CONSTRUCTIVE APPROACH TO THE TRUNCATED MOMENT PROBLEM ON
REDUCIBLE CUBIC CURVES: HYPERBOLIC TYPE RELATIONS

SEONGUK YOO AND ALJAZ ZALAR?

ABSTRACT. In this paper, we solve constructively the bivariate truncated moment problem
(TMP) of even degree on reducible cubic curves, where the conic part is a hyperbola. According
to the classification from our previous work [YZ24], these represent three out of nine possible
canonical forms of reducible cubic curves after applying an affine linear transformation. The
TMP on the union of three parallel lines, the circular and the parabolic type TMP were solved
constructively in [Zal22a, YZ24], while in this paper we consider three cases of hyperbolic type,
i.e., a type without real self-intersection points, a type with a simple real self-intersection point
and a type with a double real self-intersection point. In all cases, we also establish bounds on the
number of atoms in a minimal representing measure.

1. INTRODUCTION

Let Z stand for nonnegative integers. Given a real 2—dimensional sequence

B = B(Qk) = {B0,0a 61,07 ﬁo,la s 7ﬁ2k,07 62]671,17 s 7ﬁ1,2k717 BO,Qk}

of degree 2k and a closed subset K of R?, the truncated moment problem (KX-TMP) sup-
ported on K for 5?*) asks to characterize the existence of a positive Borel measure 1 on R?
with support in /, such that

(1.1) Bi; = / vyldy  for 4,5 €7, i+ j < 2k.
K

If such a measure exists, we say that 3(>*) has a representing measure supported on K and y is
its K-representing measure (X -rm).

In the degree-lexicographic order 7, X,Y, X2 XY, Y2 .. . X* X1y . . Y* of rows and
columns, the corresponding moment matrix to 3 is equal to

ﬁ[O,O](ﬁ) ﬁ[O,l](ﬁ) ﬁ[O,k](ﬁ)
1,0 1,1 1k
02 A = ey | MO MILLE M,

MIE,0)(8) Mk 1(8) - Mk, K](5)
where
5z‘+j,0 5z‘+j—1,1 Bi+j—2,2 513
Bitj—11 Bitj—22 Biri—szz - Bi—ij+1

M[i’j](ﬁ) = 5i+j72,2 51;+j—3,3 ﬁi+jf4,4 ﬂif2,j+2

Bj,i Bj*l,i‘i’l ﬁjf2,i+2 BO,i+j
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Let R[z,y]<x := {p € Rz,y]: degp < k} stand for the set of real polynomials in variables
x,y of total degree at most k. For every p(z,y) = >, a;z'y’ € Rlz,yl<x we define its
evaluation p( X, Y') on the columns of the matrix M (k) by replacing each capitalized monomial
XY/ inp(X,Y) = 3, ai; X'Y7 by the column of M(k), indexed by this monomial. Then
p(X,Y) is a vector from the linear span of the columns of M (k). If this vector is the zero
one, i.e., all coordinates are equal to 0, then p(X,Y’) is a column relation of M (k). A column
relation p(X,Y’) is nontrivial, if p # 0. The matrix M (k) is recursively generated (rg) if for
P, q,pq € Rz, y]<x such that p(X,Y) is a column relation of M (k), it follows that (pq)(X,Y)
is also a column relation of M (k). The matrix M (k) is p—pure if the only column relation of
M (k) are those determined recursively by p. In this case the TMP for 3 is called p—pure.

For p € Rz, y] we denote by Z(p) := {(z,y) € R*: p(x,y) = 0} the zero set of p and by
deg p its total degree.

A concrete solution to the TMP is a set of necessary and sufficient conditions for the ex-
istence of a K—representing measure j, that can be tested in numerical examples. Among
necessary conditions, M (k) must be positive semidefinite (psd) and rg [CF04, Fia95], and by
[CF96] if the support supp(u) of u is a subset of Z(p) for a polynomial p € R[z, y|<, then p
is a column relation of M (k). The bivariate Z(p)-TMP (not necessarily p—pure) is concretely
solved in the following cases: (i) deg p = 1 [CFO08], (ii) degp = 2 [CF02, CF04, CF05, Fial5],
(iii) p is irreducible with degp = 3 [KZ25+] and (iv) p is reducible, degp = 3 and p has
a special form [Zal22a, YZ24]. The bivariate p—pure TMP is concretely solved also for: (v)
p(z,y) = 2y + q(x) — x* with degq = 3 [YZ24+], (vi) p(z,y) = y — z* [FZ25+] and (vii)
p is reducible with degp = 3 and S is purely pure (i.e., the corresponding linear functional
is strictly positive on nonzero polynomials, positive on Z(p)) [KZ25+]. For a more detailed
description and some other less concrete solutions to the TMP on plane algebraic curves we
refer the reader to [YZ24, p. 3] or [KZ25+, p. 2-3], while for a recent development in the area
of moment problems to a monograph [Sch17].

A constructive solution to the K—~TMP is a solution, where not only the existence of a K—rm
is characterized, but a concrete K—rm is explicitly constructed.

The motivation for this paper was to solve the TMP constructively on reducible cubic curves
of hyperbolic type, according to the classification of [YZ24, Proposition 3.1]. By applying an
affine linear transformation, each TMP on reducible cubic curve is equivalent to the TMP on
one of nine canonical cases of the form yc(x, y) = 0, where ¢ € R|x, y], deg ¢ = 2. In [Zal22a],
the case of three parallel lines is solved constructively, while in [YZ24], the solutions to the
circular type (the curve is a line and a circle touching at a double real point) and the parabolic
type relations (the curve is a line and a parabola that intersect tangentially at a real point) are
presented. In this paper, we solve the TMP constructively for the cases c(z,y) = 1 — zy,
c(z,y) = r+y—zyand c(x,y) = ay + 2* — y*, a € R\ {0}, which are called in [YZ24]
the hyperbolic type 1, 2 and 3 relations, respectively. We also characterize the number of atoms
in a minimal representing measure, i.e., a measure with the minimal number of atoms in the
support. The question of bounds on the cardinality of minimal representing measures in the
TMP, supported on algebraic curves, which is always finite by [Ric57] (or [Sch17, Theorem
1.24]), has attracted a recent attention of several authors (see [RS18, dDS18, dDK21, Zal24,
BBS24+, RTT25+])).

In terms of the self-intersection points of the cubic yc(x,y) = 0, we can classify the hy-
perbolic types from the previous paragraph into a type without real self-intersection points
(type 1), a type with a single real self-intersection point (type 2) and a type with a double
real self-intersection point (type 3). To prove our main results, we follow the idea presented
in [Zal22a, YZ24], which characterizes the existence of a decomposition of 3 into the sum
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BY + B, where 8 = {6§§)}i,jez+, i+j<or and B0 = {67?;‘)}1',]'GZ+, i+j<2r admit a R—rm and
a Z(c)-rm, respectively. The crucial property of the forms of the cubic, which makes this idea
realizable, is that the line is equal to y = 0. This ensures that all but two moments of 5 and
5(©) are not already determined by the original sequence, i.e., Bg?_l,o, 520, 65?_1,0, 6520 in the
hyperbolic type 1 case (as in the case of three parallel lines [Zal22a]) , ﬁ((f()), 6520, 58?3, 5520 in
the hyperbolic type 2 case (as in the parabolic type case [YZ24, Section 6]) and 6(()?), 5%, Béi%,
5% in the hyperbolic type 3 case (as in the circular type case [YZ24, Section 5]). Then, by
an involved analysis, the characterization of the existence of a decomposition 3 = 3 + ()
can be done in all three cases. We mention that the analysis in the hyperbolic type cases is
more demanding than in the corresponding cases with the same positions of the free moments
from [Zal22a, YZ24] stated in parentheses, since the solution to the TMP on a hyperbola (see
Subsection 2.7) contains more linear algebraic requirements than in the case of other conics.

1.1. Reader’s Guide. The paper is organized as follows. In Section 2 we fix notation and
present some preliminary results needed to establish our main results. In Section 3 we recall
the approach for solving the TMP constructively on reducible cubic curves in the canonical
form yc(x,y) = 0 developed in [YZ24, Section 4]. In Sections 4-6 we solve constructively
the TMP for reducible cubic curves of hyperbolic types 1-3, respectively, and characterize
the cardinality of minimal representing measures (see Theorems 4.1, 5.2, 5.6, 6.1 and 6.7).
Numerical examples demonstrating the main results are also given (see Subsections 4.3, 5.3
and 6.3).

2. PRELIMINARIES

We write R"*™ for the set of n x m real matrices. For a matrix M we call the linear span of
its columns a column space and denote it by C(M/). The set of real symmetric matrices of size
n will be denoted by S,,. For a matrix A € S,, the notation A > 0 (resp. A = 0) means A is
positive definite (pd) (resp. positive semidefinite (psd)). We write 0, ;, for a ¢; x ¢, matrix with
only zero entries and 0; = 0, for short, where ¢;,?2,¢ € N. The notation Ei(?, ¢ € N, stands
for the usual ¢ x ¢ coordinate matrix with the only nonzero entry at position (i, j), equal to 1.

In the rest of this section let k¥ € N and 8 = B®Y = {8 ;}i ez, irj<ox be a bivariate
sequence of degree 2k.

2.1. Moment matrix. Let M (k) be the moment matrix of 5 (see (1.2)). Let )1, ()2 be subsets
of the set {X'Y7: 4,5 € Z, i+ j < k}. We denote by M(k)g, g, the submatrix of M (k)
consisting of the rows indexed by the elements of (); and the columns indexed by the elements
of Q2. In case Q) := Q1 = ()2, we write M(k)g := M(k)g,q for short.

2.2. Affine linear transformations. The existence of representing measures is invariant under
invertible affine linear transformations of the form

21 o(z,y) = (d1(x,y), da(x,y)) := (a + bz + cy,d+ ex + fy), (x,y) € R?,

a,b,c,d,e, f € Rwithbf — ce # 0. Namely, let Lg : R[z, y]<or — R be a Riesz functional of
the sequence [ defined by

Le(p) == > ai;Bi;,  where p= Y aya'y.
1,J€L, 1,J€L,
<2k <ok
We define 8 = {0, ;}ijez, , i+j<or DY

Bij = La(o1(w,y)" - dalw,y)?).
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By [CF04, Proposition 1.9], 5 admits a r—atomic rm supported on K if and only if E admits a

r—atomic rm supported on ¢(K). We write 8 = ¢(3) and M(k; B) = ¢(M(k; B)).

2.3. Generalized Schur complements. Let

A B
_ (n+m)x (n+m)
M = ( C D ) cR

be a real matrix where A € R"*", B € R™"™ (' € R™*" and D € R™*™. The generalized
Schur complement [Zha05] of A (resp. D) in M is defined by
M/A=D—CA'B (resp. M\/D = A— BD'C),

where AT (resp. DT) stands for the Moore-Penrose inverse of A (resp. D).
The following lemma will be used in the proofs of our main results.
Lemma 2.1. Let n,m € N and

A B
M:(BT C>€Sn+m7

where A € S,, B € R"™™ and C € S,,. Ifrank M = rank A, then the matrix equation

A B
22) ( BT) W= ( O) |
where W € R™™ ™ is solvable and the solutions are precisely the solutions of the matrix equa-

tion AW = B. In particular, W = AT B satisfies (2.2).

The following theorem is a characterization of psd 2 x 2 block matrices.

Theorem 2.2 ([AIb69]). Let
A B
M:(BT C>65n+m

be a real symmetric matrix where A € S,, B € R"" and C' € S,,. Then:
(1) The following conditions are equivalent:
(a) M = 0.
(b) C=0,C(B")
(c) A= 0,C(B)
(2) If M = 0, then
rank M = rank A 4+ rank M /A = rank C' + rank M /C.
2.4. Partially positive semidefinite matrices and their completions. A partial matrix A =
(aiyj)ij= is a matrix of real numbers a; ; € R, where some of the entries are not specified.
A partial symmetric matrix A = (aivj)zfj:l is partially positive semidefinite (ppsd) (resp.
partially positive definite (ppd)) if the following two conditions hold:

CC(C)and M/C = 0.
C(A)and M/A 0.

(1) a; ; is specified if and only if a;; is specified and a; ; = a; ;.
(2) All fully specified principal minors of A are psd (resp. pd).
For n € N write [n] := {1,2,...,n}. We denote by Ag, ¢, the submatrix of A € R"*"
consisting of the rows indexed by the elements of (); C [n] and the columns indexed by the
elements of Q2 C [n]. In case ) := Q)1 = @2, We write Ay := Ag ¢ for short.

Lemma 2.3 ([YZ24, Lemma 2.4]). Let A(x) be a partially positive semidefinite symmetric
matrix of size n X n with the missing entries in the positions (i,j) and (j,i), 1 <1i < j < n.
Let

Ar = (AX) i figys @ = (AX) pp iy 0= (AX) pp gy @ = (AX))is 7= (AX));-



TMP ON REDUCIBLE CUBIC CURVES I 5

Let
Az = (AX)) 5y = (le Z) € Sn1, Az =(AX)ppg = (?Tl 3) € S,
and
ry =0T Ala + \/(Ay/A1)(As/A)) € R.
Then:
(1) A(xy) is positive semidefinite if and only if xo € [x_, x].
(2)

max { rank As, rank Ag}, forxy € {x_,x.},

rank A(xgy) =
(o) { max{rankAg,rankAg} +1, forxyg € (x_,z4).

(3) The following statements are equivalent:
(a) v_ = x,.
(b) AyJA; =0o0r A3/A; = 0.
(c) rank Ay = rank A; or rank A; = rank A;.

2.5. Extension principle.

Proposition 2.4 ([Fia95, Proposition 2.4] or [Zal22a, Lemma 2.4]). Let A € S,, be positive
semidefinite, () a subset of the set {1,...,n} and A the restriction of A to the rows and
columns from the set Q). If Agu = 0 for a nonzero vector v, then Av = 0, where v is a vector
with the only nonzero entries in the rows from () and such that the restriction Vg to the rows
from Q) equals to v.

2.6. (Strong) Hamburger TMP. In this subsection we recall the solutions to the univariate
TMP and its strong version, since it will be essentially used in the proofs of our main results.

Let k € Nand v := (90,...,7%) € R**!L. We say that v is R-representable if there is
a positive Borel measure ; on R such that y; = fR 2’ du for 0 < 7 < 2k. Characterizing the
existence of the R—rm for v is called the truncated Hamburger moment problem (THMP)
or also the R-TMP.

We define the Hankel matrix corresponding to v by

Yo 1 Y2 o Yk
VT - S
(2.3) Avi=i)ijmo = | v o | €Sk
. Y2k—1
Ve o Ve+1 0 V2k—1 72k

For m < k we denote the upper left-hand corner (%-Jrj):.f;.:o € Sp41 of A, of size m + 1 by
A, (m), while the lower right-hand corner of A, of size m + 1 by A, [m].

The solution to the THMP is the following.
Theorem 2.5 ([CF91, Theorems 3.9-3.10]). For k € Nand v = (v, ...,7x) € R*! with
Yo > 0, the following statements are equivalent:
(1) There exists a R—representing measure for .

(2) There exists a (rank A, )—atomic R—representing measure for .
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(3) A, is positive semidefinite and one of the following holds:
(a) A,(k — 1) is positive definite.
(b) rank A, (k — 1) = rank A,.

Let k1, ks € N and

(24) 5 = (5—2](317:3/1—2]61—}-17%7—2]4:2—}-27 L 7?2]4:2—17 &/2]{?2) S R2k1+2k2+1‘

We say that 7 is strongly R-representable if there is a positive Borel measure ;2 on R \ {0}
such that 3; = [, @’ du for —2k; < i < 2k,. Characterizing the existence of the (R \ {0})-rm
for 7 is called the strong truncated Hamburger moment problem (STHMP).

