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ABSTRACT. In this paper, we solve constructively the bivariate truncated moment problem
(TMP) of even degree on reducible cubic curves, where the conic part is a hyperbola. According
to the classification from our previous work [YZ24], these represent three out of nine possible
canonical forms of reducible cubic curves after applying an affine linear transformation. The
TMP on the union of three parallel lines, the circular and the parabolic type TMP were solved
constructively in [Zal22a, YZ24], while in this paper we consider three cases of hyperbolic type,
i.e., a type without real self-intersection points, a type with a simple real self-intersection point
and a type with a double real self-intersection point. In all cases, we also establish bounds on the
number of atoms in a minimal representing measure.

1. INTRODUCTION

Let Z+ stand for nonnegative integers. Given a real 2–dimensional sequence

β ≡ β(2k) = {β0,0, β1,0, β0,1, . . . , β2k,0, β2k−1,1, . . . , β1,2k−1, β0,2k}
of degree 2k and a closed subset K of R2, the truncated moment problem (K–TMP) sup-
ported on K for β(2k) asks to characterize the existence of a positive Borel measure µ on R2

with support in K, such that

(1.1) βi,j =

∫
K

xiyjdµ for i, j ∈ Z+, i+ j ≤ 2k.

If such a measure exists, we say that β(2k) has a representing measure supported on K and µ is
its K–representing measure (K–rm).

In the degree-lexicographic order 1, X, Y,X2, XY, Y 2, . . . , Xk, Xk−1Y, . . . , Y k of rows and
columns, the corresponding moment matrix to β is equal to

(1.2) M(k) = M(k; β) :=


M[0, 0](β) M[0, 1](β) · · · M[0, k](β)
M[1, 0](β) M[1, 1](β) · · · M[1, k](β)

...
...

. . .
...

M[k, 0](β) M[k, 1](β) · · · M[k, k](β)

 ,

where

M[i, j](β) :=


βi+j,0 βi+j−1,1 βi+j−2,2 · · · βi,j

βi+j−1,1 βi+j−2,2 βi+j−3,3 · · · βi−1,j+1

βi+j−2,2 βi+j−3,3 βi+j−4,4 · · · βi−2,j+2

...
...

...
. . .

...
βj,i βj−1,i+1 βj−2,i+2 · · · β0,i+j

 .
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Let R[x, y]≤k := {p ∈ R[x, y] : deg p ≤ k} stand for the set of real polynomials in variables
x, y of total degree at most k. For every p(x, y) =

∑
i,j aijx

iyj ∈ R[x, y]≤k we define its
evaluation p(X, Y ) on the columns of the matrix M(k) by replacing each capitalized monomial
X iY j in p(X, Y ) =

∑
i,j aijX

iY j by the column of M(k), indexed by this monomial. Then
p(X, Y ) is a vector from the linear span of the columns of M(k). If this vector is the zero
one, i.e., all coordinates are equal to 0, then p(X, Y ) is a column relation of M(k). A column
relation p(X, Y ) is nontrivial, if p ̸≡ 0. The matrix M(k) is recursively generated (rg) if for
p, q, pq ∈ R[x, y]≤k such that p(X, Y ) is a column relation of M(k), it follows that (pq)(X, Y )
is also a column relation of M(k). The matrix M(k) is p–pure if the only column relation of
M(k) are those determined recursively by p. In this case the TMP for β is called p–pure.

For p ∈ R[x, y] we denote by Z(p) := {(x, y) ∈ R2 : p(x, y) = 0} the zero set of p and by
deg p its total degree.

A concrete solution to the TMP is a set of necessary and sufficient conditions for the ex-
istence of a K–representing measure µ, that can be tested in numerical examples. Among
necessary conditions, M(k) must be positive semidefinite (psd) and rg [CF04, Fia95], and by
[CF96] if the support supp(µ) of µ is a subset of Z(p) for a polynomial p ∈ R[x, y]≤k, then p
is a column relation of M(k). The bivariate Z(p)–TMP (not necessarily p–pure) is concretely
solved in the following cases: (i) deg p = 1 [CF08], (ii) deg p = 2 [CF02, CF04, CF05, Fia15],
(iii) p is irreducible with deg p = 3 [KZ25+] and (iv) p is reducible, deg p = 3 and p has
a special form [Zal22a, YZ24]. The bivariate p–pure TMP is concretely solved also for: (v)
p(x, y) = xy + q(x) − x4 with deg q = 3 [YZ24+], (vi) p(x, y) = y − x4 [FZ25+] and (vii)
p is reducible with deg p = 3 and β is purely pure (i.e., the corresponding linear functional
is strictly positive on nonzero polynomials, positive on Z(p)) [KZ25+]. For a more detailed
description and some other less concrete solutions to the TMP on plane algebraic curves we
refer the reader to [YZ24, p. 3] or [KZ25+, p. 2–3], while for a recent development in the area
of moment problems to a monograph [Sch17].

A constructive solution to the K–TMP is a solution, where not only the existence of a K–rm
is characterized, but a concrete K–rm is explicitly constructed.

The motivation for this paper was to solve the TMP constructively on reducible cubic curves
of hyperbolic type, according to the classification of [YZ24, Proposition 3.1]. By applying an
affine linear transformation, each TMP on reducible cubic curve is equivalent to the TMP on
one of nine canonical cases of the form yc(x, y) = 0, where c ∈ R[x, y], deg c = 2. In [Zal22a],
the case of three parallel lines is solved constructively, while in [YZ24], the solutions to the
circular type (the curve is a line and a circle touching at a double real point) and the parabolic
type relations (the curve is a line and a parabola that intersect tangentially at a real point) are
presented. In this paper, we solve the TMP constructively for the cases c(x, y) = 1 − xy,
c(x, y) = x + y − xy and c(x, y) = ay + x2 − y2, a ∈ R \ {0}, which are called in [YZ24]
the hyperbolic type 1, 2 and 3 relations, respectively. We also characterize the number of atoms
in a minimal representing measure, i.e., a measure with the minimal number of atoms in the
support. The question of bounds on the cardinality of minimal representing measures in the
TMP, supported on algebraic curves, which is always finite by [Ric57] (or [Sch17, Theorem
1.24]), has attracted a recent attention of several authors (see [RS18, dDS18, dDK21, Zal24,
BBS24+, RTT25+]).

In terms of the self-intersection points of the cubic yc(x, y) = 0, we can classify the hy-
perbolic types from the previous paragraph into a type without real self-intersection points
(type 1), a type with a single real self-intersection point (type 2) and a type with a double
real self-intersection point (type 3). To prove our main results, we follow the idea presented
in [Zal22a, YZ24], which characterizes the existence of a decomposition of β into the sum
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β(ℓ) + β(c), where β(ℓ) = {β(ℓ)
i,j }i,j∈Z+, i+j≤2k and β(c) = {β(c)

i,j }i,j∈Z+, i+j≤2k admit a R–rm and
a Z(c)–rm, respectively. The crucial property of the forms of the cubic, which makes this idea
realizable, is that the line is equal to y = 0. This ensures that all but two moments of β(ℓ) and
β(c) are not already determined by the original sequence, i.e., β(ℓ)

2k−1,0, β
(ℓ)
2k,0, β(c)

2k−1,0, β
(c)
2k,0 in the

hyperbolic type 1 case (as in the case of three parallel lines [Zal22a]) , β(ℓ)
0,0, β(ℓ)

2k,0, β
(c)
0,0, β(c)

2k,0 in
the hyperbolic type 2 case (as in the parabolic type case [YZ24, Section 6]) and β

(ℓ)
0,0, β(ℓ)

1,0, β(c)
0,0,

β
(c)
1,0 in the hyperbolic type 3 case (as in the circular type case [YZ24, Section 5]). Then, by

an involved analysis, the characterization of the existence of a decomposition β = β(ℓ) + β(c)

can be done in all three cases. We mention that the analysis in the hyperbolic type cases is
more demanding than in the corresponding cases with the same positions of the free moments
from [Zal22a, YZ24] stated in parentheses, since the solution to the TMP on a hyperbola (see
Subsection 2.7) contains more linear algebraic requirements than in the case of other conics.

1.1. Reader’s Guide. The paper is organized as follows. In Section 2 we fix notation and
present some preliminary results needed to establish our main results. In Section 3 we recall
the approach for solving the TMP constructively on reducible cubic curves in the canonical
form yc(x, y) = 0 developed in [YZ24, Section 4]. In Sections 4–6 we solve constructively
the TMP for reducible cubic curves of hyperbolic types 1–3, respectively, and characterize
the cardinality of minimal representing measures (see Theorems 4.1, 5.2, 5.6, 6.1 and 6.7).
Numerical examples demonstrating the main results are also given (see Subsections 4.3, 5.3
and 6.3).

2. PRELIMINARIES

We write Rn×m for the set of n×m real matrices. For a matrix M we call the linear span of
its columns a column space and denote it by C(M). The set of real symmetric matrices of size
n will be denoted by Sn. For a matrix A ∈ Sn the notation A ≻ 0 (resp. A ⪰ 0) means A is
positive definite (pd) (resp. positive semidefinite (psd)). We write 0t1,t2 for a t1× t2 matrix with
only zero entries and 0t = 0t,t for short, where t1, t2, t ∈ N. The notation E

(ℓ)
i,j , ℓ ∈ N, stands

for the usual ℓ× ℓ coordinate matrix with the only nonzero entry at position (i, j), equal to 1.
In the rest of this section let k ∈ N and β = β(2k) = {βi,j}i,j∈Z+, i+j≤2k be a bivariate

sequence of degree 2k.

2.1. Moment matrix. Let M(k) be the moment matrix of β (see (1.2)). Let Q1, Q2 be subsets
of the set {X iY j : i, j ∈ Z+, i + j ≤ k}. We denote by M(k)Q1,Q2 the submatrix of M(k)
consisting of the rows indexed by the elements of Q1 and the columns indexed by the elements
of Q2. In case Q := Q1 = Q2, we write M(k)Q := M(k)Q,Q for short.

2.2. Affine linear transformations. The existence of representing measures is invariant under
invertible affine linear transformations of the form

(2.1) ϕ(x, y) = (ϕ1(x, y), ϕ2(x, y)) := (a+ bx+ cy, d+ ex+ fy), (x, y) ∈ R2,

a, b, c, d, e, f ∈ R with bf − ce ̸= 0. Namely, let Lβ : R[x, y]≤2k → R be a Riesz functional of
the sequence β defined by

Lβ(p) :=
∑

i,j∈Z+,
i+j≤2k

ai,jβi,j, where p =
∑

i,j∈Z+,
i+j≤2k

ai,jx
iyj.

We define β̃ = {β̃i,j}i,j∈Z+, i+j≤2k by

β̃i,j = Lβ(ϕ1(x, y)
i · ϕ2(x, y)

j).
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By [CF04, Proposition 1.9], β admits a r–atomic rm supported on K if and only if β̃ admits a
r–atomic rm supported on ϕ(K). We write β̃ = ϕ(β) and M(k; β̃) = ϕ(M(k; β)).

2.3. Generalized Schur complements. Let

M =

(
A B
C D

)
∈ R(n+m)×(n+m)

be a real matrix where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n and D ∈ Rm×m. The generalized
Schur complement [Zha05] of A (resp. D) in M is defined by

M/A = D − CA†B (resp. M/D = A−BD†C),

where A† (resp. D†) stands for the Moore-Penrose inverse of A (resp. D).
The following lemma will be used in the proofs of our main results.

Lemma 2.1. Let n,m ∈ N and

M =

(
A B
BT C

)
∈ Sn+m,

where A ∈ Sn, B ∈ Rn×m and C ∈ Sm. If rankM = rankA, then the matrix equation

(2.2)
(

A
BT

)
W =

(
B
C

)
,

where W ∈ Rn×m, is solvable and the solutions are precisely the solutions of the matrix equa-
tion AW = B. In particular, W = A†B satisfies (2.2).

The following theorem is a characterization of psd 2× 2 block matrices.

Theorem 2.2 ([Alb69]). Let

M =

(
A B
BT C

)
∈ Sn+m

be a real symmetric matrix where A ∈ Sn, B ∈ Rn×m and C ∈ Sm. Then:
(1) The following conditions are equivalent:

(a) M ⪰ 0.
(b) C ⪰ 0, C(BT ) ⊆ C(C) and M/C ⪰ 0.
(c) A ⪰ 0, C(B) ⊆ C(A) and M/A ⪰ 0.

(2) If M ⪰ 0, then

rankM = rankA+ rankM/A = rankC + rankM/C.

2.4. Partially positive semidefinite matrices and their completions. A partial matrix A =
(ai,j)

n
i,j=1 is a matrix of real numbers ai,j ∈ R, where some of the entries are not specified.

A partial symmetric matrix A = (ai,j)
n
i,j=1 is partially positive semidefinite (ppsd) (resp.

partially positive definite (ppd)) if the following two conditions hold:
(1) ai,j is specified if and only if aj,i is specified and ai,j = aj,i.
(2) All fully specified principal minors of A are psd (resp. pd).

For n ∈ N write [n] := {1, 2, . . . , n}. We denote by AQ1,Q2 the submatrix of A ∈ Rn×n

consisting of the rows indexed by the elements of Q1 ⊆ [n] and the columns indexed by the
elements of Q2 ⊆ [n]. In case Q := Q1 = Q2, we write AQ := AQ,Q for short.

Lemma 2.3 ([YZ24, Lemma 2.4]). Let A(x) be a partially positive semidefinite symmetric
matrix of size n × n with the missing entries in the positions (i, j) and (j, i), 1 ≤ i < j ≤ n.
Let

A1 = (A(x))[n]\{i,j}, a = (A(x))[n]\{i,j},{i}, b = (A(x))[n]\{i,j},{j}, α = (A(x))i,i, γ = (A(x))j,j.
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Let

A2 = (A(x))[n]\{j} =

(
A1 a
aT α

)
∈ Sn−1, A3 = (A(x))[n]\{i} =

(
A1 b
bT γ

)
∈ Sn−1,

and
x± := bTA†

1a±
√

(A2/A1)(A3/A1) ∈ R.
Then:

(1) A(x0) is positive semidefinite if and only if x0 ∈ [x−, x+].
(2)

rankA(x0) =

{
max

{
rankA2, rankA3

}
, for x0 ∈ {x−, x+},

max
{
rankA2, rankA3

}
+ 1, for x0 ∈ (x−, x+).

(3) The following statements are equivalent:
(a) x− = x+.
(b) A2/A1 = 0 or A3/A1 = 0.
(c) rankA2 = rankA1 or rankA3 = rankA1.

2.5. Extension principle.

Proposition 2.4 ([Fia95, Proposition 2.4] or [Zal22a, Lemma 2.4]). Let A ∈ Sn be positive
semidefinite, Q a subset of the set {1, . . . , n} and AQ the restriction of A to the rows and
columns from the set Q. If AQv = 0 for a nonzero vector v, then Av̂ = 0, where v̂ is a vector
with the only nonzero entries in the rows from Q and such that the restriction v̂Q to the rows
from Q equals to v.

2.6. (Strong) Hamburger TMP. In this subsection we recall the solutions to the univariate
TMP and its strong version, since it will be essentially used in the proofs of our main results.

Let k ∈ N and γ := (γ0, . . . , γ2k) ∈ R2k+1. We say that γ is R–representable if there is
a positive Borel measure µ on R such that γi =

∫
R x

i dµ for 0 ≤ i ≤ 2k. Characterizing the
existence of the R–rm for γ is called the truncated Hamburger moment problem (THMP)
or also the R–TMP.

We define the Hankel matrix corresponding to γ by

(2.3) Aγ := (γi+j)
k
i,j=0 =



γ0 γ1 γ2 · · · γk

γ1 γ2 . .
.

. .
.

γk+1

γ2 . .
.

. .
.

. .
. ...

... . .
.

. .
.

. .
.

γ2k−1

γk γk+1 · · · γ2k−1 γ2k


∈ Sk+1.

For m ≤ k we denote the upper left–hand corner (γi+j)
m
i,j=0 ∈ Sm+1 of Aγ of size m + 1 by

Aγ(m), while the lower right–hand corner of Aγ of size m+ 1 by Aγ[m].

The solution to the THMP is the following.

Theorem 2.5 ([CF91, Theorems 3.9–3.10]). For k ∈ N and γ = (γ0, . . . , γ2k) ∈ R2k+1 with
γ0 > 0, the following statements are equivalent:

(1) There exists a R–representing measure for γ.
(2) There exists a (rankAγ)–atomic R–representing measure for γ.
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(3) Aγ is positive semidefinite and one of the following holds:
(a) Aγ(k − 1) is positive definite.
(b) rankAγ(k − 1) = rankAγ .

Let k1, k2 ∈ N and

(2.4) γ̃ := (γ̃−2k1 , γ̃−2k1+1, γ̃−2k2+2, . . . , γ̃2k2−1, γ̃2k2) ∈ R2k1+2k2+1.

We say that γ̃ is strongly R–representable if there is a positive Borel measure µ on R \ {0}
such that γ̃i =

∫
R x

i dµ for −2k1 ≤ i ≤ 2k2. Characterizing the existence of the (R \ {0})–rm
for γ̃ is called the strong truncated Hamburger moment problem (STHMP).

The solution to the STHMP is the following.

Theorem 2.6. Let k1, k2 ∈ N and γ̃ as in (2.4) with γ−2k1 > 0. Define γ := (γ0, γ1, . . . , γ2k1+2k2) ∈
R2k1+2k2+1 by γi := γ̃i−2k1 . The following statements are equivalent:

(1) There exists a (R \ {0})–representing measure for γ̃.
(2) There exists a (rankAγ)–atomic (R \ {0})–representing measure for γ.
(3) Aγ is positive semidefinite and one of the following holds:

(a) Aγ is positive definite.
(b) rankAγ = rankAγ(k1 + k2 − 1) = rankAγ[k1 + k2 − 1].

Let k ∈ N. We say a sequence γ = (γ0, γ1, . . . , γ2k) ∈ R2k+1 is (R \ {0})–representable if
there is a positive Borel measure µ on R \ {0} such that γi =

∫
R\{0} x

i dµ for 0 ≤ i ≤ 2k.
Note that Theorem 2.6 above characterizes when a given sequence γ is (R\{0})–representable.

