sides of (2.6), we see that each a;;, which is the
coefficient in @Q of ™%, admits a unique expression as a homogeneous quadratic
polynomial A(7,5) in the 7, and s;. Indeed, fori,j > 0, with ¢ < dand 0 < i+j < 2n,
we have

(2.7) a;; = h;;(7,8) == g TET + SES].
0<k,I<nd,
0<k-+i=i+dj

Moreover, a comparison of the constant terms in (2.6) gives

2 2

(2.8) - E aijPij = 15 + So-
0<i<d, j>0,
0<it+j<2n

Example 2.3. Let n =d =3. Then @ (cf. (2.6)) is of the form

18

Qx) = Z aij(z"" — ) = Z ez’ € Pis.

0<i<3, j>0, =0
0<i+;<6

Note that ¢;7 = 0 since 17 # i+ 37 for some 0 <1 < 3,5 > 0,7+ 7 < 6. For example,
the coefficient ¢4, which is equal to a1, may be expressed by (2.7) as
hl,l@i /S\) =TTy + rirs + ToT9 + 3Ty + T'4To + S0S4 + S183 + 5989 + 5351 + 5450

= 2(rory + So84 + 1173 + 5183) + 73 + 53,

Now suppose i,7 > 0, with ¢ < d and 7 + dj < 2nd, but ¢ + 7 > 2n. The index
set F of all such pairs is equal to
d—2
(29) F={(i,j):2n—(d-2)<j<2m—12m+1-j<i<d-1}=[]JF

J=1

where each Fj is equal to

e (), otherwise.
Hence card F = Z?:_lgz' = w. Note that F = ) for n = 1, 2. Although for
(i,j) € F, terms 29 appear in R(z)? and S(z)?, since i +j > 2n, 29 cannot
appear in () with a nonzero coefficient. For the sequel, it is convenient to extend the
definition of h;; in (2.7) to include these cases, together with the requirement

(2.10) 0=h;;(7,5) whenever (i,j) € F.

Also, we introduce an arbitrary constant A;; for each (7, j) € F to denote the moment
Bi;, which is not present in 3 (27) ' We will call every such moment an auziliary moment

in the sequel.
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Example 2.4. Let n = d = 3. Note that F = {(2,5)}, since for i« = 2 and j = 5,
we have i +3j = 17 < 2nd = 18 but 7 =i+ j > 2n = 6. Thus z'7 does not appear
in Q(x), so, from (2.7), using ho5(7,s) = 1379 + SS9, it follows that rgrg + sgsg = 0.
The auxiliary moment in this case is 35 5, which we denote by As ;.

For d = 3 and arbitrary n € N, which we study in Section 4, we have F =
{(2,2n — 1)} and the condition in (2.10) is equal to

(2.11) 0= ho2,-1(7,5) = 2(r3uT3n—1 + S3n53n-1),
with the “missing” monomial in Q(x) being x2+3(2n=1) = g6n=1, JAN

Let |-| denote the floor function. Namely, | k] is the greatest integer not larger
than k. The next lemma will be essential for Section 5 to justify that the conditions
(2.10) are satisfied, as part of the argument that (2.6) holds (see Lemma 5.3 below).

Lemma 2.5. Assume that (i,7) € F and let 0 < k,l < nd such that k+1 =1 +dj.
Let k :=k+nd and | := 1+ nd. Then at least one of the pairs K = (k mod d, |%])

and L = (ZN mod d, L%J) belongs to F. Fquivalently, at least one of the moments
B mod d %] 4n and B} o4 a,1L +n is auziliary.

Proof. Recall that membership of a pair (p,q) in F requires p,q > 0, p < d, p+dg <
2nd, and p +q > 2n. For p = k mod d, q = ng + n, the first two reqirements
for membership in F are clearly satisfied. Now £ = k mod d + d LSJ, and since
k < nd, it follows that p + dqg < 2nd. Therefore, if we assume that K ¢ F, then
k mod d+ [%] + n < 2n. A similar argument holds for L. If we now assume that
K ¢ F and L ¢ F, then

(2.12) k mod d + LSJ <n and [modd+ L%J <n.

If k mod d+ 1 modd < d, then

i=(k+1)modd=kmodd+Imodd and j= LHJ = FJ + HJ

d d d
Hence,
k )
1+ 7 =kmodd+ [ modd+ L—J + L—J < 2n
d d \/( )
2.12

which is a contradiction to the assumption (i,7) € F.
If £k mod d+ [ mod d > d, then

i=(k+)modd=kmodd+Imodd—d and j= LMJ — m + H b1

d d d
Hence,
k l
i+j=kmodd+lmodd+|=|+|5| —d+1 < 2n
d d ~—
(2.12)
which is a contradiction to the assumption (i,7) € F. ]
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Remark 2.6. Another way of stating Lemma 2.5 is by saying that at least one of

k mod dngj and ! modd

the monomials z yLéJ has total degree more than n.

We next introduce the core matriz C' = Cg; in the sequel we show that positivity
properties of C' determine the core variety of 5. Our immediate goal is to use (2.7) and
the core matrix to derive an inner product expression (see (2.25)) which can be used to
characterize whether (2.8) holds. This will permit us to provide a sufficient condition
for representing measures via the core variety. The core matrix, a (dn+1) x (dn+1)
matrix C' = (C};);;, is defined by

INE
(2.13) Cij = Blitj—2) mod 4, (i+j-2)/d) (1 < 4,7 < dn+1).
Let
(2.14) Kij:=({+j—2)moddand L;; := (i +j —2)/d],

so that Cy; = Bk, 1,;; however, if B, 1, is an auxiliary moment because (Kj;, L) €
F, we redefine Bx, 1, as Bk,; ., = Ak,; L,;, where Ak, r,. is an arbitrary constant.

To emphasize the dependence of C' on the choice of the constants A;; for (4, j) €
F, we sometimes denote C' by C[{A;;}qj)er]. From (2.13), C' is clearly a Hankel
matrix.

Example 2.7. For n = d = 4 the core matrix
C= C[A3,2n—27 Ao, A3,2n—1]
is the following

Boo Pio B20 Bso Bor P11 P21 Bs1 Boz Biz B2z P2 Bos Bz P23 Bsz Boa
Bio B20 Bzo Bor P11 P21 Bz Boz Pz P2 P32 Loz P13 P2z P33 Poa  Pia
B20 Pso Bor P11 B2r Bs1 Poz P12 B2z Bs2 Bos Pz B2z Bz Poa  Bira Baa
Bso Bor P11 B2r P31 Po2 Pz B2z B2 Bos L1z P2z B3z Poa  Pra P2a Bsa
Bor P11 B21 Bs1 Boz Piz P22 B2 Bos Bz P23 Pz Boa  Bia P2a Bza Bos
Bi1 P21 Bs1 Boz Piz P22 B2 Bos Pz B2z B3z Poa  Pira P2a Pza Pos  Bis
B21 P31 Boz Biz B2z B2 Pos L1z B2z Bzz Boa Pia  B2a Bza Pos Bz Bas
Bs1 Boz Biz B2z P32 Pos P13 B2s Bz Boa Pira P2a Psa Pos  Pis P2 Bss
Boz P12 B2z Bs2 Bos Bz P23 B33 Boa Pia P2a Psa Bos  Bis  P2s Bss Bos
Bi2 P22 B2 Pos P13 P23 B33 Boa Pia Boa P3a Pos P15 P25 P35 Pos  Pie
B22 P32 Bos Biz B2z B3z Poa Lia B2a Bza Bos P15 Bas Bz Pos  Bie  Bae
B2 Bos Bz B2z B3z Poa Pia Baa Bsa Pos P15 P2s Pz Pos  Pie P A36
Bos P13 P23 Bsz Boa Pia Poa Pza Bos Bis B2s Pz Bos  Bie P2 A36 Bor
B3 B2s B3z Boa Pira Poa Bsa Bos BPis Bas B3z Pos  Pie P2 A6 Por  Pir
B23 P33 Boa Bia B2a Bza Pos P15 Bas Bss Bos Pie  P2e A6 Bor  Pir A27
B33 Boa Pia B2a P3a Pos Pis B2s Bss Pos Pie  P2e  A36 Por  Pir A7 A37
Boa P1a B2a Bsa Bos Bis P25 B35 Bos Bie B2e A36  Bor  Bir  A27 A37T  Bos

The rows and columns of (' are indexed by the ordered set
{1, X, X% X3 Y, XY, X?Y, X3, ... . Y* XY* X?YF X3yk
yrl Xyt XAyt XGyrt vy
Note that the columns X3Y"~2 X2y"~1 X3Y"~! are not among columns of M,, but
of its extension M, 5. So these columns are auxiliary ones in C' and contain auxiliary

moments.
10



The next two results provide an alternate description of the core matrix in terms
of moment matrix extensions. Let d > 2 and M, 4 2 be some recursively generated
extension of the positive (y — xd)—pure moment matrix M,. Let B = 3(2”+2d_4) be the
extended sequence and let LE : Pa(n+a—2) — R be the corresponding Riesz functional.

Define the ordered set of monomials

,_ d—1 d—1 - -1,
M ={lz,....2° " Jy,zy,..., 2" y,... .y yx’, . Y

(2.15) o o el om
AT L TN T 3
and the vector space

(2.16) U :=Span {s: s € M} C Pria_o,

We next define an (nd + 1) x (nd + 1) matrix M[B,U] with rows and columns
indexed by the monomials in M in the order

(217) 1,X,..., XLy XY, .. X®ly, oyt xynt o xdtyntlyn

(ie., for 1 <k < nd+ 1, the k-th element of this order is equal to X*Y /s where
I, :=(k—1)modd and J:= L%J)

The (i, j)-th entry of M[3,U] is defined to be equal to

(2.18) LECUQ+QQ%+#)::Bﬁ+QJHJj::Bcfnnmdd+gfnnwdd¢%#H{§%y

More generally, for r,s € U (cf. (2.16)), with coefficient vectors 7,5 relative to
the ordered basis of monomials in M (cf. (2.15)), we have

(2.19) (M[B, U 7,5) == Ls(rs).
Lemma 2.8. For1 <i,5 <nd+1 the following holds:
(220) Lg(x1¢+1iji+Jj> = B/(i+j—2) modd,[#]'
Proof. From i+ j—2=(i— 1)+ (j — 1) it follows that
o
i+j—2=(i+j—2) modd+d L=
d
(2.21) io1 (i1
andi+j—2=((t—1)modd+ (j—1) modd)—i—d({ y J + L g J)

We separate two cases:

Case a): (i —1)mod d+ (j — 1) mod d < d. Then (2.21) implies that
(i+j—2)modd=(i—1) modd+ (j —1) mod d,
(2.22) i4j—2 i—1 j—1
{ d J:{(1J+L dJ'
Using (2.22) in (2.18), (2.20) follows.