The solution to the STHMP is the following.
Theorem 2.6. Let ki, ks € Nand7 asin (2.4) withy_or, > 0. Define y := (70,71, - - - » Yoky+2ks) €
R2F1+2k24L by o= 5, o1, The following statements are equivalent:
(1) There exists a (R \ {0})-representing measure for 7.
(2) There exists a (rank A, )—atomic (R \ {0})-representing measure for .
(3) A, is positive semidefinite and one of the following holds:
(a) A, is positive definite.
(b) rank A, = rank A, (k; + ks — 1) = rank A, [ky + ko — 1].
Let k € N. We say a sequence v = (70,71, - - -, Y2x) € R¥*1is (R \ {0})-representable if
there is a positive Borel measure ;2 on R \ {0} such that y; = fR\ ) 2t dp for 0 < i < 2k.
Note that Theorem 2.6 above characterizes when a given sequence v is (R\ {0} )-representable.
Remark 2.7. The matrix version of Theorem 2.6 appears in [Sim06] using involved operator

theory as the main tool. A proof of the scalar version using linear algebra techniques is [Zal22b,
Theorems 3.1].

2.7. Hyperbolic TMP. We will need the following solution to the hyperbolic TMP (see [Zal22b,
Corollary 3.5] and Remark 2.9 below).

Theorem 2.8. Let p(x,y) = vy — 1 nd B := B = {8, ;}i jen, irj<or, where k > 2. Let
(2.5) B={yk vyt Y 1,X X . . X"}
Then the following statements are equivalent:
(1) B has a Z(p)-representing measure.
(2) B has a (rank M (k))—atomic Z(p)-representing measure.
(3) M(k) is positive semidefinite, the relations (;11 j+1 = [;; hold for every i, j € Z, with
1+ j < 2k — 2 and one of the following statements holds:
(a) M(k)p is positive definite.
(b) rank M(k) = rank M(k)g (y+y = rank M(k)g (x+}.
Remark 2.9. The first solution to the hyperbolic TMP is [CF05, Theorem 1.5], which contains
a condition called variety condition. To apply the solution to the hyperbolic TMP, when solving
the TMP on a reducible cubic with an irreducible component equivalent to the hyperbola xy =
1 after applying an invertible affine linear transformation, it is not easy to check the variety
condition symbolically. Theorem 2.8 does not contain the variety condition, but only linear

algebraic conditions. Theorem 2.8 is a slight improvement of [Zal22b, Corollary 3.5]. Namely,
instead of (3) the statement in [Zal22b, Corollary 3.5] reads:
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(3") M(k) is positive semidefinite, recursively generated and if rank M (k)s = 2k, then
rank M(k)g (x»y = rank M(k)g\ yry = 2k.
Furthermore, in the proof of [Zal22b, Corollary 3.5] it is shown that (3') is equivalent to a variant
of (3) (labelled (A) in the proof), in which all rg relations are assumed, not only pure ones, i.e.,
(2.6) Bit+1,j+1 = Bi; holds for every i, j € Z, with i 4 j < 2k — 2,
or equivalently
(2.7) Xyitt — X'y hold for all 4,j € Z, withi + j < k — 2.

The improvement of Theorem 2.8 compared to [Zal22b, Corollary 3.5] lies in the replacement of
the assumption M (k) is rg by the seemingly weaker assumption that M (k) satisties all pure rg
relations (i.e., (2.6)). We now explain why this can be done. Due to the existence of the relations
(2.7), it is sufficient to assume that other relations are among columns and rows, indexed by BB

(see (2.5)). Defining v = (Bo2x, Bo,26—1, Bo.2k—2, - - - » Bo,05 Bros P20, - - - Pawo) € R**1 note
that M(k)s = A, (see (2.3)) is a singular psd Hankel matrix, which is rg in the sense of a
univariate sequence [Zal22b, Section 2] by the assumptions in (3b) and [Zal22b, Proposition
2.1.(4),(5)]. By [Zal22b, Theorem 3.1], v has a representing measure supported on R \ {0},
where (3, corresponds to the moment of =" and f3; corresponds to the moment of z7. By
[Zal22b, Claim in the proof of Corollary 3.5], 5 has a Z(xy — 1)-rm.

Corollary 2.10. Let p(z,y) = x +y — ay and B = B = {B; ;}i jez, it j<on where k > 2.
Let
(2.8) B={Y* Y Y. 1, X X*.. . X"}
Then the following statements are equivalent:
(1) B has a Z(p)-representing measure.
(2) B has a (rank M (k))-atomic Z(p)-representing measure.

(3) M(k) is positive semidefinite, the relations ;11 j11 = Bit1,;+ Bi j+1 = 0 hold for every
1,] € Zy withi+ 7 < 2k — 2 and one of the following statements holds:

(a) M(k)g is positive definite.
(b) rank M(k) = rank M(k)pg\ y+y = rank M(k)g\ (x+}-

Proof. Note that applying an affine linear transformation ¢(x,y) = (x + 1,y + 1) (see Section
2.2) to 5 we obtain a new sequence E(Qk) = {Bi,j}i,jeZ+,i+j§2k satisfying the relations gi+1,j+1 =
Ei,j fori,j € Z, with i + j < 2k — 2. Since the existence of a Z(p)—rm for /3 is equivalent to
the existence of a Z(zy — 1)—rm for 3, Corollary 2.10 follows by Theorem 2.8. O
Corollary 2.11. Let p(z,y) = ay + 2> — 42 a € R\ {0}, and 8 := B = {B, ;}i jez. it j<ons
where k > 2. Let
(2.9) B ={yXxXtyxt2 v 1,X X% . . X"}
Then the following statements are equivalent:

(1) 5 has a Z(p)-representing measure.

(2) 8 has a (rank M(k))-atomic Z(p)-representing measure.

(3) M(k) is positive semidefinite, the relations B; ;o = Pito; + afi i1 hold for every
1,7 € Zy witht+ 5 < 2k — 2 and one of the following statements holds:

(a) M(k)p is positive definite.
(b) rank M(k) = rank M(k)pn v x+-1; = rank M(k)gn {x+}-
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Proof. Note that applying an affine linear transformation ¢(z,y) = (2(z + % —y), 2(z + ¢ +
y)) (see Section 2.2) to  we obtain a new sequence 3% = {f3; ;}; jez. i+j<or satisfying the
relations 311 ;41 = f;j fori, j € Z; withi+ j < 2k — 2. Since the existence of a Z(p)—rm for

[ is equivalent to the existence of a Z(zy — 1)-rm for 3, Corollary 2.11 follows by Theorem
2.8. 0

3. COMMON APPROACH TO ALL CASES

In this section we recall the constructive approach to solving the TMP on reducible cubic
curves in the canonical form yc(z,y) = 0 developed in [YZ24, Section 4].

Let
(3.1) C={1,X,Y, X% XY, Y% . Xt X"y .. Y*}

be the set of columns and rows of the moment matrix M (k) in the degree-lexicographic order.
Let

(3.2) p(r,y) =y-clz,y) € Rlz,yl<s

be a polynomial of degree 3 in one of the canonical forms from [YZ24, Proposition 3.1], were
c(z,y) a polynomial of degree 2. A given 2—dimensional sequence 3 = {f3; ;}: jcz. it+j<ok Of
degree 2k, k € N, will have a Z(p)-rm if and only if it can be decomposed as

(3.3) B=p9+p9,
where
BY = {Bf?}ivjezwﬂggk has a measure on y = 0,
B = {5§’§)}i,j62+,iﬂg2k has a measure on the conic ¢(z,y) = 0,

and the sum in (3.3) is the component-wise sum. On the level of moment matrices, (3.3) is
equivalent to

(3.4) M(k; B) = M(k; 89) + M(k; 5)
Note that if 5 has a Z(p)-rm, then the matrix M (k; ) satisfies the relation p(X,Y) = 0 and
by rg also
(3.5) (xy’p)(X,Y) =0 fori,j=0,...,k—3suchthati+j <k —3.
Let 7 C C be a subset, such that {1, X,..., X*} C T and the columns from 7 span the
column space C(M (k; 3)). We write X(O%) .= (1, X, ..., X*), T, = T\ {1, X,..., X*} and
S - ——
XO8 g e\T
(X" An A A
(3.6) M(k’§ 6) = QM(]C7 5)QT = (ﬁ)T (Alz)T Agy Aags )
e
CNT)T\ (A)" (Az)" As
S R ,
where 77 and C \ 7 are tuples of elements of 7; and C \ 7, arranged in some order, and )

is the appropriate permutation matrix. In this new order of rows and columns, (3.4) becomes
equivalent to

(3.7) M(k; 8) = M(k; BO) + M(k; B,
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where .//\/lv(k, BOY = QM(k; BO)YQT and //\/lv(k, B := QM (k; 5)QT. By the form of the
atoms we know that M (k; 39) and M (k; 3)) will have forms

xXOR g e\T
(X(O’k))T A A Ass
(

M (E; 5(6)) = 1)T (Ai2)" Agp Ags )
—
C\NT)" \ (Ain)" (Ags)"  Agy
(3.8) B B
X0k 7 ¢ \T
(X(O’k)>T All —A 0 0
M(k; B9y = ()T 0O 0 0
s
Cc\7)" 0 0 0
for some Hankel matrix A € Sy ;. Define matrix functions
F: Sk:—i—l — S(k+1)2(k+2) and H Sk—i—l — Sk—i—l
by
> = sy
X087 e\T
(XOOT A A Ay
F(A) = (_'1)T (A12)T Ago A3 )
(3.9) P

C\T)" \ (As)T (A)T  Ass

X (0k)
H(A) = (KOO ( Ay —A ).
Using (3.8), (3.7) becomes equivalent to
(3.10) M(k; 8) = F(A) + H(A) @ Osikin

for some Hankel matrix A € Sj1.

Lemma 3.1 ([YZ24, Lemma 4.1]). Let k € N,k > 3. Assume the notation above. Then the
sequence = {B;;}ijcz, itj<or has a Z(p)-representing measure if and only if there exist a
Hankel matrix A € Sy, such that:

(1) The sequence with the moment matrix F(A) has a Z(c)-representing measure.
(2) The sequence with the moment matrix H(A) has a R—representing measure.

Lemma 3.2 ([YZ24, Lemma 4.2]). Let k € N,k > 3. Assume the notation above and the
sequence 3 = {0 ;}ijen, it+j<or admits a Z(p)-representing measure. Let

A= A( éc(%} (c& (c) ) € Sk41

1,007 sz,o

be a Hankel matrix (see (2.3)) such that F(A) admits a Z(c)-representing measure and H(A)
admits a R—representing measure. Let c(x,y) be of the form

311 c(z,y) = ago + a107 + aser® + apry + agey® + apwy  with a; €R
' and exactly one of the coefficients ag, a19, azo is nonzero.

If:
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(1) agy # 0, then
5 = —%(amﬁm +aosBia+ anBins) fori=0,...,2% -2,
(2) a9 # 0, then |
@‘(,((:)) = _%0(%15@',1 + agofiz+anfiy11) fori=1,...2k—1.
(3) asy # 0, then |

c 1 .
ﬁi(,o) = —a—(amﬁi,l + ao2fBip + a1 Biy11) fori=2,...,2k.
2,0

Lemma 3.2 states that if ¢ is as in (3.11), all but two entries of the Hankel matrix A from
Lemma 3.1 are uniquely determined by 3. The following lemma gives the smallest candidate
for A in Lemma 3.1 with respect to the usual Loewner order of matrices.

Lemma 3.3 ([YZ24, Lemma 4.3]). Assume the notation above and let 3 = {f3; j}i jez., i+j<2ks

where k > 3, be a sequence of degree 2k. Assume that M(k; () is positive semidefinite and
satisfies the column relations (3.5). Then:

(1) F(A) = 0 for some A € Syy1 ifand only if A = Aja(Age)T(Ara)T.
(2) F(A1a(Az) (A15)T) = 0 and H(Ara(Az) (A12)T) = 0.

(3) F(A12(A) (A12)7) satisfies the column relations (z'y’c)(X,Y) = 0 fori,j € Z;
suchthati1+ j < k — 2.

(4) We have that
rank .//\/lv(k, ﬂ) = rank A22 —+ rank (All — Alg(AQQ)T(Alg)T)
= rank F(Alg(Agz)T(Alg)T) —|— rank H (Alg(AQQ)T(Alg)T) .

Remark 3.4. By Lemmas 3.1-3.3, solving the Z(p)-TMP for 8 = {3 ; }i jez, i+j<2r, Where
k > 3, with p being of the form yc(z, y) and c as in (3.11), the natural procedure is the following:

(1) First compute A = A2(Asz) (A12)T. By Lemma 3.3.(3), there is one entry of Ay,
which might need to be changed to obtain a Hankel structure. Namely, in the notation
(3.11), if:

(@) ago # 0, then the value of (A, )i, must be changed to (Amin)k—1,k+1-

(b) aip # 0, then the value of (Auyin)1£+1 must be changed to (Apin)2 k-

(¢) ago # 0, then the value of (A, )20 must be changed to (Apin)s1-
Let A\min be the matrix obtained from A,,;, after performing the change described above.

(2) Study if F (Emm) and H(A\min) admit a Z(c)-rm and a R—rm, respectively. If the answer
is yes, 5 admits a Z(p)-rm. Otherwise by Lemma 3.2, there are two antidiagonals of
the Hankel matrix gmin, which can by varied so that the matrices F (ﬁmm) and H(ﬁmin)
will admit the corresponding measures. Namely, in the notation (3.11), if:

(a) agp # 0, then the last two antidiagonals of ﬁmin can be changed.

(b) a9 # 0, then the left—upper and the right-lower corner of Emm can be changed.
(c) ag # 0, then the first two antidiagonals of ﬁmin can be changed.
To solve the Z(p)-TMP for 3 one needs to characterize, when it is possible to change
these antidiagonals in such a way to obtain a matrix /ulmin, such that F (Amm) and

v

H(Apin) admit a Z(c)-rm and a R-rm, respectively.
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4. HYPERBOLIC TYPE 1 RELATION: p(z,y) = y(1 — xy).

In this section we solve constructively the Z(p)-TMP for the sequence 5 = {f; ; }i jez, i+j<ok
of degree 2k, k > 3, where p(x,y) is as in the title of the section. The main result is Theorem
4.1, which characterizes concrete numerical conditions for the existence of a Z(p)—rm for /5 and
also the number of atoms needed in a minimal Z(p)-rm. A numerical example demonstrating
the main result is presented in Subsection 4.3.

Assume the notation from Section 3. If 5 admits a Z(p)-TMP, then M (k; ) must satisfy
the relations

4.1) Y2H X = Y X? fori,j € Z, such thati+ j < k — 3.
On the level of moments the relations (4.1) mean that
(42) 6i+17j+2 = 6i,j+1 for 'l,] S Z+ such that v + j < 2k — 3.

