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Abstract. When the algebraic variety associated with a truncated moment

sequence is finite, solving the moment problem follows a well-defined proce-
dure. However, moment problems involving infinite algebraic varieties are

more complex and less well-understood. Recent studies suggest that certain

bivariate moment sequences can be transformed into equivalent univariate se-
quences, offering a valuable approach for solving these problems. In this paper,

we focus on addressing the truncated moment problem (TMP) for specific ra-

tional plane curves. For a curve of general degree we derive an equivalent
Hankel positive semidefinite completion problem. For cubic curves, we solve

this problem explicitly, which resolves the TMP for one of the four types of
cubic curves, up to affine linear equivalence. For the quartic case we simplify

the completion problem to a feasibility question of a three-variable system of

inequalities.

1. Introduction

Given a real 2-dimensional multisequence of degree m, β ≡ β(m) = {β00, β10,
β01, · · · , βm,0, βm−1,1, · · · , β1,m−1, β0,m} with β00 > 0, the truncated moment
problem (TMP) entails finding necessary and sufficient conditions for the existence
of a positive Borel measure µ such that supp µ ⊆ R2 and

βi,j ≡ β(i,j) =

∫
xiyj dµ (0 ≤ i+ j ≤ 2n; i, j ∈ Z+).

In this context, we refer to µ a representing measure (rm) for β or the moment
matrix M(n) defined below. When the order of a moment sequence is even, such
as m = 2n for some n ∈ N, it is possible to define the moment matrix M(n) ≡
M(n)(β(2n)) of β as follows:

M(n) ≡ M(n)(β(2n)) := (βi+j)i, j∈Z2
+:|i|, |j|≤n,

where i+ j stands for the coordinate-wise sum and |i| is the sum of coordinates of i.
To guarantee the existence of a representing measure for β(2n), it is essential that
the matrix M(n) is positive semidefinite. However, there are additional conditions
that must be met. To examine these conditions, let R[x, y]n denote the set of
bivariate polynomials in R[x, y] with degree at most n. We arrange the columns of
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M(n) according to the monomials {1, X, Y,X2, XY, Y 2, . . . , Xn, . . . , Y n} in degree-
lexicographic order. For instance, a sextic moment matrix M(3) would appear as
follows:

1 X Y X2 XY Y 2 X3 X2Y XY 2 Y 3

1
X
Y

X2

XY
Y 2

X3

X2Y
XY 2

Y 3



β00 β10 β01 β20 β11 β02 β30 β21 β12 β03

β10 β20 β11 β30 β21 β12 β40 β31 β22 β13

β01 β11 β02 β21 β12 β03 β31 β22 β13 β04

β20 β30 β21 β40 β31 β22 β50 β41 β32 β23

β11 β21 β12 β31 β22 β13 β41 β32 β23 β32

β02 β12 β03 β22 β13 β04 β32 β23 β32 β23

β30 β40 β31 β50 β41 β32 β60 β51 β42 β33

β21 β31 β22 β41 β32 β23 β51 β42 β33 β24

β12 β22 β13 β32 β23 β13 β42 β33 β24 β15

β03 β13 β04 β23 β13 β05 β33 β24 β15 β06


.

When the matrixM(n) exhibits a column relation, it can be written as p(X,Y ) =
0 for some polynomial p(x, y) =

∑
ij aijx

iyj ∈ R[x, y]n, where each monomial is

replaced by the column of M(n) indexed with this monomial and 0 stands for a zero
vector; this concept is known as functional calculus. For convenience, we sometimes
refer to this column dependence relation as that of the moment sequence. Although
column relations themselves are not polynomials, they can be interpreted as such
and provide vital information about a representing measure for M(n). Specifically,
if β has a representing measure, the following condition must be satisfied [7]:

p(X,Y ) = 0 =⇒ (pq)(X,Y ) = 0 for every q ∈ R[x, y] with deg(pq) ≤ n.

In this case, M(n) is said to be recursively generated (rg).
Let Z(p) := {(x, y) ∈ R2 : p(x, y) = 0} denote the zero set of the polynomial p.

The following result helps determine the support of a representing measure for a
truncated moment sequence:

Proposition 1.1. ([6, Proposition 3.1]) Suppose µ is a representing measure for
β(2n). For p ∈ R[x, y]n,

supp µ ⊆ Z(p) ⇐⇒ p(X,Y ) = 0.

Now, we aim to define a set contained the support of representing measures; the
algebraic variety of β ≡ β(2n) is given by

Vβ ≡ V (M(n)) :=
⋂

p(x,y)=0, deg p≤n Z(p). (1)

Using Proposition 1.1 the following holds: if M(n) admits a representing measure
µ, then

supp µ ⊆ Vβ

and
rank M(n) ≤ card supp µ ≤ cardVβ .

The second inequality in the above is known as the variety condition.
Here, we introduce the Riesz functional defined on the space of all monomials.

For a given moment sequence β ≡ β(m), the linear functional Λβ is given by

Λβ

 ∑
0≤i+j≤m

ai,jx
iyj

 =
∑

0≤i+j≤m

ai,jβi,j ,
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where all ai,j are real numbers and i, j ∈ Z+. We say that Λβ is K-positive for a
closed set K ∈ R2 if

Λβ(p) ≥ 0 for all p ∈ R[x, y]m such that p|K ≥ 0.

If, in addition, the conditions p|K ≥ 0 and p|K ̸≡ 0 imply Λβ(p) > 0, then Λβ is
said to be strictly K-positive. When K = R2, we simply refer to Λβ as positive
rather than K-positive. The K-positivity of Λβ is a necessary condition for β to
have a K-representing measure, i.e., a rm supported on K. Conversely, M.
Riesz’s classical theorem shows that K-positivity is also sufficient to guarantee the
existence of K-representing measures for infinite moment sequences. This result
was later extended to Rn by E. K. Haviland. Similar results are available for the
truncated moment problem, see the reference [9].

One of the most significant results in truncated moment theory is the Flat Ex-
tension Theorem. This theorem states that if M(n) has a rank-preserving positive
extension M(n+1), then β(2n) possesses a rankM(n)-atomic representing measure
[6]. The extension M(n+ 1) is referred to as a flat extension. A notable special
case arises when rankM(n) = rankM(n − 1). In this situation, M(n) is referred
to as flat, and β(2n) has a unique rankM(n)-atomic representing measure.

We now provide a brief overview of how to find a flat extension of M(n). Notice
that each rectangular block of M(n) with the same degree moments forms a Hankel
matrix. To construct an extension M(n+ 1), consider the following form:

M(n+ 1) =

(
M(n) B
B∗ C

)
,

where B and C are Hankel matrices with some new moments of degree 2n− 1 and
2n, respectively. To ensure that a prospective moment matrix M(n+1) is positive
semidefinite, we need the following classical result:

Theorem 1.2. ([1, 21]) Let A, B, and C be matrices of complex numbers, with A
and C being square matrices. Then

(
A B
B∗ C

)
≥ 0 ⇐⇒


A ≥ 0,

B = AW for some W

C ≥ W ∗AW.