Remark 2.7. The matrix version of Theorem 2.6 appears in [Sim06] using involved operator
theory as the main tool. A proof of the scalar version using linear algebra techniques is [Zal22b,
Theorems 3.1].

2.7. Hyperbolic TMP. We will need the following solution to the hyperbolic TMP (see [Zal22b,
Corollary 3.5] and Remark 2.9 below).

Theorem 2.8. Let p(x, y) = xy − 1 nd β := β(2k) = {βi,j}i,j∈Z+,i+j≤2k, where k ≥ 2. Let

(2.5) B = {Y k, Y k−1, . . . , Y, 1 , X,X2, . . . , Xk}.
Then the following statements are equivalent:

(1) β has a Z(p)–representing measure.
(2) β has a (rankM(k))–atomic Z(p)–representing measure.
(3) M(k) is positive semidefinite, the relations βi+1,j+1 = βi,j hold for every i, j ∈ Z+ with

i+ j ≤ 2k − 2 and one of the following statements holds:
(a) M(k)B is positive definite.
(b) rankM(k) = rankM(k)B\{Y k} = rankM(k)B\{Xk}.

Remark 2.9. The first solution to the hyperbolic TMP is [CF05, Theorem 1.5], which contains
a condition called variety condition. To apply the solution to the hyperbolic TMP, when solving
the TMP on a reducible cubic with an irreducible component equivalent to the hyperbola xy =
1 after applying an invertible affine linear transformation, it is not easy to check the variety
condition symbolically. Theorem 2.8 does not contain the variety condition, but only linear
algebraic conditions. Theorem 2.8 is a slight improvement of [Zal22b, Corollary 3.5]. Namely,
instead of (3) the statement in [Zal22b, Corollary 3.5] reads:
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(3′) M(k) is positive semidefinite, recursively generated and if rankM(k)B = 2k, then

rankM(k)B\{Xk} = rankM(k)B\{Y k} = 2k.

Furthermore, in the proof of [Zal22b, Corollary 3.5] it is shown that (3′) is equivalent to a variant
of (3) (labelled (A) in the proof), in which all rg relations are assumed, not only pure ones, i.e.,

(2.6) βi+1,j+1 = βi,j holds for every i, j ∈ Z+ with i+ j ≤ 2k − 2,

or equivalently

(2.7) X i+1Y j+1 = X iY j hold for all i, j ∈ Z+ with i+ j ≤ k − 2.

The improvement of Theorem 2.8 compared to [Zal22b, Corollary 3.5] lies in the replacement of
the assumption M(k) is rg by the seemingly weaker assumption that M(k) satisties all pure rg
relations (i.e., (2.6)). We now explain why this can be done. Due to the existence of the relations
(2.7), it is sufficient to assume that other relations are among columns and rows, indexed by B
(see (2.5)). Defining v = (β0,2k, β0,2k−1, β0,2k−2, . . . , β0,0, β1,0, β2,0, . . . , β2k,0) ∈ R4k+1, note
that M(k)B = Av (see (2.3)) is a singular psd Hankel matrix, which is rg in the sense of a
univariate sequence [Zal22b, Section 2] by the assumptions in (3b) and [Zal22b, Proposition
2.1.(4),(5)]. By [Zal22b, Theorem 3.1], v has a representing measure supported on R \ {0},
where β0,i corresponds to the moment of x−i and βj,0 corresponds to the moment of xj . By
[Zal22b, Claim in the proof of Corollary 3.5], β has a Z(xy − 1)–rm.

Corollary 2.10. Let p(x, y) = x + y − xy and β := β(2k) = {βi,j}i,j∈Z+,i+j≤2k, where k ≥ 2.
Let

(2.8) B = {Y k, Y k−1, . . . , Y, 1 , X,X2, . . . , Xk}.
Then the following statements are equivalent:

(1) β has a Z(p)–representing measure.
(2) β has a (rankM(k))–atomic Z(p)–representing measure.
(3) M(k) is positive semidefinite, the relations βi+1,j+1 = βi+1,j+βi,j+1 = 0 hold for every

i, j ∈ Z+ with i+ j ≤ 2k − 2 and one of the following statements holds:
(a) M(k)B is positive definite.
(b) rankM(k) = rankM(k)B\{Y k} = rankM(k)B\{Xk}.

Proof. Note that applying an affine linear transformation ϕ(x, y) = (x+ 1, y + 1) (see Section
2.2) to β we obtain a new sequence β̃(2k) = {β̃i,j}i,j∈Z+,i+j≤2k satisfying the relations β̃i+1,j+1 =

β̃i,j for i, j ∈ Z+ with i + j ≤ 2k − 2. Since the existence of a Z(p)–rm for β is equivalent to
the existence of a Z(xy − 1)–rm for β̃, Corollary 2.10 follows by Theorem 2.8. □

Corollary 2.11. Let p(x, y) = ay+ x2 − y2, a ∈ R \ {0}, and β := β(2k) = {βi,j}i,j∈Z+,i+j≤2k,
where k ≥ 2. Let

(2.9) B′ = {Y Xk−1, Y Xk−2, . . . , Y, 1 , X,X2, . . . , Xk}.
Then the following statements are equivalent:

(1) β has a Z(p)–representing measure.
(2) β has a (rankM(k))–atomic Z(p)–representing measure.
(3) M(k) is positive semidefinite, the relations βi,j+2 = βi+2,j + aβi,j+1 hold for every

i, j ∈ Z+ with i+ j ≤ 2k − 2 and one of the following statements holds:
(a) M(k)B′ is positive definite.
(b) rankM(k) = rankM(k)B′\{Y Xk−1} = rankM(k)B′\{Xk}.



8 S. YOO AND A. ZALAR

Proof. Note that applying an affine linear transformation ϕ(x, y) =
(
2
a
(x + a

2
− y), 2

a
(x + a

2
+

y)
)

(see Section 2.2) to β we obtain a new sequence β̃(2k) = {β̃i,j}i,j∈Z+,i+j≤2k satisfying the
relations β̃i+1,j+1 = β̃i,j for i, j ∈ Z+ with i+ j ≤ 2k−2. Since the existence of a Z(p)–rm for
β is equivalent to the existence of a Z(xy − 1)–rm for β̃, Corollary 2.11 follows by Theorem
2.8. □

3. COMMON APPROACH TO ALL CASES

In this section we recall the constructive approach to solving the TMP on reducible cubic
curves in the canonical form yc(x, y) = 0 developed in [YZ24, Section 4].

Let

(3.1) C = {1 , X, Y,X2, XY, Y 2, . . . , Xk, Xk−1Y, . . . , Y k}
be the set of columns and rows of the moment matrix M(k) in the degree-lexicographic order.
Let

(3.2) p(x, y) = y · c(x, y) ∈ R[x, y]≤3

be a polynomial of degree 3 in one of the canonical forms from [YZ24, Proposition 3.1], were
c(x, y) a polynomial of degree 2. A given 2–dimensional sequence β = {βi,j}i,j∈Z+,i+j≤2k of
degree 2k, k ∈ N, will have a Z(p)–rm if and only if it can be decomposed as

(3.3) β = β(ℓ) + β(c),

where

β(ℓ) := {β(ℓ)
i,j }i,j∈Z+,i+j≤2k has a measure on y = 0,

β(c) := {β(c)
i,j }i,j∈Z+,i+j≤2k has a measure on the conic c(x, y) = 0,

and the sum in (3.3) is the component-wise sum. On the level of moment matrices, (3.3) is
equivalent to

(3.4) M(k; β) = M(k; β(ℓ)) +M(k; β(c)).

Note that if β has a Z(p)–rm, then the matrix M(k; β) satisfies the relation p(X, Y ) = 0 and
by rg also

(3.5) (xiyjp)(X, Y ) = 0 for i, j = 0, . . . , k − 3 such that i+ j ≤ k − 3.

Let T ⊆ C be a subset, such that {1, X, . . . , Xk} ⊆ T and the columns from T span the
column space C(M(k; β)). We write X⃗(0,k) := (1, X, . . . , Xk), T1 = T \ {1, X, . . . , Xk} and

M̃(k; β) := QM(k; β)QT =


X⃗(0,k) T⃗1

−−−→
C \ T

(X⃗(0,k))T A11 A12 A13

(T⃗1)
T (A12)

T A22 A23

(
−−−→
C \ T )T (A13)

T (A23)
T A33

,(3.6)

where T⃗1 and
−−−→
C \ T are tuples of elements of T1 and C \ T , arranged in some order, and Q

is the appropriate permutation matrix. In this new order of rows and columns, (3.4) becomes
equivalent to

(3.7) M̃(k; β) = M̃(k; β(ℓ)) + M̃(k; β(c)),
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where M̃(k; β(ℓ)) := QM(k; β(ℓ))QT and M̃(k; β(c)) := QM(k; β(c))QT . By the form of the
atoms we know that M̃(k; β(c)) and M̃(k; β(ℓ)) will have forms

M̃(k; β(c)) =


X⃗(0,k) T⃗1

−−−→
C \ T

(X⃗(0,k))T A A12 A13

(T⃗1)
T (A12)

T A22 A23

(
−−−→
C \ T )T (A13)

T (A23)
T A33

,

M̃(k; β(ℓ)) =


X⃗(0,k) T⃗1

−−−→
C \ T

(X⃗(0,k))T A11 − A 0 0

(T⃗1)
T 0 0 0

(
−−−→
C \ T )T 0 0 0


(3.8)

for some Hankel matrix A ∈ Sk+1. Define matrix functions

F : Sk+1 → S (k+1)(k+2)
2

and H : Sk+1 → Sk+1

by

F(A) =


X⃗(0,k) T⃗1

−−−→
C \ T

(X⃗(0,k))T A A12 A13

(T⃗1)
T (A12)

T A22 A23

(
−−−→
C \ T )T (A13)

T (A23)
T A33

,

H(A) =
( X⃗(0,k)

(X⃗(0,k))T A11 −A
)
.

(3.9)

Using (3.8), (3.7) becomes equivalent to

(3.10) M̃(k; β) = F(A) +H(A)⊕ 0 k(k+1)
2

for some Hankel matrix A ∈ Sk+1.

Lemma 3.1 ([YZ24, Lemma 4.1]). Let k ∈ N, k ≥ 3. Assume the notation above. Then the
sequence β = {βi,j}i,j∈Z+,i+j≤2k has a Z(p)–representing measure if and only if there exist a
Hankel matrix A ∈ Sk+1, such that:

(1) The sequence with the moment matrix F(A) has a Z(c)–representing measure.
(2) The sequence with the moment matrix H(A) has a R–representing measure.

Lemma 3.2 ([YZ24, Lemma 4.2]). Let k ∈ N, k ≥ 3. Assume the notation above and the
sequence β = {βi,j}i,j∈Z+,i+j≤2k admits a Z(p)–representing measure. Let

A := A(
β
(c)
0,0,β

(c)
1,0,...,β

(c)
2k,0

) ∈ Sk+1

be a Hankel matrix (see (2.3)) such that F(A) admits a Z(c)–representing measure and H(A)
admits a R–representing measure. Let c(x, y) be of the form

c(x, y) = a00 + a10x+ a20x
2 + a01y + a02y

2 + a11xy with aij ∈ R
and exactly one of the coefficients a00, a10, a20 is nonzero.

(3.11)

If:
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(1) a00 ̸= 0, then

β
(c)
i,0 = − 1

a0,0
(a01βi,1 + a0,2βi,2 + a11βi+1,1) for i = 0, . . . , 2k − 2.

(2) a10 ̸= 0, then

β
(c)
i,0 = − 1

a1,0
(a01βi,1 + a0,2βi,2 + a11βi+1,1) for i = 1, . . . , 2k − 1.

(3) a20 ̸= 0, then

β
(c)
i,0 = − 1

a2,0
(a01βi,1 + a0,2βi,2 + a11βi+1,1) for i = 2, . . . , 2k.

Lemma 3.2 states that if c is as in (3.11), all but two entries of the Hankel matrix A from
Lemma 3.1 are uniquely determined by β. The following lemma gives the smallest candidate
for A in Lemma 3.1 with respect to the usual Loewner order of matrices.

Lemma 3.3 ([YZ24, Lemma 4.3]). Assume the notation above and let β = {βi,j}i,j∈Z+,i+j≤2k,
where k ≥ 3, be a sequence of degree 2k. Assume that M̃(k; β) is positive semidefinite and
satisfies the column relations (3.5). Then:

(1) F(A) ⪰ 0 for some A ∈ Sk+1 if and only if A ⪰ A12(A22)
†(A12)

T .

(2) F
(
A12(A22)

†(A12)
T
)
⪰ 0 and H

(
A12(A22)

†(A12)
T
)
⪰ 0.

(3) F
(
A12(A22)

†(A12)
T
)

satisfies the column relations (xiyjc)(X, Y ) = 0 for i, j ∈ Z+

such that i+ j ≤ k − 2.

(4) We have that

rankM̃(k; β) = rankA22 + rank
(
A11 − A12(A22)

†(A12)
T
)

= rankF
(
A12(A22)

†(A12)
T
)
+ rankH

(
A12(A22)

†(A12)
T
)
.

Remark 3.4. By Lemmas 3.1–3.3, solving the Z(p)–TMP for β = {βi,j}i,j∈Z+,i+j≤2k, where
k ≥ 3, with p being of the form yc(x, y) and c as in (3.11), the natural procedure is the following:

(1) First compute Amin := A12(A22)
†(A12)

T . By Lemma 3.3.(3), there is one entry of Amin,
which might need to be changed to obtain a Hankel structure. Namely, in the notation
(3.11), if:
(a) a00 ̸= 0, then the value of (Amin)k,k must be changed to (Amin)k−1,k+1.
(b) a10 ̸= 0, then the value of (Amin)1,k+1 must be changed to (Amin)2,k.
(c) a20 ̸= 0, then the value of (Amin)2,2 must be changed to (Amin)3,1.

Let Âmin be the matrix obtained from Amin after performing the change described above.
(2) Study if F(Âmin) and H(Âmin) admit a Z(c)–rm and a R–rm, respectively. If the answer

is yes, β admits a Z(p)–rm. Otherwise by Lemma 3.2, there are two antidiagonals of
the Hankel matrix Âmin, which can by varied so that the matrices F(Âmin) and H(Âmin)
will admit the corresponding measures. Namely, in the notation (3.11), if:
(a) a00 ̸= 0, then the last two antidiagonals of Âmin can be changed.
(b) a10 ̸= 0, then the left–upper and the right–lower corner of Âmin can be changed.
(c) a20 ̸= 0, then the first two antidiagonals of Âmin can be changed.

To solve the Z(p)–TMP for β one needs to characterize, when it is possible to change
these antidiagonals in such a way to obtain a matrix Ămin, such that F(Ămin) and
H(Ămin) admit a Z(c)–rm and a R–rm, respectively.
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4. HYPERBOLIC TYPE 1 RELATION: p(x, y) = y(1− xy).

In this section we solve constructively the Z(p)–TMP for the sequence β = {βi,j}i,j∈Z+,i+j≤2k

of degree 2k, k ≥ 3, where p(x, y) is as in the title of the section. The main result is Theorem
4.1, which characterizes concrete numerical conditions for the existence of a Z(p)–rm for β and
also the number of atoms needed in a minimal Z(p)–rm. A numerical example demonstrating
the main result is presented in Subsection 4.3.

Assume the notation from Section 3. If β admits a Z(p)–TMP, then M(k; β) must satisfy
the relations

(4.1) Y 2+jX i+1 = Y 1+jX i for i, j ∈ Z+ such that i+ j ≤ k − 3.

On the level of moments the relations (4.1) mean that

(4.2) βi+1,j+2 = βi,j+1 for i, j ∈ Z+ such that i+ j ≤ 2k − 3.

In the presence of all column relations (4.1), the column space C(M(k; β)) is spanned by the
columns in the tuple

(4.3) T⃗ := (Y k, Y k−1, . . . , Y︸ ︷︷ ︸
Y⃗ (k,1)

, Y X, Y X2, . . . , Y Xk−1︸ ︷︷ ︸
Y X⃗(1,k−1)

, 1, X, . . . , Xk︸ ︷︷ ︸
X⃗(0,k)

).

Let

P be a permutation matrix such that moment matrix M̂(k) := PM(k; β)P T has rows

and columns indexed in the order Y⃗ (k,1), Y X⃗(1,k−1), X⃗(0,k), Y 2X⃗(1,k−2), . . . , Y k−1X,
(4.4)

where Y jX⃗(1,k−j) := (Y jX, Y jX2, . . . , Y jXk−j) for 1 ≤ j ≤ k − 1. Let M̂(k)T⃗ be the
restriction of the moment matrix M̂(k) to the rows and columns in the tuple T⃗ and write

M̂(k)T⃗ =


Y⃗ (k,1) Y X⃗(1,k−1) X⃗(0,k)

(Y⃗ (k,1))T B11 B12 B13

(Y X⃗(1,k−1))T (B12)
T B22 B23

(X⃗(0,k))T (B13)
T (B23)

T B33



=



Y⃗ (k,1) Y X⃗(1,k−1) X⃗(0,k−1) Xk

(Y⃗ (k,1))T B11 B12 B
(0,k−1)
13 b

(k)
13

(Y X⃗(1,k−1))T (B12)
T B22 B

(0,k−1)
23 b

(k)
23

(X⃗(0,k−1))T (B
(0,k−1)
13 )T (B

(0,k−1)
23 )T B

(0,k−1)
33 b

(k)
33

Xk (b
(k)
13 )

T (b
(k)
23 )

T (b
(k)
33 )

T β2k,0

 ∈ S3k.