In the presence of all column relations (4.1), the column space C(M(k; ()) is spanned by the
columns in the tuple

4.3) T = (Y* Yl Y YX YX? VXU LX, LX),

J/

~~ ~ N

Y (k,1) vy X (1,k-1) X (0,k)
Let
P be a permutation matrix such that moment matrix M (k) := PM(k; 3) P* has rows

(4.4) 3 ~ - B
and columns indexed in the order Y (#V) Y X (WA=1 X (0k) y2 x(1k=2) — yk—1x

where YIX k=0 = (YiX, YIXZ, JYIXE0) for 1 < j < k — 1. Let M(k)+ be the
restriction of the moment matrix M (k) to the rows and columns in the tuple 7 and write
}_/’(k,l) YX’(I,kfl) Xv’(o,k)
(YT B Bis By
M(k)z = (YX(I’]C_I))T (Bi2)" Bas Bas
(XOR)T (Bis)"  (Bxs)"  Bs

(k1) Y XWh=1) Ok xk

O—/’(k,l))T Bll 312 Big’k_l) bg?
(Y)Z(Llc—l))T (Bm)T By Bég’k_l) bé’? S
= N € O3k-
_ 0,k—1 0,k—1 0,k—1 k
(X BT Bt BT b
x* ()T BIDT (ST Baro

We also write

4.5) M(k)+ =: (( R m”).

mlz)T ﬁzk,o

Next we define the matrix N (k), which extends the restriction of M (k) to rows and columns
in (}7(’“’1), y X Wh=1), X'(O’k_l)), with a row and a column Y X*. Namely, it contains the only
candidates for the corresponding moments, which are generated by the atoms in any Z(p)—rm.
The reason for introducing precisely N (k) is the fact, that together with M k), they contain
crucial information needed to characterize the existence of the solution to the Z(p)-TMP (see
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Theorem 4.1 below). So,
?(k,l) Y)z’(l,kfl) )Z’(O,kfl) YXk

(?(k71))T B11 312 B;g’k_l) a
(4.6) _ (Yx(kal))T (Byo)T By ng,kq)
N (k) 2 (0,k—1)\T (0,k—1)\T Ok—1\T  1(0,k—1) € Sak,
(XFY) (B3 )" (Bgs )" By ¢
Y X* a” b" " Bak—1,1
where
T T
a = (50,1 B - 5k—1,1) ; b= (5k,1 Br+1,1 - 52k—2,1) )

c=(Be1 Bran oo Bwra)

In the definition of a, b, c we used the fact that if the Z(p)-rm for § exists, then the relations
(4.2) hold also for i + j < 2k — 1. In particular, we used the relations Box_12 = Sox—2.1,
Brk+1 = Br—1% and Bag 2 = Bor—1,1. These relations also imply that

(47) (B12 CL) = B%g,k71)7 (B22 b) = Bég’kil) and (bT 62k—1,1) = CT.

We also write

(4.8) N(k) =: (( SR >

le)T 5213—1,1
where note that R is the same as in (4.5) above.

Next we define two additional matrices F} and F5, needed in the statement of the solution to
the Z(p)-TMP:

e F, the restriction of M (k; 3¢)) (see (3.8)) to rows and columns in X @), Namely,
it contains the only candidates for the corresponding moments, which are generated by
the atoms in any Z(p)-rm, that are supported on the line y = 0.

e F, is the restriction of A/(k) to the rows and columns in (Y *1) |y X (14)),

So
By B%g’k_l)
BT (B o) )
where we used (4.7) in the equalities. Define real numbers
t' = (n12)" R" s,
(4.10) ' = Boro — (w)" (F1)1 wy,

u" = (w2)" (F)" ws,

4.9) F = Bég’k_l) — <(B(O’k_1))T c) ) Fy =

23

where
w1 = (Beo — Brr1g Brrro — Brazn - Bow—20 — Paw—11 Bov—1,0 — t/)Ta
Wy = (51,1 Bag - Por—11 t,)T-

Note that:

e w, is the difference of the restriction of the column X* of M(k) to the rows X (0+=1)
and a vector that is the restriction of the only (up to the choice of t’) potential column

Y X+ of the extension of M(k) to the rows X (0+-1), if the Z (p)-rm for 3 exists.
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e w, is the restriction to the rows (Y *1 X (©k=1)) of the only (up to the choice of t)
potential column X* of the matrix M (k; B)) (see (3.8)), which is generated by the
atoms lying on zy = 1 if a Z(p)—rm for 3 exists.

e t'is the only candidate for the moment of 22*~! coming from the atoms in any Z(p)—rm,
that are supported on the conic part Z(zy — 1) of Z(p), if one of M (k)7 or N'(k) is not
positive definite. Furthermore, v’ and " are the only two candidates for the moment

of 2?* from the conic part that need to be checked when deciding on the existence of a
Z(p)-rm for (.

Define the sequences

Y(t,u) == (Boo — Br1, Bro — Baiy - - Bak—20 — Bak—1,15 Bar—10 — t, Baro — 1),
Ya(t,u) == (Bozks Bo2k—1,- -5 B0, Boo, Bros - -+ s Bak—2,0, t, 10).

Let F(A) and H(A) be as in (3.9) with 7; := (Y *1 Y X(1h). Define the matrix function
(4.12) G R Sty G(t,u) = Ay +t(EST + EXY)) +uEMY

@.11)

where gmin is as in Remark 3.4.(1). We will prove that A, ; .y, A, ) (see (2.3)) are equal to
H(G(t,u)), F(G(t, u))PT)W,C’l)UX»(O’k), which represent possible restrictions of M (k; 59)) and
M (k; B©) (see (3.8)) to the rows and columns in X®*) and (Y1), X(©F) respectively.

The solution to the Z(p)-TMP is the following.

Theorem 4.1. Let p(x,y) = y(xy — 1) and B := B = (B:,)i ez, itrj<on wWhere k > 3.
Assume the notation above.
Then the following statements are equivalent:
(1) B has a Z(p)-representing measure.

(2) M(k;8) and N (k) are positive semidefinite, the relations (4.2) hold and one of the
following statements holds:

(a) /\//\l(k),f and N (k) are positive definite.
(b) v1(t',u) and ~y2(t',u) are R—representable and (R \ {0})-representable, respec-
tively, for some u € {u’, u"}.
Moreover, assume a Z(p)-representing measure for (3 exists. If the rank inequality

rank (k) < rank M(k; )

holds, then there is a (rank M(k; 8))—atomic Z(p)-representing measure; otherwise there is a
(rank M(k; B) + 1)—atomic one.

Remark 4.2. The implication (2a) = (1) of Theorem 4.1 already follows from [KZ25+, Theo-
rem 8.9], which characterizes all positive polynomials on Z(p), together with [dDS18, Proposi-
tion 2 and Corollary 6], which states that strictly positive Riesz functional implies the existence
of a Z(p)-rm. However, here we present a constructive proof for this implication, which also
shows that a minimal measure is 3k—atomic.

As explained in Remark 3.4, the existence of a Z(p)-rm for [ is equivalent to the existence
of a pair (tg,ug) € R?, such that H (G (to, u)) and F(G (o, uo)) admit a Z(xy — 1)-rm and
R-rm, respectively. Note that the solutions to the Z(zy — 1)-TMP and R-TMP are Theorems
2.5 and 2.8, respectively. For the forms of H (G (o, uo)), F (G (to, uo)) and also in other parts of
the proof of Theorem 4.1, we need the following lemma.
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Lemma 4.3. Assume the notation above. Let T; := (Y ®1 Y X(})) and M(Z,t) be a function
on Si11 X R defined by

(4.13)
T XOR)
0,k—1 k
\T B§3k | bgg)
(1) 2 By by
M(Z,t) = cr t
0,k— 0,k—1
gonyr | (BT (Bag )T 7
@) )t

Assume that there exists ty € R such that M(Bss, to) = 0. Let
B(O’k_l) b(k‘)

B(O,k—l) T B(O,k—l) T . 13 13
(4.14) zy= B, ) By ) (F)' | B™™ by
BT T o

Then the following statements hold:
(1) M(Zo,to) = 0 and Bss — Zy = 0.
(2) M(Zy, t) satisfies the column relations Y X' = X" fori =0,..., k — 1. Hence,
Zy = G(to,up) for some ug € R.
(3) rank N/(k) = rank F; + rank F.
Proof. By the equivalence between (la) and (1c) of Theorem 2.2 used for the pair (M, A) =

(M(Z,ty), F), Lemma 4.3.(1) follows.
Relations (4.1) and definitions of Bo_12, Bk k+1 and Bax 2 imply that the restriction

7_‘1 X (0k)
B 4
(M(Zo.t0)) 7, (7, gomy = (T)" | F Bégfl) b
C to

satisfies the relations Y X! = X?fori = 0,...,k — 1. By Lemma 2.1, the restriction

T X0k)
o B(Qk—l))T (B(O’k_l))T c
(M(Zo,10)) g0 (7 g0y = (XOH)T ( (Bis > Zy |-
T G 0w

also satisfies the relations Y X™! = X? fori = 0,...,k — 1, which proves Lemma 4.3.(2).
Permuting the rows and columns of A/ (k) to the order (7, X(®#~1)), with a permutation
matrix P;, we get

pB0k-1)

F B&AY
(4.15) PN (k) (P)T = ? 2,

(B gt ) Bt
By Theorem 2.2.(2), used for the pair (M, A) = (PN (k)(P,)T, Fy), noticing that
(4.16) (PN (R)(P)T) /2 = BEE = ((BED)T o) = B,
Lemma 4.3.(3) follows. ]
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Remark 4.4. Note that the restriction of M (Bsg, t) to (YD, Y X1E=D FORY jg M (k )7
while to (Y ®:) |y X1k X Ok jt is PN (k) PT with Py as in (4.15).

Using Lemma 4.3, the existence of ¢y € R such that M(Bss, tg) = 0, implies that

(@) = By | (BT ) (3)

(T ) u
X (0,k—1) Xk
20k Ok 1) k b
win _ (X(O,k )T ( 01<; 1) ) bgg) _( ’ )
Xk bé? — ( (b/>T t ) tho — U
X(O,k’—l) Xk
- %
Cwer(on e (Y)
Xk bg? — ( (b/)T t ) 62]@0 — U
where
/ T
(4.18) b= (5k+1,1 Brt2a - ﬁzk—l,l) )
and
y (k.1) X (0k=1) Xk
(YT B Bty b
/
FG W) g zom = (KO0 | (BEFIT (BT ¢ ) ( Zl )
k
X* (b5)7 ()" t) u
(Y_"(k,1)7X"(0,k:—1)) b &
)
(V1) §Ok-1)T A (1)?
- t
k k
X (&) @ ) o«

4.1. Proof of the implication (1) = (2) of Theorem 4.1. We denote by M# (k + 1) the
moment matrix associated to the sequence generated by some finitely atomic Z(p)-rm p for £,
which exists by [Ric57]. The following statements hold:

e The moment matrix M® (k + 1) is psd.

e The extension of M(k)z\ ,yx, with a row and column Y'X * is equal to the matrix A/ (k)

due to the relation Y2X* = Y X*~1 which is satisfied by the moment matrix M ") (k +
1).
e The matrix A/(k) is psd as the restriction of M® (k + 1).

We separate two subcases.

Case 1: M (k)7 and N (k) are positive definite. This is Theorem 4.1.(2a).
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Case 2: At least one of M (k) and N (k) is not positive definite. The restriction M) (k +
1)(71,YX,€) is of the form (see (4.5), (4.8))

R mig ni2
MW (k + Dzyxmy = [ (m2)™ Baro Bara(p)
(7112)T 5%,1(#) ﬁzk—m

Claim 1. By 1 (1) = t/, where ¢’ is as in (4.10).

Proof of Claim 1. By definition of ¢’ and by Lemma 2.3, used for
R mi2 n12
A(x) == | (m12)T Paro X ;
(n12)t x Bok-11

we have A(t') = 0. We separate two cases according to invertibility of N/(k).

Case (i): (k) is invertible. It follows that rank M (k)7 < rank N'(k) and hence by Lemma
2.3, there is no other ¢ € R except ¢’ such that A(t) > 0. Hence, /321 (1) must be equal to ¢'.

Case (ii): NV (k) is singular. The singularity of A/(k) implies, by Lemma 4.3.(3), that
(4.19) at least one of the matrices F and F5 is singular.

Let M(Z,t) be asin (4.13). Note that M (Bss, t) is obtained by permuting rows and columns of
A(t). In particular, M(Bss,t’) = 0. Now let ¢y be any real number such that M (Bss, ty) = 0.
By Lemma 4.3, it follows that

(420) M(Zo, to) =0 and ng — ZO =0

for Z as in (4.14), and

s ()
4.21) Bss — Zy = H(G(to, up)) = to
( * 1y ) *

Now we separate possible cases in (4.19).

Case (ii).(I): F} is singular. Since B33 — 7 is psd by (4.20) and has the form (4.21), it follows,
by [CF91, Theorem 2.4(i1)], that ¢, is uniquely determined by F;. Hence, Claim 1 holds in this
case.

Case (ii).(I): F5 is singular. The restriction of M (Zy, to) to the rows and columns in (’f'l, X ’“)
is a psd Hankel matrix of the form

a ()
(4.22) M(Zo, to) (7 x) = 2 to
( * to ) k
As in the Case (ii).(I), [CF91, Theorem 2.4(ii)] implies that ¢, is uniquely determined by F5.
Hence, Claim 1 holds also in this case. [ |

As explained in the paragraph following the statement of Theorem 4.1, there exist £y, uy € R
such that F(G(to, up)) and H(G(to, up)) admit a Z(zy — 1)-rm and a R—rm, respectively. By
Claim 1, we have that ¢, = t. Note that the right-lower corner of 7 is precisely u” (see (4.10)).
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By definitions (4.10) of v/ and u”, u' is the largest number such that H(G(t',v')) > 0 and u”
is the smallest number such that F(G(t',u”)) > 0. In particular, «” < v’ and uy € [u”,u/].
Note that H(G(t',v')) = A,, ) admits a R-rm by Theorem 2.5, since the last column is in
the span of the previous ones. We have

F(G(t ) = F(G(t uo) + (u' — UO)ESCIJFI))'?
= = F(G(t', uo))p + (v — U(J)Eéii)mkﬂ
t f(g<t/, U/O)),]i

Since F(G(t', uo)) admits a Z(zy — 1)-rm and F(G(t', wo)) pen) gowr) = Ara(tr,u), it follows
that o (#', ug) is (R \ {0})-representable. From now on we separate two cases according to the
invertibility of F5.

Case 2.1: I} is invertible. We separate two cases according to the invertibility of A, ).

Case 2.1.1: A, 4,) = 0. It follows that rank 7 (G(¢', uo)) y 1) gom) = 2k + 1 and hence
rank F(G (', u')) g0 gomy = 2k + 1 by (4.23). By Theorem 2.6, 12(¢, ) is (R \ {0})-
representable.

Case2.1.2: A,y ) = Oand A,y o) # 0. It follows that A,y ., satisfies Theorem 2.6.(3b)
and hence

(4.24) 2k = rank F(G(t', u0)) (¢ gon-vy = rank F(G(t', o)) (po-1.) g0y,

where we also used invertibility of F3 in the first equality. If uy = o/, (4.24) implies that
Yo (t',u') is (R \ {0})-representable. Otherwise v’ > wg and (4.23), (4.24) imply that

rank F(G(t, ul)>(?(1€,1)75{'(0,k)) =2k +1,
which again implies that v (¢, u') is (R \ {0})-representable by Theorem 2.6.

Case 2.2: F; is singular. If v(t',ug) is (R \ {0})-representable, then in particular it is R—
representable. But due to singularity of F5, u” is the only candidate for ug by Theorem 2.5.
Hence, 71 (¢, u") is also R-representable.

This concludes the proof of the implication (1) = (2) of Theorem 4.1.

4.2. Proof of the implication (2) = (1) of Theorem 4.1. We separate two cases according to
the assumptions in (2).

Case 1: (2a) of Theorem 4.1 holds. By Lemma 2.3, used for A(x) = M (B33, x) (as in (4.13)),
there exist £, € R, ¢ = 1, 2, such that (see also Remark 4.4):

M(Bss, t) = 0 foreveryt € [t1, o],
(4.25) rank M(Bss, t,) = rank M (k) = rank N (k) forl = 1,2,

rank M(Bss, t) = rank M(k) + 1 =rank N (k) + 1 fort € (t1,t2).