11



Case b): (i —1) mod d+ (j — 1) mod d > d. Then (2.21) implies that
(i+j—2)modd=((:—1)modd+ (5 —1) modd)—d,

(2.23) iti—2) ji—1] [j—1

=== 15

Since M, 4_» is recursively generated, we have X"+?Y* = X"Y**! in the rows and

columns, and therefore 8,145 = B, s+1. The assumption of Case b), and (2.23) used
in (2.18), together with M, 4o being recursively generated, therefore imply that

[

5(1'71) mod d+(j—1) mod d,| 51 |+ 151 = B(iﬂez) mod d +d,[ 7L |+ 1]

= 1+7—2) mo ,i; =t
/8(+ 2) mod d,| =1 |+ 52 | +1

= Bli+j—2) mod 4, =2 (using (2.23)),
so (2.20) follows. O

Proposition 2.9. Assume the notation above. Then:
(i) If the sequence 3 has a representing measure, then M [5 ,U] is positive semidef-
inite.
(i) Let M[B,U] be obtained from M3, U] by replacing each §;; satisfying ¢ mod d+
j+ 4] > 2n with the auxiliary moment A;;. Then

C = M[B,u].
Proof. Part (i) follows from the equality (2.19) and LB(T2) = [r?du > 0. For part

(ii) first note that not all Eij with ¢ + j > 2n are auxiliary moments. By recursive
generation we have Eij = B},d,jﬂ if d <1< 2d—1 (observe that i is at most 2d — 2)
and so B;-j is auxiliary only if i mod d + j + [ 4] =i —d+ j+ 1 > 2n in these cases.
If i < d, then the condition ¢ mod d 4 j + | 5| > 2n reduces to i + j > 2n. Now part

(ii) follows from (2.13) and Lemma 2.8. O
If H= (hitj—1)1<i,j<m is any m x m Hankel matrix and t.= (t1, ... tm) € R™
then (HE?} = Z th‘hz‘ﬂ‘—ltj, and, after rearranging terms, we have
i=1 j=1
2m—1
(2.24) (HLt) = > (hk Sy titj)
k=1 1<i,j<m,
itj=kt1

(= Mt} + ho(2t1t) + ha(2t1t3 + t3) + - - + hom—2(2tm_1tm) + hom_1t2).

Lemma 2.10. Let 7 = (rg,...,74),5 = (S0,...,5.q) € R satisfy (2.10). For
i,7 >0, withi <d and 0 < i+ j < 2n, define a;; by (2.7). Then

(2.25) (CP) +(C5,8) =0 <= (2.8) holds.
12



Proof. Let
up=(k—1)modd and v, =|(k—1)/d] (1<k<2nd+1).
Further, let

_ Bupwy, i ug + o < 2n,
(2.26) hy = { ;

We now apply (2.24) with m = nd 4+ 1, H = C with hy as in (2.26), and with
ty=rp10rt,=s,1 (1 <p<nd+1):

(Cr,7) +(C5,5) =

UL if uy, + v, > 2n.

2nd+1
= E , <hk' E (Tpfqufl‘kspflsqfl))
k=1 1<p,g<nd+1,
p+g=k+1
=7+ 52+ By - (rprq + $pSq) )+
=Ty T 5 ij pl'q T SpSq
0<i<d, 7>0, 0<p,g<nd,
0<i+j<2n 0<p+g=i+dj
+ E , (Aij' § (rprg + 3p3q)>
0<i<d, j>0, 0<p,g<nd,
i+7>2n 0<p+gq=i+dj
2, .2
=1yt s+ Z aij Bij
0<i<d, 72>0,
0<i+j<2n

where we used (2.7) and (2.10) in the last equality. Now the equivalence of the lemma
easily follows. O

Remark 2.11. It is important for the sequel to note that the implication (<) of
Lemma 2.10 may be used in order to construct elements p of ker L satisfying p|I" > 0,
so that CV(L) C Z(p|I'). For suppose 7, 5 € R™F1 satisfy (2.10) and (C7,7) +
(Cs,5) = 0. Now define a;; = h;;(7,5) (4,7 > 0,1 <d, 0 <i+j <2n). Then p :=
> ai;fi; € ker L satisfies p(z, %) = R(x)*+S5(z)?, where R(z) := ro+riz+- - +rpqz®
and S(x) 1= so+s17+ - -+ 8pq2%. Now we have CV(L) C {(z,2%) : R(x) = S(z) = 0}
and card CV(L) < min{deg R, deg S}.

Let A = {Ajj}u er with A;; € R. We say that the core matrix C[A] is re-

”) € ker C[4], it follows that

cursively generated if for every v € R™ satisfying (O

(2) € ker C[A].

Remark 2.12. Note that the definition above is equivalent to the definition of a “re-
cursively generated” Hankel matrix given in [CF1]. However, it does not encompass
the notion of recursiveness for a general multivariable moment matrix given in item

iv) preceding Theorem 1.1.
13



We will show in the next section that C' inherits a substantial amount of posi-
tivity from M,, (see Theorem 3.6). The following theorem characterizes the existence
of a representing measure for 8 in terms of the existence of auxiliary moments such
that the core matrix is positive and recursively generated.

Theorem 2.13. Let 8 = %™ be a given sequence such that M, = M, () is positive
semidefinite and (y — x%)-pure. The following statements are equivalent:
(1) B admits a representing measure (necessarily supported in IT").
(i1) B admits a finitely atomic representing measure (necessarily supported in T").
(iii) There exist auxiliary moments A = {A;j}ujyer, such that the core matrix

C[A] = C[{Aij}jyer| is positive semidefinite and recursively generated.

Moreover, if the core matriz C[A] is positive definite for some choice of auziliary
moments A, then = ®™ admits finitely atomic representing measures whose union
of supports coincides with T'.

Proof. The equivalence (i) < (ii) follows from Richter’s Theorem [Ric] (or by Theorem
1.5),

Next we establish the implication (ii) = (iii). Suppose M, (3) is (y — 2%)-pure
and that 8 has a finitely atomic representing measure p supported on I'. Thus, p is

of the form
B=) akb(a, )
k=1

where m > 0, each a;, > 0, and y; = ¢ for each k. Since p has moments of all
orders, we may consider the moment matrix M, ;[u|, containing g-moments up to

degree 2n + 2t, where t = {%w Using the moment data 3(2("“)) from M, 4[pl, i.e.,
Biy = [a'ydp, (1,5 >0, i+ j < 2(n+1t)), let

(227) Tp = gp mod d,| & | (O <p< 2nd)

Since M, [p] = M,,(B), we have

Yo = 5pmodd,L§j if0<p<2nd and pmodd+ LSJ < 2n.
We next show that g := Zakﬁxk is a representing measure for v := {7, }o<p<2nd-
k=1
Indeed, for 0 < p < 2nd we have
mod d+d| £ | mo 5] o
Zakxi = am, v = Zakxi e = By mod 48] = Vp-

It now follows that the moment matrix for 7, which is the Hankel matrix H(y) =
(Vi+j)o<ij<nd, i positive semidefinite and recursively generated (cf. Section 1). If,
in the core matrix C[A4], for each (i,j) € F we set A;; = virqj = Bij, then C[A]
coincides with H(7y), and is thus positive semidefinite and recursively generated. This
is precisely (iii).

14



Next we establish the implication (iii) = (ii). Suppose the there exist auxiliary
moments A such that C[A] is positive semidefinite and recursively generated. We will
prove that (3 has a finitely atomic representing measure. Define a univariate sequence
v = {Vp}o<p<2na @s in (2.27) above, where §;; is either §;; or A;;. Since the Hankel
matrix H(7y) = (Vits)o<ij<na coincides with C[A] (by definition of ), it follows that
it is positive semidefinite and recursively generated. By [CF1, Theorem 3.9], v has a

finitely atomic representing measure i := Z agdy,. But then p = Z 02y ) 1S A

k=1 k=1
representing measure for 5. Indeed, for 0 <i,j < 2n,7+ 7 < 2n we have

Z akxiyi = Z akmgdj = Yitdj = ﬁi mod d,j+|%] — 51',3‘7
where in the last equality we used that 3,445 = By s+1 for 0 < r, s such that r+s+d <
2n.

It remains to address the case when C[A] is positive definite. Concerning the
core variety of L = Lg, we have Vy = V(M,) = I', and we now consider V; :=
Z(p € ker L: p|Vy > 0). For p € ker L with p|Vy > 0, we have p = F + G as in (2.3).
The preceding discussion shows that Q(z) := F(x, z?) satisfies Q(z) = R(x)?+S(z)?,
where 7 and § satisfy the conditions of (2.7), (2.8) and (2.10). Lemma 2.10 now shows
that (C7,7) + (C5s,8) = 0, and since C' is positive definite, it follows that 7 =5 = 0.
Thus (2.7) implies that each a;; = 0, so F' = 0. Since Z(G|I') = I', we now have
Z(pII") = TI'. It follows that V; = Vi = T', so CV(L) = I' and the Core Variety
Theorem implies that g has finitely atomic representing measures whose union of
supports is I'. 0

The rest of the paper is primarily devoted to developing concrete conditions for
the existence or nonexistence of auxiliary moments satisfying condition (iii).
Theorem 2.13 suggests the following question.

Question 2.14. If f = @ has a representing measure, is there some choice of
auziliary moments A = {A;j} i jyer such that C[A] = 07

In Example 2.15 (just below) we show that the answer is affirmative for d = 1 and
d = 2. In Section 4, we prove an affirmative answer for d = 3. This provides a
new proof of Theorem 1.2. Finally, in Section 6, we prove that the answer is already
negative for d = 4 (see Example 6.6(v)).

In the sequel, for M, = 0 and (y — 2¢)-pure, we denote by M, the central
compression of M, obtained by deleting all rows and columns XYY (p,q > 0,
p+q < n—d). The number of rows and columns in ]\//[\n is thus dim P, —dim P,,_4 =
w. Since M, is positive and (y — z%)-pure, it follows immediately that ]\//[\n is
positive definite and
d(2n —d+ 3)

(2.28) rank M, = rank M, = )

15



Example 2.15. i) For d = 1, we have C' = ]\/J\n = (50’i+j72)1<l.j<n+1 > 0, so the
existence of representing measures whose union of supports is the line y = x now fol-
lows from Theorem 2.13. Alternately, using flat extensions, the existence of measures
in this case follows from the solution to the truncated moment problem on a line in

[CF3].
ii) For d = 2, the core matrix C for M, is (2n + 1) x (2n + 1), with

(2.29) Cij = ﬁ(i+j—2) mod 2,| =2 |-

In Mn, column j is t! the truncation to M of column XU~ med 2y lG=D/2] in M, .
Likewise, row i of M, is the truncation to M, of row X(—Dmod2ylG=1/2] i A
Thus, using the structure of moment matries, we have

—

(2.30) Mij = B(i—1) mod 2+ (j—1) mod 2, (i—1)/2]+|(j—1)/2) -

By Proposition 2.9 (or using calculations based on (2.29)), we have C' = M, = 0.
Since C' is positive definite, Theorem 2.13 now implies that § has representing

measures whose union of supports is the parabola y = 22. The existence of repre-

senting measures also follows from the solution to the Parabolic Truncated Moment

Problem in [CF4], based on flat extensions. A

As we show in the sequel, for d > 3, C' = C[{A;;} ¢, )er] does not coincide

with ]\//[\n and is not necessarily positive definite; nevertheless, we will relate positivity
properties of C'[{A;;} i ecr] to the existence of representing measures.

We conclude this section with some examples that illustrate Theorem 2.13 for a
positive semidefinite (y —z%)-pure M, (3). Let C' denote the compression of C' = C[A]
obtained by deleting each row and each column of C' that ends in some auxiliary
moment A;;. In the sequel, for 1 < k < dn + 1, C} denotes the compression of C' to
the first k£ rows and columns.

