
A NOTE ON A MATRIX VERSION OF THE FARKAS LEMMA

ALJAŽ ZALAR

Abstract. A linear polyomial non-negative on the non-negativity domain of
finitely many linear polynomials can be expressed as their non-negative linear

combination. Recently, under several additional assumptions, Helton, Klep,
and McCullough extended this result to matrix polynomials. The aim of this

paper is to study which of these additional assumptions are really necessary.

1. Introduction

We are interested in matrix generalizations of the following variant of the Farkas
lemma.

Theorem 1. Let f1, f2, . . . , fk be linear polynomials in n variables, i.e., fi(x1, x2,

. . . , xn) = a
(i)
0 + a

(i)
1 x1 + . . . + a

(i)
n xn, where a

(i)
j ∈ R for i = 1, 2, . . . , k, j =

0, 1, . . . , n. Let K = {x ∈ Rn | fi(x) ≥ 0 for all i = 1, 2, . . . , k}. If f is another
linear polynomial in n variables, for which f |K ≥ 0 holds, then there exist non-
negative constants ci, such that

f = c0 + c1f1 + c2f2 + . . .+ ckfk.

We write Rd×d[x] (resp. SRd×d[x]) for the set of all polynomials whose coeffi-
cients are d× d (resp. symmetric d× d) matrices. The evaluation of a linear poly-
nomial L(x) = P0 +

∑n
i=1 Pixi ∈ SRd×d[x] at X = (X1, X2, . . . , Xn) ∈ (SRm×m)n

is defined as

L(X) = P0 ⊗ Im +

n∑
i=1

Pi ⊗Xi ∈ SRdm×dm

with the usual tensor product of matrices. Let

DL(m) = {X ∈ (SRm×m)n | L(X) � 0},

DL =

∞⋃
m=1

DL(m).

The following generalization of Theorem 1 was obtained by Helton, Klep, and
McCullough in [2]. It is a special case of their Theorem 6.1.

Theorem 2. Suppose L1 = I+
∑n
i=1 Pixi ∈ SRd×d[x] is a monic linear polynomial

and the set DL1(1) = {x ∈ Rn | L1(x) � 0} is bounded. Then for every linear
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2 ALJAŽ ZALAR

polynomial L2 = R0 +
∑n
i=1Rixi ∈ SR`×`[x] with L2|DL1

(1) � 0, there are matrix

polynomials Aj ∈ R`×` [x] and Bk ∈ Rd×` [x] satisfying

L2 =
∑
j

A∗jAj +
∑
k

B∗kL1Bk.

Note that this result also covers the case of several constraints; simply take L1

to be their direct sum.
It was already shown in [2] that the matrix polynomials Aj , Bk need not be

constant unless the condition L2|DL1
(1) � 0 is replaced with L2|DL1

� 0; cf. [2,

LP-satz].
The aim of this paper is to study the necessity of the following assumptions in

Theorem 2:

(1) Boundedness of DL1
(1): By Example 1 this assumption cannot be re-

moved.
(2) Monicity of L1: In Theorem 3 we prove that for diagonal L1 monicity

can be removed from Theorem 2. The general case remains open.
(3) Strict positivity of L2|DL1

(1): In Section 4 we show that this assumption

can be replaced with L2|DL1
(1) � 0 in the following special cases:

• In the one-variable case (even if DL1
(1) is unbounded).

• When the span of the coefficients of L1 is closed under multiplication.
The general case remains open. However, by Example 2 simultaneous gen-
eralization to non-monic L1 and non-strict L2|DL1

(1) is not possible.

2. Boundedness of DL1
(1)

The assumption of boundedness in Theorem 2 cannot be removed, because of
the following example:

Example 1. For linear polynomials

L1 =

 1 + x1 0 0
0 1 + x1 + x2 0
0 0 1 + x2

 , L2 =

[
1 + 1

3x1
3
4

3
4 1 + 1

3x2

]
we have that the set DL1(1) is contained in the set D̃L2(1) :=

{
(x1, x2) ∈ R2 |

L2(x1, x2) � 0}, but L2 cannot be expressed as
∑
j A
∗
jAj +

∑
k B
∗
kL1Bk. This im-

plies that the boundedness of DL1
(1) is needed in Theorem 2.

