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ABSTRACT. In this article we study the bivariate truncated moment problem (TMP) of degree 2k
on reducible cubic curves. First we show that every such TMP is equivalent after applying an affine
linear transformation to one of 8 canonical forms of the curve. The case of the union of three parallel
lines was solved in [Zal22a], while the degree 6 cases in [Yoo17b]. Second we characterize in terms
of concrete numerical conditions the existence of the solution to the TMP on two of the remaining
cases concretely, i.e., a union of a line and a circle y(ay + x2 + y2) = 0, a ∈ R \ {0}, and a union
of a line and a parabola y(x − y2) = 0. In both cases we also determine the number of atoms in a
minimal representing measure.

1. INTRODUCTION

Given a real 2–dimensional sequence

β ≡ β(2k) = {β0,0, β1,0, β0,1, . . . , β2k,0, β2k−1,1, . . . , β1,2k−1, β0,2k}

of degree 2k and a closed subset K of R2, the truncated moment problem (K–TMP) supported
on K for β(2k) asks to characterize the existence of a positive Borel measure µ on R2 with support
in K, such that

(1.1) βi,j =

∫
K

xiyjdµ for i, j ∈ Z+, 0 ≤ i+ j ≤ 2k.

If such a measure exists, we say that β(2k) has a representing measure supported on K and µ is its
K–representing measure (K–rm).

In the degree-lexicographic order

1 , X, Y,X2, XY, Y 2, . . . , Xk, Xk−1Y, . . . , Y k

of rows and columns, the corresponding moment matrix to β is equal to

(1.2) M(k) ≡ M(k; β) :=


M[0, 0](β) M[0, 1](β) · · · M[0, k](β)
M[1, 0](β) M[1, 1](β) · · · M[1, k](β)

...
...

. . .
...

M[k, 0](β) M[k, 1](β) · · · M[k, k](β)

 ,
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where

M[i, j](β) :=


βi+j,0 βi+j−1,1 βi+j−2,2 · · · βi,j

βi+j−1,1 βi+j−2,2 βi+j−3,3 · · · βi−1,j+1

βi+j−2,2 βi+j−3,3 βi+j−4,4 · · · βi−2,j+2

...
...

...
. . .

...
βj,i βj−1,i+1 βj−2,i+2 · · · β0,i+j

 .

Let R[x, y]≤k := {p ∈ R[x, y] : deg p ≤ k} stand for the set of real polynomials in variables x, y
of total degree at most k. For every p(x, y) =

∑
i,j ai,jx

iyj ∈ R[x, y]≤k we define its evaluation
p(X, Y ) on the columns of the matrix M(k) by replacing each capitalized monomial X iY j in
p(X, Y ) =

∑
i,j ai,jX

iY j by the column of M(k), indexed by this monomial. Then p(X, Y )

is a vector from the linear span of the columns of M(k). If this vector is the zero one, i.e., all
coordinates are equal to 0, then we say p is a column relation of M(k). A column relation p is
nontrivial, if p ̸≡ 0. We denote by Z(p) := {(x, y) ∈ R2 : p(x, y) = 0}, the zero set of p. We
say that the matrix M(k) is recursively generated (rg) if for p, q, pq ∈ R[x, y]≤k such that p is a
column relation of M(k), it follows that pq is also a column relation of M(k). The matrix M(k)
is p–pure, if the only column relations of M(k) are those determined recursively by p. We call a
sequence β p–pure, if M(k) is p–pure.

A concrete solution to the TMP is a set of necessary and sufficient conditions for the existence
of a K–representing measure µ, that can be tested in numerical examples. Among necessary condi-
tions, M(k) must be positive semidefinite (psd) and rg [CF04, Fia95], and by [CF96], if the support
supp(µ) of µ is a subset of Z(p) for a polynomial p ∈ R[x, y]≤k, then p is a column relation of
M(k). The bivariate K–TMP is concretely solved in the following cases:

(1) K = Z(p) for a polynomial p with 1 ≤ deg p ≤ 2.
Assume that deg p = 2. By applying an affine linear transformation it suffices to consider

one of the canonical cases: x2+y2 = 1, y = x2, xy = 1, xy = 0, y2 = y. The case x2+y2 =
1 is equivalent to the univariate trigonometric moment problem, solved in [CF02]. The
other four cases were tackled in [CF02, CF04, CF05, Fia15] by applying the far-reaching
flat extension theorem (FET) [CF96, Theorem 7.10] (see also [CF05b, Theorem 2.19]
and [Lau05] for an alternative proof), which states that β(2k) admits a (rankM(k))–atomic
rm if and only if M(k) is psd and admits a rank–preserving extension to a moment matrix
M(k+1). For an alternative approach with shorter proofs compared to the original ones by
reducing the problem to the univariate setting see [BZ21, Section 6] (for xy = 0), [Zal22a]
(for y2 = y), [Zal22b] (for xy = 1) and [Zal23] (for y = x2).