Example 2.16. Consider the moment matrix

10 0o 1 2 5 0 0 0 0
01 2 0 0 0 2 5 14 42
0 02 5 0 0 0 5 14 42 132
1 0 0 2 5 14 0 0 0 0
2 0 0 5 14 42 0 0 0 0
(2.31) M;s(B) = 5 0 0 14 42 132 0 0 0 0
0 02 5 0 0 0 5 14 42 132
0 5 14 0 0 0 14 42 132 429
0 14 42 0 0 0 42 132 429 s
0 42 132 0 0 0 132 429 s ¢

A calculation with nested determinants shows that M; is positive semidefinite and
(y — x3)-pure if and only if s = (15 and t = [y satisfy

(2.32) t > 5% — 2844s + 2026881.
16



The core matrix is

1 0 1 0 2 0 5 0 14 0
0 1 0 2 0 5 0 14 0 42
1 0 2 0 5 0 14 0 42 0
0 2 0 5 0 14 0 42 0 132
2 0 5 0 14 0 42 0 132 0
(233) C[A] = 0 5 0 14 0 42 0 132 0 429
5 0 14 O 42 0 132 0 429 0
0 14 0 42 0 132 0 429 0 s
14 0 42 0 132 0 429 0 s A
0 42 0 132 0 429 0 s A t

i) Let s = 1430 and ¢ = 4862, so (2.32) is satisfied. Calculations with nested determi-
nants show that Cy > 0, and therefore a calculation of det C[A] shows that C[A] > 0
if and only if —1 < A < 1. Theorem 2.13 now shows that 5 has representing measures
and that CV(Lg) is the curve y = z3.

ii) Consider next s = 1422, t = 4798. Condition (2.32) is satisfied and nested deter-

minants show that C' = 0. In particular, Cg > 0, but we have det Cy = —7, so for no
value of A will C[A] be positive semidefinite. By Theorem 2.13, 8 has no measure.

iii) Now let s = 1429, t = 4847. Then (2.32) holds, and we have Cg > 0; however,
det Cy = 0, so there exists z € RY such that Coz = 0. Now 7 := (2¢,0) = (rg,...,75,0)
satisfies (C7,7) = 0 and, with § = 0, also satisfies the consistency requirement
rsrg+sssg = 0 (cf. (2.11)). Remark 2.11 now implies that there exists p € ker Lg such
that Q(x) := p(z,2®) = r(x)? Therefore, card CV(L) < degr < 8 < 9 = rank M, so
CV(Lg) = 0 by Corollary 1.4, and thus 5 has no measure. A

In the next section we will prove that if M, (/) is positive semidefinite and
(y — x%)-pure, then C is positive definite. In particular, for d = 3, Cs,_1 = 0. It
follows that the method of the preceding example applies to any positive semidefinite
M, (B3) that is (y — x*)-pure, as follows.

Theorem 2.17. Suppose M,(B) is positive semidefinite and (y — x3)-pure. Then 3

has a representing measure if and only if det Cs,, > 0, in which case CV(Lg) is the

curve y = x°.

Example 2.18. Consider next the sequence 5%, with M; given by

0

0 0 0 14 0 5 0 132 0

5 42 14 0 429 0 132 0 4862
0 0 0 429 0 13

132 0 1430 429 0 16796 0

1 0 2 1 0 14 0 5 0 132
0 1 0 0 5 0 2 0 42 0
2 0 14 5 0 132 0 42 0 1430
1 0 5 2 0 42 0 14 0 429
0 5 0 0 42 0 14 0 429 0
14 0 132 42 0 1430 429 0 16796
2
0
42

2 0 4862 0
4862 0 208012

and the degree 7 and degree 8 blocks given by

0 42 0 1430 0
42 0 1430 0 58786
0 1430 0 58786 0

1430 0 58786 0 2674440
17



14 0 429 0 16796

0 429 0 16796 0
429 0 16796 0 742900
0 16796 0 742900 0

16796 0 742900 0 353576708

The core matrix is a Hankel matrix (see Example 2.7) with anti-diagonals completely
determined in the first row by

Boo =1, Bo1 = 2, Boz = 14, Bos = 132,
B1o =0, B11 =0, P12 =0, P13 =0,
B20 =1, B21 =5, B2 = 42, B23 = 429,
B30 =0, P31 =0, B3z =0, B3z =0,

and the last column by

Boa = 1430, Bos = 16796 Bos = 208012, Bor = 2674440,
B14 =0, P15 =0, B1e = 0, Bir =0,

Boa = 4862, B25 = 58786, Ba2s = 742900, Ba7 = Az7,
B34 =0, B35 =0, B3e = Ase, Bar = Aszr

Bos = 353576708.

It is straightforward to verify that M), is positive semidefinite and (y—xz*)—pure. Using
nested determinants, it is easy to show that C14 > 0. A further calculation shows that
C15 > 0if and only if —1 < Azg < 1. Setting Azg = 0, we see that Cig > 0 if and only
if Ay; = 9694844+ f for f > 0. Now det C' = f(318219068 — 28 f — f?) — A2., so there
exists Ay such that C[A] > 0 if and only if 0 < f < 964/34529 — 14 (~ 17824.7). In

this case, since C[A] > 0, the core variety coincides with the curve y = x*.

Example 2.19. Consider next the sequence 3®, defined as in Example 2.18, except
for the following 5 differences:

Bas =0, Bos = 3454708516 Bag = 3448894372, Bor =0,
Bos = 2640503382173370698906776695725.

It is straightforward to verify that M, is positive semidefinite and (y — z*)-pure.
Moreover, C[A] can never be positive semidefinite, since fo5 = 0 is its 12th diagonal
element, but there are nonzero entries in the 12th row and column. By the converse
in Theorem 2.13, B® does not admit a representing measure.

3. A CENTRAL COMPRESSION OF THE CORE MATRIX EQUIVALENT TO M,,.

In this section, we describe a central compression of the core matrix C' that is
orthogonally equivalent to JT@, and is thus positive definite. We will show in Sections
4-6 that this provides a useful tool for studying the (y — 2%)-pure truncated moment
problem. Further, for an (nd + 1) x (nd + 1) Hankel matrix H, we identify a central
compression H that uniquely determines M, of some [ satisfying at least the column
relations which are linear combinations of the relations coming from ¥ = X? by
recursive generation; additionally, H = 0if and only if M, = 0 and M, is (y — z¢)-

pure.
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We first require a brief discussion of permutation matrices and orthogonal equiv-
alence. Recall that a real m xm matrix U is an orthogonal matrix if U* = U~!; equiva-
lently, U maps an orthonormal basis into an orthonormal basis. Let ey, ..., e, denote
the standard orthonormal basis for R™, and let o denote a permutation of {1,...,m}.
The permutation matriz U, is defined by U, (e;) = eq(i)- Clearly, U, is invertible, with
U, ' = U,-1, and we note that U, ! = U!, so that U, is real orthogonal. To see this, it
suffices to check that for 1 < j,k < m, (U, 'e;, ex) = (Ulej, ex). Setting i = o~ 1(j),
so that o (i) = j, we have (U, 'e;, ex) = (es—1(j), ex) = (€, ex) = 0 (where & denotes
the Kroneker delta). Now, (Ule;, er) = (e;, User) = (€s(i), €o(k)) = o(i)o(k)- Since
o(i) = o(k) if and only if i = k, it follows that U ' = U!, so U, is real orthogonal.
We note for the sequel (in Sections 4 and 5) that

(31) U;1<§:ZL‘Z‘6¢) = zm:l‘z‘eal(i)
i=1 =1

Recall that if H and J are m x m real matrices, H and J are orthogonally equivalent
if H= UJU! for some real orthogonal matrix U; clearly, H is positive semidefinite
(respectively, positive definite) if and only if J is.

We label the rows and columns of C' sequentially from 1 to nd+1. Corresponding
to column £, let

(3.2) Iy :=(k—1)modd and J,:=|(k—1)/d],
so that Cy = By, (cf. (2.13)). Now suppose ¢,j > 0, with ¢ < d and i + dj < nd,
but ¢ + 7 > n. The index set F of all such pairs is equal to

d—2
(33)  Fe={(j)n—(d-2)<j<n-Lnt+l-j<i<d-1}=|]JF
j=1
where each j—"\] is equal to
F { {G+1Ln—j),....d=1n—j)} ifj+1<d-1,
I (), otherwise.
Hence, card F = dez | = (d_l)# We consider the compression C of C' that

1s obtained by deleting row k and column k from C' in those cases where (I, Jy) €
F. There are w (= cardf) such cases, so C has Yna == M ( (nd +

d—2)(d—1 ~
1) — %) rows and columns, and therefore C' has the same size as M, InC :
the compressed rows and columns retain the same row and column numbers as the
corresponding uncompressed rows and columns in C.

Example 3.1. Let n =d = 4. Then C'is 17 x 17, and we delete rows and columns
12, 15, and 16, since k£ = 12 ylelds ([12,J12) = (3,2), k = 15 has (115,J15) = (2,3),
k = 16 has (Iy6, J16) = (3, 3), and in each case I + Ji > 4. The 14 rows and columns
in C' are numbered 1,...,11, 13, 14, 17.

We next let 61 denote a copy of 6, but with the row and column numbers

inherited from C replaced by a sequential relabeling, as follows. For each undeleted
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column of C, say column k, let del(k) = del, 4(k) denote the number of columns of
C to the left of column k which are deleted to create C'. Namely,

del(k) = card ({j: 1 <j <k, (I}, ];) € F}).
Note that the largest & with del(k) = 0 satisfies (Iy, Jx) = (d —2,n — d + 2), and is
thus equal to
d—2+dn—d+2)+1=nd—(d—2)(d—1)+1=:mn..
Moreover, k < m,, 4 implies that del(k) = 0. For k > m,, 4 we have that J;, > n—d+2
and I < n — Ji (since column k is undeleted) and thus

Jp— (n—d+2)

del(k) = (k= (n=d+2)(J— (n—d+2)+1)

— 2
(M7 —n+d=2)(|*F] —n+d—1)

2
(s —n+d=2))([5] —n+d-1)
2

Note that in the last equality we used that |1 ] = |£] for every undeleted column
k with k > my, 4. Indeed, 22| # [£] if and only if k = dk’ for some k' € N. Since
k > m,, 4, we have that £’ is at least n—d+3. But every column dk’ with &' > n—d+3
is deleted, since Iy =d — 1, Jgw = kK — 1 >n —d + 2 and hence Iy + Jg > n.

The compression of column k£ of C' is now used as column % of 51, where
k=k— del(k); we also write k = (b(/l;) (a relation we will refer to in the sequel). In
this way, the columns of 61 are numbered sequentially from 1 to v, 4, and we also

renumber the rows of ('} in a similar sequential manner.

Example32 Letn—d—4 Wehavek—kfor1<k<11 k—12f0rk—13
k:—leork:—14 and k = 14 for k = 17.

We next describe a 2-step transformation of 61 into a matrix C. For 1 < A <
.4, note that (I’“+‘2]’“+1) + J, + 1 is the column number corresponding to XY /x

in M,. The column number corresponding to X*Y /¢ in ]\/4; must, however, take
into account any columns of the form X9"Y* which precede X’*Y /¢ in the degree-

lexicographic orderlng of the columns of M, since every such is deleted from M,

I+Ji— d+2)

5 such columns, so we define

when forming M There are (

1 1
(3.4) Kk:—<k+(2]k+ >+Jk+1 if[k+Jk<d,

I J, 1 I Jp—d+2
Bkt >+Jk+1—(k+ k

We now define column AK’f of 62 to be column k of 6\1 We will show just below

that the mapping from k to K} defines a permutation of the integers 1,...,, 4, so
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that the columns o£ 6’\2 comprise a permutation of the columns of 6\1 Finally, we
transform C5 into C' by applying the same permutation to the rows of C5 that we
just applied to the columns of C}.