Proof. We have DL1
(1) =

{
(x1, x2) ∈ R2 | x1 ≥ −1, x1 + x2 ≥ −1, x2 ≥ −1

}
. On

the other hand, the fact 1 + 1
3x1 > 0 on DL1(1) together with

det(L2) =

(
1 +

1

3
x1

)(
1 +

1

3
x2

)
−
(

3

4

)2

=

=

(
2

3
+

1

3
(1 + x1)

)(
2

3
+

1

3
(1 + x2)

)
−
(

3

4

)2

=

=

(
2

3

)2

+
2

9
(1 + x1 + 1 + x2) +

1

9
(1 + x1) (1 + x2)−

(
3

4

)2

=

=
5

48
+

2

9
(1 + x1 + x2) +

1

9
(1 + x1) (1 + x2) ,
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where the second and the third summand in the last line are non-negative on
DL1

(1), gives L2|DL1
(1) � 0.

Now we are going to show, that if L2 can be expressed as L2 =
∑
j A
∗
jAj +∑

k B
∗
kL1Bk, then Aj and Bk can be assumed to be constant matrices. Let us

denote Aj , Bk as[
P

(j)
1 (x1, x2) R

(j)
1 (x1, x2)

P
(j)
2 (x1, x2) R

(j)
2 (x1, x2)

]
,

 p
(k)
1 (x1, x2) r

(k)
1 (x1, x2)

p
(k)
2 (x1, x2) r

(k)
2 (x1, x2)

p
(k)
3 (x1, x2) r

(k)
3 (x1, x2)

 .
Comparing the entry (11) in

∑
j A
∗
jAj +

∑
k B
∗
kL1Bk and L2 gives∑

j

(
(P

(j)
1 (x1, x2))2 + (P

(j)
2 (x1, x2))2

)
+
∑
k

(
(p

(k)
1 (x1, x2))2(1 + x1)+

+(p
(k)
2 (x1, x2))2(1 + x1 + x2) + (p

(k)
3 (x1, x2))2(1 + x2)

) ?︷︸︸︷
= 1 +

1

3
x1.

By observing the monomial of the form Kxni , n ∈ N,K 6= 0, i = 1, 2, of the highest
degree on the left side, it can be seen, that monomials Axni , n ∈ N, A 6= 0, i = 1, 2,

do not appear in any P
(j)
i nor p

(k)
i . With the same reasoning applied to the entry

(22) not even in R
(j)
i and r

(k)
i . Further on, since the monomial Kxm1 x

n
2 , K 6= 0,

m,n ∈ N, from P
(j)
i or p

(k)
i , does not multiply into monomial K or Kx1, K 6= 0, it

is not needed to satisfy the upper equality. Similar reasoning can be applied to the
other entries, hence WLOG Aj , Bk are constant matrices.

The comparison of coefficients in
∑
j A
∗
jAj +

∑
k B
∗
kL1Bk and L2 in a constant-

matrix case gives the following equalities:
Entry (11):

(1) x2 :
∑
k

(
(p

(k)
2 )2 + (p

(k)
3 )2

)
= 0 ⇒ p

(k)
2 = p

(k)
3 = 0, ∀k

(2) x1 :
∑
k

(
(p

(k)
1 )2 + (p

(k)
2 )2

)
=

1

3

(3) 1 :
∑
j

(
2∑
i=1

(P
(j)
i )2

)
+
∑
k

(
(p

(k)
1 )2 + (p

(k)
2 )2 + (p

(k)
3 )2

)
= 1

Entry (12)(=entry (21)):