⇐⇒


A ≥ 0,

B = AW for some W,

C ≥ B∗A†B,

where A† stands for the Moore-Penrose inverse of A. Moreover,

rank

(
A B
B∗ C

)
= rankA ⇐⇒ C = B∗A†B.

Although finding the positive extension may appear straightforward, verifying that
the C-block is indeed a Hankel matrix is not trivial.

Recently, many intriguing interactions between moment theory and algebraic
geometry have been uncovered. Solving truncated moment problems can be in-
terpreted as finding the roots of a system of multivariate polynomial equations.
By Richter’s result [17] (see also [20, Theorem 1.24]), up to recently more often
credited to Bayer and Teichmann [2], if a moment sequence β(2n) has one or more
representing measures, then at least one of these measures must be finitely atomic.
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Consequently, if a real sequence β(2n) is associated with a finitely atomic represent-
ing measure µ, it can be expressed as

µ =

r∑
ℓ=1

ρℓδ(xℓ,yℓ),

where r ≤ dimR[x, y]2n. Our task is to determine positive numbers ρ1, . . . , ρr
(referred to as densities) and points (x1, y1), . . . , (xr, yr) (referred to as atoms) of
the measure µ, such that for i, j ∈ Z+ and 0 ≤ i+ j ≤ 2n,

βi,j = ρ1x
i
1y

j
1 + · · ·+ ρℓx

i
ℓy

j
ℓ .

Degree-One Transformation. The following discusses a method for simplifying
the moment problem using invertible affine linear transformations (alt), specifically
the invariance of moment problems under degree-one transformations. The complex
version of this approach is detailed in [8], and we adopt the same notation to develop
its real counterpart.

For a, b, c, d, e, f ∈ R with bf ̸= ce, define

Ψ(x, y) ≡ (Ψ1(x, y),Ψ2(x, y)) := (a+ bx+ cy, d+ ex+ fy) for x, y ∈ R.

If Λβ represents the Riesz functional associated with a given β ≡ β(2n), then we

can construct a new equivalent moment sequence β̃(2n) with β̃i,j := Λβ(Ψ
i
1Ψ

j
2) for

i, j ∈ Z+ and 0 ≤ i+ j ≤ 2n. It follows that Λβ̃(p) = Λβ(p ◦Ψ) for all p ∈ R[x, y]n.
For more details, refer to [8].

Truncated Moment Sequences with an Infinite Algebraic Variety. The
moment matrix M(n)(β(2n)) (or the moment sequence) is said to be p-pure if its
only column relations are those recursively derived from a polynomial p ∈ R[x, y]n.
Thus, Vβ is precisely Z(p); in other words, the algebraic variety of β is infinite.
When the algebraic variety associated with a truncated moment sequence is finite,
a clear procedure exists for solving the moment problem [13]. However, concrete
solutions for M(n) with n ≥ 3 are scarce and challenging to study [14, 22, 23, 25,
26, 27, 28].

Main Results. In this paper we focus on the TMP on curves of the form

xy = qmxm + q(x) + αy, where qm ∈ R \ {0}, q(x) ∈ R[x]m−1, α ∈ R.
By applying the alt (x, y) 7→ (x + α, qmy), it suffices to solve the TMP on curves
with the simpler form

xy = xm + r(x), where r(x) ∈ R[x]m−1. (2)

These curves have a parametrization (x(t), y(t)) = (t, tm−1 + r(t)
t ), t ∈ R, t ̸=

0. The TMP on any rational curve is equivalent to a univariate TMP, where
some moments are missing and the measure must vanish in certain points. This
observation simplifies solving the original TMP, since univariate TMPs are easier
to tackle and related technique was already exploited in [23, 25, 26, 27, 28]. To
adress the TMP on (2), the solution to the the strong Hamburger TMP [27] is
required, i.e., the R–rm of the univariate sequence must vanish in {0}. The original
motivation for this paper was the cubic relation of type (2) with m = 3, since after
applying an alt, every cubic relation has one of four canonical forms, with type (2)
and m = 3 being one of them. The other three types are y = q(x), y2 = q(x) and
xy2 + ay = q(x) for some q ∈ R[x]3 and a ∈ R. A concrete solution to y = q(x) is
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known [14], while concrete solutions to the other two types are known for y2 = x3

[25] and xy2 = 1 [27].
Our first main result (see Theorem 2.2) is the solution to the TMP on (2) in

terms of the corresponding univariate TMP with gaps. The solution is a Hankel
positive semidefinite (psd) completion problem, i.e., the question is when missing
anti-diagonals of a partially defined Hankel matrix can be chosen so that the com-
pletion is psd and satisties two additional constraints, coming from the solution to
the strong Hamburger TMP. Our second main result (see Theorems 3.1 and 3.2)
solves this completion problem corresponding to the cubic case (m = 3 in (2))
in terms of concrete numerical conditions. We also bound the number of atoms
in a representing measure with the lowest number of atoms and demonstrate the
solution on a numerical example (see Example 3.4). Our third main result (see
Theorems 4.1 and 4.2) solves the completion problem for the quartic case (m = 4
in (2)) in terms of feasibility of a three-variable system of inequalities.

2. TMP on xy = xm +
∑m−1

s=0 qsx
s with q0 ̸= 0

In this section we prove that the Z(p)–TMP for p(x, y) = xy−xm−
∑m−1

s=0 qsx
s,

where each qs ∈ R and q0 ̸= 0, is equivalent to the Hankel positive semidefinite
completion problem (see Theorem 2.2).

Let p be as in the first paragraph. By using an alt we may assume that qm = 1.

Let β ≡
{
β
(2n)
i,j

}
be a sequence with for i, j ∈ Z+, i + j ≤ 2n. Let us reorder the

indices

−2n,−2n+ 1, . . . ,−1, 0, 1, . . . , 2(m− 1)n− 1, 2(m− 1)n

in the following way:

Row 0 : 0, 1, . . . , 2n,

Row 1 : −1, 2n+ 1, . . . , (2n− 1) +m− 1,

Row 2 : −2, (2n− 1) +m, . . . , (2n− 2) + (m− 1)2,

...

Row k : −k, (2n− k + 1) + (m− 1)(k − 1) + 1, . . . , (2n− k) + (m− 1)k,

...

Row 2n : −2n, (2n− 1) + (m− 1)(2n− 1) + 1, . . . , (m− 1)2n.

(3)

Now we adapt Row 1 to Row 2n, while rewriting Row 0, in the following way

Row k : −k, h(k), h(k) + 1, . . . , (2n− k) + (m− 1)k,

where

h(k) := max{2n− k + 1 + (m− 1)(k − 1), (m− 1)k}+ 1 (4)

Remark 2.1. The reason for this adaptation is the fact that expressing y from the
equality p(x, y) = 0 and then raising to the power of the index of the row the
relation will be of the form

yk =
( m∑

s=0

qsx
s−1
)k

= qkmx(m−1)k +

(m−1)k∑
i=−k

rix
i
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for some ri ∈ R. Multiplying this relation with x, . . . , x2n−k, we can successively
express x(m−1)k+j , j = 1, . . . , 2n− k, out of the equations obtained. If (m− 1)k is
larger than (2n − k + 1) + (m − 1)(k − 1), then some powers of x will be missing
in this procedure. The missing powers will be precisely (2n− k+ 1) + (m− 1)(k−
1) + 1, . . . , h(k).