Let ty € [t1,ts]. By Lemma 4.3.(1), we have M (Zy,ty) > 0, where Z; is as in (4.14). By
Theorem 2.2.(2), used for the pair (M, A) = (M(Zo, to), F2), we have

(426) rank/\/l(ZO, t()) = rank Fg.
By Lemma 4.3.(2),
C(M(Zo, t)) = C(M(Z,, to)(?w,l),y)?(l,k))) = C(M(Z, to)(?(hl),i(o,k—l))),
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which implies that

(427) rank (M(Zo, tO)(f/‘(k,l)JZ(O,k—l))) = rank M(Zo, to)

By Lemma 4.3.(2), it follows that Zy = G(t¢, u(to)) for some u(ty) € R and by Lemma 4.3.(1),
Bss = Zy. Hence, H(Zy) = 0. By (4.16),

F= B = (BRI e) -0,

By the equivalence between (1a) and (1c) of Theorem 2.2, used for the pair (H(G (to, u(to))), F1)
(see (4.17) for the 2 x 2 block decomposition of H (G (to, u(ty))), it follows that

@29 = (- ) - (89 - () 0 (80 - (7)) 20

and

rank Fy, if g =0, k, ifdy =0,
4.29 kH(G(tg, u(t = = .
( ) ran (g( 0 U( 0))) { rankF1 + 1, 1f50 > 0. { k + 17 1f50 > 0.
By Theorem 2.2.(2), used for the pair (M, A) = (M(B337 to), F2), we have
(4.30) rank M (Bss, to) = rank Fy + rank 7 (G((to, u(to)))).

Since rank F, = 2k by the invertibility of V' (k) and rank M(Bss, t,) = 3k, £ = 1,2, by (4.25),
it follows that
4.31) rank H (G (o, u(ty))) =k, (=1,2.

Note that A, ¢,.u(t,)) = H(G(te, u(te))), £ = 1,2, where v (t, u) is as in (4.11). By (4.29) and
(4.31), rankA'yl(tg,u(te))(k — 1) = rank A’h(te,u(tzz))’ (= 1, 2. By Theorem 2.5, ’71(tg,u(tg)),
¢ = 1,2, has a k-atomic R-rm. Note that in F (G (t,, u(t,))), { = 1,2,
(4.32) XF espan{Y* Y1 Y 1L X, X2 XM
Further,
F(G (e, ulte))) o gomy = Avaitrute):

where 75(t, u) is as in (4.11). Since (4.32) holds, the sequences o (s, u(t,)), £ = 1,2, are
R-representable. Since

Fy = Asyu00) (26 = 1) = Ayt u(12)) (2 — 1)

is invertible, by [Zal22b, Proposition 2.5], at least one of o (t1, u(t1)) or Ya(te, u(ts)) is (R '\
{0})-representable. By Lemma 3.1, /3 has a (3k)-atomic Z(p)-rm, which concludes the proof
of the implication (2) = (1) in this case.

Case 2: (2b) of Theorem 4.1 holds. By Lemma 2.3, used for A(x) = M|(Bss,x), for t’ as in
(4.10), we have M (Bs3,t') = 0 and
rank M (Bss, t') = max (rank M(k), rank A/(k)).

By Lemma 4.3, it follows that A, 4wy = F(G(t', u")) pwa) gomy and Ay @y = H (G, u"))
are psd, and

(433) rankM(B33, t/) = rank A'yg(t’,u”) + rank A’yl(t’,u”)'
We separate two subcases according to the invertibility of F5.

Case 2.1: F, is invertible. Note that G(t',u”) is equal to Z, from (4.14) with ¢, = t’. By
definition (4.10), v’ is the largest such that H(G(¢,«')) > 0. Thus, v’ > u”. We have
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F(G(t,u')) = F(G(t,u")) (see the inequality (4.23) above) and
rank F(G(t',u")), ifu' =",

kF(G(t', u')) =
rank F(G(F' ) { rank F(G(#, ")) + 1, ifu > ",

(4.34)

2k, ifu' =",
] 2+ 1, ifu >,

where we used the fact that £ is invertbile in the second equality. Note that
Ay = }—(g(t/au)>(?<k,1),)2(07k))'

If v/ = u”, then by definition of u”, we also have rank A,y .\ (2k — 1) = rank A, ..
Otherwise v’ > u” and rank A, ) = 2k + 1. Since A, vy = H(G(t',u')) satisfies the
equality rank A, .y = rank A, v .,y(k — 1) by definition of «//, it admits a (rank A, .))—
atomic R-rm by Theorem 2.5. Using (4.33) and in the case v’/ > u” also rank equalities
rank A,y = rank A,y ) — 1 (by (4.34)) and rank A, (v ) = rank A, .y + 1 (by
definition of u'), it follows that § admits a (rank M (Bss, t'))—atomic Z(p)-rm. This proves the
implication (2) = (1) in this case.

Case 2.2: F; is singular. Note that A, = F(G(t',v"))pwn gom) satisfies the equal-
ity rank A,y w1 (2k — 1) = rank A, by definition of u”. Moreover, 7, (', u") ad-
mits a (rank A, ) )-atomic R-rm. Since also rank M(Bs3,t") = rank F(G(t',u")) +
rank A, (v ), it follows that 3 admits a (rank M (Bss,t'))-atomic Z(p)-rm.

This concludes the proof of the implication (2) = (1) of Theorem 4.1. Note also that the
moreover part of the theorem follows from the proof of this implication.

4.3. Example. ' The sequence /3 is said to be p—purely pure, if it is p—pure and also the matrix
N (k) is invertible. By Theorem 4.1.(2a), a p—purely pure sequence (3, such that M (k; ) and
N (k) are psd, admits a Z(p)-rm. The following example shows that, in contrary to the TMP
on the union of three parallel lines [Zal22a], in this hyperbolic type case, a p—pure sequence [3,
such that M(k; 3) and N (k) are psd, does not necessarily admit a Z(p)-rm.

Let 3 be a bivariate degree 6 sequence given by

Boo = 1,
Bro =3, o1 =0
ﬁQO = 37 Bll = %7 ﬁOQ = %7
Bz =35, Ba1 =0, B12 = 0, o3 = 0,
540 = 57 /831 = 27 B22 = %7 613 = %7 ﬁ04 = é_;ia
550 = @7 ﬁ41 = 07 532 = Oa 523 = Oa ﬂ14 = 07 605 = 07
2
Beo = %, Bs1 = %7 Baa = 2, B33 = %7 Baa = 1—567 Bis = 57 Pos = %-
We will prove below that 3 does not have a R%-rm. It is easy to check that M(3) is psd

and satisfies only one column relation Y2X = Y, while the matrix A/(3) is psd and has only
one column relation Y X3 = 5Y X — 4Y2. The sequences 7 (t,u) and ~,(t, u) (see (4.11)) are

I'The Mathematica file with numerical computations can be found on the link https://github.com/
ZalarA/TMP_cubic_reducible.
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equal to
/1379 49 69 231
71(t7 u) - <§7 Za Za 57 77 ? —t, Ta —11),
8 17 5 1 5 17

72(1:7 U) = <ﬁ7 07 6_4’ 07 Ea Oa 57 07 Za 07 Z? ta )
Computing t', v/, u” (see (4.10)) we get t’ = 0, v/ = 2 and v’ = %. Since A, . sat-
isfies rank A,/ vy = 6 and rank A,y ./)(6) = rank A, .,[6] = 5, Theorem 2.6 implies
that ,(¢', u') is not (R \ {0})-representable. Since A, . satisfies rank A, ,») = 5 and
rank A, ) [6] = 4, Theorem 2.6 implies that v, (¢, u”) is not (R \ {0})-representable. So
neither of 5 (t', u') or v (', u”) is (R\ {0} )-representable, which implies, by Theorem 4.1, that
(3 does not admit a Z(p)-rm.

5. HYPERBOLIC TYPE 2 RELATION: p(z,y) = y(z + y — zy)

In this section we solve constructively the Z(p)-TMP for the sequence 8 = {f; ; }i jez, i+j<or
of degree 2k, k > 3, where p(z, y) is as in the title of the section. The main results are Theorem
5.2, which characterizes concrete numerical conditions for the existence of a Z(p)-rm for
and Theorem 5.6, which characterizes the number of atoms needed in a minimal Z(p)-rm. A
numerical example demonstrating the main results is presented in Subsection 5.3.

Remark 5.1. In the classification from [YZ24, Proposition 3.1], in the hyperbolic type 2 rela-
tion, c(z,y) is equal to = + y + azy, a € R\ {0}. However, after applying an affine linear
transformation (see Subsection 2.2) ¢(x,y) = (—ax, —ay) we can assume that a = —1.

5.1. Existence of a representing measure. Assume the notation from Section 3. If # admits
a Z(p)-TMP, then M (k; /) must satisfy the relations

(5.1) Y2H X = Yy X L Y2 fori,j € Z suchthati+ j < k — 3.
On the level of moments the relations (5.2) mean that
(5.2) Bisrj+2 = Bisrj+ + By, fori,j € Zy suchthati+j <2k — 3.

In the presence of all column relations (5.2), the column space C(M(k; §)) is spanned by the
columns in the tuple

(5.3) T =Yl Y YX -V, YX?—YX,. . . YXFl_yxk? X0k

Y (k1) Ts

where X (1) .= (X* X1 . X7),0<i<j<kand X°:= 1. Let

P be a permutation matrix such that moment matrix M (k) := PM(k; B)PT has rows

and columns indexed in the order 7 ,C \T.

L;et M (k)4 be the restriction of the moment matrix M (k) to the rows and columns in the tuple
T
y (k1) T, XOR
(YD) Bn By, B
M(k)7 = (7_;)T (Bi2)" By Bas
(X(O’k))T <313)T (323)T Bs3
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y (k1) 75 XOk-1)  xk

(Y )T By By BYFY by

(T2)" (Bio)” By  BRTY o

(XOF=T L (BEEINT (BT (BEY) b

X* BT BT ()T Bar
?(k,l) 712 ] X’(l,kfl) Xk
(Y )T By By by By Y by
(72)" (Bi2)" Ba by By Y by
= 1 BT BT o (e T Bro
(XA L (BT (BEM)T s BETY bl
x* BT BT B 05T Bao

Let Mv(k, ) be as in (3.6) with 7; := (Y1) 7,) and define
(5.4) Apin 1= A12(A22)T(A12)T and A\min = Apin + U(Eﬁ:f + Elgflll))’

where 1) := (Amin)2x — (Amin)16+1- See Remark 3.4 for the explanation of these definitions.
Let F(A) and H(A) be as in (3.9). Define the matrix function

(5.5) G:[0,00) = Skr1s  G(tu) = Ay + BN 1 uE)

Next we define the sequences 71 (t, u), 72 (t, u):

1(t,u) == (50,0 — (Amin)11 — ¢, 810 — Big + Pos P20 — Bog + By - -,
Bok—1.0 = Par—11 + Bar—21, Pok0 — (Amin)k1.441 — 1),

72(’5, 11) = ((Amin)1,1 +t, 51,1 - 50,1, 52,1 - 51,1, ce ,5%—1,1 - 5%—2,17
(Amin)k+1,k4+1 + 11)-

(5.6)

Observe that

5.7
H(G(t,u)) =
] {Lk-1) X+
1 Boo — (Amin)1,1 — t (b%’fé_l))T — (bS)T Bro — Bra + Br—1,1
_ 2 — 1,k—1 0 1,k—1 1,k—1 1,k—1 k
= (XET bga;o )~ bé3) B?()a )~ B§3 : bi(’>3;k ) bgg)
k (Lk=1)\T (E)\T
X Bro = Bea+ Be-11 (bygy )" — (bag)” Boko — (Amin)krihs1 — 1
=A

1 (tvu)
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and
F(G(t, 1)) gan gow,
y (k.1) ] X (LE=1) Xk
(YT Bu by By Y by
o BT Am)iatt O Bra — Broia
(5.8) (XCE=T L (BT b By Y bS5
x* BT Bra = Brorn (055)T  (Amin)isiass +u

YD ¢ (0k)
(?(k’l))T ( Bn B3 >
(XONT \ (BT A '
By Lemmas 3.1-3.3 and Remark 3.4, the existence of a Z(p)—rm for 3 is equivalent to:
M (k; B) = 0, the relations (5.2) hold and
(5.9) there exists (fo, @ig) € R? such that F(G (%o, @ip)) and H.(G (o, @)
admit a Z(z + y — xy)-rm and a R—rm, respectively.

We also write

7-[(A’Zl\min) -
Ji X(l,k—l) Xk
1 B0,0 - (Amin>1,1 (b:%’;lg_l))T - (bgg))T ﬁk,() - (Amin)k-l-l,l
_ (k- 1,k—1 0 1,k—1 1,k—1 1,k—1 k
= X1 bz(as;o )~ bé:a) B?():z )~ B§3 ) bi(’>3;k ) — bgg)
(5.10) X* Bro — (Amin)k+1,1 (béé’;’Z‘l))T - (bé?)T B0 — (Amin)kt1,5+1
1 X*’(l,kfl) Xk
1 50,0 — (Arnin)l,l <h12>T Bk,(] — (Amin)kJrl,l
= (X(A)T hi2 Hy, has ;
X* Bro — (Amin)k+11 (h2s)T Boko — (Amin)kt1 k41
and
(5.11)

K = H(A\min)/HQQ

— (A — (Apin hio)T
= (on o s i)~ () ) i 1
Boo — (Amin)11 — (h12)" (Ha)'hia  Bro — (Amin)2k — (Pa2)" (Haz) has
= (ﬁk,o — (Amin)ax — (ha3)T(Hoz) hia  Baro — (Amin)kt1 ki1 — (h12)T(H22)Th12> .
Let
tmax 1= 00,0 — (Amin)1,1 — (h12)" (Haz) haa,
(5.12) Umax = PBoko — (Amin) k1501 — (712)" (Haz) haa,
ki2 = Bro — (Amin)2k — (h2s)" (Haz) hia.
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Note that
_ tmax k12 _ . 0 n
(5.13) K= (ku umax> = H(Amin)/ Has + (77 0) .

Write
B:={Y* Yy Y X X2 XM
We say the matrix A € Sy satisfies the property (Hyp) if F(A) is positive semidefinite and
one of the following holds:

(5.14)  rank F(A) = rank F(A)p (xsy = rank F(A)p yry or rank F(A) =2k +1.

(H;/;)l (Hyp),

The solution to the Z(p)-TMP is the following.
Theorem 5.2. Let p(x,y) = y(x +y — xy) and B := ) = {8, ;}i jez, ivj<or, where k > 3.
Assume the notation above. Then the following statements are equivalent:
(1) 5 has a Z(p)-representing measure.
(2) M(k; B) is positive semidefinite, the relations (5.2) hold and there exists a pair (t, )

such that 7, (t, i) is R—representable and A ) satisfies (Hyp), where:
(a) Ifumax - O,

Y (b,

() € {(0,0), (tmax, 0)}.
(b) Ifumax > 0 and k12 =0,
2

(i,a) e {(0,0), ("—umx) (tmax,umax)} -

umax

(C) Ifumax > 0 and k12 7£ O,

(f, u) € {(t_mz, u_mz), (t+,7727 u+’,72)7 (tmax —

|k12|\/tmax u B |k12|\/ umax)
/—Umax ) max /—tmax ]

where writing B := k:fQ — tmaxUmax — 1> we have

—B & /B2 — 4t o tmax)? n?
and typ2 = .
2l max U+ 52

u:t,n2 =

Before we prove Theorem 5.2 we need few lemmas. Their statements and the proofs coincide
verbatim with [YZ24, Theorem 6.1, Claims 1-3], but we state them for easier readability.