Example 3.3. Let d = 4 and n > d. There are always 3 auxiliary moments, As 2,1,
Az on—1, A3 on—2. With n = d = 4, the permutation may thus be described as

row/cola\11234567891011121314
row/colC 1 2 4 7 35 8 11 6 9 12 10 13 14 )

To validate the preceding argument we must verify that the mapping from k
to K}, is a permutation of the integers 1,...,1, 4. For this aim we first establish an
auxiliary lemma.

Lemma 3.4. Let f:{0,1,...,n}— Z, be a map defined by
o) { "3 +1, p<d,
p) =
(3D = (7)) +1 pzd
Then forp € {0,1,....,n— 1} \ {d — 1} we have
fp+1) > f(p) +min(p,d — 1) =: g(p),

while
fld)y=f(d=1)+d—-1.

Proof. We separate three cases:

Case a) 0 <p <d—1. Then

(p+D@+Q)+1>p@+3)

flp+1)= 5 5

Case b) p=d — 1. Then

f@+1y<ﬂ@—dwgn_wg)+l_dw;n

+1=f(p) +p=29p).

R YR (SRS

Case ¢) d <p <n—1. Then
(p+Dp+2) (p—d+2)(p—d+3)

flp+1)= 5 — 5 +1
_plpt+l) (p—d+1)(p—d+2)
= — +d
2 2
= f(p) +d—=1=g(p),
which concludes the proof of the lemma. 0

Lemma 3.5. The map 7, defined by ke K, is a permutation of S = (1,...,¢¥na).
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Proof. For each k (1< k< Una), k= qﬁ(%) satisfies [}, + Jr < n by the construction

of C. Let f be defined as in Lemma 3.4. Note that Ky = f(Ix + Ji) + Jp. We will
prove the following two facts:

(1) I+ Jp < I} + J implies that K, < K.
(ii) Iy + Jp = I; + J; and k # [ implies that K # K.
Using (i) and (ii) it is clear that 7 is 1-to-1 and the largest K}, corresponds to I+ J, =

n, Jy =n. But then k =nd+1 and nd + 1 = ¢, g = K,q11. So 7 is a permuation of
S.

It remains to prove (i) and (ii). The latter is clear since I + J = I, + J,
and Iy +dJ, = k—1#1—1 = I, + dJ,, implies that J, # J;. But then by the
definition of K}, (cf. (3.4), (3.5)) it follows that K} # K. To prove (i) it is enough
to consider the case I} + J, = I + Ji + 1, since then (i) follows inductively. Assume
that I; + J; = I, + J, + 1. We separate three cases according to the value of I, + J:

Case a) I, + Jp < d — 2. We have that
Kip=f(Ip+Jx)+Ju < f(lx + Ji) + (U + J) < f(Ip + Jp + 1)
=fLi+ )< fL+ )+ =K,

where we used Lemma 3.4 in the second inequality of the first line.

Case b) I + Jy, =d — 1. Then

Kp=fd=1)+ < fld=1)+d—1=f(d)=f(Li+])

< fi+J4)+J =K,
Ji>1

where we used Lemma 3.4 in the second equality. Note also that J; > 1, since other-

wise I, + J; = I; < d — 1, which is a contradiction with the assumption of this case.

Case ¢) d < Iy + Ji. Then

Kk:f(fk—i-Jk)—l—Jk<f([k+Jk+1)—(d—1)—|—Jk
=fLi+D)—d-1)+ T < f(L+ )+ J = K,

where we used Lemma 3.4 in the first inequality, while in the second inequality we
used that

Jl:Jk—i-([l—i—Jl—Ik—Jk)—(Il—[k) > Jk—(d—l).

(. 7/
v~
=1

I —I,<d—1

This concludes the proof of the lemma. 0]

Theorem 3.6. C is orthogonally equivalent to ]\/J\H; wmn particular, C = 0.
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Proof. The renumbering of the rows and columns of C to form 6\1, followed by the
orthogonal equivalence induced by permutation 7 (cf. Lemma 3.5), shows that C’
is orthogonally equivalent to C 50 it su suffices to verify that C coincides with M
Recall that the rows and columns of Mn are labelled in degree-lexicographic order,
L, X, V... Xt oyl Xty yd L XdEtynedtl Y™ (there is no
row or column X'Y7 with i > d), so we label the rows and columns of C in the
same way. From the structure of M,, the entry in row XY™, column XY7 of M, is
Bit1j+m, S0 we seek to show that the entry in row X'Y™, column XY of C is also
/Bz'—i-l,j—&-m-

Since 0 < i < d, then k:=i+dj +1 (< nd+ 1) is the unique column number
of C satisfying i = (kK — 1) mod d and j = |(k — 1)/d|. Thus, column k is the
unique column of C' (or of 6) that is transformed by compression and permutation
7 into column X*Y7 in the degree-lexicographic ordering of the columns of C'. Since
7(1) = 1, column X'Y7 in C starts with Cir = fij, and the other components
of column X'Y7 in C are components of column k in C' rearranged according to
compression and permutation 7. Since 1 <[ < d, then, exactly as above, row XY™
in C originates from row p := [ + dm + 1 in C. Therefore, the row XY™, column
XY entry of C is equal to C, ;. From (2.13), we have

Cpk = Bp+k—2) mod d, |(p+k—2)/d]
= B((d(j+m)+i+i+2)—2) mod d,| (d(j+m)+i+1+2)—2)/d]
= B(i+1) mod dj+m+|(i+1)/d) -

Since Y = X% in M, we have 8,1 apc = Bapre whenever a, b, ¢ > 0 and a+db+c < 2n.
Since i + [ =rd + s with r = | (i +1)/d] and s = (i + [) mod d, it follows that

ﬁ(i—l—l) mod d,j+m+|(i+1)/d] = Bs+dr,j+m = ﬁi+l,j+m-
Thus, the row X'Y™, column XY entries of C' and M, coincide. O

We conclude the section with a result which, together with Theorem 3.6, shows
that positive definite central compressions of Hankel (nd 4+ 1) x (nd + 1) matrices
are in bijection with positive semidefinite, (y — 2%)-pure moment matrices M, (3) and
can be used as a simple tool to generate examples for these. In Examples 2.18, 2.19,
instead of forming the entire matrix M,(5) and checking positive semidefiniteness
and (y — x*)-pureness, it is sufficient to form only C using 3,5, 0 < i < 4,0 < j,
0 < i+ 7 < 8 and check whether it is positive definite. The following proposition
then uniquely determines M,(3) with the desired properties.

Proposition 3.7. Let H := (H;;)ij = (hitj—2)ij be a (nd 4+ 1) x (nd + 1) Hankel
matrix, where h;y € R for 0 < [ < 2nd. Let H be obtained from H by deleting
row k and column k from H if (I, Ji) € 7. where I, J, F are as in (3.2), (3.3),
respectively. Assume that o is positive definite. Then there is a unique § such that

M, (B) is positive semidefinite, (y — 2¢)-pure and C = .
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Proof. Fori,j > 0 and 0 < i+ j < 2n define f5;; := hjq;. Let L : Py, — R be a linear
functional, defined by L(z'y’) := f;;. Note that ker L contains the polynomials

o fii(r,y)=a"y —B;;,0<i<d,j>0,0<i+j<2n,and

o gu = (y—ad)azby! for k,1 >0, k+1<2n—d.

Indeed, f;; € ker L is clear from the definition of L, while

L(gw) = L(z"y"™") — L(x™™*y") = Brivr — Barrs = Prraarn) — harryra = 0.

Since the set B := {fi;} U{gw} is linearly independent, card B = dim P,,, — 1 (see the
proof of Lemma 2.1) and Lin B C ker L, it follows that B is a basis for ker L. By the
converse part in Lemma 2.1, M, () satisfies the column relations (2.1). By definition
of the core matrix C' (cf. (2.13)), for 1 <4i,7 < dn + 1, we have that

Cij = Blitj—2) mod d,|(i+5-2)/d) = M(i+j—2) mod drd|(i+5-2)/d) = Niyj—2 = Hij,

and in particular, C = H. The assumption H =0 implies that C » 0 and by
Theorem 3.6, the central compression M, is positive definite, whence M,, is positive
semidefinite and (y — z¢)-pure. O

4. THE (y — 2%)-PURE TRUNCATED MOMENT PROBLEM.

In this section we apply the previous results to the moment problem for § =
37 where M, is positive semidefinite and (y — z*)-pure. In particular, Theorem
4.1 provides a positive answer to Question 2.14 for d = 3. Let I' stand for the curve
y = 3. Note that in the core matrix C, since Y = X¢ with d = 3, (2.10) implies that
there is exactly 1 auxiliary moment, namely 33 2,,—1, which we denote by A = A 9,_1.
Thus, C is obtained from C by deleting row and column nd. Let H = H[A] denote
the matrix obtained from C = C[A] by interchanging rows and columns nd and
nd + 1 (the last 2 rows and columns), so that H is orthogonally equivalent to C. In
the notation of Section 3, let o denote the permutation of {1,...,nd + 1} such that
o(i)=1(1<i<nd—1),0(nd) =nd+1, o(nd+ 1) = nd; then H = P,CP,-1.
R Note that the compression of H to its first nd rows and columns coincides with
C, and is thus positive definite by Theorem 3.6. We may thus represent H as
(4.1) H= ( ¢ v ) ,

vt 51,271—1

with (j > 0 and where v is of the form

(4.2) v:(fj).

(Here h € R™~1 and v' denotes the row vector transpose of v.) Write

~ Cl z )
¢= (zt 50,2n ’
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where C} is of size (dn — 1) X (dn — 1) and z € R is of the form z = (k, 812,-1)"
for some k € R™~2, We now have

Cl z h
(43) H[A] = Zt 60,271 A
ht A Bl,2n71

Since C' > 0, C~! exists and has the form

(4.4) C= < € w ) ,

w €

where (see e.g., [F2, p. 3144])

€= > 0, w=—eCTlz € RIL,
(4.5) Boan — 2Cy 12 '
C = CTH1 4+ ezztCY) e RUn-Dx(dn=1),

Now

~ Ch+ Aw

1, __

CTv= ( wth—i-Ae)’

and we set
t

(4.6) A=Ay = —wTh,
so that

~ _ w'h
(4.7) C o= ( Ch— Sw )

0
With this value of A in C, and thus also in v, let
Y thht
¢ :=v'C v = h'Ch — worw
€
(48) = (WO h + eh' C 22 O ') — 2! O ROy
= h'Cth,

where we used (4.5) in the second equality.

To emphasize the dependence of ¢ on 3, we sometimes denote ¢ as ¢[5]. In
Example 4.4 (below) we will use the fact that ¢ is independent of 9,1 and [ 2.
To see this, note that (;2,-1 is an element of vectors z and 2z, so (4.3) shows that

C; and h are independent of ;9,1 and fpo,. It now follows from (4.8) that ¢ is
independent of 5y 9,—1 and Sy 2, as well. Thus, if ") has the property that M, (3)
is positive semidefinite and (y — 2*)-pure, and if §;; = 3;; for all (i,7) # (1,2n — 1)

and (i, 7) # (0,2n), then ¢[5] = ¢[5]. Note that ¢ would depend on Sy 2,1 and Sy 2,

if Ay in (4.6) was chosen differently. This is due to the fact that the last row of C~v
in (4.7) would be non-zero.
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Theorem 4.1. Suppose M, is positive semidefinite and (y — x*)-pure. B = BV
has a representing measure if and only if Bion—1 > ¢ (equivalently, C[Ao] = 0). In
this case, CV(Lg) = I', which coincides with the union of supports of all representing
measures (respectively, all finitely atomic representing measures).