As explained in Remark 2.1, the adaptation may result in the loss of some
indices in each row. Let I be the set of indices remaining in the sequence after this
adaptation. We define a map f on I by the rule

f(s) ≡ (f1(s), f2(s))

:=

{ (
s−#(s)(m− 1),#(s)

)
, if s ≥ 0,(

0,#(s)
)
, if s < 0,

(5)

where the index s is contained in Row #(s).
Expressing y from the relation p(x, y) = 0, we see that for i, j ∈ Z+ we have

xi

(
m∑
s=0

qsx
s−1

)j

= xi

 ∑
k0+...+km=j,
k0,...,km∈Z+

j!

k0! · · · km!
qk0
m qk1

m−1 · · · q
km
0 x

∑m
s=0(m−1−s)ks


=

∑
k0+...+km=j,
k0,...,km∈Z+

j!

k0! · · · km!
qk0
m qk1

m−1 · · · q
km
0 x

∑m
s=0(m−1−s)ks+i

=

(m−1)j∑
t=−j

qj,tx
t+i,

(6)

where

qj,t :=
∑

k0+...+km=j,
k0,...,km∈Z+,∑m

s=0(m−1−s)ks=t

j!

k0! · · · km!
qk0
m qk1

m−1 · · · q
km
0

Note that

qj,(m−1)j = qjm = 1 and qj,−j = qj0.

Hence,

x(m−1)j+i = xi

(
m∑
s=0

qsx
s−1

)j

−
(m−1)j−1∑

t=−j

qj,tx
t+i. (7)

and

x−j =
1

qj0

xi

(
m∑
s=0

qsx
s−1

)j

−
(m−1)j∑
t=−j+1

qj,tx
t+i

 . (8)
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Using the relations (6)–(8) we define a number γs for every s ∈ I following the
order (3) by

γs :=


βf(s) −

(m−1)f2(s)−1∑
t=−f2(s)

qf2(s),tγt+f1(s), if s ≥ 0,

1

q
f2(s)
0

(
βf(s) −

(m−1)f2(s)∑
t=−f2(s)+1

qf2(s),tγt

)
, if s < 0.

(9)

Namely, we define γs in the order

γ0, γ1, . . . , γ2n︸ ︷︷ ︸
j=0

, γ−1, γh(1), γh(1)+1 . . . , γ2n+m︸ ︷︷ ︸
j=1

, . . . , γ−2n+1, γh(2n−1)+1︸ ︷︷ ︸
j=2n−1

, γ−2n︸ ︷︷ ︸
j=2n

.
(10)

If s does not appear in I, then we call γs a free moment. If s ∈ I and in the
definition of γs there also exist γj which are free moments, then γs is not uniquely
determined and we call it an auxiliary moment. If γs is not free or auxiliary,
then it is called a fully–determined moment.

Let k ∈ N. For v = (v0, . . . , v2k) ∈ R2k+1 we define the corresponding Hankel
matrix as

Av := (vi+j)
k
i,j=0 =



v0 v1 v2 · · · vk

v1 v2 . .
.

. .
.

vk+1

v2 . .
.

. .
.

. .
. ...

... . .
.

. .
.

. .
.

v2k−1

vk vk+1 · · · v2k−1 v2k


.

The main result of this section is the following solution to the Z(p)–TMP for β.

Theorem 2.2. Let p(x, y) = xy−
∑m

s=0 qsx
s with qi ∈ R, q0 ̸= 0 qm = 1. Given a

sequence β ≡
{
β
(2n)
i,j

}
for i, j ∈ Z+, i+ j ≤ 2n, let

γ ≡ γ(−2n,2(m−1)n) = (γ−2n, γ−2n+1, . . . , γ−1, γ0, γ1, . . . , γ2(m−1)n)

be defined by the procedure above and suppose γj1 , . . . , γjp are free moments. Then
the following are equivalent:

(i) β admits a Z(p)–representing measure.
(ii) γ has a R–representing measure µ for some choice of real values of free

moments such that µ({0}) = 0.
(iii) There is a choice of real values of free moments such that Aγ is positive

semidefinite and one of the following holds:
(a) Aγ is positive definite.
(b) rank Aγ = rank Aγ(−2n,2(m−1)n−2) = rank Aγ(−2n+2,2(m−1)n) .

Proof. The equivalence (ii) ⇔ (iii) is [27, Theorem 3.1]. It remains to prove the
equivalence (i) ⇔ (ii). By [17] (see also [20, Theorem 1.24]), it suffices to prove
(i) ⇔ (ii) for finitely atomic measures, and hence it is enough to establish the
following claim.

Claim. Let r ∈ N. A sequence γ admits a r–atomic R–rm vanishing in {0} if and
only if β admits a r–atomic Z(p)–rm.
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Proof of Claim. First we prove the forward implication. Let µx =
∑r

ℓ=1 ρℓδxℓ

be a R–rm for γ where xℓ ∈ R \ {0} and ρℓ > 0 for each ℓ. We will prove that
µ =

∑r
ℓ=1 ρℓδ(xℓ,yℓ), where yℓ =

∑m
s=0 qsx

s−1, is a Z(p)–rm for β. We use induction
on the index j in βi,j , where i+ j ≤ 2n:

Base of induction: For j = 0, we see that

βi,0 = γi =

r∑
ℓ=1

ρℓx
i
ℓ =

r∑
ℓ=1

ρℓx
i
ℓy

0
ℓ ,

where we used (9) in the first equality and γi =
∫
xidµx in the second.

Induction step: Assume that the Claim holds for every j ≤ j0 − 1 for some
1 ≤ j0 ≤ 2n. Let us prove its validity for j0. We consider two cases separately.

Case 1: (i, j0) is in the image of f .
Let s = f−1((i, j0)). Then we have

βi,j0 =

(m−1)j0∑
t=−j

qj0,tγt+i

=

(m−1)j∑
t=−j0

(
qj0,t

( r∑
ℓ=1

ρℓx
t+i
ℓ

))

=

r∑
ℓ=1

(
ρℓ

(m−1)j0∑
t=−j0

qj0,tx
t+i
ℓ

)

=

r∑
ℓ=1

(
ρℓx

i
ℓ

(m−1)j0∑
t=−j0

qj0,tx
t
ℓ

)
=

r∑
ℓ=1

ρℓx
i
ℓy

j0
ℓ ,

where we used (9) in the first equality, γt+i =
∫
xt+idµx in the second, we inter-

changed the order of summation in the third, factored out xi
ℓ from the inner sum

in the fourth and used (6) for i = 0 in the fifth.