(4) x2 :
∑
k

(
p

(k)
2 r

(k)
2 + p

(k)
3 r

(k)
3

)
= 0

(5) x1 :
∑
k

(
p

(k)
1 r

(k)
1 + p

(k)
2 r

(k)
2

)
= 0

(6) 1 :
∑
j

(
2∑
i=1

P
(j)
i R

(j)
i

)
+
∑
k

(
3∑
i=1

p
(k)
i r

(k)
i

)
=

3

4
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Entry (22):

(7) x2 :
∑
k

(
(r

(k)
2 )2 + (r

(k)
3 )2

)
=

1

3

(8) x1 :
∑
k

(
(r

(k)
1 )2 + (r

(k)
2 )2

)
= 0 ⇒ r

(k)
1 = r

(k)
2 = 0, ∀l

(9) 1 :
∑
j

(
2∑
i=1

(R
(j)
i )2

)
+
∑
k

(
(r

(k)
1 )2 + (r

(k)
2 )2 + (r

(k)
3 )2

)
= 1

We will see, that the upper equalities cannot be simultaneously satisfied.

From 1 and 8 we conclude
∑
k

(∑3
i=1 p

(k)
i r

(k)
i

)
= 0. We use this in 6 and get∑

j

(∑2
j=1 P

(j)
i R

(j)
i

)
= 3

4 . Using 1 and 2 in 3 gives
∑
j

(∑2
i=1(P

(j)
i )2

)
= 2

3 .

Similarly using 7 and 8 in 9 gives
∑
j

(∑2
i=1(R

(j)
i )2

)
= 2

3 .

The following chain of (in)equalities should hold:

2

3
=

2
3 + 2

3

2
=
∑
j

2∑
i=1

(P
(j)
i )2 + (R

(j)
i )2

2
≥
∑
j

2∑
i=1

∣∣∣P (j)
i R

(j)
i

∣∣∣ ≥∑
j

2∑
i=1

P
(j)
i R

(j)
i =

3

4
,

where the first inequality follows from AG-inequalites applied to pairs
{

(P
(j)
i )2,

(R
(j)
i )2

}
, i.e.,

(P
(j)
i )2+(R

(j)
i )2

2 ≥
∣∣∣P (j)
i R

(j)
i

∣∣∣, ∀ i, j.
We conclude 2

3 ≥
3
4 , which is obviously a contradiction. �

3. Monicity of L1

In this section we show, that for diagonal L1 monicity in Theorem 2 can be
removed. In Proposition 1 we first prove the case of the set DL1

(1) being a singleton
and then also the other cases of bounded DL1

(1) in Theorem 3.

Proposition 1. Suppose L1 ∈ SRd×d[x] is a diagonal linear polynomial and the set
DL1

(1) = {a}. Then for every linear polynomial L2 ∈ SR`×`[x] with L2|DL1
(1) � 0,

there are matrix polynomials Aj ∈ R`×` [x] and Bk ∈ Rd×` [x] satisfying

L2 =
∑
j

A∗jAj +
∑
k

B∗kL1Bk.

In the proof we will use the following proposition:

Proposition 2. For every A ∈ SR`×` there exist Bk ∈ SR2×`, such that∑
k

B∗k

[
x 0
0 −x

]
Bk = Ax.

Proof. According to the well-known fact every real symmetric matrix is real congru-
ent to a diagonal D with elements 1,−1 and 0 on the diagonal, i.e., A =

∑
k B̃
∗
kDB̃k,

where D, B̃k ∈ SR`×`. Dx can be constructed from

[
x 0
0 −x

]
with the aim of
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equalities:

Eii =
[
ei 0

] [ 1 0
0 −1

] [
e∗i
0

]
,

−Eii =
[

0 ei
] [ 1 0

0 −1

] [
0
e∗i

]
,

where ei denotes the standard R`×1 vector. �

Proof of Proposition 1. Up to translation we may assume DL1
(1) = {0}. For a

polynomial

L̃1 =

[
x1 0
0 −x1

]
⊕ · · · ⊕

[
xn 0
0 −xn

]
we have DL̃1

(1) = {0}. After applying Theorem 1 to diagonal entries of L1 and each

diagonal entry of L̃1, it follows L̃1 =
∑
j Ã
∗
j Ãj +

∑
l B̃
∗
kL1B̃k for some constant Ãj ,

B̃k. Therefore it suffices to find Aj , Bk, such that L2 =
∑
j A
∗
jAj +

∑
k B
∗
kL̃1Bk.