For deg p = 1 the solution is [CF08, Proposition 3.11] and uses the FET, but can be also
derived in the univariate setting (see [Zal23, Remark 3.3.(4)])

(2) K = R2, k = 2 and M(2) is invertible. This case was first solved nonconstructively using
convex geometry techniques in [FN10] and later on constructively in [CY16] by a novel
rank reduction technique.

(3) K is one of Z(y − x3) [Fia11, Zal21], Z(y2 − x3) [Zal21], Z(y(y − a)(y − b)) [Yoo17a,
Zal22a], a, b ∈ R \ {0}, a ̸= b, or Z(xy2 − 1) [Zal22b]. The main technique in [Fia11] is
the FET, while in [Zal21, Zal22a, Zal22b] the reduction to the univariate TMP is applied.

(4) M(k) has a special feature called recursive determinateness [CF13] or extremality [CFM08].
(5) M(3) satisfies symmetric cubic column relations which can only cause extremal moment

problems. In order to satisfy the variety condition, another symmetric column relation must
exist, and the solution was obtained by checking consistency [CY14].
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(6) Non-extremal sextic TMPs with rankM(3) ≤ 8 and with finite or infinite algebraic vari-
eties [CY15].

(7) M(3) with reducible cubic column relations [Yoo17b].

The solutions to the K–TMP, which are not concrete in the sense of definition from the previous
paragraph, are known in the cases K = Z(y − q(x)) and K = Z(yq(x) − 1), where q ∈ R[x].
[Fia11, Section 6] gives a solution in terms of the bound on the degree m for which the existence
of a positive extension M(k +m) of M(k) is equivalent to the existence of a rm. In [Zal23] the
bound on m is improved to m = deg q − 1 for curves of the form y = q(x), deg q ≥ 3, and to
m = ℓ+ 1 for curves of the form yxℓ = 1, ℓ ∈ N \ {1}.

References to some classical work on the TMP are monographs [Akh65, AK62, KN77], while
for a recent development in the area we refer a reader to [Sch17]. Special cases of the TMP have
also been considered in [Kim14, Ble15, Fia17, DS18, BF20, Kim21], while [Nie14] considers sub-
spaces of the polynomial algebra and [CGIK+] the TMP for commutative R–algebras.

The motivation for this paper was to solve the TMP concretely on some reducible cubic curves,
other than the case of three parallel lines solved in [Zal22a]. Applying an affine linear transforma-
tion we show that every such TMP is equivalent to the TMP on one of 8 canonical cases of reducible
cubics of the form yc(x, y) = 0, where c ∈ R[x, y], deg c = 2. In this article we solve the TMP for
the cases c(x, y) = ay+x2+ y2, a ∈ R \ {0}, and c(x, y) = x− y2, which we call the circular and
the parabolic type, respectively. The main idea is to characterize the existence of a decomposition
of β into the sum β(ℓ) + β(c), where β(ℓ) = {β(ℓ)

i,j }i,j∈Z+, 0≤i+j≤2k and β(c) = {β(c)
i,j }i,j∈Z+, 0≤i+j≤2k

admit a R–rm and a Z(c)–rm, respectively. Due to the form of the cubic yc(x, y) = 0, it turns out
that all but two moments of β(ℓ) and β(c) are not already fixed by the original sequence, i.e., β(ℓ)

0,0,
β
(ℓ)
1,0, β

(c)
0,0, β(c)

1,0 in the circular type case and β
(ℓ)
0,0, β

(ℓ)
2k,0, β(c)

0,0, β(c)
2k,0 in the parabolic type case. Then,

by an involved analysis, the characterization of the existence of a decomposition β = β(ℓ) + β(c)

can be done in both cases. We also characterize the number of atoms in a minimal representing
measure, i.e., a measure with the minimal number of atoms in the support.