Case 2: (i, j0) is not in the image of f .
Since (i, j0) is not in the image of f , this means that

i ̸= 0 and i+ (m− 1)j0 ≤ (2n− j0 + 1) + (m− 1)(j0 − 1). (11)

Indeed, the first condition in (11) is clear, since f(−j) = (0, j) for every 0 ≤ j ≤ 2n,
while the second inequality implies that f(i + (m − 1)j0) = (i +m − 1, j0 − 1). If
(i, j0) was in the image of f , then f−1((i, j0)) = i+(m−1)j0. The second inequality
in (11) is equivalent to

i ≤ −m+ 2n− j0 + 2. (12)

Since the moment sequence must be rg, we must have

βi,j0 =

m∑
s=0

qsβi−1+s,j0−1. (13)
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Since 0 ≤ i− 1 + s for each s, 0 ≤ j0 − 1 and

i+ s+ j0 − 2 ≤ i+m+ j0 − 2 ≤ −m+ 2n− j0 + 2 +m+ j0 − 2 = 2n,

where we used s ≤ m in the first inequality and (12) in the second, it follows that
each βi−1+s,j0−1 in (13) is a part of the original sequence. We now see that

βi,j0 =

m∑
s=0

qsβi−1+s,j0−1

=

m∑
s=0

qs

( r∑
ℓ=1

ρℓx
i−1+s
ℓ yj0−1

ℓ

)
=

r∑
ℓ=1

ρℓx
i
ℓy

j0−1
ℓ

( m∑
s=0

ρsx
s−1
ℓ

)
=

r∑
ℓ=1

ρℓx
i
ℓy

j0−1
ℓ yℓ

=

r∑
ℓ=1

ρℓx
i
ℓy

j0
ℓ ,

where we used (13) in the first equality, induction hypothesis in the second, rear-
ranged the double sum in the third and used (6) for i = 0, j = 1 in the fourth
equality. This concludes the induction step and proves the forward implication.

It remains to prove the backward implication of Claim. Let µ =
∑r

ℓ=1 ρℓδ(xℓ,yℓ)

be a Z(p)–rm for γ, where (xℓ, yℓ) ∈ Z(p) and ρℓ > 0 for each ℓ. We will prove that
µx =

∑r
ℓ=1 ρℓδxℓ

is a rm for β which by construction vanishes on {0} (since each
xℓ ̸= 0). We use induction on the index i in γi according to the ordering (3). For
i = 0, we have γ0 = β0,0 =

∑r
ℓ=0 ρℓx

0
ℓ and the statement holds. Assume now that

the statement holds up to some index s0 in (3) and prove it for s1. We consider
two cases separately.

Case 1: γs1 is a free moment.
In this case we are able to define γs1 =

∑r
ℓ=1 ρℓx

s1
ℓ .

Case 2: γs1 is not a free moment.
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In this case, γs1 is fully-determined or auxiliary moment, but in both cases
s1 ∈ I. Let us write f(s1) = (i1, j1). If s1 ≥ 0, then

γs1 = βi1,j1 −
(m−1)j1−1∑

t=−j1

qj1,tγt+i1

=

r∑
ℓ=1

ρℓx
i1
ℓ yj1ℓ −

(m−1)j1−1∑
t=−j1

qj1,t

( r∑
ℓ=1

ρℓx
t+i1
ℓ

)

=

r∑
ℓ=1

ρℓx
i1
ℓ

(
yj1ℓ −

(m−1)j1−1∑
t=−j1

qj1,tx
t
ℓ

)
=

r∑
ℓ=1

ρℓx
i1
ℓ x

(m−1)j1
ℓ =

r∑
ℓ=1

ρℓx
(m−1)j1+i1
ℓ =

r∑
ℓ=1

ρℓx
s1
ℓ ,

where we used (9) in the first equality, induction hypothesis and the definition of
free moments in the second, rearranged the terms in the third, (6) in the fourth
and definition of (i1, j1) in the last.

If s1 < 0, then i1 = 0 and

γs1 =
1

qj10

(
β0,j1 −

(m−1)j1∑
t=−j1+1

qj1,tγt

)

=
1

qj10

[ r∑
ℓ=1

ρℓy
j1
ℓ −

(m−1)j1∑
t=−j1+1

qj1,t

( r∑
ℓ=1

ρℓx
t
ℓ

)]

=

r∑
ℓ=1

ρℓ
1

qj10

(
yj1ℓ −

(m−1)j1∑
t=−j1+1

qj1,tx
t
ℓ

)
=

r∑
ℓ=1

ρℓx
−j1
ℓ ,

where we used (9) in the first equality, induction hypothesis and the definition
of free moments in the second, rearranged the terms in the third and (6) in the
last. This proves the backward implication of Claim and concludes the proof of the
equivalence (i) ⇔ (ii) of the theorem. □

3. Concrete solution to the TMP on p(x, y) = xy − x3 −
∑2

i=0 qix
i, q0 ̸= 0

In this section, we derive explicit numerical conditions for the existence of free
moments in Theorem 2.2 above for m = 3, solving the TMP concretely. Let us
see why q0 ̸= 0 is given; if not, the TMP would involve a reducible column depen-
dency, which could already be solved using known results. We also show that the
Carathéodory number of the moment sequence of degree 2n is 3n, which represents
the minimum number of atoms needed to achieve a representing measure. More-
over, if a Z(p)–representing measure exists, then it is (rank M(n))–atomic. The
main results are Theorem 3.1, which is the solution to p-pure cases, and Theorem
3.2, which solves singular cases.
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Assume the notation from Section 2 and let γ ≡ γ(−2n,4n) be defined by (9) for
m = 3. We have (see (4))

h(k) = max{2n+ k − 1, 2k}+ 1 =

{
2n+ k, if k < 2n,
4n+ 1, if k = 2n.

Hence, I = {−2n,−2n+1, . . . , 4n−1} and the only free moment is γ4n. We define
γs in the order

γ0, γ1, . . . , γ2n︸ ︷︷ ︸
j=0

, γ−1, γ2n+1︸ ︷︷ ︸
j=1

, . . . , γ−k, γ2n+k︸ ︷︷ ︸
j=k

, . . . , γ−2n+1, γ4n−1︸ ︷︷ ︸
j=2n−1

, γ−2n︸ ︷︷ ︸
j=2n

(14)

by (9). The only auxiliary moment is γ−2n. Except γ4n and γ−2n all the other
moments are fully–determined. Namely, we may rewrite moments for j = 0,

γ0 = β0,0, γ1 = β1,0, . . . , γ2n = β2n,0;

for j = 1,

γ−1 =
1

q0

(
β0,1 −

2∑
t=0

q1,tγt

)
,

γ2n+1 = β2n−1,1 −
1∑

t=−1

q1,tγt+2n−1;

...

for j = k,

γ−k =
1

qk0

(
β0,k −

2k∑
t=−k+1

qk,tγt

)
,

γ2n+k = β2n−k,k −
2k−1∑
t=−k

qk,tγt+2n−k;

...

for j = 2n− 1,

γ−2n+1 =
1

q2n−1
0

(
β0,2n−1 −

4n−2∑
t=−2n+2

q2n−1,tγt

)
,

γ4n−1 = β1,2n−1 −
4n−3∑

t=−2n+1

q2n−1,tγt;

for j = 2n,

γ−2n(γ4n) =
1

q2n0

(
β0,2n −

4n−1∑
t=−2n+1

q2n,tγt − γ4n

)
=: D − q−2n

0 γ4n.
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We introduce a new variable t for γ4n and write

Aγ(t) =



T−n T−n+1 · · · T−1 1 T · · · T 2n

T−n γ−2n(t) γ−2n+1 · · · γ−n+1 γ−n γ−n+1 · · · γn
T−n+1 γ−2n+1 γ−2n+2 · · · γ−n+2 γ−n+1 γ−n+2 · · · γn+1

...
...