Let
Ry ={(t,u) e R*: F(G(t,u)) =0} and R, = {(t,u) € R*: H(G(t,u)) = 0}.

Claims 1 and 2 below describe ranks of F(G (¢, u)) and H(G (¢, u)) for various choices of (¢, u)
in R; and Rs.

Lemma 5.3 ([YZ24, Theorem 6.1, Claim 1]). Assume that M (k;B) = 0. Then
(5.15) Ry ={(t,u) e R*: t > 0,u > 0,tu > n’}.
If (t,u) € Ry, we have

rank F(Apin), fn=t=u=0,

rank F(Amm) + 1, if(n=1t=0,u>0)or
(n=u=0,t>0)or(n#0,tu=n?),
rank F(Apin) + 2, if tu > n?.

(5.16) rank F(G(t,u)) =
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Define the matrix function

(6 w) = (Gt W)/ Hap = H(Ausn) [ Hoz — (3 3)

B t 0\  [tmax—t k12
_K_<0 U)_< 1{512 Umax_u).

Lemma 5.4 ([YZ24, Theorem 6.1, Claim 2]). Assume that M (k;B) = 0. Then
Ry = {(t,u) € R*: K(t,u) = 0}
= {(t, u) € R*: t < i, ¥ < Umaxes (fmax — £) (Umax — 1) > k:fQ}
If (t,u) € Ry, we have
(5.19)

(5.17)

(5.18)

rank H227 l:fk12 = O,t == tmax; U = Umax,
rank H(G(t,u)) = ¢ rank Hop + 1, if (tmax — ) (Umax — ©) = kiy, (t # tmax OF U # Upax ),
rank Hog + 2, if (tmax — ) (Umax — u) > k2.

Lemma 5.5 ([YZ24, Theorem 6.1, Claim 3]). If (t,u) € Ry N (Ry)?, then

tu S (\/ tmaxumax - Sign(k12)k12)2 = Pmax-
The equality is achieved if:
e 1o = 0, only in the point (t,u) = (tmax, Umax)-

: . _ k12 Vtmax |k12‘\/um X
o k1o # 0, only in point (t,, .., Upyoe) = (tmax — Hﬁa Umax — Twa)

Moreover, if k1o # 0, then for every p € [0, Dmax] there exists a point (t, 1) € Ro N (R,)? such
that ti = p and (tmax — ) (Umax — @) = ki,

Proof of Theorem 5.2. The implication (2) = (1) is trivial, since (2) immediately implies (5.9).
It remains to prove the implication (1) = (2). By (5.9), there exists (%o, @), such that (%o, o)
is R-representable and A, ;, . satisfies (Hyp). We separate two cases according to Hay (see
(5.10)) being positive definite or not.

Case 1: Hs, is not positive definite. By Theorem 2.5, it follows that the only option for % is
Umax- By Lemma 5.4, we have k12 = 0. Applying Theorem 2.5 again, for any ¢ € [0, t;ax], the
sequence 71 (f, umay ) is R-representable. We separate two cases according to the value of .

Case 1.1: uy,, = 0. By Lemma 5.3, = 0. This and the definition of A,,;;, implies that for any
t € [0, tmax)> rank F(G(t,0))p (x+y = rank F(G(t,0)). If £y > 0, then

rank F(Ap) + 1 = rank F(G(ty,0)) = rank F(G (%o, 0))s\ vk}
(5.20) (5.16)

< rank f(Amin)B\{yk} + 1 <rank f(Amin) + 17

where in the second equality the assumption that A, ;, o) satisfies (Hyp) was used. It follows
that all inequalities in (5.20) must be equalities. In particular, we have rank F(Awin) g\ (y+} =
rank F(Amin). It follows that A, = A, 0,0 satisfies (Hyp) and (0, 0) is a good choice for
(t, 1) in Theorem 5.2.(2).
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Case 1.2: . > 0. By Lemma 5.3, £ty > n%. If n # 0, then £y > 0. If » = 0, then

2k +1 > rank F(Apin) + 1 = rank F(G(0,0)) +1_= rank F(G(0, tmax))
(5.16)

> rank]:(g((),umax))g\{xk}.

Umax >0

Hence, (0, umax) cannot satisfy (Hyp) and thus #, > 0. We separate two cases according to the
product #ot,,.,, Which must be at least 1, by Lemma 5.3.

Case 1.2.1: (. = 1> In this case (ﬁix, Umax ) 18 @ good choice for (£, @) in Theorem 5.2.(2).
Case 1.2.2: tyun., > n°. We separate two cases according to the rank of F(G (%o, tmax))-

Case 1.2.2.1: rank F (G (to, tmax)) = 2k-+1. The inequality F (G (to, tmax)) = F (G (tmaxs Umax) )
implies that rank F (G (¢max, Umax)) = 2k + 1 and thus (fax, Umax) satisfies (Hyp). Therefore
(tmax, Umax) 1S a good choice for (£, @) in Theorem 5.2.(2).

Case 1.2.2.2: rank F(G(fo, Umax)) < 2k + 1. Then

rank F(Amin) +2_ = rank F(G(fo, Umax)) = rank F (G (to, Umax) ) B\[Y*}
(5.21) (5.16)

< rank F(Amin)p\vry + 2 < rank F(Apin) + 2,
where in the second equality we used the assumption that A,
that all inequalities in (5.21) must be equalities. Since

f(g<£0a umax))B\{Y’“} = F(g(tmaxaumax))B\{Yk}7

satisfies (Hyp). It follows

EOfUImax)

it follows that
rank F (G (fmax, Umax)) = rank F (Amin) + 2 = rank F (G (tmax; Umax) ) B\ {y+}-

Similarly, rank F (G (tmax, Umax)) = rank F (G (fmax, Umax)) s\ {x#1- Therefore (fimax, Umax) sat-
isfies (Hyp) and is a good choice for (#, %) in Theorem 5.2.(2).

Case 2: H, is positive definite. We separate three cases according to the value of the pair
(k12,m).

Case 2.1: k15 = n = 0. By definition of ¢,,,x, Umax and Theorem 2.5, v; (¢, u) is R-representable
for every

(5.22) (t,u) € [0, tmax) X [0, Umax] and (t,u) = (tmax, Umax)-
We separate two cases acccording to the rank of F (A, )-
Case 2.1.1: rank F(Any,) < 2k — 1. If tyae = 0, by Lemma 5.3, rank F(G(t, @) <

rank 7 (Amin) + 2. Since (%, @) satisfies (Hyp) and rank F(Anym) < 2k — 1, it follows that
(to, 1p) satisfies (Hyp);. We separate four options depending on the sign of ¢y and 1.

Case 2.1.1.1: ; = 7y = 0. This means (0,0) is a good choice for (#, @) in Theorem 5.2.(2).
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Case 2.1.1.2: t, > 0 and @ > 0. Then
rank F(Ampin) + 2 = rank F(G (o, 1)) = rank F (G (to, o)) B\ [y}
(5.23) (5.16)
< rank F(Amin) g\ yry + 2 < rank F(Apin) + 2,
where in the second equality we used the assumption that A, ;, 5, satisfies (Hyp). It follows
that all inequalities in (5.23) must be equalities. Since

F(G(to, 1)) pyry = F(G(tmax: Umax)) B\ [y5)
it follows that
rank F (G (fmax, Umax)) = rank F (Amin) + 2 = rank F (G (tmax; Umax) ) B\ {y+}-
Similarly,
rank F (G (fmax, Umax)) = rank F (G (tmax, Umax)) B\ {x*} -
Therefore (#max, Umax) Satisfies (Hyp); and is a good choice for (£, @) in Theorem 5.2.(2).

Case 2.1.1.3: {; = 0 and 7 > 0. Then
rank f(Q(O, O))B\{X’“} = rank .7-"(9(0, &0))3\{Xk} < rank ]-"(Q(O, fL())),

uo>0
where in the equality we used the observation @, occurs only in the column X*. Hence,
~2(0, @) cannot satisfy (Hyp). So this case does not occur.

Case 2.1.1.4: t, > 0 and 7y = 0. Then
rank F(Apin) +1_=_ rank F(G(fo,0)) = rank F(G(fo,0))s\ (vr)
(5.24) (5.16)
< rank F(Amin) g\ vty + 1 < rank F(Apm) + 1,

where in the second equality we used the assumption that A, ;, () satisfies (Hyp). It follows that
all inequalities in (5.24) must be equalities. In particular, rank F (A, ) = rank F (Amin)B\{Yk}.
Similarly, rank F(Amin) = rank F(Awin) g\ (x#3. Therefore (0,0) satisfies (Hyp); and is a good
choice for (£, @) in Theorem 5.2.(2).

Case 2.1.2: rank F(A.,in) = 2k — 1. The reasoning in the case to = @iy = 0 is the same as in
Case 2.1.1.1, in the case ty = 0 and @y > 0 the same as in Case 2.1.1.3, and in the case t, > 0
and 7o = 0 the same as in Case 2.1.1.4 above. Assume that £, > 0 and @ > 0. By Lemma 5.3,
rank F (G (tmax, Umax)) = 2k + 1 and A, (t;max, Umax) satisfies (Hyp). Together with (5.22), it
follows that (fiax, Umax) is a good choice for (£, @) in Theorem 5.2.(2).

Case 2.2: ki = 0 and n # 0. Since n 7é 0, it follows that ., > 0 (using Lemma 5.3).

But then as in Case 1.2 above, one of ( umax) (tmax, Umax) is a good choice for (¢, ) in
Theorem 5.2.(2).

Case 2.3: k15 # 0 and 1 # 0. Let py,.x be as in Lemma 5.5. We separete two cases according
to the value of P .x.

Case 2.3.1: pyax = 1. In this case R1 N Ra = {(tpmacs Upmar) }» Where (¢, ., ) is as in
Lemma 5.5. and thus (¢, , 4p,...) is the only candidate for (o, i) in (5.9).
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Case 2.3.2: p.. > 1°. We separate two cases depending on rank F (A, ).

Case 2.3.2.1: rank F(Apm) = 2k — 1. Then by Lemma 5.3, rank F(G(t',v')) = 2k + 1 for
every (t',u') such that ¢ > 0,4’ > 0, v’ > n* and hence A., (¥, ) satisfies (Hyp)s. By
Lemma 5.5, (t',u') equal to (t,,.., Up...) satisfies (Hyp)s, and (¥, u) is R-representable,
since A, (r.u (k) = 0 (by ¢’ < timax). Hence, this (¢, u') is a good choice for (£, @) in Theorem
5.2.(2).

Case 2.3.2.2: rank F(Ani) < 2k — 1. By Lemma 5.3, rank F(G(t',v')) < 2k + 1 for every
(t,u') € Ry and hence A.,(t',«') cannot satisfy (Hyp), for any (¢',u') € Rq. Thus (o, Go)
satisfies (Hyp);. We have

t -
rank F(Apin) + rank (7;) f?) = rank F(G(to, o))
(5.16)
= rank ]:(g(l?o, ag))g\{yk}
(5.25) B
< .
< rank F(Amin)p\y+y + rank (77 ﬁ())
< rank F(Apm) 4 rank <t0 ﬁ) ,
- Uo
where in the second equality we used the assumption that A, 7, )
that equalities hold for all inequalities in (5.25). In particular,

satisfies (Hyp). It follows

(5.26) rank F(Amin) = rank F(Amin) g\ fy+}-

Similarly,

(5.27) rank F(Amin) = rank F(Amin) g\ [x+3-
By Lemma 5.5, there is a point (,%) € Ry N (R..)2, such that

(5.28) ti=n* and (tmax — 1) (Umax — U) = kiy.

Moreover, there are exactly two such points (%, %) satisfying (5.28):
2

(tmax - 77_> <umax - U) = k%Q = (tmaxu - nZ)(umaX - U) = k%zu
u
= tmaxu2 + (kfz - tmaxumax - 7]2>U + 772umax =0
—B % \/B? — 4t axUmax)?
2tmaX ’

where B = k2, — tpaxtimax — 0°. Clearly, tpaxtimax > ki, and since n? > 0, it follows that
B < 0. A short computation shows that

(529) 0 - 32 - 4tmaxumaxn2 = 772 S {( V tmax V Umax + k12)27 (\/ tmax V Umax — k12)2}-

We have

& Urg2 =

Pmax = (\/ tmax\/ Umax — ’k12‘)2 < (V tmax\/ Umax + ‘k12’>2'

Since 7% < Puax, (5.29) implies that B? — 4t . Umaxn)* # 0. Therefore

0< U_ p2 < Ug p2.
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Letty 2 = —7°_ Note that
k] uivTIZ
rank F(G(te 2, s p2))pyyxry (= Tank F(Amin)py(xsy + 1 = rank F(G(Amin)) + 1
ty ,2>0 (5.27)
= rank .F(g(timz, ui7n2)).
(5.16)

So A, L2 ) satisfies (Hyp); if and only if

(5.30) rank F(G(tq 2, ts2)) g\ vy = rank F(G(ty 2, ug 2)).
Since ¢4 2 > 0 and uy ,2 > 0, it follows that
rank ./T'-(g(t:t’nz, u:t,UQ))B\{Xk,Yk} > rank F(g(timz?Ui7n2))3\{lyxk7yk},
rank f(g(tiﬁp, ui’nZ))B\{Lyk} > rank f(g(tim% Uim?))lg\{]vxk’yk}.
If

(531) rank F(g(ti,n% ui7n2>>lg\{yk} = rank ]:.(g(tim% ui,n2))3\{1’xk7yk} + 2,
then (5.30) holds. Indeed, in this case

.|.
(Amin) (1,501 = (F(Amin) 1x0y,8 01,50+ ) (F(Amin) sy f,x0v%3) | (F(Amin) B\ (7,55 vEy(1,.X5)) »
whence
rank f(g(timz, ui,nQ))B\{yk} = rank .F(Amin)lg\{yk} +1
= rank F(Amin) +1_= rank F(G(ty 2, us 2)).
(5.26) (5.16)
Write

(5.32) Ty = {YF L vk2 Y, X, X2 XM
Assume now that (5.31) does not hold for both (¢_,2,u_,2) and (¢, ,2,uy ,2). Therefore there
are relations
(5.33)
F(G(ty s ur2))s 1y + ar F(G(ty g2, Ut 2))B (x4} + F(G(ts 2, up )50+ = 0,
F(GE s u2))B g1y + - F(G(E 2yt 2))p gy + F(G(E 2, u2))B 150~ =0,
for some ay,a_ € R, vy, v € R*Vin F(G(ty 2, up2)) and F(G(E_ 2, u_,2)), respec-
tively. Since F(G(ty 2, us,2)) = F(Amin) = 0, the relations (5.33) must hold also in
F(Amin)- Subtracting these relations we get
(5.34) (ay — a_ ) F(Amin)g rxey + F(Amin)s,7 (v —v-) = 0.