1.1. Readers Guide. The paper is organized as follows. In Section 2 we present some preliminary
results needed to establish the main results of the paper. In Section 3 we show that to solve the TMP
on every reducible cubic curve it is enough to consider 8 canonical type relations (see Proposition
3.1). In Section 4 we present the general procedure for solving the TMP on all but one of the
canonical types and prove some results that apply to them. Then in Sections 5 and 6 we specialize
to the circular and the parabolic type relations and solve them concretely (see Theorems 5.1 and
6.1). In both cases we show, by numerical examples, that there are pure sequences β(6) with a psd
M(3) but without a rm (see Examples 5.3 and 6.3).

2. PRELIMINARIES

We write Rn×m for the set of n × m real matrices. For a matrix M we call the linear span of
its columns a column space and denote it by C(M). The set of real symmetric matrices of size n
will be denoted by Sn. For a matrix A ∈ Sn the notation A ≻ 0 (resp. A ⪰ 0) means A is positive
definite (pd) (resp. positive semidefinite (psd)). We write 0t1,t2 for a t1 × t2 matrix with only zero
entries and 0t = 0t,t for short, where t1, t2, t ∈ N. The notation E

(ℓ)
i,j , ℓ ∈ N, stands for the usual

ℓ× ℓ coordinate matrix with the only nonzero entry at the position (i, j), which is equal to 1.
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In the rest of this section let k ∈ N and β ≡ β(2k) = {βi,j}i,j∈Z+, 0≤i+j≤2k be a bivariate sequence
of degree 2k.

2.1. Moment matrix. Let M(k) be the moment matrix of β (see (1.2)). Let Q1, Q2 be subsets of
the set {X iY j : i, j ∈ Z+, 0 ≤ i + j ≤ k}. We denote by (M(k))Q1,Q2 the submatrix of M(k)
consisting of the rows indexed by the elements of Q1 and the columns indexed by the elements of
Q2. In case Q := Q1 = Q2, we write (M(k))Q := (M(k))Q,Q for short.

2.2. Affine linear transformations. The existence of representing measures is invariant under
invertible affine linear transformations of the form

(2.1) ϕ(x, y) = (ϕ1(x, y), ϕ2(x, y)) := (a+ bx+ cy, d+ ex+ fy), (x, y) ∈ R2,

a, b, c, d, e, f ∈ R with bf − ce ̸= 0. Namely, let Lβ : R[x, y]≤2k → R be a Riesz functional of the
sequence β defined by

Lβ(p) :=
∑

i,j∈Z+,
0≤i+j≤2k

ai,jβi,j, where p =
∑

i,j∈Z+,
0≤i+j≤2k

ai,jx
iyj.

We define β̃ = {β̃i,j}i,j∈Z+, 0≤i+j≤2k by

β̃i,j = Lβ(ϕ1(x, y)
i · ϕ2(x, y)

j).

By [CF04, Proposition 1.9], β admits a (r–atomic) K–rm if and only if β̃ admits a (r–atomic)
ϕ(K)–rm. We write β̃ = ϕ(β) and M(k; β̃) = ϕ(M(k; β)).

2.3. Generalized Schur complements. Let

M =

(
A B
C D

)
∈ R(n+m)×(n+m)

be a real matrix where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n and D ∈ Rm×m. The generalized Schur
complement [Zha05] of A (resp. D) in M is defined by

M/A = D − CA†B (resp. M/D = A−BD†C),

where A† (resp. D†) stands for the Moore–Penrose inverse of A (resp. D).
The following lemma will be frequently used in the proofs.

Lemma 2.1. Let n,m ∈ N and

M =

(
A B
BT C

)
∈ Sn+m,

where A ∈ Sn, B ∈ Rn×m and C ∈ Sm. If rankM = rankA, then the matrix equation

(2.2)
(

A
BT

)
W =

(
B
C

)
,

where W ∈ Rn×m, is solvable and the solutions are precisely the solutions of the matrix equation
AW = B. In particular, W = A†B satisfies (2.2).
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Proof. The assumption rankM = rankA implies that

(2.3)
(

A
BT

)
W =

(
AW
BTW

)
=

(
B
C

)
for some W ∈ Rn×m. So the equation (2.2) is solvable. In particular, AW = B. It remains to
prove that any solution W to AW = B is also a solution to (2.3). Note that all the solutions of the
equation AW̃ = B are

(2.4) W̃ = A†B + Z,

where each column of Z ∈ Rn×m is an arbitrary vector from kerA. So W satisfiying (2.3) is also
of the form A†B + Z0 for some Z0 ∈ Rn×m with columns belonging to kerA. We have that

(2.5) C = BTW = BT (A†B + Z0) = BTA†B +BTZ0 = BTA†B,

where we used the fact that each column of B belongs to C(A) and ker(A)⊥ = C(A). Replacing
W with any W̃ of the form (2.4) in the calculation (2.5) gives the same result, which proves the
statement of the proposition. □

The following theorem is a characterization of psd 2× 2 block matrices.