...
...

...
...

...

T−1 γ−n−1 γ−n · · · γ−2 γ−1 γ0 · · · γ2n−1

1 γ−n γ−n+1 · · · γ−1 γ0 γ1 · · · γ2n
T γ−n+1 γ−n+2 · · · γ0 γ1 γ2 · · · γ2n+1

...
...

...
...

...
...

...

T 2n γn γn+1 · · · γ2n−1 γ2n γ2n+1 · · · t


for the corresponding Hankel matrix. For i ≤ j we write

T⃗ (i,j) :=
(
T i T i+1 · · · T j

)
.

Now the matrix Aγ(t) has the form

Aγ(t) =


T−n T⃗ (−n+1,2n−1) T 2n

T−n D − q−2n
0 t bT γn

(T⃗ (−n+1,2n−1))T b Aγ̃ c

T 2n γn cT t

,

where

bT =
(
γ−2n+1 · · · γ−n−1 γ−n γ−n+1 · · · γ2n−1

)
,

cT =
(
γn+1 · · · γ2n−1 γ2n γ2n+1 · · · γ4n−1

)
,

γ̃ = (γ−2n+2, γ−2n+3, . . . , γ4n−2).

The following theorem is a solution to the p-pure TMP.

Theorem 3.1 (Pure case). Let p(x, y) = xy −
∑3

s=0 qsx
s with qi ∈ R, q0 ̸= 0

q3 = 1. Given a p-pure sequence β ≡
{
β
(2n)
i,j

}
for i, j ∈ Z+, i+ j ≤ 2n, let

γ(t) = (γ−2n(t), γ−2n+1, . . . , γ−1, γ0, γ1, . . . , γ4n−1, t)

be defined by the procedure above. Assume the notation above. Let us define

tmin := cTA−1
γ̃ c,

tmax := q2n0 (D − bTA−1
γ̃ b),

E := bTA−1
γ̃ ccTA−1

γ̃ b− 2bTA−1
γ̃ cγn + γ2

n.

(15)

Then the following are equivalent:

(i) β admits a representing measure.
(ii) β admits a (3n)–atomic representing measure.
(iii) tmin < tmax and (tmax − tmin)

2 ≥ 4q2n0 E.

The following theorem is a solution to the singular Z(p)–TMP with a finite
algebraic variety.

Theorem 3.2 (Singular case). Let p(x, y) = xy −
∑3

s=0 qsx
s with qi ∈ R, q0 ̸= 0

q3 = 1. Given a sequence β ≡
{
β
(2n)
i,j

}
for i, j ∈ Z+, i+ j ≤ 2n, with rank M(n) <

3n, let
γ(t) = (γ−2n(t), γ−2n+1, . . . , γ−1, γ0, γ1, . . . , γ4n−1, t)



TMP ON THE CURVE xy = xm + q(x) 13

be defined by the procedure above. Assume the notation above. Then the following
are equivalent:

(i) β admits a representing measure.
(ii) β admits a (rank M(n))–atomic representing measure.
(iii) c = Aγ̃w for some w ∈ R3k−1 and rank Aγ(t0) = rank Aγ̃ for t0 := cTA+

γ̃ c,

where A+
γ̃ stands for the Moore-Penrose inverse of Aγ̃ .

Proof of Theorem 3.1. Before we prove the equivalences of the theorem, we derive
a few claims. Let us denote by (Aγ(t))|T⃗ (i,j) the restriction of Aγ(t) to a principal

submatrix on rows and columns labelled by elements from T⃗ (i,j).

Claim 1. A1 := (Aγ(t))|T⃗ (−n,2n−1) ⪰ 0 ⇐⇒ t ≤ tmax.

Proof of Claim 1. We see that

A1 =

( T−n T⃗ (−n+1,2n−1)

T−n D − q−2n
0 t bT

(T⃗ (−n+1,2n−1))T b Aγ̃

)
.

Since Aγ̃ is positive definite, Theorem 1.2 implies the following:

A1 ⪰ 0 ⇐⇒ D − q−2n
0 t ≥ bTA−1

γ̃ b ⇐⇒ t ≤ tmax,

which proves Claim 1. □

Claim 2. A2 := (Aγ(t))|T⃗ (−n+1,2n) ⪰ 0 ⇐⇒ tmin ≤ t.

Proof of Claim 2. We see that

A2 =

( T⃗ (−n+1,2n−1) T 2n

(T⃗ (−n+1,2n−1))T Aγ̃ c

T 2n cT t

)
.

Since Aγ̃ is positive definite, Theorem 1.2 implies the following:

A2 ⪰ 0 ⇐⇒ t ≥ cTA−1
γ̃ c = tmin,

which proves Claim 2. □

Claim 3. Let t = tmin +w for w > 0 and

Q(w) := −w2

q2n0
+

tmax − tmin

q2n0
w − E (16)

be a quadratic polynomial. Then

Aγ(t) ⪰ 0 ⇐⇒ Q(w) ≥ 0 and w ≤ tmax − tmin (17)

⇐⇒ (tmax − tmin)
2 ≥ 4q2n0 E. (18)

Proof of Claim 3. In particular, for Aγ(t) ⪰ 0 we must have A1 ⪰ 0 and A2 ⪰ 0.
By Claim 1, it follows that t ≤ tmax which is equivalent to w ≤ tmax − tmin. Since
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t > tmin, we know that A2 ≻ 0 and then by [30, Formula (0.7.2)] we have

A−1
2 =

(
A−1

γ̃ 0

0 0

)
+

1

w

(
A−1

γ̃ cctA−1
γ̃ −A−1

γ̃ c

−cTA−1
γ̃ 1

)
.

Using Theorem 1.2, we see that

Aγ ⪰ 0

⇐⇒ D − tmin + w

q2n0
≥
(
bT γn

)
A−1

2

(
b
γn

)
⇐⇒ − w

q2n0
+
(
D − bTA−1

γ̃ b− tmin

q2n0

)
− 1

w
(bTA−1

γ̃ cctA−1
γ̃ b− 2bTA−1

γ̃ cγn + γ2
n) ≥ 0

⇐⇒ Q(w) ≥ 0,

where the last equivalence follows after multiplying by w (which is positive) and the

definition of Q. This proves the equivalence in (17). Since Q(w0) =
(tmax−tmin)

2

4q−2n
0

−E

is a maximum of Q attained in w0 = tmax−tmin

2 , this gives the equivalence (18). □

Let us now prove (i) ⇒ (iii). Since β has a representing measure, then by Theo-
rem 2.2 there exists γ4n such that γ has a representing measure. In particular, this
means there is t ∈ R, such that Aγ ⪰ 0. By Claims 1 and 2, this particularly implies
that tmin ≤ tmax holds. Next let us show that the inequality is strict. Assume on
the contrary that tmin = tmax. This means that γ4k must be precisely tmin = tmax.
Hence, the first and the last column of Aγ are in the span of the intermediate ones
and rank Aγ = 3n − 1, whence γ has a (3n − 1)–atomic representing measure by
[27, Theorem 3.1]. But then β also admits a (3n−1)–atomic representing measure,
which is a contradiction with rank M(n) = 3n, because β is p-pure. This proves
that tmin < tmax holds. By Claim 3, also the second inequality in (iii) holds.