Proof. Recall from Theorem 3.6 that C is positive definite. Consider first the case
B12n—1 > ¢. It follows from (4.1) and [A, Theorem 1] that H is positive definite. Since
C is orthogonally equivalent to H, we see that C' is positive definite, so the existence
of representing measures and the conclusion concerning supports follow from Theorem
2.13.

We next consider the case when () 2,-1 = ¢, so that by [A, Theorem 1], H is

positive semidefinite, but singular. Since C - 0, it follows from (4.1) and (4.7) that
ker H contains the vector

Ch — “hy
- c1! €
(4.9) U= ( _1U ) = 0 = (ro, T1,-++, Tdn-2, Udn—1, Udn)",
-1

where ug4,_1 = 0 and ug, = —1. From the orthogonal equivalence between H and C,
based on the interchange of rows and columns nd and nd+ 1, it follows that C'is posi-
tive semidefinite and that ker C' contains the vector 7 = (7o, 71, ..., Tan—2, Tdn—1, Tdn)"
where 74, 1 = ug, = —1 and rg, = ug,—1 = 0. Let § = (Sg,..., San)" denote
the 0 vector, so that (C7,7) + (C5s,5) = 0 and the auxiliary condition of (2.11),
Tan-1Tdn + Sdn—154n = 0, is satisfied. Now, following Remark 2.11 and (2.7), de-
fine Q5 = hl](?,g) (O <3 < 2, ] > O, 0 < Z+] < 2n) Then p = Zaijfij
is an element of ker Ls which satisfies Q(z) := p(z,2*) = R(z)?, where R(z) :=
ro + 1T + -+ rgp1 L+ rg ™. Since 14, = 0, R(x) has at most dn — 1 real
zeros, so p has at most dn — 1 zeros in the curve y = 23. Now p € ker Ly satisfies
p|I' > 0 and card Z(p|I') < dn —1 < w = rank M,, (since d = 3), so Corollary
1.4 implies that § has no representing measure.

To complete the proof, we consider the case when 2,1 < ¢. From (4.1) and
(4.9) we have

~ o~ On n X ~N—
<HU; U> = <( dnxl )7( *d_ll >> 261,271—1 —0'C 10:51,271—1 — ¢ <0.

tA—1
v'C v — Bl,?n—l

Recall that H = P,C'P,-1. Setting 7 := P,-1u, we have (C7, 7) = (Hu,u) < 0, and,

*(dn—1)x1
from (4.9), 7 is of the form 7= (rg, ..., Tagn_1, Tan)' = -1 : in particular,
0
Tan-17Tan = 0. Let € = (¢ — Br.2n_1)"/?. Since <6€1, e1) = Boo = 1, then the constant
polynomial S(x) = €, with coefficient vector § = (¢,0,...,0)", satisfies s4, 154, = 0

and we have (C7, 7) + (Cs, 5) = 0. So 7 and S together satisfy the auxiliary

requirements of (2.10). Constructing p(z,y) as in Remark 2.11, (2.10) shows that

p € ker Lg. Now, p(z,z%) = R(x)*+ S(z)? > € > 0. Since p is strictly positive on T,

then CV(Lg) = (), and therefore § has no representing measure. O
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Remark 4.2. In Theorem 4.1, an alternate proof of the case 3; 2,—1 < ¢ can be based
on Theorem 2.13, as follows. Let Ay be as in (4.6). If 81 2,-1 < ¢[Ag], then (4.8)
implies that 12,1 < h'CT 'h. It therefore follows from (4.3) that for every A € R,

. Ch h
the matrix ( ¥ Brans
semidefinite. Thus, for every A, H[A], and hence C[A], is not positive semidefinite,
so Theorem 2.13 implies that S has no representing measure.

) is a principal submatrix of H[A] that is not positive

In [F2] a rather lengthy construction with moment matrices is used to derive
a certain rational expression in the moment data, denoted by ¢ in [F2], such that g
has a representing measure if and only if 1 2,1 > %, in which case M,, admits a flat
extension M, ;. In view of Theorem 4.1, it is clear that ¢ = ¢ (although this is not
at all apparent from the definitions of these expressions).

Corollary 4.3. Suppose M, () is positive semidefinite and (y — x3)-pure. The fol-
lowing are equivalent:

(i) B has a representing measure;

(i1) B has a finitely atomic measure;

(111) M, (B) has a flat extension M, 1;

(iv) CV(Ls) #0;

(v) With A defined by (4.6) and ¢ defined by (4.8), Bian—1 > ¢;

(vi) CV(Lg) =T.

Proof. The implications (i) = (iv) = (ii) = (i) follow from the Core Variety
Theorem and its proof. The equivalence of (i) and (7i7) is established in [F2], and the
equivalence of (i), (v), and (vi) is Theorem 4.1. O

In [EF] the authors used the results of [F1] to exhibit a family of positive
(y — 2°)-pure moment matrices Mz(5) such that 3 has no representing measure
but the Riesz functional is positive (cf. Section 1). Here, positivity of the functional
cannot be derived from positivity of M3 using an argument such as L(p) = L(>_p?) =
> (Msp;, p;) > 0, because, by the theorem of Hilbert, not every nonnegative polyno-
mial p(x,y) of degree 6 can be represented as a sum of squares. Using Theorem 4.1
we can extend this example to a family of (y — x3)-pure matrices M, for n > 3 as
follows.

Example 4.4. Suppose M = M, (f3) is positive semidefinite and (y — 2%)-pure. Let
¢ = ¢[B] be as in (4.8) and suppose ¢ = [2,-1, so that § has no representing

measure by Theorem 4.1. We claim that the Riesz functional Lg is positive. Let M
denote the central compression of M to rows and columns that are of the form X'Y/
with 0 < 7 < 3, so that rank M = rank M and M = 0. Now let E be defined to
coincide with (3, except possibly in the f3; 2,1 position. It follows from the structure
of positive matrices that there exists ¢ > 0 such that if |§172n_1 — Bian—1] < 6, then
@(5) is positive definite. The structure of positive (y — x3)-pure moment matrices

now implies that M, (3) is positive semidefinite and (y — z3)-pure. Now consider the
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[m]

sequence B which coincides with 3 except that Bion-1=Bran1+1 /m. Tt follows

that there exists mo > 0 such that if m > myg, then MI™ = M, (B™]) is positive
semidefinite and (y — x?)-pure. By the remarks preceding Theorem 4.1, we have

%]ml = Bion1 + 1/m > Bion1 = ¢[M] = ¢[M,(8™)], so Theorem 4.1 implies
that ™ has a representing measure. Thus, Lgim is positive, and since the cone of
sequences with positive functionals is closed, it follows that Lg is positive.

To exhibit M, () as in Example 4.4, we may start with any positive semidefinite
(y—2?)-pure M,,(3'). Define 3 so that it coincides with 8" except that 12,1 = ¢[F].
If necessary, increase (2, to insure positivity of M, (5). Then M, () is positive
semidefinite, (y — z%)-pure, and B19,-1 = ¢[3'] = ¢[f] by the remarks preceding
Theorem 4.1.

5. A TEST FOR FINITENESS OF THE CORE VARIETY IN THE (y — 2%)-PURE
TRUNCATED MOMENT PROBLEM.

In this section we extend the method of the previous section to develop a suffi-
cient condition for finiteness of the core variety in the (y —2?)-pure truncated moment
problem for d > 4. For d = 4, this condition actually implies an empty core variety
and the nonexistence of representing measures. We begin with a construction that
applies to the (y — x9)-pure truncated moment problem for d > 4 (so that there are
at least 3 auxiliary moments).

Using (3.3) note that in the core matrix C, the n = w antidiagonals
with auxiliary moments are contained within the final 27 antidiagonals. Namely,
for 1 < k < d— 2, the auxiliary moments Ayi1 2k, ..., Ag—1,2n—k are contained in
d — 1 — k such antidiagonals. We divide the final column f of C' into d vectors f[],
¢=0,...,d—1, such that

fld=1

(5.1) f=| sl | eren

where

BO,ZTL—E
61,2n—€

f[O] = (60,271) ) f[g] = ﬂf,Qn—Z € ]Rd for 1 < 14 <d-2
A€+1,2n—€

Adfl,anf
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and

[g[n] | Bo,i

gn+1 B

fld—1] = : e R4 with  gfi] = 1 for each 1.
gl2n —d +1] Ba-1,i

So the first auxiliary moment occurs in the last coordinate of f[d — 2], which is the
antidiagonal (d — 1)(d — 2) of C' counted from the final one backwards.

Consider the following permutation o of the rows of C' to form a matrix Hj.
The first (nd + 1) — 2n rows and columns of H; coincide with those of C. The n
rows of C' ending in auxiliary moments (as just described above) are shifted into the
final n rows of H;, maintaining the same relative position ordering as in C'. The rows
among the final 2n rows of C' that do not contain auxiliary moments in the rightmost
position are shifted upward into consecutive rows of H; beginning in row nd 4+ 2 — 2n
(and maintaining the same order).

Matrix H is obtained from H; by permuting the columns of H; in the same
way as the rows of C' were permuted to form Hiy; thus H = P,CP,-1, where P, is the
permutation matrix associated with o (FP,e; = €,() (1 <@ < dn + 1), cf. Section 3).

Remark 5.1. Recall from Proposition 2.9(ii) that ¢’ = M[3,U], where

o 3 = BCn+d-2) i any extension of B such that M, 4o is recursively generated,

e U/ is as in (2.16),

e M[B,U] is a matrix with rows and columns indexed in the order (2.17) with the
entry in row X°Y7 and column X*Y! equal to §i+k,j+l (cf. (2.18)),

o M[E, U] is obtained from M[E, U] by replacing each Eij such that s mod d+j+ [é] >
2n with the auxiliary moment A;;.

Then H is a matrix obtained from M{3,U] by permuting its rows and columns. First,
the rows and columns that are not shifted from C' appear, i.e., all XY from (2.17)
with i+j < nup to X "2Y"~%*2 Then the rows and columns that are shifted upward
from C, i.e., X*Y7 from (2.17) right to X972Y"4*2 with i + j < n. Finally, the rows
and columns that are shifted downward from C follow, i.e., (i,7j) € F (cf. (3.3)) with
their relative position ordering preserved.

From this construction, it is apparent that the first

(d—2)(d—1) 2nd—d*+3d
2 N 2 )

TEnd—i—l—cardj-: (:nd+1—

rows and columns of H coincide with C , and that H admits a decomposition

C v B
(5.2) H= v N D |,
Bt D! FE
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where rows and columns of C' are indexed by elements X?Y7 from (2.17) with (4,7) ¢
F,therow (v X D) has index X 'Y"~4*2 and the rows in (B* D' FE) run over
XY for (i,5) € F\{(d—1,n—d+2)}.