If we write L2(x) = R0 +
∑n
i=1Rixi, then L2(0) = R0 � 0. So there exists

A, such that R0 = A∗A. According to Proposition 2, Rixi can be expressed in a

desired way with

[
xi 0
0 −xi

]
, hence also with L̃1.

Since i was arbitrary, we are done. �

Now we will extend Proposition 1 to the general case. One additional lemma
will be needed for that.

Lemma 1. Suppose L = P0 +
∑n
i=1 Pixi ∈ SRd×d[x] is a linear polynomial and

let 0 be an interior point of the set DL1
(1). Then there exists a monic linear

polynomial L̃ = I +
∑n
i=1 P̃ixi ∈ SRd̃×d̃[x], where d̃ ≤ d and DL(1) = DL̃(1), such

that L̃ = C∗LC and L = D∗L̃D, where C ∈ Rd×d̃, D ∈ Rd̃×d.

Proof. Since 0 is an interior point, P0 � 0 and Im(Pi) ⊆ Im(P0) for i = 1, . . . , n (See
[2, Proof of Proposition 2.1].). We have P0 = V ∗DV , where D is diagonal and V or-

thogonal. Further on V ∗LV = L|Im(P0)⊕0d−d̃, d̃ = dim(Im(P0)). Hence L|Im(P0) =

J∗(V ∗LV )J with J∗ := [Id̃ 0d̃×(d−d̃)] ∈ Rd̃×d. Defining P̃0 := P0|Im(P0) � 0, gives

P̃0 = B∗B, where P̃0, B ∈ Rd̃×d̃ and B is invertible. So (B−1)∗L|Im(P0)B
−1 =

(B−1)∗B∗BB−1 +
∑
i(B
−1)∗Pi|Im(P0)B

−1xi = I +
∑
i(B
−1)∗Pi|Im(P0)B

−1xi =: L̃.

L̃ is in Rd̃×d̃ and DL(1) = DL̃(1). With C∗ := (B−1)∗J∗V ∗ ∈ Rd̃×d̃Rd̃×dRd×d =

Rd̃×d and D∗ := (V −1)∗JB∗ ∈ Rd×dRd×d̃Rd̃×d̃ = Rd×d̃, the lemma is proved. �

Theorem 3. Suppose L1 ∈ SRd×d[x] is a diagonal linear polynomial and the
set DL1

(1) is bounded. Then for every linear polynomial L2 ∈ SR`×`[x] with
L2|DL1

(1) � 0, there are matrix polynomials Aj ∈ R`×` [x] and Bk ∈ Rd×` [x]
satisfying

L2 =
∑
j

A∗jAj +
∑
k

B∗kL1Bk.

Proof. If DL1
(1) = ∅, then by Theorem 1, −1 is in the convex cone generated by the

diagonal entries of L1. Now L2 can be expressed in the desired form, since the qua-
dratic module generated by −1 in any ring with involution consists of all symmetric
elements by the identity 4a = (a+ 1)2− (a− 1)2. If DL1

(1) = {~a}, then we can use
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Proposition 1 and we are done. If dimDL1(1) = n, then by Lemma 1 WLOG L1

is monic and Theorem 2 is used. Otherwise we have 1 ≤ dimDL1(1) =: k ≤ n− 1.
Since DL1