Theorem 2.2 ([Alb69]). Let

M =

(
A B
BT C

)
∈ Sn+m

be a real symmetric matrix where A ∈ Sn, B ∈ Rn×m and C ∈ Sm. Then:

(1) The following conditions are equivalent:
(a) M ⪰ 0.

(b) C ⪰ 0, C(BT ) ⊆ C(C) and M/C ⪰ 0.

(c) A ⪰ 0, C(B) ⊆ C(A) and M/A ⪰ 0.

(2) If M ⪰ 0, then

rankM = rankA+ rankM/A = rankC + rankM/C.

2.4. Extension principle.

Proposition 2.3. Let A ∈ Sn be positive semidefinite, Q a subset of the set {1, . . . , n} and A|Q the
restriction of A to the rows and columns from the set Q. If A|Qv = 0 for a nonzero vector v, then
Av̂ = 0, where v̂ is a vector with the only nonzero entries in the rows from Q and such that the
restriction v̂|Q to the rows from Q equals to v.

Proof. See [Fia95, Proposition 2.4] or [Zal22a, Lemma 2.4] for an alternative proof. □

2.5. Partially positive semidefinite matrices and their completions. A partial matrix A =
(ai,j)

n
i,j=1 is a matrix of real numbers ai,j ∈ R, where some of the entries are not specified.

A partial symmetric matrix A = (ai,j)
n
i,j=1 is partially positive semidefinite (ppsd) (resp. par-

tially positive definite (ppd)) if the following two conditions hold:

(1) ai,j is specified if and only if aj,i is specified and ai,j = aj,i.
(2) All fully specified principal minors of A are psd (resp. pd).
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For n ∈ N write [n] := {1, 2, . . . , n}. We denote by AQ1,Q2 the submatrix of A ∈ Rn×n

consisting of the rows indexed by the elements of Q1 ⊆ [n] and the columns indexed by the
elements of Q2 ⊆ [n]. In case Q := Q1 = Q2, we write AQ := AQ,Q for short.

It is well-known that a ppsd matrix A(x) of the form as in Lemma 2.4 below admits a psd
completion (This follows from the fact that the corresponding graph is chordal, see e.g., [GJSW84,
Dan92, BW11]). Since we will need an additional information about the rank of the completion
A(x0) and the explicit interval of all possible x0 for our results, we give a proof of Lemma 2.4
based on the use of generalized Schur complements.

Lemma 2.4. Let A(x) be a partially positive semidefinite symmetric matrix of size n× n with the
missing entries in the positions (i, j) and (j, i), 1 ≤ i < j ≤ n. Let

A1 = (A(x))[n]\{i,j}, a = (A(x))[n]\{i,j},{i}, b = (A(x))[n]\{i,j},{j}, α = (A(x))i,i, γ = (A(x))j,j.

Let

A2 = (A(x))[n]\{j} =

(
A1 a
aT α

)
∈ Sn−1, A3 = (A(x))[n]\{i} =

(
A1 b
bT γ

)
∈ Sn−1,

and
x± := bTA†

1a±
√
(A2/A1)(A3/A1) ∈ R.

Then:
(i) A(x0) is positive semidefinite if and only if x0 ∈ [x−, x+].

(ii)

rankA(x0) =

{
max

{
rankA2, rankA3

}
, for x0 ∈ {x−, x+},

max
{
rankA2, rankA3

}
+ 1, for x0 ∈ (x−, x+).

(iii) The following statements are equivalent:
(a) x− = x+.
(b) A2/A1 = 0 or A3/A1 = 0.
(c) rankA2 = rankA1 or rankA3 = rankA1.