Next we prove (iii) ⇒ (ii). To prove that β admits a representing measure
containing rank M(n) = 3n atoms, we have to show by [27, Theorem 3.1] there
exists a choice of t such that

Aγ(t) ⪰ 0 and 3n = rank Aγ(t) = rank A1 = rank A2. (19)

By Claims 1 and 2 above, t ∈ [tmin, tmax]. If t is equal to one of tmin or tmax, then
(19) cannot hold due to singularity of A1 or A2, and so t ∈ (tmin, tmax). By assump-
tion in (iii) and the equivalences in Claim 3, there exists w ∈ (0, tmax − tmin) such
that Q(w) = 0 with Q as in (16). For this w we see that Aγ ⪰ 0 and rank Aγ = 3n.
Since t := tmin + w ∈ (tmin, tmax) also the other two rank conditions in (19) hold.
This concludes the proof of (iii) ⇒ (ii).

Finally, (ii) ⇒ (i) is trivial. □

Proof of Theorem 3.2. Since rank M(n) < 3n, there must be another column rela-
tion not recursively generated by XY = X3 + q2X

2 + q1X + q0. Each additional
relation is of the form ∑

i,j∈Z+,
i+j≤n

αi,jX
iY j = 0, αi,j ∈ R. (20)
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We distinguish between two cases based on additional relations.

Case 1: There exists an additional relation (20) with α0,n = 0.

The columnXiY j ofM(n) corresponds to the linear combination
∑2j

t=−j qj,tT
t+i

of columns T ℓ of Aγ(t), where qj,t are as in (6) for m = 3. If (i, j) ̸= (0, n), then the
exponent t+i can run only from −n+1 to 2n−1. So the relation (20) in Case 1 gives
a relation between the columns of Aγ̃ . But then [27, Theorem 3.1] implies that γ(t)
has a R–rm vanishing in {0} for some t ∈ R if and only if rank Aγ̃ = rank Aγ(t). In
particular, rank (Aγ(t))|T⃗ (−n+1,2n) = rank Aγ̃ and by an analogous proof as for Claim

2 in Thereom 3.1, t must be equal to cTA†
γc and c = Aγ̃w for some w ∈ R3n−1. By

Theorem 2.2 and [27, Theorem 3.1], the equivalences of Theorem 3.2 in this case
follow.

Case 2: For every additional relation (20), we have α0,n ̸= 0.

Using the relation coming form Y n =
(∑3

i=0 X
3 + q2X

2 + q1X + q0
)n

and the
additional relation (20) containing Y n nontrivially, we get a nontrivial relation
among columns T ℓ, ℓ = −n, . . . , 2n− 1 of Aγ(t). But then by [27, Theorem 3.1] for
the existence of a R–rm vanishing in {0} for γ(t), t ∈ R, there must be a nontrivial
relation among columns T ℓ, ℓ = −n + 1, . . . , 2n, containing T 2n nontrivially (due
to rg). This further implies rank (Aγ(t))|T⃗ (−n+1,2n) = rank Aγ̃ and by the same
arguments as in Case 1, the equivalences of Theorem 3.2 in this case follow. □

Remark 3.3. Recently, the Carathéodory number of real plane cubics with smooth
projectivization was studied in [3] using tools from algebraic geometry. The main
results show (see [3, Section 6]), that the Carathéodory number is at most 3n+1 for
degree 2n p-pure sequences and characterize in terms of the number of connected
components of Z(p), when it is 3n. Note that the cubic curve studied in this section
does not satisfy projective smoothness assumption and hence the result about the
Carathéodory number from Theorem 3.1 does not follow from [3].

Asymptotic estimates for Carathéodory number on affine plane curves have been
recently studied also in [11] and [18].

The following example demonstrates the solution to the Z(p)–TMP for m = 4.

Example 3.4. Consider β ≡ β(8) with moments generated by the 14-atomic
representing measure µ =

∑14
ℓ=1 ρℓδ(xℓ,yℓ), where ρℓ = 1

14 , xℓ = ℓ, and yℓ =
(xℓ+1)(xℓ+2)(xℓ+4)

xℓ
for ℓ = 1, . . . , 14. The moments are given by

β00 = 1, β10 =
15

2
, β01 =

88829303

630630
, . . . ,

β80 =
443370241

2
, . . . ,

β08 =
2248747733666520927131582212659085688086421341014376774177

237301654241203443784531432580505468750
.

Using Mathematica, we find the row-reduced form of the moment matrix M(4)(β),
which shows that it is both positive semidefinite and p-pure, where p(x, y) = xy −
x3−7x2−14x+8. The columns X3, X4, and X3Y in CM(4) are linearly dependent,
and so rank M(4) = 12. Following the procedure form Section 2, we obtain the
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associated univariate strong moment sequence γ ≡ γ(−8,16) as follows:

γ−8 = 1400837170807195875714994726099439569487325591594631638817−237301654241203443784531432580505468750β2,7
3981261110361986276316941303192577638400000000 ,

γ−7 = 795732381288691429080031515331406184509
11048010629265141181920694037053440000000 ,

γ−6 = 445570839299219762020391212081493
6131652030894184250150235340800000 ,

...

γ14 = 2405869901763265
2 ,

γ15 = 32512083310326375
2 ,

γ16 = 2596336578534357052143750β2,7−14754296464684589107824850551429749877576317

2596336578534357052143750 ,

where β2,7 is a parameter.
A calculation shows that no value of β2,7 such that

rank A(γ−8,...,γ16) = rank A(γ−8,...,γ14) = rank A(γ−6,...,γ16).

Another possibility for having a representing measure is Aγ ≻ 0, which corresponds
to the following approximation:

5.9031917636064208814× 1018 < β2,7 < 5.9031917636066715225× 1018, (21)

In this case, β supports infinitely many 13-atomic representing measures. Al-
ternatively, if Aγ ⪰ 0, rank Aγ = 12 and Aγ is recursively generated in both
directions, this occurs at the endpoints of the inequality in (21). In particular, if
β2,7 ≈ 5.9031917636064208814×1018, then the zeros of the generating function are
given by

t1 ≈ 9.35449× 10−11, t2 ≈ 1, t3 ≈ 2.00001,

t4 ≈ 3.00159, t5 ≈ 4.03688, t6 ≈ 5.23594,

t7 ≈ 6.70231, t8 ≈ 8.37317, t9 ≈ 10.0875,

t10 ≈ 11.6566, t11 ≈ 12.9415, t12 ≈ 13.9981.

Solving the Vandermonde equation in this case, the densities are

ρ1 ≈ −0.000301331, ρ2 ≈ 0.0700711, ρ3 ≈ 0.0747554,

ρ4 ≈ 0.0588108, ρ5 ≈ 0.0738502, ρ6 ≈ 0.0903296,

ρ7 ≈ 0.111516, ρ8 ≈ 0.122776, ρ9 ≈ 0.119394,

ρ10 ≈ 0.102687, ρ11 ≈ 0.0814315, ρ12 ≈ 0.0720834.