(1) is convex, it lies in some affine subspace of dimension k. With transla-

tion WLOG ~0 ∈ DL1(1) and hence the affine subspace is actually a vector subspace
of dimension k. Let B = {e′1, e′2, . . . , e′k} be the basis of this subspace. B can
be completed to the basis of Rn, i.e., B′ =

{
e′1, . . . , e

′
k, e
′
k+1, . . . , e

′
n

}
. Standard

basis {e1, e2, . . . , en} of Rn can be uniquelly expressed by B′ and vice versa, i.e.,

ei =
∑n
j=1 α

(i)
j e′j and e′i =

∑n
j=1 β

(i)
j ej , for unique α

(i)
j , β

(i)
j ∈ R. Therefore intro-

ducing new unknows x′i as x′i =
∑n
j=1 β

(i)
j xj gives also xi =

∑n
j=1 α

(i)
j x′j . Putting

expressed xi-s into L1(x1, . . . , xn), we get L̃1(x′1, . . . , x
′
n). The map Φ : Rn → Rn,

defined by Φ : (a1, . . . , an) 7→ (
∑n
j=1 β

(1)
j aj , . . . ,

∑n
j=1 β

(n)
j aj), is bijective and

L1((a1, . . . , an)) = L̃1(Φ(a1, . . . , an)). Hence Φ(DL1
(1)) = DL̃1

(1). So DL1
(1) and

DL̃1
(1) are in bijective correspondence. Similarly for DL2(1) and DL̃2

(1). There-

fore DL1
(1) ⊆ DL2

(1) ⇔ DL̃1
(1) ⊆ DL̃2

(1). From the construction of basis B′,

x′ ∈ DL̃1
(1) is of the form (x′1, . . . , x

′
k, 0, . . . , 0).

Let us write

L̃1 =

(
P ′0 +

k∑
i=1

P ′ix
′
i

)
+

n∑
i=k+1

P ′ix
′
i = L̃1,1(x′1, . . . , x

′
k) + L̃1,2(x′k+1, . . . , x

′
n).

We notice, that L̃1 is still diagonal. For

L̃ = L̃1,1(x′1, . . . , x
′
k)⊕

[
x′k+1 0

0 −x′k+1

]
⊕ · · · ⊕

[
x′n 0
0 −x′n

]
(which is obviously diagonal), DL̃1

(1) = DL̃(1), and with the use of Theorem 1

on diagonal entries of L̃1 and each diagonal entry of L̃, L̃ can be expressed as∑
j A
∗
jAj +

∑
k B
∗
kL̃1Bk. Hence it suffices to prove the statement of the theorem

for the pair L̃, L̃2.

Analogously as for L̃1 we write L̃2 as L̃2 =
(
R′0 +

∑k
i=1R

′
ix
′
i

)
+
∑n
i=k+1R

′
ix
′
i =

L̃2,1(x′1, . . . , x
′
k) + L̃2,2(x′k+1, . . . , x

′
n). We have L̃2,1|DL̃1,1

(1) � 0. Since there exists

an interior point in DL̃1,1
(1), Lemma 1 allows us to regard L̃1,1 as monic. Finally

Theorem 2 is used for the pair L̃1,1, L̃2,1.

It remains to express L̃2,2(x′k+1, . . . , x
′
n) = R′k+1x

′
k+1 + · · ·+ R′nx

′
n with L̃. Ac-

cording to Proposition 2, Rix
′
i can be expressed with

[
x′i 0
0 −x′i

]
. Hence also with

L̃. Since i was arbitrary, we are done.
To conclude, we got the expression

L̃2(x′1, . . . , x
′
n) =

∑
j

Ã∗j Ãj +
∑
k

B̃∗kL̃1(x′1, . . . , x
′
n)B̃k.

Using x′i =
∑n
j=1 β

(i)
j xj , we finally get

L2(x1, . . . , xn) =
∑
j

A∗jAj +
∑
k

B∗kL1(x1, . . . , xn)Bk.