Proof. We write

A(x) =


A11 a12 A13 a14 A15

(a12)
T α (a23)

T x (a25)
T

(A13)
T a23 A33 a34 a35

(a14)
T x (a34)

T γ (a45)
T

(A15)
T a25 (A35)

T a45 A55



∈


Si−1 R(i−1)×1 R(i−1)×(j−i−1) R(i−1)×1 R(i−1)×(n−j)

R1×(i−1) R R1×(j−i−1) R R1×(n−j)

R(j−1−1)×(i−1) R(j−i−1)×1 Sj−i−1 R(j−i−1)×1 R(j−i−1)×(n−j)

R1×(i−1) R R1×(j−i−1) R R1×(n−j)

R(n−j)×(i−1) R(n−j)×1 R(n−j)×(j−i−1) R(n−j)×1 Sn−j


Let P be a permutation matrix, which changes the order of columns to

1, 2, . . . , i− 1, i+ 1, . . . , j − 1, j + 1, . . . , n, i, j.
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Then

P TA(x)P =


A11 A13 A15 a12 a14

(A13)
T A33 A35 a23 a34

(A15)
T (A35)

T A55 a25 a45
(a12)

T (a23)
T (a25)

T α x

(a14)
T (a34)

T (a45)
T x γ


Note that

(2.6) P TA(x)P =

A1 a b

aT α x

bT x γ

 and P TA(x)P ⪰ 0 ⇔ A(x) ⪰ 0.

Lemma 2.4 with the missing entries in the positions (n−1, n) and (n, n−1) was proved in [Zal21,
Lemma 2.11] using computations with generalized Schur complements under one additional as-
sumption:

(2.7) A1 is invertible or rankA1 = rankA2.

Here we explain why the assumption (2.7) can be removed from [Zal21, Lemma 2.11]. The proof of
[Zal21, Lemma 2.11] is separated into two cases: A2/A1 > 0 and A2/A1 = 0. The case A2/A1 = 0
does not use (2.7). Assume now that A2/A1 > 0 or equivalently rankA2 > rankA1. Invertibility
of A1 (and by A2/A1 > 0 also A2 is invertible) is used in the proof of [Zal21, Lemma 2.11] for the
application of the quotient formula ([CH69])

(2.8) (A(x)/A2) =
(
A(x)/A1

)/(
A2/A1

)
,

where

A(x)/A1 =

 A2/A1

(
A1 b
aT x

)/
A1(

A1 a
bT x

)/
A1 A3/A1


However, the formula (2.8) has been generalized [CHM74, Theorem 4] to noninvertible A1, A2,
where all Schur complements are the generalized ones, under the conditions:

(2.9)
(
b x

)T ∈ C(A2) and a ∈ C(A1).

So if we show that the conditions (2.9) hold, the same proof as in [Zal21, Lemma 2.11] can be
applied in the case A1 is singular. From A2 (resp. A3) being psd, a ∈ C(A1) (resp. b ∈ C(A1))
follows by Theorem 2.2, used for (M,A) := (A2, A1) (resp. (M,A) := (A3, A1)). The assumption
A2/A1 > 0 implies that

(
a α

)T
/∈ C(

(
A1 aT

)T
). Since a ∈ C(A1), it follows that

(
0 1

)T ∈
C(A2). Hence,

(
b x

)T ∈ C(A2) for every x ∈ R, which concludes the proof of (2.9). □

2.6. Hamburger TMP. Let k ∈ N. For v = (v0, . . . , v2k) ∈ R2k+1 we define the corresponding
Hankel matrix as

(2.10) Av := (vi+j)
k
i,j=0 =



v0 v1 v2 · · · vk

v1 v2 . .
.

. .
.

vk+1

v2 . .
.

. .
.

. .
. ...

... . .
.

. .
.

. .
.

v2k−1

vk vk+1 · · · v2k−1 v2k


∈ Sk+1.
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We denote by vj := (vj+ℓ)
k
ℓ=0 the (j + 1)–th column of Av, 0 ≤ j ≤ k, i.e.,

Av =
(
v0 · · · vk

)
.

As in [CF91], the rank of v, denoted by rank v, is defined by

rank v =

{
k + 1, if Av is nonsingular,

min {i : vi ∈ span{v0, . . . ,vi−1}} , if Av is singular.

For m ≤ k we denote the upper left–hand corner (vi+j)
m
i,j=0 ∈ Sm+1 of Av of size m + 1

by Av(m). A sequence v is called positively recursively generated (prg) if for r = rank v the
following two conditions hold:

• Av(r − 1) ≻ 0.
• If r < k + 1, denoting

(2.11) (φ0, . . . , φr−1) := Av(r − 1)−1(vr, . . . , v2r−1)
T ,

the equality

(2.12) vj = φ0vj−r + · · ·+ φr−1vj−1

holds for j = r, . . . , 2k.
The solution to the R–TMP is the following.