We also write

M̂(k)T⃗ =:

(
R m12

(m12)
T β2k,0

)
.(4.5)

Next we define the matrix N (k), which extends the restriction of M̂(k) to rows and columns
in (Y⃗ (k,1), Y X⃗(1,k−1), X⃗(0,k−1)), with a row and a column Y Xk. Namely, it contains the only
candidates for the corresponding moments, which are generated by the atoms in any Z(p)–rm.
The reason for introducing precisely N (k) is the fact, that together with M(k), they contain
crucial information needed to characterize the existence of the solution to the Z(p)–TMP (see
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Theorem 4.1 below). So,

N (k) =


Y⃗ (k,1) Y X⃗(1,k−1) X⃗(0,k−1) Y Xk

(Y⃗ (k,1))T B11 B12 B
(0,k−1)
13 a

(Y X⃗(1,k−1))T (B12)
T B22 B

(0,k−1)
23 b

(X⃗(0,k−1))T (B
(0,k−1)
13 )T (B

(0,k−1)
23 )T B

(0,k−1)
33 c

Y Xk aT bT cT β2k−1,1

 ∈ S3k,
(4.6)

where

a =
(
β0,1 β1,1 · · · βk−1,1

)T
, b =

(
βk,1 βk+1,1 · · · β2k−2,1

)T
,

c =
(
βk,1 βk+1,1 · · · β2k−1,1

)T
.

In the definition of a, b, c we used the fact that if the Z(p)–rm for β exists, then the relations
(4.2) hold also for i + j ≤ 2k − 1. In particular, we used the relations β2k−1,2 = β2k−2,1,
βk,k+1 = βk−1,k and β2k,2 = β2k−1,1. These relations also imply that

(4.7)
(
B12 a

)
= B

(0,k−1)
13 ,

(
B22 b

)
= B

(0,k−1)
23 and

(
bT β2k−1,1

)
= cT .

We also write

(4.8) N (k) =:

(
R n12

(n12)
T β2k−1,1

)
,

where note that R is the same as in (4.5) above.
Next we define two additional matrices F1 and F2, needed in the statement of the solution to

the Z(p)–TMP:

• F1 the restriction of M̃(k; β(ℓ)) (see (3.8)) to rows and columns in X⃗(0,k−1). Namely,
it contains the only candidates for the corresponding moments, which are generated by
the atoms in any Z(p)–rm, that are supported on the line y = 0.

• F2 is the restriction of N (k) to the rows and columns in (Y⃗ (k,1), Y X⃗(1,k)).

So

(4.9) F1 := B
(0,k−1)
33 −

(
(B

(0,k−1)
23 )T c

)
, F2 :=

 B11 B
(0,k−1)
13

(B
(0,k−1)
13 )T

(
(B

(0,k−1)
23 )T c

) ,

where we used (4.7) in the equalities. Define real numbers

t′ = (n12)
TR† m12,

u′ = β2k,0 − (w1)
T (F1)

† w1,

u′′ = (w2)
T (F2)

† w2,

(4.10)

where

w1 =
(
βk,0 − βk+1,1 βk+1,0 − βk+2,1 · · · β2k−2,0 − β2k−1,1 β2k−1,0 − t′

)T
,

w2 =
(
β1,1 β2,1 · · · β2k−1,1 t′

)T
.

Note that:

• w1 is the difference of the restriction of the column Xk of M̂(k) to the rows X⃗(0,k−1)

and a vector that is the restriction of the only (up to the choice of t′) potential column
Y Xk+1 of the extension of M̂(k) to the rows ⃗X(0,k−1), if the Z(p)–rm for β exists.
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• w2 is the restriction to the rows (Y⃗ (k,1), X⃗(0,k−1)) of the only (up to the choice of t′)
potential column Xk of the matrix M̃(k; β(c)) (see (3.8)), which is generated by the
atoms lying on xy = 1 if a Z(p)–rm for β exists.

• t′ is the only candidate for the moment of x2k−1 coming from the atoms in any Z(p)–rm,
that are supported on the conic part Z(xy−1) of Z(p), if one of M̂(k)T⃗ or N (k) is not
positive definite. Furthermore, u′ and u′′ are the only two candidates for the moment
of x2k from the conic part that need to be checked when deciding on the existence of a
Z(p)–rm for β.

Define the sequences
γ1(t,u) := (β0,0 − β1,1, β1,0 − β2,1, . . . , β2k−2,0 − β2k−1,1, β2k−1,0 − t, β2k,0 − u),

γ2(t,u) := (β0,2k, β0,2k−1, . . . , β0,1, β0,0, β1,0, . . . , β2k−2,0, t,u).
(4.11)

Let F(A) and H(A) be as in (3.9) with T⃗1 := (Y⃗ (k,1), Y X⃗(1,k)). Define the matrix function

(4.12) G : R2 → Sk+1, G(t,u) = Âmin + t
(
E

(k+1)
k,k+1 + E

(k+1)
k+1,k

)
+ uE

(k+1)
k+1,k+1,

where Âmin is as in Remark 3.4.(1). We will prove that Aγ1(t,u), Aγ2(t,u) (see (2.3)) are equal to
H(G(t, u)), F(G(t, u))P T

)
Y⃗ (k,1)∪X⃗(0,k) , which represent possible restrictions of M̃(k; β(ℓ)) and

M̃(k; β(c)) (see (3.8)) to the rows and columns in X⃗(0,k) and (Y⃗ (k,1), X⃗(0,k)), respectively.

The solution to the Z(p)–TMP is the following.

Theorem 4.1. Let p(x, y) = y(xy − 1) and β := β(2k) = (βi,j)i,j∈Z+,i+j≤2k, where k ≥ 3.
Assume the notation above.

Then the following statements are equivalent:

(1) β has a Z(p)–representing measure.

(2) M(k; β) and N (k) are positive semidefinite, the relations (4.2) hold and one of the
following statements holds:

(a) M̂(k)T⃗ and N (k) are positive definite.

(b) γ1(t
′, u) and γ2(t

′, u) are R–representable and (R \ {0})–representable, respec-
tively, for some u ∈ {u′, u′′}.

Moreover, assume a Z(p)–representing measure for β exists. If the rank inequality

rankN (k) ≤ rankM(k; β)

holds, then there is a (rankM(k; β))–atomic Z(p)–representing measure; otherwise there is a
(rankM(k; β) + 1)–atomic one.

Remark 4.2. The implication (2a) ⇒ (1) of Theorem 4.1 already follows from [KZ25+, Theo-
rem 8.9], which characterizes all positive polynomials on Z(p), together with [dDS18, Proposi-
tion 2 and Corollary 6], which states that strictly positive Riesz functional implies the existence
of a Z(p)–rm. However, here we present a constructive proof for this implication, which also
shows that a minimal measure is 3k–atomic.

As explained in Remark 3.4, the existence of a Z(p)–rm for β is equivalent to the existence
of a pair (t0, u0) ∈ R2, such that H(G(t0, u0)) and F(G(t0, u0)) admit a Z(xy − 1)–rm and
R–rm, respectively. Note that the solutions to the Z(xy − 1)–TMP and R–TMP are Theorems
2.5 and 2.8, respectively. For the forms of H(G(t0, u0)), F(G(t0, u0)) and also in other parts of
the proof of Theorem 4.1, we need the following lemma.
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Lemma 4.3. Assume the notation above. Let T⃗1 := (Y⃗ (k,1), Y X⃗(1,k)) and M(Z, t) be a function
on Sk+1 × R defined by
(4.13)

M(Z, t) =



T⃗1 X⃗(0,k)

(T⃗1)
T F2

 B
(0,k−1)
13 b

(k)
13

B
(0,k−1)
23 b

(k)
23

cT t


(X⃗(0,k))T

(
(B

(0,k−1)
13 )T (B

(0,k−1)
23 )T c

(b
(k)
13 )

T (b
(k)
23 )

T t

)
Z

.

Assume that there exists t0 ∈ R such that M(B33, t0) ⪰ 0. Let

(4.14) Z0 :=

(
(B

(0,k−1)
13 )T (B

(0,k−1)
23 )T c

(b
(k)
13 )

T (b
(k)
23 )

T t0

)
(F2)

†

 B
(0,k−1)
13 b

(k)
13

B
(0,k−1)
23 b

(k)
23

cT t0

 .

Then the following statements hold:
(1) M

(
Z0, t0

)
⪰ 0 and B33 − Z0 ⪰ 0.

(2) M(Z0, t0) satisfies the column relations Y X i+1 = X i for i = 0, . . . , k − 1. Hence,

Z0 = G(t0, u0) for some u0 ∈ R.
(3) rankN (k) = rankF1 + rankF2.

Proof. By the equivalence between (1a) and (1c) of Theorem 2.2 used for the pair (M,A) =
(M(Z, t0), F2), Lemma 4.3.(1) follows.

Relations (4.1) and definitions of β2k−1,2, βk,k+1 and β2k,2 imply that the restriction

(
M(Z0, t0)

)
T⃗1,(T⃗1,X⃗(0,k))

=


T⃗1 X⃗(0,k)

(T⃗1)
T F2

 B
(0,k−1)
13 b

(k)
13

B
(0,k−1)
23 b

(k)
23

cT t0




satisfies the relations Y X i+1 = X i for i = 0, . . . , k − 1. By Lemma 2.1, the restriction

(
M(Z0, t0)

)
X⃗(0,k),(T⃗1,X⃗(0,k))

=

( T⃗1 X⃗(0,k)

(X⃗(0,k))T

(
(B

(0,k−1)
13 )T (B

(0,k−1)
23 )T c

(b
(k)
13 )

T (b
(k)
23 )

T t0

)
Z0

)
.

also satisfies the relations Y X i+1 = X i for i = 0, . . . , k − 1, which proves Lemma 4.3.(2).
Permuting the rows and columns of N (k) to the order (T⃗1, X⃗

(0,k−1)), with a permutation
matrix P1, we get

P1N (k)(P1)
T =

 F2

 B
(0,k−1)
13

B
(0,k−1)
23

cT


(

(B
(0,k−1)
13 )T (B

(0,k−1)
23 )T c

)
B

(0,k−1)
33

 .(4.15)

By Theorem 2.2.(2), used for the pair (M,A) = (P1N (k)(P1)
T , F2), noticing that

(4.16)
(
P1N (k)(P1)

T
)
/F2 = B

(0,k−1)
33 −

(
(B

(0,k−1)
23 )T c

)
= F1,

Lemma 4.3.(3) follows. □
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Remark 4.4. Note that the restriction of M(B33, t) to (Y⃗ (k,1), Y X⃗(1,k−1), X⃗(0,k)) is M̂(k)T⃗ ,
while to (Y⃗ (k,1), Y X⃗(1,k), X⃗(0,k−1)) it is P1N (k)P T

1 with P1 as in (4.15).

Using Lemma 4.3, the existence of t0 ∈ R such that M(B33, t0) ⪰ 0, implies that

H(G(t, u)) = B33 −

 (
(B

(0,k−1)
23 )T c

) (
b′

t

)
(
(b′)T t

)
u



=


X⃗(0,k−1) Xk

(X⃗(0,k−1))T B
(0,k−1)
33 −

(
(B

(0,k−1)
23 )T c

)
b
(k)
33 −

(
b′

t

)
Xk b

(k)
33 −

(
(b′)T t

)
β2k,0 − u



=


X⃗(0,k−1) Xk

(X⃗(0,k−1))T F1 b
(k)
33 −

(
b′

t

)
Xk b

(k)
33 −

(
(b′)T t

)
β2k,0 − u

,

(4.17)

where

(4.18) b′ =
(
βk+1,1 βk+2,1 · · · β2k−1,1

)T
,

and

F(G(t, u))(Y⃗ (k,1),X⃗(0,k)) =


Y⃗ (k,1) X⃗(0,k−1) Xk

(Y⃗ (k,1))T B11 B
(0,k−1)
13 b

(k)
13

(X⃗(0,k−1))T (B
(0,k−1)
13 )T

(
(B

(0,k−1)
23 )T c

) (
b′

t

)
Xk (b

(k)
13 )

T
(
(b′)T t

)
u



=


(Y⃗ (k,1), X⃗(0,k−1)) Xk

(Y⃗ (k,1), X⃗(0,k−1))T F2

 b
(k)
13

b′

t


Xk

(
(b

(k)
13 )

T (b′)T t
)

u

.

4.1. Proof of the implication (1) ⇒ (2) of Theorem 4.1. We denote by M(µ)(k + 1) the
moment matrix associated to the sequence generated by some finitely atomic Z(p)–rm µ for β,
which exists by [Ric57]. The following statements hold:

• The moment matrix M(µ)(k + 1) is psd.
• The extension of M̂(k)T⃗ \{Xk} with a row and column Y Xk is equal to the matrix N (k)

due to the relation Y 2Xk = Y Xk−1, which is satisfied by the moment matrix M(µ)(k+
1).

• The matrix N (k) is psd as the restriction of M(µ)(k + 1).

We separate two subcases.

Case 1: M̂(k)T⃗ and N (k) are positive definite. This is Theorem 4.1.(2a).
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Case 2: At least one of M̂(k)T⃗ and N (k) is not positive definite. The restriction M(µ)(k +
1)(T⃗ ,Y Xk) is of the form (see (4.5), (4.8))

M(µ)(k + 1)(T⃗ ,Y Xk) =

 R m12 n12

(m12)
T β2k,0 β2k,1(µ)

(n12)
T β2k,1(µ) β2k−1,1

 .

Claim 1. β2k,1(µ) = t′, where t′ is as in (4.10).

Proof of Claim 1. By definition of t′ and by Lemma 2.3, used for

A(x) :=

 R m12 n12

(m12)
T β2k,0 x

(n12)
T x β2k−1,1

 ,

we have A(t′) ⪰ 0. We separate two cases according to invertibility of N (k).

Case (i): N (k) is invertible. It follows that rankM̂(k)T⃗ < rankN (k) and hence by Lemma
2.3, there is no other t ∈ R except t′ such that A(t) ⪰ 0. Hence, β2k,1(µ) must be equal to t′.

Case (ii): N (k) is singular. The singularity of N (k) implies, by Lemma 4.3.(3), that

(4.19) at least one of the matrices F1 and F2 is singular.

Let M(Z, t) be as in (4.13). Note that M(B33, t) is obtained by permuting rows and columns of
A(t). In particular, M(B33, t

′) ⪰ 0. Now let t0 be any real number such that M(B33, t0) ⪰ 0.
By Lemma 4.3, it follows that

(4.20) M(Z0, t0) ⪰ 0 and B33 − Z0 ⪰ 0

for Z0 as in (4.14), and

(4.21) B33 − Z0 = H(G(t0, u0)) =

 F1

(
∗
t0

)
(
∗ t0

)
∗

 .

Now we separate possible cases in (4.19).

Case (ii).(I): F1 is singular. Since B33−Z0 is psd by (4.20) and has the form (4.21), it follows,
by [CF91, Theorem 2.4(ii)], that t0 is uniquely determined by F1. Hence, Claim 1 holds in this
case.

Case (ii).(II): F2 is singular. The restriction of M(Z0, t0) to the rows and columns in (T⃗1, X
k)

is a psd Hankel matrix of the form

(4.22) M(Z0, t0)(T⃗1,Xk) =

 F2

(
∗
t0

)
(
∗ t0

)
∗

 .

As in the Case (ii).(I), [CF91, Theorem 2.4(ii)] implies that t0 is uniquely determined by F2.
Hence, Claim 1 holds also in this case. ■

As explained in the paragraph following the statement of Theorem 4.1, there exist t0, u0 ∈ R
such that F(G(t0, u0)) and H(G(t0, u0)) admit a Z(xy − 1)–rm and a R–rm, respectively. By
Claim 1, we have that t0 = t′. Note that the right-lower corner of Z0 is precisely u′′ (see (4.10)).
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By definitions (4.10) of u′ and u′′, u′ is the largest number such that H(G(t′, u′)) ⪰ 0 and u′′

is the smallest number such that F(G(t′, u′′)) ⪰ 0. In particular, u′′ ≤ u′ and u0 ∈ [u′′, u′].
Note that H(G(t′, u′)) = Aγ1(t′,u′) admits a R–rm by Theorem 2.5, since the last column is in
the span of the previous ones. We have

F(G(t′, u′))T⃗ = F
(
G(t′, u0) + (u′ − u0)E

(k+1)
1,1

)
T⃗

= F(G(t′, u0))T⃗ + (u′ − u0)E
(3k)
2k+1,2k+1

⪰ F(G(t′, u0))T⃗ .

(4.23)

Since F(G(t′, u0)) admits a Z(xy − 1)–rm and F(G(t′, u0))(Y⃗ (k,1),X⃗(0,k)) = Aγ2(t′,u0), it follows
that γ2(t′, u0) is (R \ {0})–representable. From now on we separate two cases according to the
invertibility of F2.

Case 2.1: F2 is invertible. We separate two cases according to the invertibility of Aγ2(t′,u0).

Case 2.1.1: Aγ2(t′,u0) ≻ 0. It follows that rankF(G(t′, u0))(Y⃗ (k,1),X⃗(0,k)) = 2k + 1 and hence
rankF(G(t′, u′))(Y⃗ (k,1),X⃗(0,k)) = 2k + 1 by (4.23). By Theorem 2.6, γ2(t′, u′) is (R \ {0})–
representable.

Case 2.1.2: Aγ2(t′,u0) ⪰ 0 and Aγ2(t′,u0) ̸≻ 0 . It follows that Aγ2(t′,u0) satisfies Theorem 2.6.(3b)
and hence

2k = rankF(G(t′, u0))(Y⃗ (k,1),X⃗(0,k−1)) = rankF(G(t′, u0))(Y⃗ (k−1,1),X⃗(0,k)),(4.24)

where we also used invertibility of F2 in the first equality. If u0 = u′, (4.24) implies that
γ2(t

′, u′) is (R \ {0})–representable. Otherwise u′ > u0 and (4.23), (4.24) imply that

rankF(G(t′, u′))(Y⃗ (k,1),X⃗(0,k)) = 2k + 1,

which again implies that γ2(t′, u′) is (R \ {0})–representable by Theorem 2.6.

Case 2.2: F2 is singular. If γ2(t′, u0) is (R \ {0})–representable, then in particular it is R–
representable. But due to singularity of F2, u′′ is the only candidate for u0 by Theorem 2.5.
Hence, γ1(t′, u′′) is also R–representable.

This concludes the proof of the implication (1) ⇒ (2) of Theorem 4.1.