�
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4. Strict positivity of L2|DL(1)

The next thing to be studied is the necessity of positive definiteness in Theorem
2, i.e., whether semidefiniteness suffices. We separately study the one-variable case
from the general diagonal case.

4.1. One-variable case.

Theorem 4. Suppose L1(x) = P0 + P1x ∈ SRd×d[x] is a linear polynomial and
the set DL1

(1) has an interior point. Then for every linear polynomial L2(x) =
R0+R1x ∈ SR`×`[x] with L2|DL1

(1) � 0, there are matrix polynomials Aj ∈ R`×` [x]

and Bk ∈ Rd×` [x] satisfying

L2 =
∑
j

A∗jAj +
∑
k

B∗kL1Bk.

Proof. Case 1: If DL1(1) is bounded and there exists an interior point in DL1(1),
then according to Lemma 1, we can assume L1 and L2 are monic, i.e., P0 = I,R0 =
I. Since we have just one variable, we may interpret both L1 and L2 as NC
polynomials, or precisely linear pencils. We will first show, that
DL1

(1) ⊆ DL2
(1)⇒ DL1

⊆ DL2
: Let us take X ∈ DL1

, X ∈ SRm×m, which means

L1(X) = I ⊗ Im + P1 ⊗X � 0. Or equivallently Im ⊗ I +X ⊗ P1 � 0. We have to
show that X ∈ DL2 . Since X is symmetric, it can be real ortogonally diagonalized,
i.e., UXUT = D, where U is an orthogonal matrix of size m. After multiplying with
invertible matrix U⊗I we get (U⊗I)(Im⊗I+X⊗P1)(U⊗I)T = Im⊗I+D⊗P1 � 0.
Hence X ∈ DL1

⇔ D ∈ DL1
. Now Im ⊗ I +D⊗ P1 � 0 is a block-diagonal matrix

with the blocks of the form I+diP1. It follows Im⊗I+D⊗P1 � 0⇔ I+diP1 � 0 for
i = 1, 2, . . . ,m ⇔ di ∈ DL1(1) for i = 1, 2, . . . ,m. But according to the assumption
di ∈ DL2(1) for all i = 1, 2, . . . ,m and hence X ∈ DL2 .

To be able to use LP-satz (i.e., Theorem 2 with L2|DL1
(1) � 0 replaced by

L2|DL1
� 0 and Aj , Bk constant); cf. [2, Corollary 3.7]; for the pair L1, L2, DL1

must be bounded. But by [2, Proposition 2.4] this is equivalent to DL1
(1) being

bounded. So by LP-satz there exist Bk, such that L2 =
∑
k B
∗
kL1Bk.

Case 2: If DL1
(1) is unbounded, then it is an interval of the form [a,∞), (−∞, a],

(−∞,∞), a ∈ R. With translation we may assume a = 0.
First we study the case DL1(1) = [0,∞). Since 0 ∈ DL1(1), we have P0 � 0. We

can also show, that P1 � 0. To explain: u∗L1(x)u = u∗P0u+ u∗(P1x)u = u∗P0u+
xu∗P1u. In the case that u∗P1u 6= 0, we have x |u∗P1u| > |u∗P0u| for x great
enough. Therefore, if there exists u, such that u∗P1u < 0, then lim

x→∞
x /∈ DL1

(1).

Contradiction.
Since P0 and P1 are positive semidefinite, we can use Newcomb’s theorem [5,

Theorem 20.2.2] (It is actually made for complex matrices but with a slight mod-
ification of the proof it holds for real as well.) to simultaneously diagonalize them
with invertible S, i.e., S∗P0S, S∗P1S are both diagonal. So WLOG L1 is diagonal.
Analogously for L2. Now we just use Theorem 1 on diagonal entries of L1 and each
diagonal entry of L2 and we are done.

In the case DL1
(1) = (−∞, 0], we have again P0 � 0. As above we show P1 � 0.