Note that v is of the form

h
5.3 v = ( ~ ) ,
( ) A= Ad—l,?n—d+2
with h € Rt and

A= Hnd+2—77,nd+2—77 - Ha(d(n—d+3)),o(d(n—d+3)) - Cd(n—d+3),d(n—d+3) - 55 mod di%J?

where £ = 2nd — 2d? + 6d — 2 and we used (2.13) in the last equality. Note that in the
second and third equality we used the fact that d(n —d+ 3) is the number of the row
in C' (at level d — 2) ending in the first auxiliary moment, Ag_1 2,—412, and o moves
this row to row nd+2 —n (= 7+ 1) in H; (the first row of H; ending in an auxiliary

moment). Write
-~ Cl ¥4 )
- ,
2 Bosan

where C] is of size (1 — 1) x (1 — 1) and z € R™"!. We now have

Cl z h Bl

~ t . A B

(5.4) A= | 7 o2 2
B A A D

Bi B, D' E

In the sequel we will provide a partial analogue to Theorem 4.1 based on the
relative value of A.
Since C' = 0, C~! has the form

(5.5) c = < € w ) ,

w' e
where C = 0, ¢ > 0, and w € R™". Now C~lv = C? +Aw , and we set
w'h + Ae
- th
(56) AQ = _U)_)
€
so that
~ _ whw
(5.7) Oty — ( Ch— %= >
0
With this value of A in C , and thus also in v, let
R thpt
(5.8) 6= v'Ctv = pich — LMY ooy,

€
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where the last equality follows by the same computation as for (4.8) above. Let

A1 Ch — whitw Uo
(5.9) L O S
O(nd—r)x1 Otndr)x1 w
where u, 11 = U;y0 = -+ = ug, = 0. A calculation shows that
(5.10) (Hu, u) = X — ¢.
We next apply the inverse permutation o='. Let 7 = P,-1u = (rg,...,7an)".

Note that decomposing 7 in the same way as f in (5.1), the nd—7 = —1 zeros
at the bottom of u correspond to zeros in 7" as follows: at level k of 7 (1 < k < d—3),
zeros appear in the high-indexed d — k — 1 positions of this level, corresponding to
the positions of the auxiliary moments A;; at this level of f. Note that the indices of
these r; are precisely those that satisfy

(d—2)(d—1)
2

i mod d + L%J >n and (z mod d,n + L%J) #(d—1,2n—d+ 2),
or equivalently, with F as in (2.9),
(5.11) (imodd,n+ | 5]) € FA{(d~1,20~ d +2).

Moreover, by the choice of A, u,_; = 0, (cf. (5.6), (5.9)), and 0! shifts this 0
to the end of 7, so we have

(5.12) Tan = 0.
Further
(5.13) (CT, 7) = (Hu, u) (=X —09).

Now suppose A = ¢, so that (CT, 7) = 0. We seek to apply Remark 2.11 to show
that the core variety is at most finite in this case. In order to do so with a polynomial
p € ker L satisfying p(x, %) = R(z)?, with R(z) = ro + mz + - - rpgz™® (using 7 as
described above), we will show that the auxiliary requirements h;;(7,5) = 0 of (2.10)
are satisfied with this 7 and using 5 = 0.

Example 5.2. Let d = 4. In this case the auxiliary conditions of (2.10) are

h3on—1 = 2(TanTan—1 + SanSan—1) =0,
haon—1 = 2(
h3,2n—2 - 2(

TunTan—2 + SanSan—2) + iy 1 + S4u_q = 0,
T4nTan—5 + Tan—1T4n—a + Tan—2Tan—3+
+ S4pSin—5 + San—154n—4 + San—254n—3) = 0.
From (5.9) and (5.12) we have 7y, = r4—1 = T4n—2 = 0, and since s = 0, it follows

that hgon—1 = hoon—1 = hg2n—2 = 0.
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We now turn to the general case of A = ¢ for d > 4, and we again utilize 7 as
described above and 5= 0. For each (i,2n — k) € F (cf. (2.9)),1e.,for 1 <k <d—2
and k+1 <i<d—1, we consider the auxiliary function

hivn*k::rndrn—kdi+7nnd77'n_kdi 4+t
(5.14) 2 (n—k)d+ 1T (n—k)di+1
+ T"d—pr(n*k)dJrier + -+ r(nfk‘)dJri’rnd.

(Here 0 < p < kd — i, so that nd —p > 0 and (n — k)d + i+ p < nd.) To show that
hi on—i = 0, we will rely on the following result.

Lemma 5.3. For (i,2n — k) € F (cf. (2.9)) and 0 < p < kd — i, we have
(515) rnd_pr(n_k)d+i+p =0.

Proof. Let (i,2n — k) € F and let ;7 be one of the terms appearing in the sum of
(5.14); thus

(5.16) j=mnd—pforsomep, 0<p<kd—i, andl = (n—k)d+1i+p.

We seek to utilize Lemma 2.5, and to this end we let 7 in Lemma 2.5 coincide with ¢
and let j in Lemma 2.5 correspond to 2n — k. Let k and [ in Lemma 2.5 correspond,
respectively, to j and [ defined in (5.16). Note that

J+l
d
It is not difficult to verify that the values for j and [ in (5.16) satisfy the hypotheses
of Lemma 2.5: j=nd—p, l=n—k)d+i+p<ndand j+1=1i+d(2n— k). By
Lemma 2.5, one of J := (j mod d,n + EJ) € Fand L := (l mod d,n + HJ) e F
holds. By symmetry with respect to p in (5.14) we may assume that J € F. If

JeF\{(d—-1,2n—d+2)}, then r; =0 by (5.9) and (5.11). '

Now suppose J = (d — 1,2n — d + 2), so that j mod d = d — 1 and [%J =
n —d + 2. An examination of (2.9) shows that for every pair (s,t) € F, we have
s+dt >d—1+d(2n—d+2). Now, if [ < dn, then

(5.17) ((+1) mod d, | |)=1(i,2n—k) e F.

jH+1l= ((jmodd)%—dLZJ)+l<(d—1)+d(n—d—|—2)+dn

(5.18) d

=(d—-1)+d(2n—d+2).
With s = (j + ) mod d and t = LJ%IJ, we have s 4+ dt = j + 1, so (5.18) implies that
((j + 1) mod d, L%J) ¢ F, contradicting (5.17). Therefore [ = dn, in which case
r =0 by (5.12). O

Theorem 5.4. Let d > 4.
(1) If X\ = ¢, then CV(Lg) is finite or empty.
(i1) If X\ = ¢ and d = 4, then there is no representing measure.

(111) If X < ¢, then there is no representing measure.
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Proof. Let A denote the curve y = z%. We first consider the case when A = ¢, so

that (Hu, u) = 0 by (5.10). When we reverse the permutation o described above to
produce vector 7, we have (C7, 7) = 0 by (5.13). Let § = 0. Lemma 5.3 now shows
that all of the auxiliary conditions (2.10) are satisfied. Following Remark 2.11 and
(2.7), define a;; = h;;(7,5) (0<i<d—1,4,j>0,0<i+j<2n). Then P(x,y) :=
S aijfi; is an element of ker L which satisfies Q(z) := P(z,2%) = R(x)?, where
R(z) :=ro+rxz+--- + rgn_12 7 4 g™, Since g, = rgno1 = - = Tan—(d—2) = 0,
R(z) has at most dn — (d — 1) real zeros, so P has at most dn — (d — 1) zeros in the
curve A. Since P € ker Lg satisfies P|A > 0 and card Z(P|A) < dn — (d — 1), it
follows that card CV(Lg) < dn — (d — 1). In the case d = 4,

dn—(d—1)=4n —3 < 4n — 2 =rank M,,

so Corollary 1.4 implies that g has no representing measure.

In the case where A < ¢, we may construct H, © and then 7 and R(x) as in the
preceding case, but now (CF, 7) = (Hu, u) = A — ¢ < 0. Let € = (¢ — \)/2. Since
(661, e1) = Poo = 1, then the constant polynomial S(x) = €, with coefficient vector
5= (€0,...,0), satisfies (CT, 7) + (C5, 5) = 0. As in the first paragraph, 7 satisfies
(5.15), while from definition of 3, the analogue of (5.15) for § clearly holds. So 7
and § together satisfy the auxiliary requirements of (2.10). Constructing p(x,y) as in
Remark 2.11, (2.10) shows that p € ker L. Now, p(z,z%) = R(x)* + S(z)? > €2 > 0.
Since p is strictly positive on A, then CV(Lg) = (), and therefore 5 has no representing
measure. 0

Remark 5.5. (i) The content of Remark 4.2 about the alternate proof of the case
Br2n—1 < ¢ for d = 3 extends to the case A < ¢ in Theorem 5.4. Let Ay be as in (5.6).

Let ¢[A] denote ¢ as in (5.8) where we emphasize the dependence on A. If A < ¢[A],
then (5.8) implies that A < h'!C;'h. It therefore follows from (5.4) that for every

A € R, the matrix ( %tl QL > is a principal submatrix of H[A] that is independent

of A and not positive semidefinite. Thus, for every A H [;{], and hence C' [,Zf]’ is not
positive semidefinite, so Theorem 2.13 implies that § has no representing measure.

(ii) In Section 6, we show that there exists a (y — z*)-pure sequence with a unique
representing measure and therefore a finite core variety (see Example 6.6.v)). By
Theorem 5.4.(ii), it follows that A > ¢ in every such example.

Theorem 5.4 suggests the following question.

Question 5.6. Ford > 5, if A = ¢, is it possible for the core variety to be nonempty?

6. THE (y — 2')-PURE TRUNCATED MOMENT PROBLEM

In this section we establish a complete solution to the moment problem for
3 = @ where M, is positive semidefinite and (y — z*)-pure (see Theorem 6.3). In
addition to the core variety approach, we also use the method of [Z1] involving positive

completions of partially defined Hankel matrices (see Lemma 6.1 and Theorem 6.2).
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Note that (cf. (2.28))
(6.1) rank M,, = 4n — 2.
Recall (cf. Example 2.7) that the core matrix C' of f = B®" has three auxiliary

moments, i.e., 332,-2, B22n—1, 83,201, Which we denote by A3z 2,2, Az 2n_1, Agon_1.

Convention: In what follows we write A;; in bold whenever the auxiliary moment is
meant as a variable. When we use a non-bold notation A;; we mean a specific value
of the variable A;;.

Recall from Examples 2.7 that the rows and columns of the core matrix
C = ClAsn-2,A2n-1,As9n1]
are indexed by the ordered set
B:={1,X X% XY, XY, X%, X3,... . Y" XY* X?YV* X3k
yrl Xyt XAyt xRyl yny,
For 1 <k <4n+1let

(6.2) I, :=(k—1)mod4 and J;:= L(k ; 1>J

(cf. (3.2) with d =4). Let As2,-2, A22,-1, A32,—1 € R be such that
C= C[A3,2n727 A2,2n717 A3,2n71]

satisfies a column relation
k-1

(6.3) Xyl =3 "o XY for some 2 <k <4n+1andp; €R.
i=1

We say that the column relation (6.3) propagates through C' if the relations

k-1
(6.4) X etey Teve — Z SOiXIi+EYJi+Z for ¢=1,....4n+1—k

i=1
also represent column relations of C.

In what follows we will need a notion of a Schur complement. Let M =
< ﬁ Z ) be a real matrix where A € RM~Dx(m=1) ig invertible, a € R™' and
a € R. The Schur complement of A in M is defined by M/A = a — a'A™'a.