4.2. Proof of the implication (2) ⇒ (1) of Theorem 4.1. We separate two cases according to
the assumptions in (2).

Case 1: (2a) of Theorem 4.1 holds. By Lemma 2.3, used for A(x) = M(B33,x) (as in (4.13)),
there exist tℓ ∈ R, ℓ = 1, 2, such that (see also Remark 4.4):

M(B33, t) ⪰ 0 for every t ∈ [t1, t2],

rankM(B33, tℓ) = rankM(k) = rankN (k) for ℓ = 1, 2,

rankM(B33, t) = rankM(k) + 1 = rankN (k) + 1 for t ∈ (t1, t2).

(4.25)

Let t0 ∈ [t1, t2]. By Lemma 4.3.(1), we have M(Z0, t0) ⪰ 0, where Z0 is as in (4.14). By
Theorem 2.2.(2), used for the pair (M,A) =

(
M(Z0, t0), F2

)
, we have

(4.26) rankM(Z0, t0) = rankF2.

By Lemma 4.3.(2),

C
(
M(Z0, t0)

)
= C

(
M(Z0, t0)(Y⃗ (k,1),Y X⃗(1,k))

)
= C

(
M(Z0, t0)(Y⃗ (k,1),X⃗(0,k−1))

)
,
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which implies that

(4.27) rank
(
M(Z0, t0)(Y⃗ (k,1),X⃗(0,k−1))

)
= rankM(Z0, t0).

By Lemma 4.3.(2), it follows that Z0 = G(t0, u(t0)) for some u(t0) ∈ R and by Lemma 4.3.(1),
B33 ⪰ Z0. Hence, H(Z0) ⪰ 0. By (4.16),

F1 = B
(0,k−1)
33 −

(
(B

(0,k−1)
23 )T c

)
≻ 0.

By the equivalence between (1a) and (1c) of Theorem 2.2, used for the pair
(
H(G(t0, u(t0))), F1

)
(see (4.17) for the 2× 2 block decomposition of H(G(t0, u(t0))), it follows that

(4.28) δ0 := (β2k,0 − u(t0))−
(
b
(k)
33 −

(
b′

t0

))T
(F1)

−1
(
b
(k)
33 −

(
b′

t0

))
≥ 0

and

rankH
(
G(t0, u(t0))

)
=

{
rankF1, if δ0 = 0,

rankF1 + 1, if δ0 > 0.
=

{
k, if δ0 = 0,

k + 1, if δ0 > 0.
(4.29)

By Theorem 2.2.(2), used for the pair (M,A) =
(
M(B33, t0), F2

)
, we have

(4.30) rankM(B33, t0) = rankF2 + rankH
(
G((t0, u(t0)))

)
.

Since rankF2 = 2k by the invertibility of N (k) and rankM(B33, tℓ) = 3k, ℓ = 1, 2, by (4.25),
it follows that

(4.31) rankH
(
G(tℓ, u(tℓ))

)
= k, ℓ = 1, 2.

Note that Aγ1(tℓ,u(tℓ)) = H
(
G(tℓ, u(tℓ))

)
, ℓ = 1, 2, where γ1(t,u) is as in (4.11). By (4.29) and

(4.31), rankAγ1(tℓ,u(tℓ))(k − 1) = rankAγ1(tℓ,u(tℓ)), ℓ = 1, 2. By Theorem 2.5, γ1(tℓ, u(tℓ)),
ℓ = 1, 2, has a k–atomic R–rm. Note that in F

(
G(tℓ, u(tℓ))

)
, ℓ = 1, 2,

(4.32) Xk ∈ span{Y k, Y k−1, . . . , Y, 1, X,X2, . . . , Xk−1}.
Further,

F(G(tℓ, u(tℓ)))(Y⃗ (k,1),X⃗(0,k)) = Aγ2(tℓ,u(tℓ)),

where γ2(t,u) is as in (4.11). Since (4.32) holds, the sequences γ2(tℓ, u(tℓ)), ℓ = 1, 2, are
R–representable. Since

F2 = Aγ2(t1,u(t1))(2k − 1) = Aγ2(t2,u(t2))(2k − 1)

is invertible, by [Zal22b, Proposition 2.5], at least one of γ2(t1, u(t1)) or γ2(t2, u(t2)) is (R \
{0})–representable. By Lemma 3.1, β has a (3k)–atomic Z(p)–rm, which concludes the proof
of the implication (2) ⇒ (1) in this case.

Case 2: (2b) of Theorem 4.1 holds. By Lemma 2.3, used for A(x) = M(B33,x), for t′ as in
(4.10), we have M(B33, t

′) ⪰ 0 and

rankM(B33, t
′) = max

(
rankM̂(k), rankN (k)

)
.

By Lemma 4.3, it follows that Aγ2(t′,u′′) = F(G(t′, u′′))(Y⃗ (k,1),X⃗(0,k)) and Aγ1(t′,u′′) = H
(
G(t′, u′′)

)
are psd, and

(4.33) rankM(B33, t
′) = rankAγ2(t′,u′′) + rankAγ1(t′,u′′).

We separate two subcases according to the invertibility of F2.

Case 2.1: F2 is invertible. Note that G(t′, u′′) is equal to Z0 from (4.14) with t0 = t′. By
definition (4.10), u′ is the largest such that H(G(t′, u′)) ⪰ 0. Thus, u′ ≥ u′′. We have
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F(G(t′, u′)) ⪰ F(G(t′, u′′)) (see the inequality (4.23) above) and

rankF(G(t′, u′)) =

{
rankF(G(t′, u′′)), if u′ = u′′,

rankF(G(t′, u′′)) + 1, if u′ > u′′,

=

{
2k, if u′ = u′′,

2k + 1, if u′ > u′′,

(4.34)

where we used the fact that F2 is invertbile in the second equality. Note that

Aγ2(t′,u) = F(G(t′, u))(Y⃗ (k,1),X⃗(0,k)).

If u′ = u′′, then by definition of u′′, we also have rankAγ2(t′,u′)(2k − 1) = rankAγ2(t′,u′).
Otherwise u′ > u′′ and rankAγ2(t′,u′) = 2k + 1. Since Aγ1(t′,u′) = H(G(t′, u′)) satisfies the
equality rankAγ1(t′,u′) = rankAγ1(t′,u′)(k − 1) by definition of u′, it admits a (rankAγ1(t′,u′))–
atomic R–rm by Theorem 2.5. Using (4.33) and in the case u′ > u′′ also rank equalities
rankAγ2(t′,u′′) = rankAγ2(t′,u′) − 1 (by (4.34)) and rankAγ1(t′,u′′) = rankAγ1(t′,u′) + 1 (by
definition of u′), it follows that β admits a (rankM(B33, t

′))–atomic Z(p)–rm. This proves the
implication (2) ⇒ (1) in this case.

Case 2.2: F2 is singular. Note that Aγ2(t′,u′′) = F(G(t′, u′′))(Y⃗ (k,1),X⃗(0,k)) satisfies the equal-
ity rankAγ2(t′,u′′)(2k − 1) = rankAγ2(t′,u′′) by definition of u′′. Moreover, γ1(t

′, u′′) ad-
mits a (rankAγ1(t′,u′′))–atomic R–rm. Since also rankM(B33, t

′) = rankF(G(t′, u′′)) +
rankAγ1(t′,u′′), it follows that β admits a (rankM(B33, t

′))–atomic Z(p)–rm.

This concludes the proof of the implication (2) ⇒ (1) of Theorem 4.1. Note also that the
moreover part of the theorem follows from the proof of this implication.

4.3. Example. 1 The sequence β is said to be p–purely pure, if it is p–pure and also the matrix
N (k) is invertible. By Theorem 4.1.(2a), a p–purely pure sequence β, such that M(k; β) and
N (k) are psd, admits a Z(p)–rm. The following example shows that, in contrary to the TMP
on the union of three parallel lines [Zal22a], in this hyperbolic type case, a p–pure sequence β,
such that M(k; β) and N (k) are psd, does not necessarily admit a Z(p)–rm.

Let β be a bivariate degree 6 sequence given by

β00 = 1,

β10 =
3
4
, β01 = 0

β20 = 3, β11 =
1
2
, β02 =

5
16
,

β30 =
9
2
, β21 = 0, β12 = 0, β03 = 0,

β40 =
17
64
, β31 =

5
4
, β22 =

1
2
, β13 =

5
16
, β04 =

17
64
,

β50 =
69
2
, β41 = 0, β32 = 0, β23 = 0, β14 = 0, β05 = 0,

β60 =
231
2
, β51 =

17
4
, β42 =

5
4
, β33 =

1
2
, β24 =

5
16
, β15 =

17
64
, β06 =

81
256

.

We will prove below that β does not have a R2–rm. It is easy to check that M̂(3) is psd
and satisfies only one column relation Y 2X = Y , while the matrix N (3) is psd and has only
one column relation Y X3 = 5Y X − 4Y 2. The sequences γ1(t,u) and γ2(t,u) (see (4.11)) are

1The Mathematica file with numerical computations can be found on the link https://github.com/
ZalarA/TMP_cubic_reducible.

https://github.com/ZalarA/TMP_cubic_reducible
https://github.com/ZalarA/TMP_cubic_reducible
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equal to

γ1(t,u) =
(1
2
,
3

4
,
7

4
,
9

2
,
49

2
,
69

2
− t,

231

2
,−u

)
,

γ2(t,u) =
( 81

256
, 0,

17

64
, 0,

5

16
, 0,

1

2
, 0,

5

4
, 0,

17

4
, t,u

)
.

Computing t′, u′, u′′ (see (4.10)) we get t′ = 0, u′ = 659
40

and u′′ = 65
4

. Since Aγ2(t′,u′) sat-
isfies rankAγ2(t′,u′) = 6 and rankAγ2(t′,u′)(6) = rankAγ2(t′,u′)[6] = 5, Theorem 2.6 implies
that γ2(t′, u′) is not (R \ {0})–representable. Since Aγ2(t′,u′′) satisfies rankAγ2(t′,u′′) = 5 and
rankAγ2(t′,u′′)[6] = 4, Theorem 2.6 implies that γ2(t′, u′′) is not (R \ {0})–representable. So
neither of γ2(t′, u′) or γ2(t′, u′′) is (R\{0})–representable, which implies, by Theorem 4.1, that
β does not admit a Z(p)–rm.

5. HYPERBOLIC TYPE 2 RELATION: p(x, y) = y(x+ y − xy)

In this section we solve constructively the Z(p)–TMP for the sequence β = {βi,j}i,j∈Z+,i+j≤2k

of degree 2k, k ≥ 3, where p(x, y) is as in the title of the section. The main results are Theorem
5.2, which characterizes concrete numerical conditions for the existence of a Z(p)–rm for β
and Theorem 5.6, which characterizes the number of atoms needed in a minimal Z(p)–rm. A
numerical example demonstrating the main results is presented in Subsection 5.3.

Remark 5.1. In the classification from [YZ24, Proposition 3.1], in the hyperbolic type 2 rela-
tion, c(x, y) is equal to x + y + axy, a ∈ R \ {0}. However, after applying an affine linear
transformation (see Subsection 2.2) ϕ(x, y) = (−ax,−ay) we can assume that a = −1.

5.1. Existence of a representing measure. Assume the notation from Section 3. If β admits
a Z(p)–TMP, then M(k; β) must satisfy the relations

(5.1) Y 2+jX1+i = Y 1+jX1+i + Y 2+j for i, j ∈ Z+ such that i+ j ≤ k − 3.

On the level of moments the relations (5.2) mean that

(5.2) βi+1,j+2 = βi+1,j+1 + βi,2+j for i, j ∈ Z+ such that i+ j ≤ 2k − 3.

In the presence of all column relations (5.2), the column space C(M(k; β)) is spanned by the
columns in the tuple

(5.3) T⃗ := (Y k, Y k−1, . . . , Y︸ ︷︷ ︸
Y⃗ (k,1)

, Y X − Y, Y X2 − Y X, . . . , Y Xk−1 − Y Xk−2︸ ︷︷ ︸
T⃗2

, X⃗(0,k)).

where X⃗(i,j) := (X i, X i+1, . . . , Xj), 0 ≤ i ≤ j ≤ k and X0 := 1. Let

P be a permutation matrix such that moment matrix M̂(k) := PM(k; β)P T has rows

and columns indexed in the order T⃗ , C⃗ \ T⃗ .

Let M̂(k)T⃗ be the restriction of the moment matrix M̂(k) to the rows and columns in the tuple
T⃗ :

M̂(k)T⃗ :=


Y⃗ (k,1) T⃗2 X⃗(0,k)

(Y⃗ (k,1))T B11 B12 B13

(T⃗2)
T (B12)

T B22 B23

(X⃗(0,k))T (B13)
T (B23)

T B33


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=



Y⃗ (k,1) T⃗2 X⃗(0,k−1) Xk

(Y⃗ (k,1))T B11 B12 B
(0,k−1)
13 b

(k)
13

(T⃗2)
T (B12)

T B22 B
(0,k−1)
23 b

(k)
23

(X⃗(0,k−1))T (B
(0,k−1)
13 )T (B

(0,k−1)
23 )T (B

(0,k−1)
33 ) b

(k)
33

Xk (b
(k)
13 )

T (b
(k)
23 )

T (b
(k)
33 )

T β2k,0



=



Y⃗ (k,1) T⃗2 1 X⃗(1,k−1) Xk

(Y⃗ (k,1))T B11 B12 b
(0)
13 B

(1,k−1)
13 b

(k)
13

(T⃗2)
T (B12)

T B22 b
(0)
23 B

(1,k−1)
23 b

(k)
23

1 (b
(0)
13 )

T (b
(0)
23 )

T β0,0 (b
(1,k−1)
33;0 )T βk,0

(X⃗(1,k−1))T (B
(1,k−1)
13 )T (B

(1,k−1)
23 )T b

(1,k−1)
33;0 B

(1,k−1)
33 b

(1,k−1)
33;k

Xk (b
(k)
13 )

T (b
(k)
23 )

T βk,0 (b
(1,k−1)
33;k )T β2k,0


.

Let M̃(k; β) be as in (3.6) with T⃗1 := (Y⃗ (k,1), T⃗2) and define

(5.4) Amin := A12(A22)
†(A12)

T and Âmin := Amin + η
(
E

(k+1)
1,k+1 + E

(k+1)
k+1,1

)
,

where η := (Amin)2,k − (Amin)1,k+1. See Remark 3.4 for the explanation of these definitions.
Let F(A) and H(A) be as in (3.9). Define the matrix function

(5.5) G : [0,∞)2 → Sk+1, G(t,u) = Âmin + tE
(k+1)
1,1 + uE

(k+1)
k+1,k+1.

Next we define the sequences γ1(t,u), γ2(t,u):

γ1(t,u) :=
(
β0,0 − (Amin)1,1 − t, β1,0 − β1,1 + β0,1, β2,0 − β2,1 + β1,1, . . . ,

β2k−1,0 − β2k−1,1 + β2k−2,1, β2k,0 − (Amin)k+1,k+1 − u
)
,

γ2(t,u) :=
(
(Amin)1,1 + t, β1,1 − β0,1, β2,1 − β1,1, . . . , β2k−1,1 − β2k−2,1,

(Amin)k+1,k+1 + u
)
.

(5.6)

Observe that

H(G(t,u)) =

=


1 X⃗(1,k−1) Xk

1 β0,0 − (Amin)1,1 − t (b
(1,k−1)
33;0 )T − (b

(0)
23 )

T βk,0 − βk,1 + βk−1,1

(X⃗(1,k−1))T b
(1,k−1)
33;0 − b

(0)
23 B

(1,k−1)
33 −B

(1,k−1)
23 b

(1,k−1)
33;k − b

(k)
23

Xk βk,0 − βk,1 + βk−1,1 (b
(1,k−1)
33;k )T − (b

(k)
23 )

T β2k,0 − (Amin)k+1,k+1 − u


=Aγ1(t,u)

(5.7)



22 S. YOO AND A. ZALAR

and
F(G(t,u))(Y⃗ (k,1),X⃗(0,k))

=



Y⃗ (k,1) 1 X⃗(1,k−1) Xk

(Y⃗ (k,1))T B11 b
(0)
13 B

(1,k−1)
13 b

(k)
13

1 (b
(0)
13 )

T (Amin)1,1 + t (b
(0)
23 )

T βk,1 − βk−1,1

(X⃗(1,k−1))T (B
(1,k−1)
13 )T b

(0)
23 B

(1,k−1)
23 b

(k)
23

Xk (b
(k)
13 )

T βk,1 − βk−1,1 (b
(k)
23 )

T (Amin)k+1,k+1 + u



=

( Y⃗ (k,1) X⃗(0,k)

(Y⃗ (k,1))T B11 B13

(X⃗(0,k))T (B13)
T Aγ2(t,u)

)
.

(5.8)

By Lemmas 3.1–3.3 and Remark 3.4, the existence of a Z(p)–rm for β is equivalent to:

M̃(k; β) ⪰ 0, the relations (5.2) hold and

there exists (t̃0, ũ0) ∈ R2 such that F(G(t̃0, ũ0)) and H(G(t̃0, ũ0))

admit a Z(x+ y − xy)–rm and a R–rm, respectively.

(5.9)

We also write
H(Âmin) =

=


1 X⃗(1,k−1) Xk

1 β0,0 − (Amin)1,1 (b
(1,k−1)
33;0 )T − (b

(0)
23 )

T βk,0 − (Amin)k+1,1

X⃗(1,k−1) b
(1,k−1)
33;0 − b

(0)
23 B

(1,k−1)
33 −B

(1,k−1)
23 b

(1,k−1)
33;k − b

(k)
23

Xk βk,0 − (Amin)k+1,1 (b
(1,k−1)
33;k )T − (b

(k)
23 )

T β2k,0 − (Amin)k+1,k+1



=:


1 X⃗(1,k−1) Xk

1 β0,0 − (Amin)1,1 (h12)
T βk,0 − (Amin)k+1,1

(X⃗(1,k−1))T h12 H22 h23

Xk βk,0 − (Amin)k+1,1 (h23)
T β2k,0 − (Amin)k+1,k+1

,

(5.10)

and

K := H(Âmin)
/
H22

=

(
β0,0 − (Amin)1,1 βk,0 − (Amin)2,k

βk,0 − (Amin)2,k β2k,0 − (Amin)k+1,k+1.