We have demonstrated that β admits a 12-atomic rm
∑12

ℓ=1 ρℓδ(tℓ,sℓ), where

sℓ =
(tℓ + 1)(tℓ + 2)(tℓ + 4)

tℓ
,

which differs from the initial measure µ, used to generate β.

4. More concrete solutions to the TMP on
p(x, y) = xy − x4 − q3x

3 − q2x
2 − q1x− q0, q0 ̸= 0

In this section, we derive more concrete numerical conditions for the existence
of free moments in Theorem 2.2 to solve the TMP for m = 4. The main results are
Theorem 4.1, which characterizes the existence of a positive definite completion of
the corresponding Hankel matrix from Section 2 in terms of a system of inequali-
ties, while Theorem 4.2 solves the Z(p)–TMP for the cases without positive definite
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completion.

Assume the notations introduced in Section 2 and let γ ≡ γ(−2n,6n) be defined
by (9) for m = 4. We have (see (4))

h(k) = max{2n+ 2(k − 1), 3k}+ 1 =

 2n+ 2k − 1, if k ≤ 2n− 2,
6n− 2, if k = 2n− 1,
6n+ 1, if k = 2n,

Hence, I = {−2n,−2n+1, . . . , 6n−4, 6n−2} and the free moments in γ are γ6n−3,
γ6n−1, γ6n. We define γs in the order

γ0, γ1, . . . , γ2n︸ ︷︷ ︸
j=0

, γ−1, γ2n+1, γ2n+2︸ ︷︷ ︸
j=1

, . . . , γ−k, γ2n+2k−1, γ2n+2k︸ ︷︷ ︸
j=k

, . . .

. . . , γ−2n+2, γ6n−5, γ6n−4︸ ︷︷ ︸
j=2n

, γ−2n+1, γ6n−2︸ ︷︷ ︸
j=2n−1

, γ−2n︸ ︷︷ ︸
j=2n

(22)

by (9). The auxiliary moments are γ−2n+1, γ6n−2, and γ−2n. Namely, we may
rewrite moments for j = 0,

γ0 = β0,0, γ1 = β1,0, . . . , γ2n = β2n,0;

for j = 1,

γ−1 =
1

q0

(
β0,1 −

3∑
t=0

q1,tγt

)
,

γ2n+1 = β2n−2,1 −
2∑

t=−1

q1,tγt+2n−2,

γ2n+2 = β2n−1,1 −
2∑

t=−1

q1,tγt+2n−1;

...

for j = 2n,

γ−k =
1

qk0

(
β0,k −

3k∑
t=−k+1

qk,tγt

)
,

γ2n+2k−1 = β2n−k−1,k −
3k−1∑
t=−k

qk,tγt+2n−k−1,

γ2n+2k = β2n−k,1 −
3k−1∑
t=−k

q1,tγt+2n−k;
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for j = 2n− 1,

γ−2n+1 =
1

q2n−1
0

(
β0,2n−1 −

6n−4∑
t=−2n+2

q2n−1,tγt − γ6n−3

)
,

γ6n−2 = β1,2n−1 −
6n−5∑

t=−2n+1

q2n−1,tγt+1 − q2n−1,6n−4γ6n−3;

for j = 2n,

γ−2n =
1

q2n0

(
β0,2n −

6n−4∑
t=−2n+1

q2n,tγt − q2n,6n−4γ6n−3 − q2n,6n−3γ6n−2−

q2n,6n−2γ6n−1 − γ6n

)
.

We need to introduce new variables t1, t2, t3 for γ6n−3, γ6n−1, γ6n, respectively.
Let t := (t1, t2, t3). Then Aγ(t) is of the form



T−n T−n+1 · · · 1 · · · T 3n−2 T 3n−1 T 3n

T−n γ−2n(t) γ−2n+1(t1) · · · γ−n · · · γ2n−2 γ2n−1 γ2n
T−n+1 γ−2n+1(t1) γ−2n+2 · · · γ−n+1 · · · γ2n−1 γ2n γ2n+1

...
...

...
...

...
...

...
1 γ−n γ−n+1 · · · γ0 · · · γ3n−2 γ3n−1 γ3n
...

...
...

...
...

...
...

T 3n−2 γ2n−2 γ2n−1 · · · γ3n−2 · · · γ6n−4 t1 γ6n−2(t1)

T 3n−1 γ2n−1 γ2n · · · γ3n−1 · · · t1 γ6n−2(t1) t2
T 3n γ2n γ2n+1 · · · γ3n · · · γ6n−2(t1) t2 t3


for the corresponding Hankel matrix, where

γ−2n(t) =: C +Dt1 + Et2 − q−2n
0 t3,

γ−2n+1(t1) =: F − q−2n+1
0 t1,

γ6n−2(t1) =: G−Ht1.

For i ≤ j we write

T⃗ (i,j) :=
(
T i T i+1 · · · T j

)
.

4.1. Existence of a positive definite completion Aγ(t). In this subsection, we
will characterize the existence of t1, t2, t3 such that Aγ(t1,t2,t3) is positive definite.
The latter is a sufficient condition for the existence of a Z(p)–rm for β by [5,
Theorem 3.9] and Theorem 2.2 above.

Assume that

(Aγ(t))|T⃗ (−n+1,3n−2) is positive definite. (23)

We then focus on the submatrix

F1(t1) := (Aγ(t))|T⃗ (−n+1,3n−1) . (24)

Note that

p(t1) := det
(
F1(t1)

)
= c2t

2
1 + c1t1 + c0
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with c0, c1, c2 ∈ R. Assuming that (Aγ(t))|T⃗ (−n+1,3n−2) ≻ 0, it follows that c2 < 0.
For the existence of a positive definite completion Aγ(t), the first necessary condition
is the following:

p(t1) has a real zero. (25)

Assume (25) is satisfied. Let (t1)−, (t1)+ ∈ R, with (t1)− ≤ (t1)+, be real zeroes of
p(t1). Then F1(t1) is positive definite on the interval ((t1)−, (t1)+), and positive
semidefinite but not definite in ((t1)−, (t1)+). The question is, whether there exists
a choice of

t1 ∈ ((t1)−, (t1)+), (26)

such that there are t2, t3 ∈ R with Aγ(t) being positive definite.
Second, assuming (26) holds, we observe the submatrix

F2(t) :=
(
Aγ(t)

)
|T⃗ (−n+1,3n) . (27)

By Theorem 1.2, we see that

F2(t) ⪰ 0 ⇐⇒ t3 ≥
(
zT1 γ6n−2(t1) t2

) (
F1(t1)

)−1

 z1
γ6n−2(t1)

t2

 (28)

with z1 :=
(
γ2n+1 γ2n+2 · · · γ6n−4 t1

)T
. Writing

γ̃ := (γ−2n+2, γ−2n+1, . . . , γ6n−4),

c1 :=
(
γ2n γ2n+1 · · · γ6n−4 t1

)T
,

w1 := γ6n−2(t1)− cT1 A
−1
γ̃ c1,

we have (
F1(t1)

)−1

=

(
A−1

γ̃ 0

0 0

)
+

1

w1

(
A−1

γ̃ c1c
t
1A

−1
γ̃ −A−1

γ̃ c1
−cT1 A

−1
γ̃ 1

)
.