To prove the main result of this section (see Theorem 6.3 below), we will need
the following two results from [Z1]. The first is about the existence of a positive
completion of a partially defined Hankel matrix (see Lemma 6.1), while the other is
about the existence of a measure for a univariate sequence with two missing entries
(see Theorem 6.2).
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Lemma 6.1 ([Z1, Special case of Lemma 2.11]). Let m € N, m > 3 and

Al a b
Ax)=| o' a x
' x B

be a real symmetric m x m matriz, where Ay is a real symmetric (m —2) x (m — 2)
matriz, a,b € R™ 2, a,f € R and x is a variable. Assume that A, is positive

definite and the submatrices Ay := ( ;4% Z ), Az = ( 2171 g ) of A(x) are positive
semidefinite. Let

ri =T AT a + \/(A2/ A1) (As/AL) € R.
Then:

(1) A(zo) is positive semidefinite if and only if xog € [x_, x4 ].
(it) If zo € {x_,x,}, then rank A(z) = max { rank A,, rank Az} .
(iii) If xo € (x_,x4), then rank A(xo) = max { rank Ay, rank A3} + 1.

Theorem 6.2 ([Z1, Special case of Theorem 3.5]). Let m € N, m > 3, and

’Y(X, y) = (707 Y1505 Vom—3,Y, X, fVQm)

be a sequence, where each v; is a real number, vo > 0 and x,y are variables. Assume
that the Hankel matrices Hy = (Viyj—1)1<ij<m—3 and Hy = (Viyj—1)1<ij<m—2 are
positive definite. Then the following statements are equivalent:

(1) There ezist xo,yo € R such that y(xo,y0) admits a representing measure sup-
ported in R.
H1 Uu

) e
(i) The matriz w

semidefinite and the inequality

> ., where u' = ( Y Yom—3 ), 18 positive

(6.5) sHy's™ < uH ' ++/ (H,/H,) (A/H)
holds, where s™ == ( Ym-1 =+ Yom—3 ), W' = (Ym-2 0 Yom-s ).

Next we introduce five submatrices of C' which occur in the statement of the
solution to the (y — 2*)-pure TMP. For S C B we denote by C|s the restriction of C
to rows and columns indexed by elements from S. Let

Spi= B\ {XY" L X?y" L XPyn Ty,
Sy =B\ {X*Y" 1 Xy vy,
Sy =B\ {XY" 1 Xy Yy},
Sy =B\ {X°’Y" v},
S5 =B\ {X*Y" 1, X’y 1}
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and C; := Cls, for each i. Note that C;, Cy, C5 are completely determined by £, and

we have
G2 = <(7j:tl 52,;;2) G = (ftl ﬁo,:n1) ’
(6:6)  CalAsana] = <g§ 50;[;1) with w = <A31,1;112) ’
Cs5[Asz9n—2] = <§f 50%%) with 2" = (20 Aszn2 Bogn-1 Bron—1),

where wu,v,wi, z; are independent of the auxiliary moments. Assume that Cy is
positive definite. (Note that by Theorem 6.3 below this is a necessary condition
for the existence of a representing measure for .) Using C4[A32,-2] as A(x) in
Lemma 6.1, it follows that C4[A39,—2] is positive semidefinite if and only if A3 o, o €

[(A?’QN—Q)—? (A3,2n—2)+:|, where

(Asn-2)— = 0'C7 ' — 1/ (C2/C1)(C3/Ch),
(As0-2)+ = V'C7 u+ 1/ (C2/C1)(Cs/Ch).

Moreover, Lemma 6.1.(ii) implies that the last column of Cy4[(As2,—2)-] is linearly
dependent on the previous columns:
XY = o o X Xl LY Xy
(6.8) in2
= Z gpg_)XIiY‘]i for some gog_) cR.

=1

(6.7)

Similarly, in Cy[(As2,-2)+] we have
XY = o+ X 4 X YT o) Xy
6.9 4n—2
(6:9) = Z goEJr)XIiYJi for some cp§+) € R.
i=1
Let [X?Y7]ysy: be the entry in the row X*Y? of the column X¢Y7 of C. Assuming
(6.8) and (6.9) we also define

An—2 An—2

(610) (A2 oIn— 1 Z gOl XI YJI]Yn Ag 2n— 1 Z 90 XII'HYJ"H]
i=1

and
4dn—2 4In—2

(6.11) (Agon—1)+ = Z 90(+ X" YJ lyn, (Azon—1)4+ = Z Pi XIZHYJZH}

Note that in the definitions of (As2,—1)+ we used that [XQY”_l]yn = (A29, 1)+, and
hence (A2 9,-1)+ needs to be defined before (A3 2,-1)+ in (6.10), (6.11). In the sequel,

for the case when Aj2,-2 = (As2,-2)—, (6.10) is used to define Ajs,_1 so that the
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relation (6.8) becomes a full column relation in C'. (Similarly for As 2,2 = (A32,-2)+,

(6.11), (6.9).)

Recall that for S C B we denote by [X'Y7]s the restriction of the column X*Y7
of C to the rows indexed by elements of S. The solution to the (y — z*)-pure TMP
is the following.

Theorem 6.3. Suppose M, is positive semidefinite and (y — x*)-pure. Assume the
notaion above. ff = P has a representing measure if and only if the following
conditions hold:
(i) Cy is positive definite.
(i1) Cs is positive semidefinite.
(111) One of the following statements holds:
(a) The relation (6.8) propagates through C[(Aszn—2)—, (As2n-1)—, (A320-1)—].
(b) The relation (6.9) propagates through C[(Ason—2)+, (A2.2n-1)+, (As2n-1)+]-
(c) There ezists

(6.12) Azon-—2 € ((A3,2n—2)—7 (A3,2n—2)+)
such that

(6.13) 5<p,

where

5 = ([X*Y"s,) (CalAsn-a]) XY™ s,

(6.14) t
p=([Y"s,) C5 ' [X?Y" s, + \/(04[143,2”,2]/02)(05[14372”,2]/02).

Remark 6.4. (i) Before we prove Theorem 6.3, let us briefly explain how it is
related to Lemma 6.1 and Theorem 6.2. Theorem 6.3.(i) comes from the as-
sumption that M, is (y — z*)-pure, while Theorem 6.3.(ii) from Theorem 2.13.
The condition Az 9,2 € [(A3,2n_2)_, (Ag,Zn_g)Jr} comes from Lemma 6.1 as ex-
plained in the paragraph before Theorem 6.3. For

Ason—2 € {(As2n-2)—, (A32n-2)+},

flatness of Cy[(As2,—2)+) implies that 8 has a representing measure if and only
if C[(As2n—2)+,(A22n-1)x, (A32,-1)+] is a flat extension of C,, which is equiv-
alent to one of Theorem 6.3.(iiia) or Theorem 6.3.(iiib). For the remaining
cases Asop_o € ((Agygnfg),, (A372n,2)+) we use Theorem 6.2 for the univariate

sequence
Brosidisrs i T + Jrp1 < 2n,
Ason_o, if Iy =3, Jpy1 = 2n — 2
— (Sn) — n ': N ) 3 5
V=0 = ehie where =0 i Ly = 2, e = 20— 1,

A372n_1, if Ik+1 = 3, Jk-i—l =2n — 1,

to obtain Theorem 6.3.(iiic).
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(ii) Observing the proof of Theorem 6.2 in [Z1], it turns out that for Az, o sat-
isfying (6.12), the inequality (6.13) is equivalent to the existence of a positive
semidefinite completion of C[A3 2,2, A2 2n—1, Az 2n_1], and is therefore equiva-
lent to the existence of a representing measure p for 5 by Theorem 2.13. Namely,
d comes from the submatrix C|g\ (v~} and is the lower bound on the auxiliary
moment Ag a,_1, s0 that C[p\(yny is positive semidefinite. On the other hand p
comes from the submatrix C'|g\ (xsy»-1} and is the upper bound on the auxiliary
moment Aj 2,1, so that C|pg\;xsyn-1y is positive semidefinite. Consequently, if
there is only one As o, o satisfying (6.12) and (6.13), then p is the unique rep-
resenting measure for § arising from Theorem 6.2. We will show below that w is
actually the unique representing measure for 8. Note first that for this unique
choice of Az, € ((A372n,2),, (A372n,2)+), there must be equality in (6.13)
because of the continuity of the condition of being positive definite. If we had
a strict inequality in (6.13) for this As 2,2, then a slightly perturbed Ass,_o
would still satisfy (6.12) and (6.13), yielding a different measure.

Concerning uniqueness, suppose as above that As a2 uniquely satisfies (6.12)
and (6.13), and let Ag,—1 and As2,—1 be such that

Cun = C[A3,2n—2, A2,2n—17 A3,2n—1]

is positive semidefinite, with corresponding measure p. We claim that no mea-
sure can arise as in Theorem 6.3.(iiia). Let

C_ = C[(A?,,Qn—z)—, (A2,2n—1)—7 (A?),Qn—l)—]-

If (iiia) holds, then C_ is positive semidefinite, so
1

(Ason—2)— + Aszon—o (A29n-1)- + Ason-1 (Ason—1)- + A3,2n1i|
2 ’ 2 ' 2
is positive semidefinite as well. But then

(A3 9n—2)— + As2n—2 (A3 9n—2)— + A3 252
()=t Aucay ) (zuca)t Ayoca
and (A3’2"‘2)5+A3’2"‘2 also satisfies (6.12) and (6.13), which is a contradiction

with the uniqueness of Az ,_2. So C_ is not positive semidefinite and does not
admit a representing measure. Analogously, the same holds for

Cy = C[(A3,2n72)+7 (A2,2n71)+7 (A3,2n71)+]-

We now conclude that g is the unique representing measure for 5. In Example
6.6(v) below we show that there are pure sequences with a unique representing
measure, as just described.

zc[

<p

Proof of Theorem 6.3. Let T' be the curve y = 2*. First we prove the implication

(=). Assume that [ has a representing measure p. By Theorem 1.5, § admits a

finitely atomic representing measure u, necessarily supported in I'. Let B = pent+d) —

{Eij 1,7 > 0,i4 j < 2n+ 4} be the extension of 8 generated by u. By Proposition
38



2.9, C = C|Ps32n-2, P2.2n-1, B32n-1] is positive semidefinite, which implies that Cy and
Cj3 are positive semidefinite.

Next we show that Cy is positive definite. Assume that C5 is not definite.
Then there is a column relation in C5 of the form Zigg reXnY e = 0 for
some 71, € R, not all equal to 0. By the extension principle [F1, Proposition
2.4], this column relation must also hold in M, ; and in particular in C. Hence,
7= (ro,r1,-,T4n—3,0,0,0)" € ker C. Thus, (C7,7) + (C5,5) = 0, where 5 is the zero
vector, and the auxiliary conditions (2.10) (see Example 5.2) are satisfied. Following
Remark 2.11 and (2.7), define a;; = h;j(7,5) (0 <1 <3,4,7>0,0<i+j < 2n)
to obtain P(z,y) := > ai; fij € ker Lg and P(z,2%) = (3117, rkxk)2. Since P(z, z*)
has at most 4n — 3 real zeros, P has at most 4n — 3 zeros in the curve y = 2. It fol-
lows that card CV(Lg) < 4n — 3, which contradicts 4n — 2 = rank M,, < card CV(Lg),
where the equality is (6.1). Hence, Cy must be definite.

It remains to prove (111) Let A3,2n72 = B3,2n727 A2,2n71 = ﬁ2,2n717 A3,2n71 =
B3.9n-1, where 8 and C are as in the first paragraph above. Since C' is positive semi-
definite, so also is its central compression Cy[A39,—2|. Using Cy[As2,-2] as A(x) in
Lemma 6.1, it follows that As,_o € [(A&Qn_g)_, (Ag,gn_2)+:| where (A32,-2)+ are as
n (6.7). We separate three cases according to the value of Aj ;2.