)
−
(
(h12)

T

(h23)
T

)
(H22)

† (h12 h23

)
:=

(
β0,0 − (Amin)1,1 − (h12)

T (H22)
†h12 βk,0 − (Amin)2,k − (h12)

T (H22)
†h23

βk,0 − (Amin)2,k − (h23)
T (H22)

†h12 β2k,0 − (Amin)k+1,k+1 − (h12)
T (H22)

†h12

)
.

(5.11)

Let
tmax := β0,0 − (Amin)1,1 − (h12)

T (H22)
†h12,

umax := β2k,0 − (Amin)k+1,k+1 − (h12)
T (H22)

†h12,

k12 := βk,0 − (Amin)2,k − (h23)
T (H22)

†h12.

(5.12)
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Note that

(5.13) K =

(
tmax k12
k12 umax

)
= H(Amin)

/
H22 +

(
0 η
η 0

)
.

Write
B := {Y k, Y k+1, . . . , Y, 1, X,X2, . . . , Xk}.

We say the matrix A ∈ Sk+1 satisfies the property (Hyp) if F(A) is positive semidefinite and
one of the following holds:

(5.14) rankF(A) = rankF(A)B\{Xk} = rankF(A)B\{Y k}︸ ︷︷ ︸
(Hyp)1

or rankF(A) = 2k + 1︸ ︷︷ ︸
(Hyp)2

.

The solution to the Z(p)–TMP is the following.

Theorem 5.2. Let p(x, y) = y(x+ y − xy) and β := β(2k) = {βi,j}i,j∈Z+,i+j≤2k, where k ≥ 3.
Assume the notation above. Then the following statements are equivalent:

(1) β has a Z(p)–representing measure.
(2) M(k; β) is positive semidefinite, the relations (5.2) hold and there exists a pair (t̃, ũ)

such that γ1(t̃, ũ) is R–representable and Aγ2(t̃,ũ) satisfies (Hyp), where:
(a) If umax = 0,

(t̃, ũ) ∈ {(0, 0), (tmax, 0)}.
(b) If umax > 0 and k12 = 0,

(t̃, ũ) ∈
{
(0, 0),

( η2

umax

, umax

)
, (tmax, umax)

}
.

(c) If umax > 0 and k12 ̸= 0,

(t̃, ũ) ∈
{
(t−,η2 , u−,η2), (t+,η2 , u+,η2),

(
tmax −

|k12|
√
tmax√

umax

, umax −
|k12|

√
umax√

tmax

)}
,

where writing B := k2
12 − tmaxumax − η2 we have

u±,η2 =
−B ±

√
B2 − 4tmaxumaxη2

2tmax

and t±,η2 =
η2

u±,η2
.

Before we prove Theorem 5.2 we need few lemmas. Their statements and the proofs coincide
verbatim with [YZ24, Theorem 6.1, Claims 1–3], but we state them for easier readability.

Let

R1 =
{
(t, u) ∈ R2 : F(G(t, u)) ⪰ 0

}
and R2 =

{
(t, u) ∈ R2 : H(G(t, u)) ⪰ 0

}
.

Claims 1 and 2 below describe ranks of F(G(t, u)) and H(G(t, u)) for various choices of (t, u)
in R1 and R2.

Lemma 5.3 ([YZ24, Theorem 6.1, Claim 1]). Assume that M̃(k; β) ⪰ 0. Then

(5.15) R1 =
{
(t, u) ∈ R2 : t ≥ 0, u ≥ 0, tu ≥ η2

}
.

If (t, u) ∈ R1, we have

rankF(G(t, u)) =


rankF(Amin), if η = t = u = 0,

rankF(Amin) + 1, if (η = t = 0, u > 0) or
(η = u = 0, t > 0) or (η ̸= 0, tu = η2),

rankF(Amin) + 2, if tu > η2.

(5.16)
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Define the matrix function

K(t,u) := H(G(t,u))
/
H22 = H(Âmin)

/
H22 −

(
t 0
0 u

)
= K −

(
t 0
0 u

)
=

(
tmax − t k12

k12 umax − u

)
.

(5.17)

Lemma 5.4 ([YZ24, Theorem 6.1, Claim 2]). Assume that M̃(k; β) ⪰ 0. Then

R2 =
{
(t, u) ∈ R2 : K(t, u) ⪰ 0

}
=
{
(t, u) ∈ R2 : t ≤ tmax, u ≤ umax, (tmax − t)(umax − u) ≥ k2

12

}
.

(5.18)

If (t, u) ∈ R2, we have

rankH(G(t, u)) =


rankH22, if k12 = 0, t = tmax, u = umax,

rankH22 + 1, if (tmax − t)(umax − u) = k2
12, (t ̸= tmax or u ̸= umax),

rankH22 + 2, if (tmax − t)(umax − u) > k2
12.

(5.19)

Lemma 5.5 ([YZ24, Theorem 6.1, Claim 3]). If (t, u) ∈ R2 ∩ (R+)
2, then

tu ≤ (
√
tmaxumax − sign(k12)k12)

2 =: pmax.

The equality is achieved if:

• k12 = 0, only in the point (t, u) = (tmax, umax).

• k12 ̸= 0, only in point (tpmax , upmax) = (tmax − |k12|
√
tmax√

umax
, umax − |k12|

√
umax√

tmax
).

Moreover, if k12 ̸= 0, then for every p ∈ [0, pmax] there exists a point (t̃, ũ) ∈ R2 ∩ (R+)
2 such

that t̃ũ = p and (tmax − t̃)(umax − ũ) = k2
12.

Proof of Theorem 5.2. The implication (2) ⇒ (1) is trivial, since (2) immediately implies (5.9).
It remains to prove the implication (1) ⇒ (2). By (5.9), there exists (t̃0, ũ0), such that γ1(t̃0, ũ0)
is R–representable and Aγ2(t̃0,ũ0) satisfies (Hyp). We separate two cases according to H22 (see
(5.10)) being positive definite or not.

Case 1: H22 is not positive definite. By Theorem 2.5, it follows that the only option for ũ0 is
umax. By Lemma 5.4, we have k12 = 0. Applying Theorem 2.5 again, for any t ∈ [0, tmax], the
sequence γ1(t, umax) is R–representable. We separate two cases according to the value of umax.

Case 1.1: umax = 0. By Lemma 5.3, η = 0. This and the definition of Amin implies that for any
t ∈ [0, tmax], rankF(G(t, 0))B\{Xk} = rankF(G(t, 0)). If t̃0 > 0, then

rankF(Amin) + 1 =︸︷︷︸
(5.16)

rankF(G(t̃0, 0)) = rankF(G(t̃0, 0))B\{Y k}

≤ rankF(Amin)B\{Y k} + 1 ≤ rankF(Amin) + 1,

(5.20)

where in the second equality the assumption that Aγ2(t̃0,0) satisfies (Hyp) was used. It follows
that all inequalities in (5.20) must be equalities. In particular, we have rankF(Amin)B\{Y k} =
rankF(Amin). It follows that Amin = Aγ2(0,0) satisfies (Hyp) and (0, 0) is a good choice for
(t̃, ũ) in Theorem 5.2.(2).
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Case 1.2: umax > 0. By Lemma 5.3, t̃0ũ0 ≥ η2. If η ̸= 0, then t̃0 > 0. If η = 0, then

2k + 1 > rankF(Amin) + 1 = rankF(G(0, 0)) + 1 =︸︷︷︸
(5.16)

rankF(G(0, umax))

>︸︷︷︸
umax>0

rankF(G(0, umax))B\{Xk}.

Hence, (0, umax) cannot satisfy (Hyp) and thus t̃0 > 0. We separate two cases according to the
product t̃0umax, which must be at least η2, by Lemma 5.3.

Case 1.2.1: t̃0umax = η2. In this case ( η2

umax
, umax) is a good choice for (t̃, ũ) in Theorem 5.2.(2).

Case 1.2.2: t̃0umax > η2. We separate two cases according to the rank of F(G(t̃0, umax)).

Case 1.2.2.1: rankF(G(t̃0, umax)) = 2k+1. The inequality F(G(t̃0, umax)) ⪯ F(G(tmax, umax))
implies that rankF(G(tmax, umax)) = 2k + 1 and thus (tmax, umax) satisfies (Hyp). Therefore
(tmax, umax) is a good choice for (t̃, ũ) in Theorem 5.2.(2).

Case 1.2.2.2: rankF(G(t̃0, umax)) < 2k + 1. Then

rankF(Amin) + 2 =︸︷︷︸
(5.16)

rankF(G(t̃0, umax)) = rankF(G(t̃0, umax))B\{Y k}

≤ rankF(Amin)B\{Y k} + 2 ≤ rankF(Amin) + 2,

(5.21)

where in the second equality we used the assumption that Aγ2(t̃0,umax) satisfies (Hyp). It follows
that all inequalities in (5.21) must be equalities. Since

F(G(t̃0, umax))B\{Y k} ⪯ F(G(tmax, umax))B\{Y k},

it follows that

rankF(G(tmax, umax)) = rankF(Amin) + 2 = rankF(G(tmax, umax))B\{Y k}.

Similarly, rankF(G(tmax, umax)) = rankF(G(tmax, umax))B\{Xk}. Therefore (tmax, umax) sat-
isfies (Hyp) and is a good choice for (t̃, ũ) in Theorem 5.2.(2).

Case 2: H22 is positive definite. We separate three cases according to the value of the pair
(k12, η).

Case 2.1: k12 = η = 0. By definition of tmax, umax and Theorem 2.5, γ1(t, u) is R–representable
for every

(5.22) (t, u) ∈ [0, tmax)× [0, umax] and (t, u) = (tmax, umax).

We separate two cases acccording to the rank of F(Amin).

Case 2.1.1: rankF(Amin) < 2k − 1. If tmax = 0, by Lemma 5.3, rankF(G(t̃0, ũ0)) ≤
rankF(Amin) + 2. Since (t̃0, ũ0) satisfies (Hyp) and rankF(Amin) < 2k − 1, it follows that
(t̃0, ũ0) satisfies (Hyp)1. We separate four options depending on the sign of t̃0 and ũ0.

Case 2.1.1.1: t̃0 = ũ0 = 0. This means (0, 0) is a good choice for (t̃, ũ) in Theorem 5.2.(2).
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Case 2.1.1.2: t̃0 > 0 and ũ0 > 0. Then

rankF(Amin) + 2 =︸︷︷︸
(5.16)

rankF(G(t̃0, ũ0)) = rankF(G(t̃0, ũ0))B\{Y k}

≤ rankF(Amin)B\{Y k} + 2 ≤ rankF(Amin) + 2,

(5.23)

where in the second equality we used the assumption that Aγ2(t̃0,ũ0) satisfies (Hyp). It follows
that all inequalities in (5.23) must be equalities. Since

F(G(t̃0, ũ0))B\{Y k} ⪯ F(G(tmax, umax))B\{Y k},

it follows that

rankF(G(tmax, umax)) = rankF(Amin) + 2 = rankF(G(tmax, umax))B\{Y k}.

Similarly,
rankF(G(tmax, umax)) = rankF(G(tmax, umax))B\{Xk}.

Therefore (tmax, umax) satisfies (Hyp)1 and is a good choice for (t̃, ũ) in Theorem 5.2.(2).

Case 2.1.1.3: t̃0 = 0 and ũ0 > 0. Then

rankF(G(0, 0))B\{Xk} = rankF(G(0, ũ0))B\{Xk} <︸︷︷︸
ũ0>0

rankF(G(0, ũ0)),

where in the equality we used the observation ũ0 occurs only in the column Xk. Hence,
γ2(0, ũ0) cannot satisfy (Hyp). So this case does not occur.

Case 2.1.1.4: t̃0 > 0 and ũ0 = 0. Then

rankF(Amin) + 1 =︸︷︷︸
(5.16)

rankF(G(t̃0, 0)) = rankF(G(t̃0, 0))B\{Y k}

≤ rankF(Amin)B\{Y k} + 1 ≤ rankF(Amin) + 1,

(5.24)

where in the second equality we used the assumption that Aγ2(t̃0,0) satisfies (Hyp). It follows that
all inequalities in (5.24) must be equalities. In particular, rankF(Amin) = rankF(Amin)B\{Y k}.
Similarly, rankF(Amin) = rankF(Amin)B\{Xk}. Therefore (0, 0) satisfies (Hyp)1 and is a good
choice for (t̃, ũ) in Theorem 5.2.(2).

Case 2.1.2: rankF(Amin) = 2k − 1. The reasoning in the case t̃0 = ũ0 = 0 is the same as in
Case 2.1.1.1, in the case t̃0 = 0 and ũ0 > 0 the same as in Case 2.1.1.3, and in the case t̃0 > 0
and ũ0 = 0 the same as in Case 2.1.1.4 above. Assume that t̃0 > 0 and ũ0 > 0. By Lemma 5.3,
rankF(G(tmax, umax)) = 2k + 1 and Aγ2(tmax, umax) satisfies (Hyp). Together with (5.22), it
follows that (tmax, umax) is a good choice for (t̃, ũ) in Theorem 5.2.(2).

Case 2.2: k12 = 0 and η ̸= 0. Since η ̸= 0, it follows that umax > 0 (using Lemma 5.3).
But then as in Case 1.2 above, one of ( η2

umax
, umax), (tmax, umax) is a good choice for (t̃, ũ) in

Theorem 5.2.(2).

Case 2.3: k12 ̸= 0 and η ̸= 0. Let pmax be as in Lemma 5.5. We separete two cases according
to the value of pmax.

Case 2.3.1: pmax = η2. In this case R1 ∩ R2 = {(tpmax , upmax)}, where (tpmax , upmax) is as in
Lemma 5.5. and thus (tpmax , upmax) is the only candidate for (t̃0, ũ0) in (5.9).
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Case 2.3.2: pmax > η2. We separate two cases depending on rankF(Amin).

Case 2.3.2.1: rankF(Amin) = 2k − 1. Then by Lemma 5.3, rankF(G(t′, u′)) = 2k + 1 for
every (t′, u′) such that t′ > 0, u′ > 0, t′u′ > η2 and hence Aγ2(t

′, u′) satisfies (Hyp)2. By
Lemma 5.5, (t′, u′) equal to (tpmax , upmax) satisfies (Hyp)2, and γ1(t

′, u′) is R–representable,
since Aγ1(t′,u′(k) ≻ 0 (by t′ < tmax). Hence, this (t′, u′) is a good choice for (t̃, ũ) in Theorem
5.2.(2).

Case 2.3.2.2: rankF(Amin) < 2k − 1. By Lemma 5.3, rankF(G(t′, u′)) < 2k + 1 for every
(t′, u′) ∈ R1 and hence Aγ2(t

′, u′) cannot satisfy (Hyp)2 for any (t′, u′) ∈ R1. Thus (t̃0, ũ0)
satisfies (Hyp)1. We have

rankF(Amin) + rank

(
t̃0 η
η ũ0

)
=︸︷︷︸

(5.16)

rankF(G(t̃0, ũ0))

= rankF(G(t̃0, ũ0))B\{Y k}

≤ rankF(Amin)B\{Y k} + rank

(
t̃0 η
η ũ0

)
≤ rankF(Amin) + rank

(
t̃0 η
η ũ0

)
,

(5.25)

where in the second equality we used the assumption that Aγ2(t̃0,ũ0) satisfies (Hyp). It follows
that equalities hold for all inequalities in (5.25). In particular,

(5.26) rankF(Amin) = rankF(Amin)B\{Y k}.

Similarly,

(5.27) rankF(Amin) = rankF(Amin)B\{Xk}.

By Lemma 5.5, there is a point (t̃, ũ) ∈ R2 ∩ (R+)
2, such that

(5.28) t̃ũ = η2 and (tmax − t̃)(umax − ũ) = k2
12.

Moreover, there are exactly two such points (t̃, ũ) satisfying (5.28):(
tmax −

η2

u

)(
umax − u

)
= k2

12 ⇔ (tmaxu− η2)(umax − u) = k2
12u

⇔ tmaxu
2 + (k2

12 − tmaxumax − η2)u+ η2umax = 0

⇔ u±,η2 =
−B ±

√
B2 − 4tmaxumaxη2

2tmax

,

where B = k2
12 − tmaxumax − η2. Clearly, tmaxumax ≥ k2

12, and since η2 > 0, it follows that
B < 0. A short computation shows that

(5.29) 0 = B2 − 4tmaxumaxη
2 ⇔ η2 ∈ {(

√
tmax

√
umax + k12)

2, (
√
tmax

√
umax − k12)

2}.
We have

pmax = (
√
tmax

√
umax − |k12|)2 < (

√
tmax

√
umax + |k12|)2.

Since η2 < pmax, (5.29) implies that B2 − 4tmaxumaxη
2 ̸= 0. Therefore

0 < u−,η2 < u+,η2 .
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Let t±,η2 :=
η2

u±,η2
. Note that

rankF(G(t±,η2 , u±,η2))B\{Xk} =︸︷︷︸
t±,η2>0

rankF(Amin)B\{Xk} + 1 =︸︷︷︸
(5.27)

rankF(G(Amin)) + 1

=︸︷︷︸
(5.16)

rankF(G(t±,η2 , u±,η2)).

So Aγ2(t±,η2 ,u±,η2 )
satisfies (Hyp)1 if and only if

(5.30) rankF(G(t±,η2 , u±,η2))B\{Y k} = rankF(G(t±,η2 , u±,η2)).

Since t±,η2 > 0 and u±,η2 > 0, it follows that

rankF(G(t±,η2 , u±,η2))B\{Xk,Y k} > rankF(G(t±,η2 , u±,η2))B\{1,Xk,Y k},

rankF(G(t±,η2 , u±,η2))B\{1,Y k} > rankF(G(t±,η2 , u±,η2))B\{1,Xk,Y k}.

If

rankF(G(t±,η2 , u±,η2))B\{Y k} = rankF(G(t±,η2 , u±,η2))B\{1,Xk,Y k} + 2,(5.31)

then (5.30) holds. Indeed, in this case

(Amin){1,Xk} =
(
F(Amin){1,Xk},B\{1,Xk,Y k}

) (
F(Amin)B\{1,Xk,Y k}

)† (F(Amin)B\{1,Xk,Y k},{1,Xk}
)
,

whence

rankF(G(t±,η2 , u±,η2))B\{Y k} = rankF(Amin)B\{Y k} + 1

=︸︷︷︸
(5.26)

rankF(Amin) + 1 =︸︷︷︸
(5.16)

rankF(G(t±,η2 , u±,η2)).