Since P0, P1 are semidefinite, Newcomb’s theorem [5, Theorem 20.2.2] can be used
and we proceed as above.
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In the case DL1(1) = (−∞,∞), we have P0 � 0 and it is easy to show, that
P1 = 0. Therefore L1(x) = P0 and analogously L2(x) = R0, where R0 � 0. Hence
L2(x) = C∗C. �

The following example shows, that DL1(1) must have an interior point in Theo-
rem 4.

Example 2. For the non-monic, non-diagonal polynomial L1(x) = [ 1 x
x 0 ], we

have that the set DL1
(1) = {0}. Therefore, DL1

(1) is non-empty and bounded. It
also holds that the polynomial L2(x) = x is non-negative on DL1

(1), but there do
not exist matrix polynomials Aj ∈ R[x], Bk ∈ R2×1[x], such that L2 =

∑
j A
∗
jAj +∑

k B
∗
kL1Bk.

Proof. Since det(L1) = −x2, DL1
(1) = {0}. It is obvious, that L2|DL1

(1) ≥ 0.
The proof will be by contradiction. Let us say there exist Aj , Bk, such that∑
j A
∗
jAj +

∑
k B
∗
kL1Bk = x. Let Bk be of the form [b

(k)
1 , b

(k)
2 ]T , where b

(k)
i ∈ R[x]

and Aj ∈ R[x]. Comparing the expression
∑
j A
∗
jAj +

∑
k B
∗
kL1Bk with x:

∑
j

A2
j +

∑
k

(
(b

(k)
1 )2 + 2(b

(k)
1 )(b

(k)
2 )x

) ?︷︸︸︷
= x.

The coefficient at 1 on LHS equals
∑
j A

2
j,0 +

∑
k(b

(k)
1,0)2, where Aj,0 denotes the

free monomial in Aj and b
(k)
1,0 the free monomial in b

(k)
1 . Since on RHS it is 0,

Aj,0 = b
(k)
1,0 = 0 for all j, k. But then the coefficient at x on LHS is 0, while on RHS

1. Contradiction. �

4.2. General diagonal case. The aim of this subsection is to prove that for very
special diagonal L1, we can replace the condition L2|DL1

(1) � 0 in Theorem 2 with

the weaker condition L2|DL1
(1) � 0. More precisely, we have the following theorem.

Theorem 5. Suppose the polynomial L1 = P0 +
∑n
i=1 Pixi ∈ SRd×d[x] is diagonal

and the set DL1
(1) is an n-simplex. If the polynomial L2 = R0 +

∑n
i=1Rixi ∈

SR`×`[x], satistfies the condition L2|DL1
(1) � 0, then there exist matrix polynomials

Aj ∈ R`×`, Bk ∈ Rd×`, such that the following is true:

L2 =
∑
j

A∗jAj +
∑
k

B∗kL1Bk.

In the proof, we will need the following well known result.

Theorem 6 (1, Theorem 4). Let A be commutative C∗-algebra and τ : A → S a
positive linear function, where S is a vector subspace of the algebra of all bounded
operators on some Hilbert space. Then τ is completely positive.

Proof of Theorem 5. An n-simplex in Rn is an intersection of n + 1 halfspaces.

Therefore, it can be defined as DL(1) of L =
⊕n+1

i=1

(
a

(i)
0 +

∑n
j=1 a

(i)
j xj

)
= P̃0 +∑n

i=1 P̃ixi ∈ SR(n+1)×(n+1)[x], for appropriate a
(i)
j ∈ R. By Theorem 1, L =∑

k A
∗
kL1Ak. Hence, it suffices to prove the statement for the pair L,L2.

There is an interior point v = (v1, v2, . . . , vn) ∈ Rn in the n-simplex DL1
(1).