Case 1: A3z, 9 = (A39,-2)-. Then in C4[(As2,-2)_] there is a column rela-
tion of the form (6.8). By the extension principle [F1, Proposition 2.4], this col-
umn relation also holds in C. In particular, observing row Y™, it follows that
Agon1 = (Agan_1)- (cf. (6.10)). Since M, is recursively generated, this column
relation propagates through C[(As2n—2)—, (A22,-1)—, (A32,—1)—] in the sense of (6.4).

Therefore X3y ! = Zf"l_z @\ Xty Lisi holds. Observing row Y™, it follows that

A3,2n71 = <A3,2n71)7 ( (6 10)) So C[(A3,2n72)77(A2,2n71)77(A3,2n71)7] has the
propagating relation (6.8), which is (iiia).

Case 2: Asg,2 = (As2n-2)+. The proof is analogous to the case Aso,_o =
(As2n—2)—, implying (iiib) holds.

Case 3: (6.12) holds. Note that the existence of a representing measure for § is
equivalent to the existence of a representing measure for a univariate sequence

S (5n) = f Brgags M ke + Jkp < 20,
(6.15) ~= = {w )ity where 7 : { Apoogenrs 1 Ips + o > 21,
Indeed, > ), prd(s, 1) 15 a representing measure for 3 if and only if > 7,_, ped,, is a
representing measure for 7 (cf. (6.2) and the proof of Theorem 2.13). Finally, (iiic)
follows by applying Theorem 6.2 to v. Namely, v corresponds to v(xo, yo); A29n-1,
Asan_1 t0 Tg, Yo, respectively; Cy[Az9,_a] to Ha; C5[Az9, 2] to A; [(X3Y" s, to s;
[Y7"]s, to u'; [X2Y" 1|5, to w; and Cy to H;.

This concludes the proof of the implication (=).
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It remains to prove the implication («<). Let v be as in (6.15). By Lemma 6.1
with C4[As 2,2 as A(x), (i) and (ii) imply that for Az z,—2 € [(As20-2)—, (Ag20-2)1],
the submatrix Cy[A3 9,—2] is positive semidefinite. We separate three cases acccording
to the assumption in Theorem 6.3:

If (iiia) holds, then (v;4+j—1)1<it+j<sk—¢ is positive definite and

rank(Vitj—1)1<i+j<sk = rank(Vipj—1)1<i+j<sk—6-

Therefore C[(As2n—2)—, (A2.2n-1)—, (A32,-1)—] is positive semidefinite and recursively
generated, so Theorem 2.13 implies that [ has a representing measure.

If (iiib) holds, then the proof is analogous to the proof in the case (iiia) above.

Finally, if (iiic) holds, then Theorem 6.2 implies the existence of Ag2,—2, A 2,1,
A3 9,1, such that (yi4j-1)1<ij<sk as in (6.15) is positive semidefinite and recursively
generated, whence the same is true for C[As39,—2, A29,-1, A39,-1]. By Theorem 2.13,
[ has a representing measure.

This concludes the proof of the implication (<). O

Remark 6.5. Let us comment the type of the inequality in (6.13) when regarding
Ag’gn_g as a variable A372n_2 in (614)

First we observe the left hand side of (6.13). [X3Y " !]s, has one coordinate
equal to Aja,_2, while by [F2, p. 3144], (04[A372n_2])71 is equal to

_ oo 1 Cy lwwTCy T —Cytw
Ci[Aszns)) ' = ( 2 )+ ,
( 4[ 3,2 2]) 0 0 04[A3,2n72]/02 _wTC«;T 1
where w = ( Awl > and 04/02 = 50,2n—1 — U}TC2_1U). So the left hand side of
3,2n—2

(6.13) is a rational function in Aj,_o with the numerator being of degree 4, while
the denominator of degree 2.
Now observe the right hand side of (6.13). Note that all terms

([Yn]82)t0271[X2Yn71]527 C4 [A3,2n—2]/02 and C5 [A3,27L—2}/C2

are quadratic in Ag »,,—o. Hence, the right hand side is a sum of a quadratic polynomial
and square root of a quartic one.

The following examples demonstrate the statements of Theorem 6.3.

Example 6.6. i) Let 3 = $® as in Example 2.18. It is straightforward to verify
that Cy and C5 from (6.6) are positive definite. A computation of (Ass)+ by (6.7)
gives (Asg)+ = £1. Further, a computation of §(Ags), p(Asg) by (6.14) gives

—9694844 + 9694114A2, + Al

p(Asg) = 9694830 — 12A%; + /(—1 + AJ;)(—318219264 + 145A%).

d(Asg) =

It turns out that 6(1436) = p(Agg) for A36,l ~ —0943353, A36,u =~ 0.943353.
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So the choices for Asq satisfying (6.12) and (6.13) are the ones lying on the interval
[As6,, Ase ). By Theorem 6.3, this confirms the existence of a measure for /3, in agree-
ment with the conclusion in Example 2.18. Note also that C[(Asg)—, (Aa7)—, (As7)-]
cannot admit a representing measure, since this would imply, by a convexity argu-
ment analogous to the one from Remark 6.4.(ii), that 5(%) < p(%),

which is not true. Similarly, C'[(As6)+, (A27)+, (As7)4] does not admit a representing
measure.

ii) Let 8 = B® be as in Example 2.19. Since C, from (6.6) is not positive definite,
this violates Theorem 6.3.(i), whence the measure for 5 does not exist, in agreement
with the conclusion in Example 2.19.

iii) Let 3 = B® be as in Example 2.18, except for changing By7 to Bor = 0 and S5
to (o5 = 2640503382173370698906776695725. It is straightforward to verify that C is
positive definite, which implies, by Proposition 3.7, that M, (/) is positive semidef-
inite and (y — z*)-pure. Further, Cy from (6.6) is positive definite, while C3 is not
positive semidefinite. This violates Theorem 6.3.(ii), whence a measure for 5 does
not exist.

iv) Let 8 = B® be as in Example 2.18 with 3,7 = 150 instead of 817 = 0. Since C
is positive definite, Proposition 3.7 implies that M4(5) is positive semidefinite and
(y — x*)-pure. Further, Cy and C3 from (6.6) are positive definite, which satisfies (i)
and (ii) of Theorem 6.3. It turns out that (Asg)- = —1, (Ase)+ = 1 (Agr)_ = 9694668,
(Ag7)s = 9694968, (As7)- = 2074, (Asr)y = 2126 and the relations (6.8) and (6.9)
are
X2Y3 = —XY3 +13Y2 4+ 12X3Y? — 66 X%Y? — 55X Y? 4+ 165Y? + 120X3Y
—210X?%Y — 126XY 4 126Y +56X3 — 28X% —7X + 1,
X?Y? = XY? +13Y% — 12X°Y? — 66 X%Y? + 55X Y? + 165V — 120X°Y

—210X2%Y 4+ 126XY + 126Y — 56 X3 — 28X +7X + 1,
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respectively. However,
Cl(Aszg)—, (Az7)—, (As7)-] = C[—1,9694668, 2074],
Cl(As6)+, (A27)+, (As7)+] = C[1,9694968, 2126]

do not satisfy the relations
Y4 =—X3Y3 4+ 13X%Y3 + 12XY? — 66Y3 — 55X3Y2 + 165X2Y? + 120X Y?
—210Y2 — 126 X3Y + 126 XY + 56XY — 28Y — 7X° + X2,
Y= X33 4 13X%Y3 — 12XY? — 66Y° + 55X°Y? + 165X%Y? — 120X Y2
—210Y2 4+ 126X3Y + 126X?Y — 56XY — 28Y + 7X3 + X2,

respectively. This violates Theorem 6.3.(iila) and 6.3.(iiib), so the choices Azg €
{=1,1} do not lead to a measure. It remains to consider the case Az € (—1,1). A
computation of §(Asg), p(Ase) by (6.14) gives

—9717344 + 8100A 36 + 9694114A 36> + A%
36

p(Asg) = 9694830 + 150A35 — 12A3,+

+ /318196764 + 3600A 55 — 318196909A2; — 3600A3; + 145A%,.

However, there is no Asg € (—1, 1) such that 6 > p, which violates Theorem 6.3.(iiic).

9.80x10°

—_— 0
I
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9.70x10°
9.65x10°
-15 -1.0 059 50x 105 - 05 1.0 15

It follows that Theorem 6.3.(iii) is violated, whence the measure for 5 does not exist.

v) Let B = B® be as in Example 2.18 with the difference that ;7 is a variable. Since
Cy and C3 do not depend on (7, they are positive definite as in iv) above. It turns
out that (A36)_ = —]_, (A36)+ =1 (A27)_ = 9.69468 - ].06, (A27)+ = 9.69495 - 106,
(Ag7)- = 1869.46, (As7); = 1921.46. Similarly as in iv) above it is easy to check
that C_ := C[(Agye)_, (A277)_, (A377)_] and C+ = O[(Agﬁ).b (A277)+, (A377)+] do not
satisfy Theorem 6.3.(iiia) and 6.3.(iiib), respectively. (It will also follow from the
uniqueness of the choice of As¢ € ((Asg)—, (Ase)+) such that C[Asg, Aaz, Asz] = 0
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for some Ay 7, A3 7 € R, that none of the matrices C_, Cy can be positive semidefinite
due to the convexity of the solution set of C[Aszg, Aoz, Agz| = 0.) It remains to
consider the case Asg € (—1,1). A computation of §(Asg), p(Ass) by (6.14) gives

B2 — 9604844 + 9694114 + 54817 Agg + AZg + Al
6(A367 517) = 2
—1+ A3

p(Ass, Bir) = 9694830 + Aggfir — 12A2,
+ /(=1 + AZg)(—318219264 + B2 + 145A25 — 24A366:7).

We are searching for ;7 such that the curves § and p would only touch for a unique
Asg. Only for this Az will a representing measure exist. Solving the system

6P(A36, 517) _ 86(A367 517)
0Aszg 0As6

(6.16) p(Ase, f17) = 0(Ase, S17) and

on Ajzg and f317, one of the solutions is 817 &~ 135.39. (The system (6.16) was solved in
exact arithmetic using [Wol].) Choosing this solution and repeating the computations
we get graphs that touch in a single point:

i P
9.75x108 -
9.70x10% -
9.65x10° -
-15 -1.0 -0.5 0.5 1.0 15

By Theorem 6.3.(iii) the measure for § exists and is unique as explained in Remark
6.4.(ii). Namely, there is only one good choice for Azs € (—1,1) such that §(Ass) <
p(Asze), in which case 0(Asg) = p(Asg). For this choice of Asg, there is only one choice
for Agz, ie., Ayr = §(Ass) = p(Asg). Finally, A7 such that rank C' = rank C|p\(y4} =
rank C'|p\ (x3ys y4} is unique. Note that Theorem 1.5 implies the core variety of Ly is
finite. Moreover, in the notation of Theorem 5.4, in this example we have A > ¢.

Finally, this example also shows the answer to Question 2.14 is negative. Namely,
{3 in this example has (y —x*)-pure My, and for the unique representing measure C[A]
is not positive definite but of rank 15, since the last two columns do not increase the
rank. This is due to the fact that § is the smallest such that C'|p\(y»y is positive semi-
definite and the largest such that C|g\(xsyn»-1y is positive semidefinite (cf. Remark
6.4.(ii)).
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