Write

(5.32) T3 := {Y k−1, Y k−2, . . . , Y,X,X2, . . . , Xk−1}.
Assume now that (5.31) does not hold for both (t−,η2 , u−,η2) and (t+,η2 , u+,η2). Therefore there
are relations

F(G(t+,η2 , u+,η2))B,{1} + α+F(G(t+,η2 , u+,η2))B,{Xk} + F(G(t+,η2 , u+,η2))B,T3v+ = 0,

F(G(t−,η2 , u−,η2))B,{1} + α−F(G(t−,η2 , u−,η2))B,{Xk} + F(G(t−,η2 , u−,η2))B,T3v− = 0,

(5.33)

for some α+, α− ∈ R, v+, v− ∈ R2k−1 in F(G(t+,η2 , u+,η2)) and F(G(t−,η2 , u−,η2)), respec-
tively. Since F(G(t±,η2 , u±,η2)) ⪰ F(Amin) ⪰ 0, the relations (5.33) must hold also in
F(Amin). Subtracting these relations we get

(5.34) (α+ − α−)F(Amin)B,{Xk} + F(Amin)B,T3(v+ − v−) = 0.

If α+ = α−, then v+− v− ∈ kerF(Amin)B,T3 and hence F(Amin)B,T3v+ = F(Amin)B,T3v−. But
observing the first entries of the left hand side vectors in (5.33), this cannot hold since

F(G(t+,η2 , u+,η2)){1} = t+,η2 ̸= t−,η2 = F(G(t−,η2 , u−,η2)){1}.

So α+ ̸= α− and from (5.34) it follows that in F(Amin), the column Xk is linearly dependent
from the columns in T3. Using one of the relations (5.33) for F(Amin), the same holds for the
column 1. But then

rankF(G(t±,η2 , u±,η2))B\{Y k} = rankF(Amin)B\{Y k} + 1 = rankF(G(t±,η2 , u±,η2)),(5.35)

and (5.30) holds for both points (t±,η2 , u±,η2). Note that γ1(t±,η2 , u±,η2) is R–representable,
since Aγ1(t±,η2 ,u±,η2 )

(k) ≻ 0 (by t±,η2 < tmax). So at least one of (t±,η2 , u±,η2) is a good choice
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for (t̃0, ũ0) in (5.9).

This concludes the proof of the implication (1) ⇒ (2). □

5.2. Cardinality of a minimal representing measure. It remains to characterize the cardinal-
ity of a minimal Z(p)–rm for β in Theorem 5.2.

Let T4 := {Y k, . . . , Y,X, . . . , Xk−1}, T⃗4 := (Y⃗ (k,1), X⃗(1,k−1)) and T5 = {1, Xk} ∪ T4. Write

F(G(t,u))
(1,T⃗4,Xk,

−−−→
C\T5)

=


1 T⃗4 Xk

−−−→
C \ T5

1 (Amin)1,1 + t (f12)
T (Amin)2,k (f14)

T

(T⃗4)
T f12 F22 f23 F24

Xk (Amin)2,k (f23)
T (Amin)k+1,k+1 + u (f34)

T

−−−→
C \ T5 f14 (F24)

T f34 F44

.

(5.36)

Note that

fT
12 =

(
(b

(0)
13 )

T (b
(0)
23 )

T
)
, (Amin)2,k = βk,1 − βk−1,1, F22 =

(
B11 B

(1,k−1)
13

(B
(1,k−1)
13 )T B

(1,k−1)
23

)
.

The following theorem characterizes the cardinality of a minimal measure in case β admits a
Z(p)–rm.

Theorem 5.6. Let p(x, y) = y(x+ y − xy) and β = (βi,j)i,j∈Z+,i+j≤2k, where k ≥ 3, admits a
Z(p)–representing measure. Assume the notation above. The following statements hold:

(1) There exists at most (rankM̃(k; β) + 2)–atomic Z(p)–representing measure.

(2) There is no Z(p)–representing measure with less than rankM̃(k; β) + 2 atoms if and
only if η ̸= 0, k12 ̸= 0, rankH(Amin) = k and Amin does not satisfy (Hyp).

(3) There does not exist a (rankM̃(k; β))–atomic Z(p)–representing measure if and only
if any of the following holds:
(a) F22 ≻ 0, H22 ̸≻ 0, rankH(Amin) = rankH22 + 1 and tmaxumax > η2 > 0.
(b) F22 ≻ 0, H22 ≻ 0 and one of the following holds:

(i) η = 0, k12 ̸= 0, rankH(Amin) = k + 1 and Amin does not satisfy (Hyp)1.
(ii) η ̸= 0, k12 ̸= 0, Amin satisfies (Hyp)1 and rankH(Amin) = k.

(iii) η ̸= 0, k12 ̸= 0 and Amin does not satisfy (Hyp)1.
In particular, a p–pure sequence β with a measure admits at most (3k + 1)–atomic Z(p)–

representing measure.

Proof. By Lemma 3.3.(4),

(5.37) rankM̃(k; β) = rankF(Amin) + rankH(Amin).

By (5.9), there exists a pair (t̃0, ũ0) ∈ R2 such that F(G(t̃0, ũ0)) and H(G(t̃0, ũ0)) admit a
Z(x+ y− xy)–rm and a R–rm, respectively. In the proof we will separate the following cases:

• Case 1: F22 is not pd.
• Case 2: F22 is pd, H22 is not pd and umax = 0.
• Case 3: F22 is pd, H22 is not pd and umax > 0.
• Case 4: F22 and H22 are pd, η = 0.
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• Case 5: F22 and H22 are pd, η ̸= 0.

Case 1: F22 is not pd. Note that the matrix Aγ2(t,u) can satisfy (Hyp) only if it satisfies (Hyp)1:

(5.38) rankF(Aγ2(t,u)) = rankF(Aγ2(t,u))B\{Xk} = rankF(Aγ2(t,u))B\{Y k}.

Since F22 is not pd, F(G(t̃0, ũ0)) satisfies a nontrivial column relation of the form

(5.39)
k∑

i=1

δiY
i +

k−1∑
j=1

ξjX
j = 0 for some δi, ξj ∈ R, not all zero.

Since F(G(t̃0, ũ0)) satisfies the column relation XY = X + Y , it follows by recursive genera-
tion, that its extensions, generated by a representing measure, must satisfy column relations

Y 2X = Y (Y X) = Y (X + Y ) = Y 2 + Y X = Y 2 + Y +X,

Y 3X = Y (Y 2X) = Y (Y 2 + Y +X) = Y 3 + Y 2 + Y X = Y 3 + Y 2 + Y +X,

...

Y iX = Y i + Y i−1 + . . .+ Y +X for i ≥ 1.

(5.40)

Multiplying (5.39) with X and using (5.40), we get a column relation

(5.41)
k∑

i=1

( k∑
j=i

δj

)
Y i +

( k∑
j=1

δj

)
X +

k∑
j=2

ξj−1X
j = 0,

We separate two subcases according to the values of ξj and
∑k

j=1 δj .

Case 1.1: ξj ̸= 0 for some j or
∑k

j=1 δj ̸= 0. Multiplying (5.39) with Xℓ for ℓ large enough, we
will eventually get a column relation (5.41) with a nonzero coefficient at Xk. But this means
Xk must be in the span of the columns Y k, . . . , Y,X, . . . , Xk−1. In particular, ũ0 = 0. By
(5.15), this implies that η = 0 and thus Âmin = Amin. Moreover, since γ2(t̃0, 0) satisfies (Hyp),
it follows that γ2(0, 0) also satisfies (Hyp). The R–representability of γ1(t̃0, 0) implies that
γ1(0, 0) is also R–representable. So F(Amin) and H(Amin) admit a Z(x+y−xy)–rm and a R–
rm, respectively. By Theorem 2.5 and Corollary 2.10, there also exist a (rankF(Amin))–atomic
and a (rankH(Amin))–atomic rms. By (5.37), β has a (rankM̃(k; β))–atomic Z(p)–rm.

Case 1.2: ξj = 0 for all j and
∑k

j=1 δj = 0. (5.41) implies that there is a column rela-

tion of the form
∑k

i=2 δ
(2)
i Y i = 0 in F(G(t̃0, ũ0)) for some δ

(2)
i ∈ R, not all zero (observe

that the coefficients at Y and X in (5.41) are both
∑k

j=1 δj). Mutliplying
∑k

i=2 δ
(2)
i Y i = 0

with X we get a relation of the form (5.41) with ξj = 0 for all j and δ
(2)
j instead of δj . If∑k

j=1 δ
(2)
j =

∑k
j=2 δ

(2)
j ̸= 0, then the coefficient at X is nonzero and we can proceed as in

Case 1.1 above. Otherwise the coefficients at X , Y and Y 2 are all zero. Hence, we got a new
column relation of the form

∑k
i=3 δ

(3)
i Y i = 0 in F(G(t̃0, ũ0)) for some δ

(3)
i ∈ R, not all zero.

Proceeding with this procedure inductively we either eventually come into Case 1.1 or end with
a relation of the form αY i = 0, α ̸= 0, i > 0, which holds in F(G(t̃0, ũ0)). But this means all
atoms in the conic part of Z(p) also lie on the line y = 0. So a Z(p)-rm for β is a Z(y)–rm for
β and, by Theorem 2.5, β has a (rankM̃(k; β))–atomic Z(p)–rm.
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Case 2: F22 is pd, H22 is not pd and umax = 0. Since umax = 0, it follows that ũ0 = 0. By
(5.15), this implies that η = 0. Analogously as in Case 1.1 above we conclude that γ2(0, 0) sat-
isfies (Hyp) and γ1(0, 0) is R–representable, which implies the existence of a (rankM̃(k; β))–
atomic Z(p)–rm for β.

Case 3: F22 is pd, H22 is not pd, umax > 0. Since H22 is not pd, Theorem 2.5 implies that
ũ0 = umax. But then (5.18) implies that k12 = 0. We separate two subcases according to the
value of η.

Case 3.1: η = 0. Since γ2(t̃0, umax) satisfies (Hyp) and umax > 0, it follows that t̃0 > 0. But
then also γ2(tmax, umax) satisfies (Hyp). Since 0 < t̃0 ≤ tmax, (5.16) implies that

(5.42) rankF(G(tmax, umax)) = rankF(Amin) + 2.

Moreover, γ1(tmax, umax) is also R–representable and (5.19) implies that

(5.43) rankH(G(tmax, umax)) = rankH22 = rankH(G(0, 0))− 2 = rankH(Amin)− 2.

By (5.37), (5.42) and (5.43), there exists a (rankM̃(k; β))–atomic Z(p)–rm for β.

Case 3.2: η ̸= 0. Since η ̸= 0, it follows, by (5.15), that t̃0 > 0 and hence tmax > 0. Since
k12 = 0, (5.18) implies that H(G(tmax, umax)) is psd and γ1(tmax, umax) is R–representable.
Moreover, since Aγ2(t̃0,umax) satisfies (Hyp), also Aγ2(tmax,umax) satisfies (Hyp). Indeed, either
t̃0 = tmax or t̃0 < tmax. In the latter case, tmaxumax > t̃0umax ≥ η2 and (tmax, umax) satisfies
(Hyp)2. Hence, (tmax, umax) is a good choice for (t̃0, ũ0) in (5.9). By (5.19), tmax > 0, umax > 0
and k12 = 0, imply that

rankH(G(0, 0)) = rankH(Âmin) = rankH22 + 2.

We have
rankH(G(tmax, umax)) + rankF(G(tmax, umax)) =

=

{
rankH22 + rankF(Amin) + 1, if tmaxumax = η2,

rankH22 + rankF(Amin) + 2, if tmaxumax > η2,

(5.44)

where we used (5.16) and (5.19) in the equality. By (5.13),

H(Amin)
/
H22 =

(
tmax −η
−η umax

)
̸=
(
0 0
0 0

)
.

Hence, rankH(Amin) = rankH22 + i for some i ∈ {1, 2}. We separate these two cases.

Case 3.2.1: rankH(Amin) = rankH22 + 2. We have

rankH(G(tmax, umax)) + rankF(G(tmax, umax))

=

{
rankM̃(k; β)− 1, if tmaxumax = η2,

rankM̃(k; β), if tmaxumax > η2,

where we used (5.44) and (5.37) in the equality. The case tmaxumax = η2 cannot happen, since
this would imply β has a (rankM̃(k; β) − 1)–atomic Z(p)–rm, which is not possible. Hence,
there is a (rankM̃(k; β))–atomic Z(p)–rm for β.

Case 3.2.2: rankH(Amin) = rankH22 + 1. In this case we have

rankH(G(tmax, umax)) + rankF(G(tmax, umax))

=︸︷︷︸
(5.37)

{
rankM̃(k; β), if tmaxumax = η2,

rankM̃(k; β) + 1, if tmaxumax > η2,
.

(5.45)
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where we used (5.16) and (5.19) in the equality. Hence, β has a (rankM̃(k; β))–atomic rm
if tmaxumax = η2 and (rankM̃(k; β) + 1)–atomic rm if tmaxumax > η2. It remains to show
that in the case tmaxumax > η2, there does not exist a (rankM̃(k; β))–atomic rm. Since H22

is not pd and umax > 0, if H(G(t′, u′)) has a R–rm, then u′ = umax. Since η ̸= 0, we know
F(G(t′, umax)) with a Z(x+ y− xy)–rm is at least (rankF(Amin) + 1)–atomic (see (5.16)). If
t′ ̸= tmax, then, by (5.19), rankH(G(t′, umax)) = rankH22 + 1. Hence,

rankH(G(t′, umax)) + rankF(G(t′, umax)) ≥ (rankH22 + 1) + (rankF(Amin) + 1)

=︸︷︷︸
(5.37)

rankM̃(k; β) + 1.

Case 4: F22 and H22 are pd, η = 0. We separate two cases according to the value of umax.

Case 4.1: umax = 0. Since umax = 0, it follows that ũ0 = 0 and by (5.18), k12 = 0. But then
γ1(0, 0) is R–representable. Similarly, since γ2(t̃0, 0) satisfies (Hyp), it follows that γ2(0, 0) also
satisfies (Hyp). So F(Amin) and H(Amin) admit a Z(x+ y−xy)–rm and a R–rm, respectively.
Then (5.37) implies the existence of a (rankM̃(k; β))–atomic Z(p)–rm for β.

Case 4.2: umax > 0. If tmax = 0, then t̃0 = 0. Since η = 0, γ2(0, ũ0) can satisfy (Hyp) only if
ũ0 = 0 (see (5.16)). But γ1(0, 0) cannot be R–representable if tmax = 0, since then also umax

should be 0 (see Theorem 2.5). It follows that tmax > 0. We separate two subcases according
to the value of k12.

Case 4.2.1: k12 = 0. In this case γ1(tmax, umax) is R–representable by Theorem 2.5 and
γ2(tmax, umax) satisfies (Hyp). We have

rankH(G(tmax, umax)) + rankF(G(tmax, umax)) = rankH22 + (rankF(Amin) + 2)

= rankH(Amin) + rankF(Amin)

= rankM̃(k; β),

(5.46)

where we used (5.16), (5.19) in the first, (5.16) in the second and (5.37) in the third equality. So
there exists a (rankM̃(k; β))–atomic Z(p)–rm for β.

Case 4.2.2: k12 ̸= 0. We separate two cases according to rankH(Amin), which can be either k
or k + 1 (using (5.19) and H22 is pd, k12 ̸= 0).

Case 4.2.2.1: rankH(Amin) = k. By (5.19), it follows that tmaxumax = k2
12 (plug t = 0 and

u = 0 in (5.19)) and hence R2 = {(0, 0)}. This implies that under the assumptions of this case
(0, 0) is the only candidate for (t̃0, ũ0), which means that there exists a (rankM̃(k; β))–atomic
Z(p)–rm for β.

Case 4.2.2.2: rankH(Amin) = k + 1. By (5.19), it follows that tmaxumax > k2
12 (plug t = 0

and u = 0 in (5.19)). We separate two cases according to whether (0, 0) is a good choice for
(t̃0, ũ0) in (5.9) or not.

Case 4.2.2.2.1: (0, 0) is a good choice for (t̃0, ũ0) in (5.9). In this case there exists a (rankM̃(k; β))–
atomic Z(p)–rm for β.

Case 4.2.2.2.2: (0, 0) is not a good choice for (t̃0, ũ0) in (5.9). Note that Aγ2(t,u) satisfies
(Hyp) precisely for t > 0 and u > 0. By Lemma 5.5, there is a point (t̃, ũ) ∈ R2 ∩ (R+)

2,
such that 0 < t̃ũ (since pmax > 0) and (tmax − t̃)(umax − ũ) = k2

12. By Theorem 2.5, γ1(t̃, ũ)
is R–representable, since Aγ1(t̃,ũ) is psd and Aγ1(t̃,ũ)(k) is pd. Note also that γ2(t̃, ũ) satisfies
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(Hyp). Hence, (t̃, ũ) is a good choice for (t̃0, ũ0) in (5.9). We have

rankH(G(t̃, ũ)) + rankF(G(t̃, ũ)) =︸︷︷︸
(5.16),
(5.19)

(rankH22 + 1) + (rankF(Amin) + 2)

= rankH(Amin) + rankF(Amin) + 1

=︸︷︷︸
(5.37)

rankM̃(k; β) + 1,

where in the second equality we used the assumption rankH(Amin) = k + 1. So there exists
a (rankM̃(k; β) + 1)–atomic Z(p)–rm for β. It remains to show that there does not exist a
(rankM̃(k; β))–atomic rm. By the first sentence of this case above, note that if (t′, u′) is a
good choice for (t̃0, ũ0) in (5.9), then rankF(G(t′, u′)) = rankF(Amin) + 2. Since k12 ̸= 0, it
follows by (5.19) that rankH(G(t′, u′)) ≥ rankH22 + 1 = rankH(Amin)− 1. Hence,

rankH(G(t′, u′)) + rankF(G(t′, u′)) ≥ (rankH(Amin)− 1) + (rankF(Amin) + 2)

=︸︷︷︸
(5.37)

rankM̃(k; β) + 1,

Case 5: F22 and H22 are pd, η ̸= 0. We separate two cases according to the value of k12.