If oy = a_, thenv, —v_ € ker F(Apmin)s,7; and hence F(Apmin) 5,70+ = F (Amin).730—. But
observing the first entries of the left hand side vectors in (5.33), this cannot hold since

‘F(g(t-i-,nQ? u-l—,n?)){l} =ty # b2 = *F(g(t—ﬂ72v U—JIQ)){]}'
So ay # a_ and from (5.34) it follows that in F (A, ), the column X* is linearly dependent

from the columns in 73. Using one of the relations (5.33) for F (A, ), the same holds for the
column /. But then

(5.35) rank F(G(ts 2, Usp2))pgyry = 1ank F(Amin) gy yry + 1 = rank F(G(t4 2, s ),
and (5.30) holds for both points (¢4 ,2,uy ,2). Note that v (ty 2, uy ,2) is R-representable,

since Ay, o, 7,2)(]{3) = 0 (by ty,2 < tmax). So at least one of (¢4 ,2,uy ,2) is a good choice
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for (to, @) in (5.9).

This concludes the proof of the implication (1) = (2). [

5.2. Cardinality of a minimal representing measure. It remains to characterize the cardinal-
ity of a minimal Z(p)-rm for 3 in Theorem 5.2.

Let T, :={Y* .. Y, X,... X1} T = (Y®D XOE-D)and T = {1, X*} U T;. Write
‘F(g(ta u))(l,’ﬁ,X’f,(ﬁ)

~ —
1 T4 XF C\7Ts
(536) 1 (Amin>1,1 +t (f12)T (Amin)Q,k (f14)T
_ ()" fi2 Fy f23 Fy
X* (Amin)2x (fo3)'  (Amin)kripsr +u (f3a)T
—
C\Ts fia (Fog)T f3a Fy

Note that

T (ONT (ON\T Bu B%k_l)
fia = ((b13) (bs3) ) o (Amin)ogk = Bea — Bre—11,  Fao =

(Bis" )" Byt

The following theorem characterizes the cardinality of a minimal measure in case [ admits a
Z(p)—rm.

Theorem 5.6. Let p(x,y) = y(x +y — xy) and 5 = (B; )i ez, i+j<or Where k > 3, admits a
Z(p)-representing measure. Assume the notation above. The following statements hold:

(1) There exists at most (rank M (k; B) + 2)—atomic Z(p)—representing measure.

(2) There is no Z(p)—representing measure with less than rank M (k; B) + 2 atoms if and
only if n # 0, kig # 0, rank H(Awin) = k and Ay, does not satisfy (Hyp).

(3) There does not exist a (rank M (k; B))—atomic Z(p)-representing measure if and only
if any of the following holds:
(a) Foy = 0, Hoy # 0, rank H(Apin) = rank Hoy + 1 and tyaxtimax > 1° > 0.
(b) Fy = 0, Hys > 0 and one of the following holds:
(i) n =0, k12 # 0, rank H(Amin) = k + 1 and Apnin does not satisfy (Hyp);.
(i) n # 0, k1o # 0, Awin satisfies (Hyp), and rank H(Apin) = k.
(iii) n # 0, k12 # 0 and A, does not satisfy (Hyp);.

In particular, a p—pure sequence (3 with a measure admits at most (3k + 1)—atomic Z(p)-
representing measure.

Proof. By Lemma 3.3.(4),

(5.37) rank /\A/l/(k, B) = rank F(Ampin) + rank H(Amin)-

By (5.9), there exists a pair (¢, 1) € R? such that F(G(o, o)) and H(G(to, o)) admit a
Z(x+y — zy)-rm and a R-rm, respectively. In the proof we will separate the following cases:

e Case 1: F5, is not pd.

e Case 2: I, is pd, H»; is not pd and v, = 0.
e Case 3: Iy, is pd, Hoys is not pd and u,,,, > 0.
e Case 4: I, and H, are pd, n = 0.
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e Case 5: Fy; and Hy, are pd, 1 # 0.

Case 1: F), is not pd. Note that the matrix A, ) can satisfy (Hyp) only if it satisfies (Hyp);:
(5.38) rank F (A, (u)) = rank F (A @u) s xr) = rank F (A, )y vy

Since Fy, is not pd, F(G (o, iio)) satisfies a nontrivial column relation of the form
k k—1
(5.39) Z §;Y' + Z ijj =0 for some 9;,¢; € R, not all zero.
i=1 j=1

Since F(G (%o, @o)) satisfies the column relation XY = X + Y, it follows by recursive genera-
tion, that its extensions, generated by a representing measure, must satisfy column relations

V2X=Y(YX)=Y(X+Y)=Y>+YX=Y?+Y + X,

VX =Y(V?X)=Y(Y*+Y+X) =Y+ Y 4+ YX =Y + Y’ + YV + X,
(5.40)

ViX=Y'+Y"'4+. . . +Y+X fori>1.
Multiplying (5.39) with X and using (5.40), we get a column relation

(5.41) zk: (i@)yi + (ijéj)X + zk:gj_lxj —0,
=1 j=i j=1 j=2

1=

We separate two subcases according to the values of §; and Z?:l 0;.

Case 1.1: £; # O for some j or Zle §; # 0. Multiplying (5.39) with X* for ¢ large enough, we
will eventually get a column relation (5.41) with a nonzero coefficient at X*. But this means
X% must be in the span of the columns Y*, ..., Y, X ..., X*" 1 In particular, i, = 0. By
(5.15), this implies that 7 = 0 and thus A\min = Anin. Moreover, since 72(50, 0) satisfies (Hyp),
it follows that ,(0,0) also satisfies (Hyp). The R-representability of 7, (%o, 0) implies that
~1(0,0) is also R-representable. So F(Apin) and H(Apmi,) admita Z(z+y — zy)-rm and a R—-
rm, respectively. By Theorem 2.5 and Corollary 2.10, there also exist a (rank F (A, ) )—atomic
and a (rank (A, ) )-atomic rms. By (5.37), 3 has a (rank M (k; 3))—atomic Z(p)-rm.

Case 1.2: ¢, = 0 for all j and Z?Zl 0; = 0. (5.41) implies that there is a column rela-
tion of the form 3%, Y = 0 in F(G(fy, @g)) for some 5§2) € R, not all zero (observe

=2 "1

that the coefficients at Y and X in (5.41) are both Z?Zl d;). Mutliplying Zf:g 5§2)Yi =0
with X we get a relation of the form (5.41) with {; = 0 for all j and 6](-2) instead of 9;. If

25:1 6](2) = 25:2 6](2) # 0, then the coefficient at X is nonzero and we can proceed as in

Case 1.1 above. Otherwise the coefficients at X, Y and Y2 are all zero. Hence, we got a new
column relation of the form Zf:?) 5§3)Yi = 0in F(G(ty, Uig)) for some 52@ € R, not all zero.
Proceeding with this procedure inductively we either eventually come into Case 1.1 or end with
a relation of the form aY? = 0, a # 0, i > 0, which holds in F(G (%o, @)). But this means all
atoms in the conic part of Z(p) also lie on the line y = 0. So a Z(p)-rm for 3 is a Z(y)—rm for

3 and, by Theorem 2.5, 3 has a (rank M (k; 3))-atomic Z(p)—rm.
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Case 2: Fj, is pd, Hys is not pd and u,,,, = 0. Since uy., = 0, it follows that iy = 0. By
(5.15), this implies that n = 0. Analogously as in Case 1.1 above we conclude that 1 (0, 0) sat-

isfies (Hyp) and v, (0, 0) is R-representable, which implies the existence of a (rank M (k; 3))-
atomic Z(p)—rm for 3.

Case 3: F, is pd, Hy is not pd, uy,., > 0. Since Hs, is not pd, Theorem 2.5 implies that
Uy = Umax- But then (5.18) implies that k1o = 0. We separate two subcases according to the
value of 7.

Case 3.1: 1) = 0. Since Y5(fo, Umax) Satisfies (Hyp) and oy > 0, it follows that to > 0. But
then also Yo (fmax, Umax) satisfies (Hyp). Since 0 < £y < tyay, (5.16) implies that

(5.42) rank F (G (tmax, Umax)) = rank F(Ap,) + 2.

Moreover, 7 (tmax, Umax ) 1S also R-representable and (5.19) implies that

(5.43)  rank H(G (tmax, Umax)) = rank Hyy = rank H(G(0,0)) — 2 = rank H(Amin) — 2.
By (5.37), (5.42) and (5.43), there exists a (rank M (k; 3))-atomic Z(p)—rm for 3.

Case 3.2: 1 # 0. Since n # 0, it follows, by (5.15), that £, > 0 and hence t,.x > 0. Since
k1o = 0, (5.18) implies that H (G (fmax, Umax)) 1S psd and 1 (tmax, Umax) 1S R-representable.
Moreover, since A, g, ... satisfies (Hyp), also A,,( satisfies (Hyp). Indeed, either
o = tmax OF Tg < tmax. In the latter case, maxtmax > foUmax > 0% and (fmax, Umax) Satisfies
(Hyp)2. Hence, (fmax, Umax ) is a good choice for (fg, @) in (5.9). By (5.19), tmayx > 0, Upmax > 0
and k12 = 0, imply that

rank 7(G(0,0)) = rank H(Amywm) = rank Hayy + 2.

tmaxyumax)

We have
rank H (G (tmax, Umax)) + rank F (G (tmax, Umax)) =

(5.44) B rank Hyy + rank F(Apm) + 1, if tnaUmax = 7%,
" | rank Hy + rank F(Amin) + 2, if taUmax > 1%,
where we used (5.16) and (5.19) in the equality. By (5.13),

H(Aumin) [ Hap = (til;x u;Z) 7 (8 8) .

Hence, rank H(Aun) = rank Hoy + i for some i € {1,2}. We separate these two cases.
Case 3.2.1: rank H(Anin) = rank Hay + 2. We have
rank H(G (tmax, Umax)) + rank F (G (tmax, Umax))
rank M(k‘, B) =1, if tpaxUmax = 17,
B { rank M(k, B), if tmaxUmax > 17,

where we used (5.44) and (5.37) in the equality. The case ¢maxtmax = n? cannot happen, since
this would imply 3 has a (rank M (k; §) — 1)—atomic Z(p)-rm, which is not possible. Hence,
there is a (rank M (k; 3))—atomic Z(p)-rm for 3.

Case 3.2.2: rank H(Amin) = rank Hay + 1. In this case we have
rank H (G (tmax, Umax)) + rank F (G (tmax, Umax))
(5.45) { rank M (k; B),  if tomaxtmax = 112,

S| rank M(k; 8) + 1, if bmactimax > 7%

(5.37)
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where we used (5.16) and (5.19) in the equality. Hence, $ has a (rank M (k; 8))—atomic rm
if tnaxUmax = 17 and (rank M (k; 8) + 1)—atomic rm if ¢, Umax > 1% It Temains to show
that in the case tpaxUmax > 7%, there does not exist a (rank M (k; 8))—atomic rm. Since Hyo
is not pd and up,.x > 0, if H(G(¢',u')) has a R—rm, then v/ = uy.y. Since 7 # 0, we know
F(G(t', umay)) With a Z(z + y — xy)-rm is at least (rank F (A, ) + 1)-atomic (see (5.16)). If
t' # tmax, then, by (5.19), rank H(G(t', umax)) = rank Hys + 1. Hence,

rank H(G(t', tumax)) + rank F(G (', tmax)) > (rank Hop + 1) + (rank F(Apin) + 1)

= rank M(k; ) + 1.
(5.37)
Case 4: F5; and H,, are pd, 7 = 0. We separate two cases according to the value of .

Case 4.1: Uy, = 0. Since Uy = 0, it follows that g = 0 and by (5.18), k15 = 0. But then
71(0,0) is R—representable. Similarly, since v (%o, 0) satisfies (Hyp), it follows that 7, (0, 0) also
satisfies (Hyp). So F(Amin) and H(Apin) admit a Z(z + y — xy)-rm and a R-rm, respectively.
Then (5.37) implies the existence of a (rank M (k; B))—atomic Z(p)-rm for 3.

Case 4.2: Uy > 0. If ta = 0, then £y = 0. Since 1 = 0, 72(0, ) can satisfy (Hyp) only if
Gy = 0 (see (5.16)). But 71(0,0) cannot be R-representable if ¢,,.x = 0, since then also y,ax
should be 0 (see Theorem 2.5). It follows that ¢,,,, > 0. We separate two subcases according
to the value of kq,.

Case 4.2.1: k5 = 0. In this case ¥ (¢tmax, Umax) 1S R-representable by Theorem 2.5 and
Y2 (tmax, Umax ) satisfies (Hyp). We have
rank H(G (tmax, Umax)) + rank F (G (fmax, Umax)) = rank Hos + (rank F(Apmn) + 2)
(5.46) = rank H(Awyin) + rank F(Apin)
= rank M(k:, B),

where we used (5.1 6L(5.19) in the first, (5.16) in the second and (5.37) in the third equality. So
there exists a (rank M (k; 5))—atomic Z(p)-rm for 5.

Case 4.2.2: k15 # 0. We separate two cases according to rank (A, ), which can be either &
or k 4 1 (using (5.19) and Hys is pd, k1o # 0).

Case 4.2.2.1: rank H(Am) = k. By (5.19), it follows that ,,axUmax = k% (plug ¢t = 0 and
u = 01n (5.19)) and hence Ry = {(0,0)}. This implies that under the assumptions of this case

(0,0) is the only candidate for (%o, @), which means that there exists a (rank M (k; B))—atomic
Z(p)—rm for .

Case 4.2.2.2: rank H(Apm) = k + 1. By (5.19), it follows that t,axtUmax > k% (plugt = 0
and v = 0 in (5.19)). We separate two cases according to whether (0, 0) is a good choice for
(to, lip) in (5.9) or not.

Case 4.2.2.2.1: (0, 0) is a good choice for (7, @) in (5.9). In this case there exists a (rank M (k; 8))-
atomic Z(p)-rm for f.

Case 4.2.2.2.2: (0,0) is not a good choice for (%, i) in (5.9). Note that A, satisfies
(Hyp) precisely for ¢ > 0 and v > 0. By Lemma 5.5, there is a point (t, 1) € Ry N (RL)?,
such that 0 < 1 (since pmax > 0) and (tmax — ) (Umax — %) = k. By Theorem 2.5, 1 (%, @)

is R-representable, since A, ;) is psd and A, ;7 (k) is pd. Note also that Yo(t, @) satisfies
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(Hyp). Hence, (£, @) is a good choice for (%, o) in (5.9). We have

rank H(G(t,@)) + rank F(G (%, ﬂ))\:’/(rank Hos + 1) + (rank F(Amin) + 2)

(5.16),
(5.19)

= rank H(Aupin) + rank F(Apm) + 1

= rankﬁ/l/(k; B)+1,
(5.37)
where in the second equality we used the assumption rank H(Auin) = k + 1. So there exists
a (rank M(k; 8) + 1)—atomic Z(p)-rm for . It remains to show that there does not exist a

(rank M (k; B))—atomic rm. By the first sentence of this case above, note that if (¢, u') is a
good choice for (%, @g) in (5.9), then rank F(G (¥, ) = rank F(Api,) + 2. Since kio # 0, it
follows by (5.19) that rank H(G(t',u’)) > rank Hos + 1 = rank H(Amin) — 1. Hence,

rank H(G(t',u')) + rank F(G(t',u')) > (rank H(Amin) — 1) + (rank F(Anm) + 2)
= rankﬂ(k; B)+1,

Case 5: Iy and H, are pd, n # 0. We separate two cases according to the value of k5.

Case 5.1: k5 = 0. As in Case 4.2.1 above, (fmax, Umax) iS @ good choice for (fy,7g) in
(5.9). Since n # 0, (5.15) implies that t,,, > 0 and Uy, > 0. Then (5.19) implies that

rank ”H(ﬁmin) = k—+1. By (5.13), H(Amin)/H22 = (tma" — ) and hence rank H (Anyin) =

_7] Umax
{k, k + 1}. We separate two cases according to rank H (A )-

Case 5.1.1: rank H(Anin) = k+1. By the same computation as in (5.46), there is a (rank M(k; B))-
atomic Z(p)—rm for 3 in this case.