Using this in the inequality (28), we know that F2(t) ≻ 0 is equivalent to

t3 >
(
zT1 γ6n−2(t1)

)(
A−1

γ̃ +
1

w1
A−1

γ̃ c1c
T
1 A

−1
γ̃

)(
z1

γ6n−2(t1)

)
− 2

w1

(
zT1 γ6n−2(t1)

)
A−1

γ̃ c1 +
t22
w1

.

(29)

Finally, assuming that (26) and (29) hold, we now examine the entire matrix
Aγ(t). By Thorem 1.2, we see that

Aγ(t) ⪰ 0 ⇐⇒ γ−2n(t) ≥
(
zT2 γ2n

)
(F2(t))

−1

(
z2
γ2n

)
, (30)

where z2 :=
(
γ−2n+1(t1) γ−2n+2 · · · γ2n−1

)T
. Writing

B := F1(t1),

c2 :=
(
γ2n+1 · · · γ6n−2(t1) t2

)T
,

w2 := t3 − cT2 (F1(t1))
−1c2,

we see that

(F2(t))
−1 =

(
B−1 0
0 0

)
+

1

w2

(
B−1c2c

t
2B

−1 −B−1c2
−cT2 B

−1 1

)
.
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Using this in the inequality (30), it follows that Aγ(t) ≻ 0 is equivalent to

γ−2n(t) > zT2

(
B−1 +

1

w2
B−1c2c

T
2 B

−1

)
z2 −

2γ2n
w2

zT2 B
−1c2 +

γ2
2n

w2
. (31)

By Theorem 2.2, the arguments above give sufficient conditions to solve the
p-pure TMP.

Theorem 4.1 (Purely pure case). Let p(x, y) = xy−
∑4

s=0 qsx
s with qi ∈ R, q0 ̸= 0

q4 = 1. Let β ≡
{
β
(2n)
i,j

}
for i, j ∈ Z+, i + j ≤ 2n, be a p-pure sequence. Assume

the notation above and (23) holds. If there exists a triple (t1, t2, t3) ∈ R3 such that
(25), (26), (29), (31) hold, then β admits a Z(p)–representing measure.

4.2. Existence of positive semidefinite completion Aγ(t) with a R–rm van-
ishing in {0}. In this subsection, we study the existence of a R–rm for γ(t) vanish-
ing in {0} in case β is not p-pure or a triple (t1, t2, t3) ∈ R3 satisfying the conditions
in Theorem 4.1 does not exist. The main result is Theorem 4.2 below.

We say a column relation in Aγ(t) of the form

i2∑
i=i1

aiT
i = 0, (32)

where ai ∈ R, −n ≤ i1 < i2 ≤ 3n, ai1 ̸= 0, ai2 ̸= 0, propagates through Aγ(t), if

i2∑
i=i1

aiT
i−j = 0 for j = 1, . . . , n− i1,

i2∑
i=i1

aiT
i+j = 0 for j = 1, . . . , 3n− i2,

(33)

are also relations of Aγ(t).

Theorem 4.2 (Singular case). Let p(x, y) = xy −
∑4

s=0 qsx
s with qi ∈ R, q0 ̸= 0

q4 = 1. Let β ≡
{
β
(2n)
i,j

}
for i, j ∈ Z+, i + j ≤ 2n, be a sequence such that

there does not exist a triple (t1, t2, t3) ∈ R3 satisfying the conditions in Theorem
4.1. Assume the notation of Section 4, and Subsection 4.1 above. We write C :=
(Aγ(t))|T⃗ (−n+1,3n−2) . Then β admits a Z(p)–representing measure if and only if one
of the following holds:

(i) C ⪰ 0, C ̸≻ 0 and a relation (32) satisfied in C propagates through Aγ(t) for

t ∈ R3, which is uniquely determined using (33).
(ii) C ≻ 0, (25) holds, and the relation (32) satisfied in F1((t1)−), for F1 defined

by (24), propagates through Aγ(t) for (t2, t3) ∈ R2, uniquely determined using
(33).

(iii) C ≻ 0, (25) holds, and the relation (32) satisfied in F1((t1)+), for F1 defined
by (24), propagates through Aγ(t) for (t2, t3) ∈ R2, uniquely determined using
(33).

(iv) C ≻ 0, (25) holds, t1 ∈ ((t1),(t1)+), t3 is equal to the right hand side of (29)
for some t2, and the relation (32) satisfied in F2(t), for F2 defined by (27),
propagates through Aγ(t).
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(v) C ≻ 0, (25) holds, t1 ∈ ((t1),(t1)+), t3 satisfies (29) for some t2, γ−2n(t)
is equal to the right hand side of (31), and in the relation (32), satisfied in
Aγ(t), we have i1 = −n and i2 = 3n.

Proof. By assumption, there does not exist a triple (t1, t2, t3) ∈ R3 such that
Aγ(t) ≻ 0. We distinguish a few cases based on the point where non-definiteness
occurs.

Case 1: C ⪰ 0 and C ̸≻ 0.
In this case, there is a relation of the form (32), where ai ∈ R, −n + 1 ≤ i1 <

i2 ≤ 3n− 2, ai1 ̸= 0, ai2 ̸= 0, among the columns of C. By the extension principle
[12, Proposition 2.4], this relation must hold in any positive semidefinite completion
Aγ(t). By [27, Theorem 3.1], the existence of a R–rm canishing in {0} is equivalent
to well–definedness of the completion Aγ(t) determined by propagating the relation
(32) in both directions by (33). This gives (i).

Case 2: C ≻ 0; (25) holds and (t1)− is defined as in Subsection 4.1.
In this case, there is a relation of the form (32) among columns of F1((t1)−),

where F1(t1) is defined by (24), with i2 = 3n − 1. As in Case 1 above, well–
definedness of the relations (33) characterizes the existence of a (R \ {0})–rm for
γ(t). This shows (ii).

Case 3: C ≻ 0; (25) holds and t1 = (t1)+ with (t1)+ defined as in Subsection 4.1.
This case is analogous to Case 2 and completes (iii).

Case 4: C ≻ 0; (25) holds, t1 ∈ ((t1)−, (t1)+) and t3 is equal to the right hand
side of (29) for some t2.

In this case, there is a relation of the form (32) among columns of F2(t), where
F2(t) is defined by (27), with i2 = 3n. As in Case 1 above, well–definedness of the
relations (33) characterizes the existence of a (R\{0})–rm for γ(t). This proves (iv).

Case 5: C ≻ 0; (25) holds, t1 ∈ ((t1)−, (t1)+) and t3 satisfies (29) for some t2 and
γ−2n(t) is equal to the right hand side of (31).

In this case, there is a relation of the form (32) among columns of Aγ(t) with
i1 = −n; a R–rm vanishing in {0} for Aγ(t) exists only if i2 = 3n. Otherwise,
the second type relations from (33) would need to hold contradicting to positive
definiteness of F2(t). This verifies (v). □

Acknowledgment. Example 3.4 was obtained using calculations with the software
tool Mathematica [24].
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