Case 5.1: k12 = 0. As in Case 4.2.1 above, (tmax, umax) is a good choice for (t̃0, ũ0) in
(5.9). Since η ̸= 0, (5.15) implies that tmax > 0 and umax > 0. Then (5.19) implies that

rankH(Âmin) = k+1. By (5.13), H(Amin)
/
H22 =

(
tmax −η
−η umax

)
and hence rankH(Amin) =

{k, k + 1}. We separate two cases according to rankH(Amin).

Case 5.1.1: rankH(Amin) = k+1. By the same computation as in (5.46), there is a (rankM̃(k; β))–
atomic Z(p)–rm for β in this case.

Case 5.1.2: rankH(Amin) = k. Since H22 is pd and rankH(Amin) = k, it follows that
tmaxumax = η2. Hence, (tmax, umax) is the only candidate for (t̃0, ũ0) in (5.9). By the same
computation as in (5.45), β has a (rankM̃(k; β))–atomic Z(p)–rm.

Case 5.2: k12 ̸= 0. We separate two cases according to whether Amin satisfies (Hyp)1 or not.

Case 5.2.1: Amin satisfies (Hyp)1. By analogous reasoning as in Case 2.3.2.2 of the proof
of Theorem 5.2, one of (t±,η2 , u±,η2) is a good choice for (t̃0, ũ0) in (5.9). By (5.18), tmax >

0 and umax > 0 (since k12 ̸= 0). By (5.13), H(Amin)
/
H22 =

(
tmax k12 − η

k12 − η umax

)
. Since

H(Amin)
/
H22 is not a zero matrix, we have rankH(Amin) ∈ {k, k + 1}. Let us define the

number

(5.47) R :=

{
rankM̃(k; β), if rankH(Amin) = k + 1,

rankM̃(k; β) + 1, if rankH(Amin) = k.

We have
rankH(G(t±,η2 , u±,η2)) + rankF(G(t±,η2 , u±,η2))

=︸︷︷︸
(5.16),
(5.19)

(rankH22 + 1) + (rankF(Amin) + 1) =︸︷︷︸
(5.37)

R.(5.48)

So there is an R–atomic Z(p)–rm for β.
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Case 5.2.2: Amin does not satisfy (Hyp)1. Let R be as in (5.47). We will show that in this
case there is a (R+ 1)–atomic Z(p)–rm and there does not exist an R–atomic Z(p)–rm. Since
η ̸= 0, if F(G(t′, u′)) is psd, it follows that t′u′ ≥ η2 by (5.15). By the same argument as
in the first paragraph of Case 2.3.2.2 of the proof of Theorem 5.2, if one of (t±,η2 , u±,η2) is
a good choice for (t̃0, ũ0) in (5.9), then Amin satisfies (Hyp)1, which is a contradiction. If
η2 = pmax from Lemma 5.5, then (t±,η2 , u±,η2) are the only candidates for a good choice for
(t̃0, ũ0) in (5.9) and hence β does not have a Z(p)–rm. It follows that η2 < pmax. By Lemma
5.5, there exists (t̆, ŭ) ∈ R2 ∩ (R+)

2, such that t̆ŭ = η2+pmax

2
and (tmax − t̆)(umax − ŭ) =

k2
12. But then rankF(G(t̆, ŭ)) = 2k + 1, and γ2(t̆, ŭ) satisfies (Hyp). Also, γ1(t̆, ŭ) is R–

representable, since Aγ1(t̆,ŭ)
⪰ 0 and Aγ1(t̆,ŭ)

(k) is pd (since t̆ < tmax). Repeating the calculation
(5.48) and using that rankF(G(t̆, ŭ)) = rankF(Amin)+2 instead of rankF(G(t±,η2 , u±,η2)) =

rankF(Amin)+1, we get rankH(G(t̆, ŭ))+rankF(G(t̆, ŭ)) = R+1 and β admits an (R+1)–
atomic Z(p)–rm. It remains to show that there does not exist an R–atomic rm. As above, if
F(G(t′, u′)) is psd and has a Z(x + y − xy)–rm, it follows that t′u′ > η2, which means that
rankF(G(t′, u′)) = rankF(Amin) + 2. Since k12 ̸= 0, rankH(G(t′, u′)) ≥ rankH22 + 1 by
(5.19). Hence,

rankH(G(t′, u′)) + rankF(G(t′, u′)) ≥ (rankH22 + 1) + (rankF(Amin) + 2)

=︸︷︷︸
(5.37)

R + 1.

It remains to establish the moreover part. Note that in the case where rankM̃(k; β)+2 atoms
might be needed, H(Amin) is not pd. Since for a p–pure sequence β with M̃(k; β) ⪰ 0, (5.37)
implies that F22 and H(Amin) are pd, the existence of a Z(p)–rm implies the existence of at
most (rankM̃(k; β) + 1)–atomic Z(p)–rm. □

5.3. Example. 2 In this subsection we demonstrate the use of Theorems 5.2 and 5.6 on a
numerical example.

Let β be a bivariate degree 6 sequence given by

β00 = 1,

β10 =
11
50

, β01 = − 13
100

β20 =
12397
18000

, β11 = − 11
100

, β02 =
2947
18000

,

β30 =
1001
1250

, β21 = − 383
18000

β12 =
967

18000
, β03 = − 1117

10000
,

β40 =
117670993
64800000

, β31 = − 1843
90000

, β22 =
73

2250
, β13 = − 2609

45000
, β04 =

7105993
64800000

,

β50 =
100001
31250

, β41 = − 295967
64800000

, β32 =
359

30000
, β23 = − 383

15000
, β14 =

3349033
64800000

, β05 = − 103093
1000000

,

β60 =
1540453883617
233280000000

, β51 = − 1469467
324000000

, β42 =
479473

64800000
, β33 = − 407

30000
, β24 =

1694473
64800000

,

β15 = − 16656967
324000000

, β06 =
23769383617
233280000000

.

We will prove below that β admits a 9–atomic Z(p)–rm by applying Theorems 5.2 and 5.6. It
is easy to check that M̂(3) is psd and satisfies only one column relation Y X +Y 2−XY 2 = 0.
It turns out that η = − 51255911

6577059124404
, tmax = 1827880655851

20096569546790
, umax = 272763812083768883

833444932244474880
and k12 =

− 9
55

. Computing t−,η2 , u−,η2 we get

u−,η2 = −
49(−18583967869070689172740711 + 1644264781101

√
127741799953693985969528905)

55397740704244472768199800832
,

t−,η2 =
49(18583967869070689172740711 + 1644264781101

√
127741799953693985969528905)

199331524341418907147142346748
.

2The Mathematica file with numerical computations can be found on the link https://github.com/
ZalarA/TMP_cubic_reducible.

https://github.com/ZalarA/TMP_cubic_reducible
https://github.com/ZalarA/TMP_cubic_reducible
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It is easy to check that H(G(t−,η2 , u−,η2)) is psd of rank 3 and H(G(t−,η2 , u−,η2))(2) ≻ 0.
Hence, H(G(t−,η2 , u−,η2)) admits a 3–atomic R–rm. Moreover, F(G(t−,η2 , u−,η2)) satisfies
(Hyp)1 and has rank 6. So it admits a 6–atomic Z(x + y − xy)–rm, whence β has a 9–atomic
Z(p)–rm. This also follows from Theorem 5.6, since F22 ≻ 0, H22 ≻ 0, Amin satisfies (Hyp)1
with rankF(Amin) = rankF(Amin)B\{X3} = rankF(Amin)B\{Y 3} = 5 and rankH(Amin) = 4.

6. HYPERBOLIC TYPE 3 RELATION: p(x, y) = y(ay + x2 − y2), a /∈ R \ {0}.

In this section we solve constructively the Z(p)–TMP for the sequence β = {βi,j}i,j∈Z+,i+j≤2k

of degree 2k, k ≥ 3, where p(x, y) is as in the title of the section. The main results are Theorem
6.1, which characterizes concrete numerical conditions for the existence of a Z(p)–rm for β,
and Theorem 6.7, which characterizes the number of atoms needed in a minimal Z(p)–rm. A
numerical example demonstrating the main results is presented in Subsection 6.3.

6.1. Existence of a representing measure. Assume the notation from Section 3. If β admits
a Z(p)–TMP, then M(k; β) must satisfy the relations

(6.1) aY 2+jX i + Y 1+jX2+i = Y 3+jX i for i, j ∈ Z+ such that i+ j ≤ k − 3.

In the presence of all column relations (6.1), the column space C(M(k; β)) is spanned by the
columns in the tuple

(6.2) T⃗ := (X⃗(0,k), Y X⃗(0,k−1), Y 2X⃗(0,k−2)),

where

Y iX⃗(j,ℓ) := (Y iXj, Y iXj+1, . . . , Y iXℓ) with i, j, ℓ ∈ Z+, j ≤ ℓ, i+ ℓ ≤ k.

Let M̃(k; β) be as in (3.6) and define

(6.3) Amin := A12(A22)
†(A12)

T and Âmin := Amin + ηE
(k+1)
2,2 ,

where
η := (Amin)1,3 − (Amin)2,2.

See Remark 3.4 for the explanation of these definitions. Let F(A) and H(A) be as in (3.9).
Write

H(Âmin) :=


1 X X⃗(2,k)

1 β0,0 − (Amin)1,1 β1,0 − (Amin)1,2 (h
(1)
12 )

T

X β1,0 − (Amin)1,2 β2,0 − (Amin)1,3 (h
(2)
12 )

T

(X⃗(2,k))T h
(1)
12 h

(2)
12 H22

,

H1 := H(Âmin){1}∪X⃗(2,k) =

( 1 X⃗(2,k)

1 β0,0 − (Amin)1,1 (h
(1)
12 )

T

(X⃗(2,k))T h
(1)
12 H22

)
,

H2 := H(Âmin)X⃗(1,k) =

( X X⃗(2,k)

X β2,0 − (Amin)1,3 (h
(2)
12 )

T

(X⃗(2,k))T h
(2)
12 H22

)
.

(6.4)

We define also the matrix function

(6.5) G : R2 → Sk+1, G(t,u) = Âmin + tE
(k+1)
1,1 + u

(
E

(k+1)
1,2 + E

(k+1)
2,1

)
.
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Let

R1 =
{
(t, u) ∈ R2 : F(G(t, u)) ⪰ 0

}
and R2 =

{
(t, u) ∈ R2 : H(G(t, u)) ⪰ 0

}
.(6.6)

Further, we introduce real numbers

t0 := β0,0 − (Amin)1,1 − (h
(1)
12 )

T (H22)
†h

(1)
12 ,

u0 := β1,0 − (Amin)1,2 − (h
(1)
12 )

T (H22)
†h

(2)
12 ,

(6.7)

and a function

(6.8) h(t) =
√

(H1/H22 − t)(H2/H22).

It turns out [YZ24, Theorem 5.1, Claims 1–2] that

R1 =

{ {
(t, u) ∈ R2 : t ≥ 0, u ∈ [−

√
ηt,

√
ηt]
}
, if η ≥ 0,

∅, if η < 0,

R2 =

{ {
(t, u) ∈ R2 : t ≤ t0, u ∈ [u0 − h(t), u0 + h(t)]

}
, if H2 ⪰ 0,

∅, if H2 ̸⪰ 0.

(6.9)

Therefore R1 has one of the following forms:

where the left case occurs if η > 0, the right if η = 0, while the case η < 0 gives an empty set;
and R2 can be one of the following:

where the left case occurs if H2/H22 > 0, the right if H2/H22 = 0, while the case H2/H22 < 0
gives an empty set.

By Lemmas 3.1–3.3 and Remark 3.4, the existence of a Z(p)–rm for β is equivalent to:

M̃(k; β) ⪰ 0, the relations (6.1) hold and

there exists (t̃0, ũ0) ∈ R1 ∩R2 such that F(G(t̃0, ũ0)) and H(G(t̃0, ũ0))

admit a Z(ay + x2 − y2)–rm and a R–rm, respectively.

(6.10)
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Define the sequence

γ(t,u) :=
(
β0,0 − (Amin)1,1 − t, β1,0 − (Amin)1,2 − u, β2,0 − β0,2 + aβ0,1,

β3,0 − β1,2 + aβ1,1, . . . , β2k,0 − β2k−2,2 + aβ2k−2,1

)
.

(6.11)

Note that H(G(t,u)) = Aγ(t,u) (see (2.3) and Remark 3.4.(1)).

Write
B := {1, X,X2, . . . , Xk, Y, Y X, . . . , Y Xk−1}.

We say the matrix A ∈ Sk+1 satisfies the property (H̃yp) if

(6.12) rankF(A) = rankF(A)B\{Xk} = rankF(A)B\{Y Xk−1}︸ ︷︷ ︸
(H̃yp)1

or rankF(A) = 2k + 1︸ ︷︷ ︸
(H̃yp)2

.

We denote by ∂Ri and R̊i the topological boundary and the interior of the set Ri, respectively.

The solution to the Z(p)–TMP is the following.

Theorem 6.1. Let p(x, y) = y(ay + x2 − y2), a ∈ R \ {0}, and β = (βi,j)i,j∈Z+,i+j≤2k, where
k ≥ 3. Assume also the notation above. Then the following statements are equivalent:

(1) β has a Z(p)–representing measure.

(2) M̃(k; β) is positive semidefinite, the relations (6.1) hold, Amin either satisfies (H̃yp)1 or
the rank equality rankF(Amin) = 2k − 1, and one of the following statements is true:
(a) η = 0, Amin satisfies (H̃yp)1 and γ(0, 0) is R–representable.

(b) η > 0 and one of the following holds:

(i) The set ∂R1 ∩ ∂R2 has two elements and H2 is positive definite.

(ii) ∂R1 ∩ ∂R2 = {(t̃, ũ)} and there exist (t̂, û) ∈ {((t̃, ũ), (t0, ũ))} such that
γ(t̂, û) is R–representable and F(G(t̂, û)) satisfies (H̃yp).

Before we prove Theorem 6.1 we need few lemmas. Their statements and the proofs coincide
verbatim with [YZ24, Theorem 5.1, Claims 1–5], but we state them for easier readability.

Let R1,R2 be as in (6.6). Claims 1 and 2 below describe ranks of F(G(t, u)) and H(G(t, u))
for various choices of (t, u) in R1 and R2, respectively.

Lemma 6.2 ([YZ24, Theorem 5.1, Claim 1]). Assume that M̃(k; β) ⪰ 0. Then R1 is as in
(6.9) above. If η ≥ 0, then we have

rankF(G(t, u)) =


rankF(Amin), if t = 0, η = 0,

rankF(Amin) + 1, if (t > 0 or η > 0) and u ∈ {−
√
ηt,

√
ηt},

rankF(Amin) + 2, if t > 0, η > 0, u ∈ (−
√
ηt,

√
ηt) ,

(6.13)

where Amin is as in (6.3).

Lemma 6.3 ([YZ24, Theorem 5.1, Claim 2]). Assume that M̃(k; β) ⪰ 0. Let t0, u0, h(t) be as
in (6.7), (6.8). If H2 ⪰ 0, then we have

rankH(G(t, u)) =


rankH2, for t = t0, u = u0,

rankH22 + 1, for t < t0, u ∈ {u0 − h(t), u0 + h(t)},
rankH22 + 2, for t < t0, u ∈ (u0 − h(t), u0 + h(t)).

(6.14)
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Lemma 6.4 ([YZ24, Theorem 5.1, Claim 3]). Assume that M̃(k; β) ⪰ 0 and η = 0. Then
(0, 0) ∈ ∂R1 ∩R2.

Lemma 6.5 ([YZ24, Theorem 5.1, Claim 4]). Assume that M̃(k; β) ⪰ 0 and η > 0. Then:

• The set ∂R1 ∩ ∂R2 has at most 2 elements.

• R1 ∩R2 ̸= ∅ if and only if ∂R1 ∩ ∂R2 ̸= ∅.

• If ∂R1 ∩ ∂R2 has two elements, then H2/H22 > 0.

• If ∂R1 ∩ ∂R2 has one element, which we denote by (t̃, ũ), then one of the following
holds:

– R1 ∩R2 = ∂R1 ∩ ∂R2.

– ∂R2 = R2 = {(t, u0) : t ≤ t0} and ∂R1∩∂R2 ⊊ R1∩R2 = {(t, u0) : t̃ ≤ t ≤ t0}.

Lemma 6.6 ([YZ24, Theorem 5.1, Claim 5]). Assume that M̃(k; β) ⪰ 0. Let H2 (see (6.4)) be
positive definite, (t1, u1) ∈ ∂R2, (t2, u2) ∈ ∂R2 and u1 ̸= u2. Then at least one of H(G(t1, u1))
or H(G(t2, u2)) admits a R–representing measure.

Proof of Theorem 6.1. First we prove the implication (1) ⇒ (2). There exists (t̃0, ũ0) ∈ R1 ∩
R2 satisfying (6.10). In particular, R1 ̸= ∅ and by (6.9), η ≥ 0. Since F(G(t̃0, ũ0)) has a
Z(ay + x2 − y2)–rm, it follows, by Theorem 2.8, that G(t̃0, ũ0) satisfies (H̃yp). Note that

F(G(t, u)) = F(Amin) +

(
t u
u η

)
⊕ 0,

where 0 is a zero matrix of the appropriate size. Moreover, by definition of Amin, we have

rankF(G(t, u)) = rankF(Amin) + rank

(
t u
u η

)
,

rankF(G(t, u))B\{Xk} ≤ rankF(Amin)B\{Xk} + rank

(
t u
u η

)
≤ rankF(Amin) + rank

(
t u
u η

)
,

rankF(G(t, u))B\{Y Xk−1} ≤ rankF(Amin)B\{Y Xk−1} + rank

(
t u
u η

)
≤ rankF(Amin) + rank

(
t u
u η

)
.

(6.15)

If G(t̃0, ũ0) satisfies (H̃yp)1, then all inequalities in (6.15) must be equalities and in particular,
Amin satisfies (H̃yp)1. If G(t̃0, ũ0) satisfies (H̃yp)2, then clearly rankF(Amin) = 2k − 1. From
now on we separate two cases according to the value of η.