Case 5.1.2: rank H(Anim) = k. Since Hys is pd and rank H(An,) = k, it follows that
trmaxUmax = 7°. Hence, (tmax, Umax) is the only candidate for (%o, @) in (5.9). By the same
computation as in (5.45), 3 has a (rank M(k; 3))—atomic Z(p)-rm.

Case 5.2: k15 # 0. We separate two cases according to whether A,,;, satisfies (Hyp); or not.

Case 5.2.1: A,;, satisfies (Hyp);. By analogous reasoning as in Case 2.3.2.2 of the proof
of Theorem 5.2, one of (¢ ,2,uy ,2) is a good choice for (to, Tp) in (5.9). By (5.18), tmax >
0 and Upax > 0 (since k1o # 0). By (5.13), H(Amm)/Hae = (ktmaxn ki —

12 — max
'H(Amin)/HQQ is not a zero matrix, we have rank H(Ani,) € {k,k + 1}. Let us define the
number

. Since

rank M(k; ), if rank H(Apn) = k + 1,
(5.47) R := _
rank M(k; 3) + 1, if rank H(Awmi) = k.
We have
rank H (G (to 2, Uy 2)) + rank F(G (o 2, ug 2))
(5.48) = (rank Hoy + 1) + (rank F(Amm) +1) = R.
619, (5.37)

So there is an R—atomic Z(p)-rm for 3.



34 S. YOO AND A. ZALAR

Case 5.2.2: A,;, does not satisfy (Hyp);. Let R be as in (5.47). We will show that in this
case there is a (R + 1)—atomic Z(p)-rm and there does not exist an R—atomic Z(p)-rm. Since
n # 0, if F(G(t',u')) is psd, it follows that v’ > n? by (5.15). By the same argument as
in the first paragraph of Case 2.3.2.2 of the proof of Theorem 5.2, if one of (¢4 ,2,uy ,2) is
a good choice for (fo,ao) in (5.9), then A,,;, satisfies (Hyp);, which is a contradiction. If
1? = Pmax from Lemma 5.5, then (¢4 ,2, uy,2) are the only candidates for a good choice for
(to, o) in (5.9) and hence 3 does not have a Z(p)-rm. It follows that 7° < .. By Lemma
5.5, there exists (£, %) € Ry N (Ry)?, such that fi = % and (tmax — 1) (Umax — ©) =
k?,. But then rank F(G(,%)) = 2k + 1, and ~,(f, @) satisfies (Hyp). Also, v (f, ) is R—
representable, since A ;) = Oand A, ;) (k) is pd (since f < tyay). Repeating the calculation
(5.48) and using that rank F(G(¢,11)) = rank F(Amin)+2 instead of rank F (Gt 2, Uz 2)) =
rank F (A )+ 1, we get rank H(G (£, @)) +rank F(G(£,4)) = R+1 and 3 admits an (R+1)-
atomic Z(p)-rm. It remains to show that there does not exist an R—atomic rm. As above, if
F(G(t' ) is psd and has a Z(x + y — xy)-rm, it follows that t'u’ > n?, which means that
rank F(G(t',u’)) = rank F(Amin) + 2. Since k1o # 0, rank H(G(t',u’)) > rank Hoy + 1 by
(5.19). Hence,

rank H(G(¢',u")) + rank F(G(t',u')) > (rank Hay + 1) + (rank F(Apin) + 2)
= R+1.
(5.37)
It remains to establish the moreover part. Note that in the case where rank M (k; 8)+2 atoms
might be needed, H (A, ) is not pd. Since for a p—pure sequence 5 with M(k; 3) = 0, (5.37)

implies that Fyy and H(An,) are pd, the existence of a Z(p)-rm implies the existence of at
most (rank M (k; ) + 1)—atomic Z(p)-rm. O

5.3. Example. > In this subsection we demonstrate the use of Theorems 5.2 and 5.6 on a
numerical example.
Let (3 be a bivariate degree 6 sequence given by

Boo = 1,

Bao = 12397 3 _ _ 11 Boaz = 2047

20 18000 Z11 100 02 18000

/B :wﬁ :_3835 — 967 B — _ 1117

30 1250 ~21 18000 “12 — 18000 /703 100007

B = 117670993 A 1843 3 73 3 Bos = 7105993

40 64800000 ° 31 = T 90000’ P22 T 22500 M13 = 450007 04 — 64800000

Bso = 100001 295967 3 359 5 - By = 3349033 Bos = — 103093

50 31250 * P41 = T §4800000° 32 T 300000 M23 T 15000’ 14 = $4800000° 1000000

Beo = 1540453883617 3 1469467 3 3 407 Boy = 1694473

60 233280000000 ° ~51 = T 324000000 P42 = 64800000’ 33 = T 300007 24 64800000
Bis = — 16656967 Bos = 23769383617
15 324000000 06 — 233280000000 °

We will prove below that 3 admits a 9—atomic Z(p)-rm by applying Theorems 5.2 and 5.6. It

is easy to check that M (3) is psd and satisfies only one column relation Y X +Y?2 — XY? = 0.
It turns out that 7 = 51255911 _ 1827880655851 272763812083768883

0 — 557050124401 Tmax = 3000656546700 Umax = gs344103004447ass0 and k12 =
—=¢. Computing ¢ u_ 2 we get

_7,,]27

49(—18583967869070689172740711 + 1644264781101+/127741799953693985969528905)
u = — ’
- 55397740704244472768199800832

. _49(18583967869070689172740711 + 1644264781101 \/127741799953693985969528905)
-n? = 199331524341418907147142346748 ’

2The Mathematica file with numerical computations can be found on the link https://github.com/
ZalarA/TMP_cubic_reducible.


https://github.com/ZalarA/TMP_cubic_reducible
https://github.com/ZalarA/TMP_cubic_reducible
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It is easy to check that H(G(t_ ,2,u_,z2)) is psd of rank 3 and H(G(t_ ,2,u_,2))(2) > 0.
Hence, H(G(t_,2,u_,2)) admits a 3—atomic R-rm. Moreover, F (Q( _ 2, U_,2)) satisfies
(Hyp): and has rank 6. So it admits a 6-atomic Z(z + y — xy)-rm, whence /3 has a 9—atomic
Z(p)-rm. This also follows from Theorem 5.6, since Fyy = 0, Hos > 0, Ay satisfies (Hyp);
with rank 7 (Apin) = rank F (Amin) 8\ (x3) = rank F(Amin)s\ysy = 5 and rank H(Anin) = 4.

6. HYPERBOLIC TYPE 3 RELATION: p(x,y) = y(ay + 2* — y?), a ¢ R\ {0}.

In this section we solve constructively the Z(p)-TMP for the sequence 5 = {f; ; }i jez, i+j<or
of degree 2k, k > 3, where p(x, y) is as in the title of the section. The main results are Theorem
6.1, which characterizes concrete numerical conditions for the existence of a Z(p)—rm for /3,
and Theorem 6.7, which characterizes the number of atoms needed in a minimal Z(p)—rm. A
numerical example demonstrating the main results is presented in Subsection 6.3.

6.1. Existence of a representing measure. Assume the notation from Section 3. If 3 admits
a Z(p)-TMP, then M (k; /) must satisfy the relations

(6.1) aY?H X4 Y X — y3HIXT fori,j € Z, suchthati+ j < k — 3.

In the presence of all column relations (6.1), the column space C(M(k; 3)) is spanned by the
columns in the tuple

(6.2) T = (X0 y X Ok=1) y2 X (0h=2))
where
VIX0O .= (YIXI YIXI L YIXY) withi, j 0 eZy, j< U, i+l<k.
Let M(k; 8) be as in (3.6) and define
6.3) Amin = A1a(A29)T(A12)7  and Ay = Apin + nESY,

where

ni= (Amin)1,3 - (Amin)2,2-
See Remark 3.4 for the explanation of these definitions. Let F(A) and H(A) be as in (3.9).
Write

1 X X @h
1 Boo — (Amin)i1 Bro — (Amin)ra (AT
H(Amin) = X Bro — (Amin)l,z Ba,0 — (Amin) (h 5 ) )
(XET hiy h) Ha
1 X@0
(6.4)
Hy = H(Amin) o = L Boo — (Amin)1s (h3)T
1- min) {1 }UX (2.k) 22 kNT (1) )
(X)) his Ha
X X@0
Hy = M) wan = %[ B0 = Auindis (D)
2 - min ) ¥ (1,k) X(2,k) T h(2) I .
( ) 12 22

We define also the matrix function
(6.5) G:R2 = Sp1,  G(t,u) = Ag +tENTY 4 u(BSTY + ESTY).
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Let

6.6) Ri={(t,u) e R*: F(G(t,u)) = 0} and Ry = {(t,u) € R*: H(G(t,u)) = 0}.
Further, we introduce real numbers

67 to = Boo = (Amin)11 — (h(5)T (Ha) A3,
uy == P10 — (Amin)12 — (h%))T(sz)Th%),

and a function
It turns out [YZ24, Theorem 5.1, Claims 1-2] that

» _{ {(t,u) € R%: t > 0,u € [—/mt,/nl] }, ifn >0,
L=

@, ifn <0,

6.9
©9 » {{@ﬂoeR%tgmmehm—h@ﬂm+MwH,ﬁﬂgta
2:

@, if Hy # 0.

Therefore R, has one of the following forms:

where the left case occurs if > 0, the right if 7 = 0, while the case n < 0 gives an empty set;
and R, can be one of the following:

where the left case occurs if Hy/Hyy > 0, the right if Hy/ Hoo = 0, while the case Hy/Haoy < 0
gives an empty set.
By Lemmas 3.1-3.3 and Remark 3.4, the existence of a Z(p)-rm for J is equivalent to:

M(k‘; B) = 0, the relations (6.1) hold and
(6.10) there exists (o, tig) € Ry N Ry such that F(G(to, o)) and H (G (o, Ug))

admit a Z(ay + 2 — y*)-rm and a R—rm, respectively.
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Define the sequence
v(t6,u) == (Boo — (Amin)11 — t, B0 — (Amin)12 — W, Bog — Bo2 + aBor,
B30 — B2+ abi, -, P — Boak—22 + aﬂzk—z,l)-
Note that H(G(t,u)) = Ay, (see (2.3) and Remark 3.4.(1)).

(6.11)

Write
B:={1,X,X%. . XY YX . YXt}

We say the matrix A € Si, 1 satisfies the property (I-/Iﬁ)) if
(6.12) rank F(A) = rank F(A)g (x+} = rank F(A)g (yxt-13 or rank F(A)=2k+1.

-

(Hyp)1 (Hyp)2

We denote by OR; and R, the topological boundary and the interior of the set R;, respectively.

The solution to the Z(p)-TMP is the following.
Theorem 6.1. Let p(x,y) = y(ay + 22 — y?), a € R\ {0}, and 8 = (Bi ;)i jen, i+j<or, Where
k > 3. Assume also the notation above. Then the following statements are equivalent:
(1) 5 has a Z(p)-representing measure.

(2) M (k; B) is positive semidefinite, the relations (6.1) hold, A, either satisfies (I-/I};))l or
the rank equality rank F (A ) = 2k — 1, and one of the following statements is true:

(a) n =0, Amin satisfies (Hyp), and v(0,0) is R-representable.
(b) n > 0 and one of the following holds:
(i) The set OR1 N ORy has two elements and H, is positive definite.
(ii) OR1 N ORy = {(I, )} and there exist (t,1) € {((, @), (to, 1))} such that

v(t, 1) is R—representable and F(G(t, 1)) satisfies (Hyp).

Before we prove Theorem 6.1 we need few lemmas. Their statements and the proofs coincide
verbatim with [YZ24, Theorem 5.1, Claims 1-5], but we state them for easier readability.

Let R, R be as in (6.6). Claims 1 and 2 below describe ranks of F(G(¢,u)) and H(G(t, u))
for various choices of (¢, u) in Ry and R, respectively.

Lemma 6.2 ([YZ24, Theorem 5.1, Claim 1]). Assume that M (k;B8) = 0. Then Ry is as in
(6.9) above. If n > 0, then we have

(6.13)
rank F(Apnm), ft=0,n1=0,
rank F(G(t,u)) = < rank F(Amm) + 1, if (t > 00rn > 0)andu € {—/nt, /nt},
rank F(Amin) +2, ift >0,n7 > 0,u € (—/nt,\/nt),
where Ay, is as in (6.3).
Lemma 6.3 ([YZ24, Theorem 5.1, Claim 2]). Assume that M (k; B) = 0. Let ty, ug, h(t) be as
in (6.7), (6.8). If Hy >~ 0, then we have
rank Hy, fort =ty, u = uy,

(6.14) rank H(G(t,u)) = rank Hoy + 1, fort < tog,u € {ug — h(t),uo + h(t)},

rank Hoy + 2, fort < to,u € (ug — h(t),ug + h(t)).
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Lemma 6.4 ([YZ24, Theorem 5.1, Claim 3]). Assume that M (k;8) = 0andn = 0. Then
(0,0) € OR1 N Ro.
Lemma 6.5 ([YZ24, Theorem 5.1, Claim 4]). Assume that M (k;8) = 0andn > 0. Then:

e The set OR, N OR4 has at most 2 elements.

e RiNRy # Tifand only if OR1 N ORy # O.

e [fOR, N ORy has two elements, then Hy/Hos > 0.

o I[f OR1 N OR4 has one element, which we denote by (t, ), then one of the following
holds:

- Rl N R2 = 8R1 N 8R2
- 07?,2 = RQ = {(t,UQ)Z t S tg}and8R1ﬁ8R2 g_ RlﬂRg = {(t,uo): Z?S t S to}.
Lemma 6.6 ([YZ24, Theorem 5.1, Claim 5]). Assume that Mv(k, B) = 0. Let Hy (see (6.4)) be

positive definite, (t1,u1) € ORq, (o, us) € ORy and uy # uy. Then at least one of H(G(t1,uq))
or H(G(t2, uz)) admits a R-representing measure.

Proof of Theorem 6.1. First we prove the implication (1) = (2). There exists (501710) € RN
R, satisfying (6.10). In particular, Ry # @ and by (6.9), n > 0. Since F(G(to,Up)) has a
Z(ay + x* — y?)—rm, it follows, by Theorem 2.8, that G (¢, 7i,) satisfies (Hyp). Note that

FG(t.0) = Fawn) + (, 1) 00,

where 0 is a zero matrix of the appropriate size. Moreover, by definition of A,,;,, we have

rank F(G(t,u)) = rank F(Apyin) + rank (2 :;) :
t
rank F(G(t,u))p yxry < rank F(Amin)p (xry + rank (u u)
t u
(6.15) < rank F(App) + rank (u 77) ,
t
rank F(G(t,u))p vy xr-1y < rank F(Amin) g\ [y x+-13 + rank (u Z)

< rank F(Apmin) + rank (t u) )
u-n

Ifg (fo, ) satisfies (I-/Ing))l, then all inequalities in (6.15) must be equalities and in particular,
Ay satisfies (Hyp). If G (%, i) satisfies (Hyp)s, then clearly rank F(A,,;,) = 2k — 1. From
now on we separate two cases according to the value of 7.

Case 1: n» = 0. For » = 0 we have Emm = Apnin. By (6.9), we have 4y = 0 and to > 0.
By Lemma 6.2, G(%,0) cannot satisfy (P/I\yE))Q and hence it satisfies (I%//p)l. But then by the
explanation above, A, satisfies (ﬁ;ﬁ)l and by Corollary 2.11, it has a Z(ay + 2% — y?)—rm.
By Theorem 2.5, R-representability of (%, 0) implies R-representability of (0, 0). This is
Theorem 6.1.(2a).