With substitutions xi = x̃i + vi, the interior point v of DL1(1) becomes the in-

terior point 0 for L̃ = P̃0 +
∑n
i=1 P̃ix̃1. L̃ is also diagonal, P̃0 = L1(v) and
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DL̃(1) = DL(1) − v. The same is true for L2 and L̃2. Since DL(1) ⊆ DL2(1) ⇔
DL(1) − v ⊆ DL2

(1) − v ⇔ DL̃(1) ⊆ DL̃2
(1), we have L̃2|DL̃(1) � 0. Since P̃0 =

L1(v), P̃0 is invertible and we have
(

(P0)−
1
2

)∗
L̃1(P0)−

1
2 =
(

(P0)−
1
2

)∗
P̃0(P0)−

1
2 +∑

i

(
(P0)−

1
2

)∗
(P̃ix̃i)(P0)−

1
2 = I +

∑
i P̂ix̃i =: L̂(x̃), where DL̃(1) = DL̂(1). Since

0 is an interior point in DL̃2
(1), by Lemma 1 there exists monic L̂2, such that

DL̃2
(1) = DL̂2

(1) and L̂2 = C∗L̃2C, L̃2 = D∗L̂2D. Therefore, it suffices to prove

the statement for L̂1, L̂2.

Now we define vector spaces Ŝ1 := Lin
{
I, P̂1, . . . , P̂n

}
and Ŝ2 := Lin

{
I, R̂1,

. . . , R̂n

}
. Since DL̂(1) is bounded,

{
I, P̂1, . . . , P̂n

}
is lineary independent by [2,

Proposition 2.6] in DR(n+1)2 = {diagonal matrices of size n+ 1}. Hence, it is also

its basis, which implies Ŝ1 is algebra. Therefore, τ : Ŝ1 → Ŝ2, where I 7→ I and
P̂i 7→ R̂i, is a well-defined unital linear map. By [2, Theorem 3.5], it is also positive.

Since all matrices in
{
I, P̂1, . . . , P̂n

}
are diagonal, Ŝ1 is commutative algebra. Let

ŜC
1 be complex linear span of

{
I, P̂1, . . . , P̂n

}
. Similarly for Ŝ2, Ŝ

C
2 . Now we extend

τ to τC : ŜC
1 → ŜC

2 , where τC(I/P̂i) = I/R̂i. Since positive elements from ŜC
1 are

in Ŝ1 and τC|Ŝ1
= τ , τC is positive. Taking ŜC

1 as A and ŜC
2 as S in Theorem

6, τC is in fact completely positive. Also, τC|Ŝ1
= τ is completely positive. By

[2, Theorem 3.5] DL1
⊆ DL2

. By LP-satz [2, Corollary 3.7] for the pair L̂1, L̂2,

there exist Vj ∈ Rd×m and µ ∈ N, such that L̂2 =
∑µ
j=1 V

∗
j L̂1Vj . The theorem is

proved. �

Remark. The matrix polynomials Aj , Bk in Theorem 5 are constant while in The-
orem 2 they are matrix polynomials.

Remark. If we replace the expression the set DL1(1) is an n-simplex in Theo-
rem 5 with the expression the set Lin {P0, P1, . . . , Pn} is an algebra and has an
interior point, the theorem still holds. Indeed, since the set Lin {P0, P1, . . . , Pn}
is algebra, it is isomorphic to a subalgebra A in Rn+1. Further on, we may as-
sume that this subalgebra separates the n+ 1 components of the vector (i.e., given
1 ≤ i < j ≤ n + 1, we find an element of this algebra, that has distinct i-th and
j-th component). This assumption does not harm, since otherwise there is redun-
dancy in L1 with respect to the polyhedron defined by L1. By identifying Rn+1

with the set of all continuous functions from the set X = {1, 2, . . . , n} to R, i.e.,
with C(X), and using Stone Weierstrass theorem, we conclude that the algebra
A is dense in Rn+1. But because of finite dimensionality, it is then equal to the
full algebra Rn+1. Therefore, the set {P0, P1, . . . , Pn} is lineary independent and
since the polyhedron defined by its elements has an interior point, it is an n-simplex.
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