Case 1: η = 0. For η = 0 we have Âmin = Amin. By (6.9), we have ũ0 = 0 and t̃0 ≥ 0.
By Lemma 6.2, G(t̃0, 0) cannot satisfy (H̃yp)2 and hence it satisfies (H̃yp)1. But then by the
explanation above, Amin satisfies (H̃yp)1 and by Corollary 2.11, it has a Z(ay + x2 − y2)–rm.
By Theorem 2.5, R–representability of γ(t̃0, 0) implies R–representability of γ(0, 0). This is
Theorem 6.1.(2a).

Case 2: η > 0. By Lemma 6.5, ∂R1 ∩ ∂R2 has one or two elements. We separate two cases
according to the number of elements in ∂R1 ∩ ∂R2.
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Case 2.1: ∂R1 ∩ ∂R2 has two elements. By Lemma 6.5, H2/H22 > 0. Assume that H2 ̸≻ 0.
Then there is a nontrivial column relation among columns X2, . . . , Xk in H2. By Proposition
2.4, the same holds for H(G(t̃0, ũ0)). Let

∑k−2
i=0 ciX

i+2 = 0 be the nontrivial column relation
in H(G(t̃0, ũ0)). But then Z(x2

∑k−2
i=0 cix

i) = Z(x
∑k−2

i=0 cix
i) and it follows by [CF96] that∑k−2

i=0 ciX
i+1 = 0 is also a nontrivial column relation in H(G(t̃0, ũ0)). Inductively, this implies

H2/H22 = 0, which is a contradiction. Hence, H2 ≻ 0. This is the case of Theorem 6.1.(2(b)i).

Case 2.2: ∂R1 ∩ ∂R2 has one element. Let us denote this element by (t̃, ũ). By Lemma 6.5,
∂R1 ∩ ∂R2 = R1 ∩ R2 or ∂R2 = R2 = {(t, u0) : t ≤ t0} and ∂R1 ∩ ∂R2 ⊊ R1 ∩ R2 =
{(t, u0) : t̃ ≤ t ≤ t0} . We separate two cases according to these two possibilities.

Case 2.2.1: ∂R1 ∩ ∂R2 = R1 ∩ R2. In this case (t̃0, ũ0) = (t̃, ũ) and hence γ(t̃, ũ) is R–
representable, while by Corollary 2.11, F(G(t̃, ũ)) satisfies (H̃yp). This is the case of Theorem
6.1.(2(b)ii).

Case 2.2.2: ∂R2 = R2 = {(t, u0) : t ≤ t0} and ∂R1∩∂R2 ⊊ R1∩R2 = {(t, u0) : t̃ ≤ t ≤ t0}.
By (6.9), it follows that H2/H22 = 0 (see definition (6.8) of h(t)). Since H2 is not pd, Theo-
rem 2.5 used for H(G(t̃0, ũ0)), implies that the last column of H2 is in the span of the others.
Hence, by Proposition 2.4, the same holds for H(G(t̃, ũ)) and H(G(t0, ũ)), whence γ(t̃, ũ)
and γ(t0, ũ) are both R–representable. By Lemma 6.2, rankF(G(t̃, ũ)) = rankF(Amin) + 1

and rankF(G(t, ũ)) = rankF(Amin) + 2 for t ∈ (t̃, t0]. If G(t, ũ) satisfies (H̃yp)2 for some
t ∈ (t̃, t0], then it satisfies G(t, ũ) satisfies (H̃yp)2 for every t ∈ (t̃, t0]. Similarly, by (6.15), if
G(t, ũ) satisfies (H̃yp)1 for some t ∈ (t̃, t0], then it satisfies G(t, ũ) satisfies (H̃yp)1 for every
t ∈ (t̃, t0]. This holds because validity of (H̃yp)1 for one t ∈ (t̃, t0], implies that all inequalities
in (6.15) must be equalities, which is true only if

(Amin){1,X} =

=F(G(t, ũ)){1,X},B\{1,X,Xk}
(
F(G(t, ũ))B\{1,X,Xk}

)†F(G(t, ũ))B\{1,X,Xk},{1,X}

=F(G(t, ũ)){1,X},B\{1,X,Y Xk−1}
(
F(G(t, ũ))B\{1,X,Y Xk−1}

)†F(G(t, ũ))B\{1,X,Y Xk−1},{1,X}.

(6.16)

But then (6.16) holds for every t ∈ (t̃, t0] and consequently (H̃yp)1 holds for G(t, ũ) for every
t ∈ (t̃, t0]. If G(t0, ũ) does not satisfy (H̃yp), it does not admit a Z(ay + x2 − y2)–rm by
Corollary 2.11, which further implies that G(t̃, ũ) satisfies (H̃yp). This is the case of Theorem
6.1.(2(b)ii).

This concludes the proof of the implication (1) ⇒ (2) of Theorem 6.1.

It remains to prove the implication (2) ⇒ (1) of Theorem 6.1. We separate four cases ac-
cording to the assumptions in Theorem 6.1.(2).

Case 1: Theorem 6.1.(2a) holds. By Lemma 6.4, (0, 0) ∈ R1 ∩ R2. Further, η = 0 implies
that Âmin = Amin = G(0, 0) and hence G(0, 0) satisfies (H̃yp)1 by assumption. By Corollary
2.11, F(G(0, 0)) admits a rank(F(Amin))–atomic Z(ay+x2−y2)–rm. By assumption, γ(0, 0)
is R–representable. Hence, (0, 0) is a good choice for (t̃0, ũ0) in (6.10). This proves (1) in this
case.
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Case 2: Theorem 6.1.(2(b)i) holds. By assumption, ∂R1 ∩ ∂R2 = {(t1, u1), (t2, u2)} has two
distinct elements. Hence, ∂R2 is not a half-line and R1 ∩ R2 has a non–empty interior, which
is equal to R̊1 ∩ R̊2. Since H2 ≻ 0, it follows, by Lemma 6.3, that H(G(t, u)) ≻ 0 for every
(t, u) ∈ R̊2. Hence, γ(t, u) is R–representable for every (t, u) ∈ R̊2. We separate two cases
according to which of the assumptions:

• Amin satisfies (H̃yp)1.
• rankF(Amin) = 2k − 1.

holds.

Case 2.1: Amin satisfies (H̃yp)1. By Lemma 6.2, we have

rankF(G(t1, u1)) = rankF(G(t2, u2)) = rankF(Amin) + 1.

We will prove that

(6.17) rankF(G(ti, ui))B\{Xk} = rankF(Amin)B\{Xk} + 1 for i = 1, 2.

If (6.17) is not true, then

(Amin){1,X} ̸= F(G(ti, ui){1,X},B\{1,X,Xk}
(
F(G(ti, ui))B\{1,X,Xk}

)†F(G(ti, ui))B\{1,X,Xk},{1,X}︸ ︷︷ ︸
Ămin

.

Note that the definition of Ămin does not depend on i, because ti and ui do not appear in the
corresponding restrictions of F(G(ti, ui)). Clearly,(

ti ui

ui η

)
⪰ (Amin){1,X} − Ămin ⪰ 0 for i = 1, 2,

whence

(6.18) ker
(
(Amin){1,X} − Ămin

)
⊆ ker

(
ti ui

ui η

)
for i = 1, 2.

Since (6.18) holds for i = 1, 2, it follows that ker
(
(Amin){1,X}−Ămin

)
= R2, which contradicts

to (Amin){1,X} ̸= Ămin. Hence, (6.17) is true. Similarly,

rankF(G(ti, ui))B\{Y Xk−1} = rankF(Amin)B\{Y Xk−1} + 1 for i = 1, 2.

So G(ti, ui) satisfies (H̃yp)1 for i = 1, 2. By Corollary 2.11, F(G(ti, ui)) admits a Z(ay+x2−
y2)–rm for i = 1, 2. By Lemma 6.6, there is j ∈ {1, 2} such that H(G(tj, uj)) admits a R–rm,
whence (tj, uj) is a good choice for (t̃0, ũ0) in (6.10). This proves (1) in this case.

Case 2.2: rankF(Amin) = 2k − 1. By Lemma 6.2, rankF(G(t, u)) = 2k + 1 for every
(t, u) ∈ R̊1. By Corollary 2.11, F(G(t, u)) admits a Z(ay+x2−y2)–rm for every (t, u) ∈ R̊1.
Hence, (t, u) ∈ R̊1 ∩ R̊2 is a good choice for (t̃0, ũ0) in (6.10). This proves (1) in this case.

Case 3: Theorem 6.1.(2(b)ii) holds. Clearly, one of the points (t̃, ũ) or (t0, ũ) is a good choice
for (t̃0, ũ0) in (6.10). This proves (1) in this case.

This concludes the proof of the implication (2) ⇒ (1) of Theorem 6.1. □

6.2. Cardinality of a minimal representing measure. The following theorem characterizes
the cardinality of a minimal measure in case β admits a Z(p)–rm.
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Theorem 6.7. Let p(x, y) = y(ay + x2 − y2), a ∈ R \ {0}, and β = (βi,j)i,j∈Z+,i+j≤2k,
where k ≥ 3, admits a Z(p)–representing measure. Assume the notation above. The following
statements hold:

(1) There exists at most (rankM̃(k; β) + 2)–atomic Z(p)–representing measure for β.

(2) There is no Z(p)–representing measure with less than rankM̃(k; β) + 2 atoms if and
only if Amin does not satisfy (H̃yp)1, rankF(Amin) = 2k − 1, η > 0, ∂R1 ∩ ∂R2 has
two elements, H2 is positive definite and rankH(Amin) = k.

(3) There exists a rankM̃(k; β)–atomic Z(p)–representing measure for β if and only if any
of the following holds:

(a) η = 0.

(b) η > 0, card(∂R1 ∩ ∂R2) = 2, Âmin satisfies (H̃yp)1, H(Amin) is positive definite.

(c) η > 0, card(∂R1 ∩ ∂R2) = card(R1 ∩R2) = 1 and the equality rankH(Amin) =
rankH22 + 2 holds.

(d) η > 0, card(∂R1 ∩ ∂R2) = 1, {(t̃, ũ)} = ∂R1 ∩ ∂R2 ⊊ R1 ∩ R2, F(G(t̃, ũ))
admits a Z(ay + x2 − y2)–representing measure and H(Amin) = rankH22 + 2.

In particular, a p–pure sequence β with a measure admits at most (3k + 1)–atomic Z(p)–
representing measure.

Proof of Theorem 6.7. By Lemma 3.3.(4),

(6.19) rankM̃(k; β) = rankF(Amin) + rankH(Amin).

We observe again the proof of the implication (2) ⇒ (1) of Theorem 6.1.
In the proof of the implication Theorem 6.1.(2a) ⇒ (6.10) we established that F(Amin) and

H(Amin) admit a rankF(Amin)–atomic and a rankH(Amin)–atomic rms. Using (6.19) it fol-
lows that β has a rankM̃(k; β)–atomic Z(p)–rm.

In the proof of the implication Theorem 6.1.(2(b)i) ⇒ (6.10) we separated two cases:

Case 1: Amin satisfies (H̃yp)1. In this case we established that γ(t′, u′) is R–representable for
some (t′, u′) ∈ ∂R1∩∂R2, where rankF(G(t′, u′)) = rankF(Amin)+1 and rankH(G(t′, u′)) =
k. Since H(Amin) ⪰ rankH(G(t′, u′)), it follows that

rankF(G(t′, u′)) + rankH(G(t′, u′)) =

=

{
rankM̃(k; β), if rankH(G(t′, u′)) = rankH(Amin)− 1,

rankM̃(k; β) + 1, if rankH(G(t′, u′)) = rankH(Amin).

It remains to show that if there does not exist (t, u), which is a good choice for (t̃0, ũ0) in
(6.10), such that rankH(G(t, u)) = rankH(Amin)−1, then there is no

(
rankM̃(k; β)

)
–atomic

Z(p)–rm. Since η > 0, it follows, by Lemma 6.2, that rankF(G(t, u)) ≥ rankF(Amin +
1 for any good choice (t, u). Since also rankH(G(t, u)) ≥ rankH(Amin), it follows that
rankF(G(t, u)) + rankH(G(t, u)) ≥ rankM̃(k; β) + 1.

Case 2: rankF(Amin) = 2k − 1. If Amin does not satisfy (H̃yp)1, G(t, u) does not satisfy
(H̃yp)1 for any (t, u) ∈ R2. So every (t, u) which is a good choice for (t̃0, ũ0), must satisfy
rankF(G(t, u)) = 2k+1 = rankF(Amin)+2. By Lemma 6.6, there exists (t′, u′) ∈ R̊1∩∂R2,
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such that H(G(t′, u′)) admits a R–rm and satisfies

rankH(G(t′, u′)) = rankH2 =

{
rankH(Amin), if rankH(Amin) = k,

rankH(Amin)− 1, if rankH(Amin) = k + 1.

Hence,
rankF(G(t′, u′)) + rankH(G(t′, u′)) =

=

{
rankM̃(k; β) + 2, if rankH(Amin) = k,

rankM̃(k; β) + 1, if rankH(Amin) = k + 1.

If (t, u) is a good choice for (t̃0, ũ0), then rankH(G(t, u)) ≥ k (since H2 ≻ 0) and also
rankF(G(t, u)) = rankF(Amin) + 2. So

rankF(G(t, u)) + rankH(G(t, u)) ≥

≥ rankF(Amin) + 2 +

{
rankH(Amin), if rankH(Amin) = k,

rankH(Amin)− 1, if rankH(Amin = k + 1.

So the measure cannot contain less atoms than the one in (t′, u′) above.

Under the assumption Theorem 6.1.(2(b)ii) we separate two cases:

Case 1: ∂R1 ∩ ∂R2 = R1 ∩ R2 = {(t̃, ũ)}. Under the assumptions of this case, γ(t̃, ũ)
is R–representable. Hence, (t̃, ũ) is a good choice for (t̃0, ũ0) in (6.10). If rankH(Amin) =

rankH22 + 2, then a
(
rankM̃(k; β)

)
–atomic Z(p)–rm exists. This is due to the rank equality

r := rankF(G(t̃, ũ)) + rankH(G(t̃, ũ)) =︸︷︷︸
(5.16)
(5.19)

rankF(Amin) + 1 + rankH22 + 1.

Hence, r = rankM̃(k; β) if and only if rankH(Amin) = rankH22 + 2. Otherwise we
have rankH(Amin) = rankH2 = rankH22 + 1 (since η > 0 and H2/H22 = 0) and r =

rankM̃(k; β) + 1.

Case 2: (t̃, ũ) =: ∂R1 ∩ ∂R2 ⊊ R1 ∩ R2. In this case it follows by Theorem 6.1 that one of
the points (t̃, ũ) or (t0, ũ) is a good choice for (t̃0, ũ0) in (6.10).

Assume that (t0, ũ) is a good choice. Since rankH(G(t0, ũ)) = rankH(Amin) − 1, which
is due to η > 0 and H2/H22 = 0 (if H2/H22 > 0, then (6.9) would imply that card ∂R1 ∩
∂R2 > 1), and rankF(G(t0, ũ)) = rankF(Amin) + 2 (by Lemma 6.2), it follows that a(
rankM̃(k; β) + 1

)
–atomic Z(p)–rm exists.

As in the proof of Case 1 above, if (t̃, ũ) is a good choice for (t̃0, ũ0) in (6.10), then a(
rankM̃(k; β)

)
–atomic Z(p)–rm exists if and only if rankH(Amin) = rankH22 + 2. Other-

wise the measure is
(
rankM̃(k; β) + 1

)
–atomic.

It remains to show that if (t̃, ũ) is not a good choice for (t̃0, ũ0) in (6.10), there does not
exist a

(
rankM̃(k; β)

)
–atomic Z(p)–rm. By Lemma 6.5, the candidates for a good choice are

points (t, u0) for t ∈ (t̃, t0]. But as in the second paragraph above, we have rankH(G(t, ũ)) ≥
rankH(Amin)− 1 and rankF(G(t, ũ)) = rankF(Amin) + 2 for every such t. So

rankH(G(t, ũ)) + rankF(G(t, ũ)) ≥ rankM̃(k; β) + 1.

It remains to establish the moreover part. Note that in the case where rankM̃(k; β) + 2

atoms might be needed, H(Amin) is not pd. Since for a p–pure sequence β with M̃(k; β) ⪰ 0,
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(6.19) implies that H(Amin) is pd, the existence of a Z(p)–rm implies the existence of at most
(rankM̃(k; β) + 1)–atomic Z(p)–rm. This concludes the proof of Theorem 6.7. □

6.3. Example. 3 In this subsection we demonstrate the use of Theorems 6.1 and 6.7 on a
numerical example.

Let β be a bivariate degree 6 sequence given by

β00 = 1,

β10 =
37
54

, β01 =
2
3

β20 =
769
648

, β11 =
25
54
, β02 =

1201
648

,

β30 =
11737
7776

, β21 =
337
648

β12 =
12025
7776

, β03 =
913
216

,

β40 =
258721
93312

, β31 =
4825
7776

, β22 =
169153
93312

, β13 =
9625
2592

, β04 =
957985
93312

,

β50 =
5088937
1119744

, β41 =
72097
93312

, β32 =
2497225
1119744

, β23 =
136801
31104

, β14 =
10813225
1119744

, β05 =
2326373
93312

,

β60 =
115846129
13436928

, β51 =
1107625
1119744

, β42 =
38072593
13436928

, β33 =
2034025
373248

, β24 =
156268657
13436928

, β15 =
27728525
1119744

,

β06 =
826264081
13436928

.

We will prove below that β admits a 9–atomic Z(p)–rm by applying Theorems 6.1 and 6.7. It
is easy to check that M̃(3) is psd and satisfies only one column relation 2Y 2+X2Y −Y 3 = 0.
It turns out that η = 0, rankF(Amin) = rankF(Amin)B\{Xk} = rankF(Amin)B\{Y Xk−1} = 5,
whence Amin satisfies (H̃yp)1. By Theorem 6.1, β has a Z(p)–rm. By Theorem 6.7, there is a
rank M̃(3)–atomic Z(p)–rm (i.e., 9–atomic).
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