Case 2: n > 0. By Lemma 6.5, O0R; N IR, has one or two elements. We separate two cases
according to the number of elements in IR, N IRs.
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Case 2.1: OR, N OR- has two elements. By Lemma 6.5, Hy/Hyy > 0. Assume that Hy % 0.
Then there is a nontrivial column relation among columns X2, ..., X* in H,. By Proposition
2.4, the same holds for H(G(#, ). Let S_—F ¢; X**2 = 0 be the nontrivial column relation
in H(G(to,o)). But then Z(z2 Y52 cia’) = Z(x 312 ¢;2') and it follows by [CF96] that
S22, X1 = 0 is also a nontrivial column relation in H (G (%, ig)). Inductively, this implies
Hy/Hyy = 0, which is a contradiction. Hence, Hs > 0. This is the case of Theorem 6.1.(2(b)i).

Case 2.2: OR; N OR; has one element. Let us denote this element by (¢, %). By Lemma 6.5,
8R1 ﬂ87~22 = Rl ﬂRg or 3R2 = RQ = {(t,uo): t < to} and 8721 ﬂaRg _g_ Rl ﬂRQ =
{(t,up): t <t <ty} . We separate two cases according to these two possibilities.

Case 2.2.1: OR; N IRy = R1 N Ry. In this case (fy,1y) = (£, %) and hence (f, @) is R—
representable, while by Corollary 2.11, F(G(t, %)) satisfies (Hyp). This is the case of Theorem
6.1.(2(b)ii).

Case2.2.2: ORy = Ry = {(t,up): t < to} and IR1NORy € R1INRy = {(t,up): t <t <t}
By (6.9), it follows that Hy/H,, = 0 (see definition (6.8) of h(t)). Since Hs is not pd, Theo-
rem 2.5 used for H(G(to, Up)), implies that the last column of Hj is in the span of the others.
Hence, by Proposition 2.4, the same holds for H(G(#,4)) and H(G(to, %)), whence ~(f, i)
and 7(to, @) are both R-representable. By Lemma 6.2, rank F(G(, %)) = rank F(Aym) + 1
and rank F(G(t, @) = rank F(Aww) + 2 for t € (I, to]. If G(t, @) satisfies (Hyp)s for some
t € (,to), then it satisfies G(t, @) satisfies (Hyp)s for every t € (I, to]. Similarly, by (6.15), if
G(t, @) satisfies (Hyp), for some ¢ € (£, o], then it satisfies G(¢, @) satisfies (Hyp); for every
t € (£, to]. This holds because validity of (Hyp); for one ¢ € (£, to], implies that all inequalities
in (6.15) must be equalities, which is true only if

(6.16)

(Amin){1,x}1 =
=F(G(t,0) 1 xp8 1,xx4 (F(G(L, ﬂ))s\{Lx,xk})T]:(g(ﬂ U))B\[1,X, Xk}, {1,X}
=F(G(t, D) 1, x3.50 05y x4-13 (FGE D)o, x v xe-1y) FGE@)s 5,y xv-11 01,1}
But then (6.16) holds for every t € (%, (] and consequently (I?pr)l holds for G(¢, @) for every
t € (f,to]. If G(to, @) does not satisfy (Hyp), it does not admit a Z(ay + 2* — y*)-rm by

Corollary 2.11, which further implies that G(¢, @) satisfies (Hyp). This is the case of Theorem
6.1.(2(b)ii).

This concludes the proof of the implication (1) = (2) of Theorem 6.1.

It remains to prove the implication (2) = (1) of Theorem 6.1. We separate four cases ac-
cording to the assumptions in Theorem 6.1.(2).

Case 1: Theorem 6.1.(2a) holds. By Lemma 6.4, (0,0) € R; N R,. Further, n = 0 implies
that A\mm = Amin = G(0,0) and hence G(0,0) satisfies (I-/I%))l by assumption. By Corollary
2.11, F(G(0,0)) admits a rank(F (A, ) )-atomic Z(ay + 2 — y*)-rm. By assumption, (0, 0)
is R-representable. Hence, (0, 0) is a good choice for (%, o) in (6.10). This proves (1) in this
case.
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Case 2: Theorem 6.1.(2(b)i) holds. By assumption, OR1 N ORs = {(t1,u1), (2, us)} has two
distinct elements. Hence, OR is not a half-line and R, N R, has a non—empty interior, which
is equal to Ri N Ry. Since Hy = 0, it follows, by Lemma 6.3, that H(g (t,u)) > 0 for every
(t,u) € R,. Hence, v(t,u) is R-representable for every (¢,u) € R,. We separate two cases
according to which of the assumptions:

e A ., satisfies (Ify/p)l.
o rank F(Ann) = 2k — 1.

holds.

Case 2.1: A,;, satisfies (I-/Iﬁ))l. By Lemma 6.2, we have

rank F(G(t1,u1)) = rank F(G(t2, us)) = rank F(Amin) + 1.
We will prove that
(6.17) rank F(G(ts, us)) gy yxry = rank F(Ampin)p\yxry +1 fori=1,2.
If (6.17) is not true, then

T
(Amin)1.xy 7 F(G (i wi) x5 41,x, x50y (F(G (L, wi)) gy a,x,x0y) F(G (i, 1)) 3y 1,5,k 41,X7 -

Amin

Note that the definition of fimin does not depend on ¢, because ¢; and u; do not appear in the
corresponding restrictions of F(G(¢;, u;)). Clearly,

tA U o

i AN ) - . -

(ui 7]) - (Amm){l,X} Amln =0 for: 17 27

whence
(6.18) ker ((Amin){l,x} — Amin) C ker (ti‘ 2;;) fori=1,2.
Since (6.18) holds for i = 1, 2, it follows that ker ((Amin){1, X} — flmm) = RR?, which contradicts
t0 (Apmin){1.x} 7 Amin- Hence, (6.17) is true. Similarly,

rank .F(g(t“ Ui))B\{YXk—l} = rank f(Amin)B\{YXk—l} +1 for:i= 1, 2.

So G(t;,u;) satisfies (Hyp); for i = 1,2. By Corollary 2.11, F(G(t;, u;)) admits a Z(ay + 22 —
y?)—rm for i = 1,2. By Lemma 6.6, there is j € {1, 2} such that H(G(t;, u;)) admits a R—rm,
whence (¢;,u;) is a good choice for (fo, ) in (6.10). This proves (1) in this case.

Case 2.2: rank F(Anm) = 2k — 1. By Lemma 6.2, rank F(G(t,u)) = 2k + 1 for every
(t,u) € Ry. By Corollary 2.11, F(G(t, u)) admits a Z(ay+ x* —y*)-rm for every (t,u) € R;.
Hence, (t,u) € Ry N Ry is a good choice for (%, @) in (6.10). This proves (1) in this case.

Case 3: Theorem 6.1.(2(b)ii) holds. Clearly, one of the points (£, @) or (ty, @) is a good choice
for (fy, iip) in (6.10). This proves (1) in this case.

This concludes the proof of the implication (2) =- (1) of Theorem 6.1. [

6.2. Cardinality of a minimal representing measure. The following theorem characterizes
the cardinality of a minimal measure in case 5 admits a Z(p)-rm.
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Theorem 6.7. Let p(z,y) = y(ay + 2> — y?), a € R\ {0}, and B = (Bi;)ijen. itj<2n
where k > 3, admits a Z(p)—representing measure. Assume the notation above. The following
statements hold:

(1) There exists at most (rank M (k; B) + 2)—atomic Z(p)-representing measure for 5.

(2) There is no Z(p)—representing measure with less than rank M (k; B) + 2 atoms if and
only if Anin does not satisfy (Hyp)q, rank F(Apim) = 2k — 1, n > 0, OR1 N IR, has
two elements, Hs is positive definite and rank H(Apm) = k.

(3) There exists a rank M (k; B)—atomic Z(p)—representing measure for (3 if and only if any
of the following holds:

(a) n=0.
(b) n > 0, card(OR; N OR2) = 2, A\min satisfies (P/I\y?))l, H(Awmin) is positive definite.

(c) n >0, card(OR1 NORs) = card(R1 N R2) = 1 and the equality rank H(Anyin) =
rank Hay + 2 holds.

(d) n >0, card(OR; NOR,) = 1, {(t, 1)} = OR1 NORy € Ri N Ry, F(G(t, 1))

=

admits a Z(ay + 2% — y*)-representing measure and H(Ay;,) = rank Hyy + 2.

In particular, a p—pure sequence [3 with a measure admits at most (3k + 1)—atomic Z(p)—
representing measure.

Proof of Theorem 6.7. By Lemma 3.3.(4),
(6.19) rank M (k; 8) = rank F(Amin) + rank H(Amm).

We observe again the proof of the implication (2) = (1) of Theorem 6.1.

In the proof of the implication Theorem 6.1.(2a) = (6.10) we established that F(A,,;,) and
H(Amin) admit a rank F (A, )—atomic and a rank H (A, )—atomic rms. Using (6.19) it fol-
lows that 3 has a rank M (k; §)—atomic Z(p)—rm.

In the proof of the implication Theorem 6.1.(2(b)i) = (6.10) we separated two cases:

Case 1: A,,;, satisfies (I-fI}/p)l. In this case we established that (¢', u') is R-representable for
some (', u') € OR1NOR,, where rank F(G (', u')) = rank F (A )+1 and rank H(G (¥, v')) =
k. Since H(Amin) = rank H(G(¢',u)), it follows that

rank F(G(t',u')) + rank H(G(t',u')) =

rank M(k: B), if rank H(G(', ) = rank H(Amm) — 1,
rank M(k; ) + 1, if rank H(G(',u')) = rank H(Amin)-

It remains to show that if there does not exist (¢, ), which is a good choice for (y, i) in
(6.10), such that rank 7 (G (¢, u)) = rank H(Amin)—1, then there is no (rank Mv(k, 3))-atomic
Z(p)-rm. Since n > 0, it follows, by Lemma 6.2, that rank F(G(¢,u)) > rank F(Amin +
1 for any good choice (¢,u). Since also rank H(G(t,u)) > rank H(Amin), it follows that
rank F(G(t,u)) + rank H(G(t,u)) > rank/\?(k; B) + 1.

Case 2: rank F(Anm) = 2k — 1. If Ay, does not satisfy (ITpr)l, G(t,u) does not satisfy
(Hyp); for any (t,u) € R2 So every (¢,u) which is a good choice for (%, @o), must satisfy
rank F(G(t,u)) = 2k+1 = rank F(Amin) +2. By Lemma 6.6, there exists (¢, u') € R1NORs,
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such that H(G(t',u’)) admits a R-rm and satisfies

rank H(Amin), if rank H(Anm) = k,

rank H(G(t', v')) = rank H; = { rank H(Apm) — 1, if rank H(Apm) =k + 1.

Hence,
rank F(G(t',u')) + rank H(G(t', u')) =
_ rankﬂ(k; B) +2, if rank H(Amm) = k,
rank M(k; ) + 1, if rank H(Amim) =k + 1.

If (t,u) is a good choice for (%,g), then rank H(G(t,u)) > k (since Hy = 0) and also
rank F(G(t,u)) = rank F(Amm) + 2. So

rank F(G(t,u)) + rank H(G(t,u)) >

rank H(Amin), if rank H(Apin) = £,
rank H(Amin) — 1, if rank H(Apim = £k + 1.

So the measure cannot contain less atoms than the one in (¢', u") above.

>rank F(Apn) +2 + {

Under the assumption Theorem 6.1.(2(b)ii) we separate two cases:

Case 1: OR; NORy = Ry N Ry = {(t,%)}. Under the assumptions of this case, y(f, @
is R—representable. Hence, (£, 1) is a good choice for (g, @ip) in (6.10). If rank H(Awpm)
rank Hos + 2, then a ( rank M (k; 8))-atomic Z(p)-rm exists. This is due to the rank equality

r = rank F(G(t,@)) + rank H(G(t,@)) = rank F(Amp) + 1+ rank Hy, + 1.

(5.16)
(5.19)

Hence, r = rank Mv(k, B) if and only if rank H(Am,) = rank Hey + 2. Otherwise we
have rank H(A,;,) = rank Hy = rank Hyy + 1 (since n > 0 and Hy/Hyy = 0) and r =
rank M(k; 8) + 1.

~—

Case 2: (t,71) =: OR; N IRy € Ri N Ry. In this case it follows by Theorem 6.1 that one of
the points (£, @) or (o, @) is a good choice for (£, @) in (6.10).

Assume that (¢, @) is a good choice. Since rank H(G(ty,@)) = rank H(Amim) — 1, which
isdue ton > 0 and Hy/Hsy = 0 (if Hy/Hsy > 0, then (6.9) would imply that card 9R; N
ORy > 1), and rank F(G(to,u)) = rank F(Api) + 2 (by Lemma 6.2), it follows that a
(rank Mv(k, ) + 1)-atomic Z(p)-rm exists.

As in the proof of Case 1 above, if (£,%) is a good choice for (#, o) in (6.10), then a
(rank M(k; 3))-atomic Z(p)-rm exists if and only if rank #(Am,) = rank Ha, + 2. Other-
wise the measure is (rank M(k, ) + 1)-atomic.

It remains to show that if (, ) is not a good choice for (y, @ig) in (6.10), there does not
exist a (rank M (k; B ))—atomic Z(p)-rm. By Lemma 6.5, the candidates for a good choice are
points (¢, ug) for t € (¢, ). But as in the second paragraph above, we have rank H (G (¢, 1)) >
rank H(Amin) — 1 and rank F(G(t,@)) = rank F(Amm) + 2 for every such ¢. So

rank H(G(t,@)) + rank F(G(t,a)) > rank./fq(k; B) + 1.

It remains to establish the moreover part. Note that in the case where rank M (k; 8) + 2
atoms might be needed, H (Ay,) is not pd. Since for a p—pure sequence S with M (k; 3) = 0,
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(6.19) implies that H (Awmin) is pd, the existence of a Z(p)-rm implies the existence of at most
(rank M(k; 5) + 1)—atomic Z(p)-rm. This concludes the proof of Theorem 6.7. O

6.3. Example. * In this subsection we demonstrate the use of Theorems 6.1 and 6.7 on a
numerical example.
Let (3 be a bivariate degree 6 sequence given by

Boo = 1,

Bro =2, o1 =

Bao = &3, B = ﬁ, 502 =25,

Bso = B2L By = 648 512 = 22 B3 = S,

Bao = 252 By = 228 By = U8 35 = 9025 3y = P

/850 5088937 641 __ 72097 532 __ 2497225 523 __ 136801 614 __ 10813225 BOS __ 2326373

1119744° — 93312’ — 1119744° — 31104 — 1119744 > 793312’
Beo = 115846129 By = 1107625 3 __ 38072593 Ba = 2034025 Boy = 156268657 Brs = 27728525
60 = 713436928 ° 51 T 1119744 P42 T 13436928 33 373248 > 24 T 13436928 > M15 T 1119744 °
Bos = 826264081
13436928 *

We will prove below that 3 admits a 9—atomic Z(p)—rm by applying Theorems 6.1 and 6.7. It
is easy to check that M (3) is psd and satisfies only one column relation 2Y? + X2Y — Y3 = 0.
It turns out that 7 = 0, rank F(Api,) = rank F(Ampin) g fxr}; = rank F(Amin)p\ (v xe-13 = 5,

whence A, satisfies (ﬁﬁ))l. By Theorem 6.1, /5 has a Z(p)-rm. By Theorem 6.7, there is a
rank M (3)-atomic Z(p)-rm (i.e., 9—atomic).
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