Theorem 2.5 ([CF91, Theorems 3.9–3.10]). For k ∈ N and v = (v0, . . . , v2k) ∈ R2k+1 with
v0 > 0, the following statements are equivalent:

(1) There exists a R–representing measure for β.
(2) There exists a (rankAv)–atomic R–representing measure for β.
(3) Av is positive semidefinite and one of the following holds:

(a) Av(k − 1) is positive definite.
(b) rankAv(k − 1) = rankAv.

(4) v is positively recursively generated.

2.7. TMP on the unit circle. The solution to the Z(x2 + y2 − 1)–TMP is the following.

Theorem 2.6 ([CF02, Theorem 2.1]). Let p(x, y) = x2+y2−1 and β := β(2k) = (βi,j)i,j∈Z+,i+j≤2k,
where k ≥ 2. Then the following statements are equivalent:

(1) β has a Z(p)–representing measure.
(2) β has a (rankM(k))–atomic Z(p)–representing measure.
(3) M(k) is positive semidefinite and the relations β2+i,j+βi,2+j = βi,j hold for every i, j ∈ Z+

with i+ j ≤ 2k − 2.

2.8. Parabolic TMP. We will need the following solution to the parabolic TMP (see [Zal23, The-
orem 3.7]).

Theorem 2.7. Let p(x, y) = x− y2 and β := β(2k) = (βi,j)i,j∈Z+,i+j≤2k, where k ≥ 2. Let

B = {1 , Y,X,XY,X2, X2Y, . . . , X i, X iY, . . . , Xk−1, Xk−1Y,Xk}.
Then the following statements are equivalent:
(1) β has a Z(p)–representing measure.
(2) β has a (rankM(k))–atomic Z(p)–representing measure.
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(3) M(k) is positive semidefinite, the relations β1+i,j = βi,2+j hold for every i, j ∈ Z+ with
i+ j ≤ 2k − 2 and one of the following statements holds:
(a)

(
M(k)

)
B\{Xk} is positive definite.

(b) rank
(
M(k)

)
B\{Xk} = rankM(k).

(4) The relations β1+i,j = βi,2+j hold for every i, j ∈ Z+ with i + j ≤ 2k − 2 and γ =
(γ0, . . . , γ4k), defined by γi = β⌊ i

2
⌋,i mod 2, admits a R–representing measure.

Remark 2.8. The equivalence (3) ⇔ (4) is part of the proof of [Zal23, Theorem 3.7].

3. TMP ON REDUCIBLE CUBICS - CASE REDUCTION

In this section we show that to solve the TMP on reducible cubic curves it suffices, after applying
an affine linear transformation, to solve the TMP on 8 canonical forms of curves.

Proposition 3.1. Let k ∈ R and β := β(2k) = (βi,j)i,j∈Z+,i+j≤2k. Assume M(k; β) does not
satisfy any nontrivial column relation between columns indexed by monomials of degree at most
2, but it satisfies a column relation p(X, Y ) = 0, where p ∈ R[x, y] is a reducible polynomial
with deg p = 3. If β admits a representing measure, then there exists an invertible affine linear
transformation ϕ of the form (2.1) such that the moment matrix ϕ

(
M(k; β)

)
satisfies a column

relation q(x, y) = 0, where q has one of the following forms:
Parallel lines type: q(x, y) = y(a+ y)(b+ y), a, b ∈ R \ {0}, a ̸= b.
Circular type: q(x, y) = y(ay + x2 + y2), a ∈ R \ {0}.
Parabolic type: q(x, y) = y(x− y2).

Hyperbolic type 1: q(x, y) = y(1− xy).
Hyperbolic type 2: q(x, y) = y(x+ y + axy), a ∈ R \ {0}.
Hyperbolic type 3: q(x, y) = y(ay + x2 − y2), a ∈ R.
Intersecting lines type: q(x, y) = yx(y + 1),
Mixed type: q(x, y) = y(1 + ay + bx2 + cy2), a, b, c ∈ R, b ̸= 0.

Remark 3.2. The name of the types of the form q in Proposition 3.1 comes from the type of the
conic q(x,y)

y
= 0. The conic x + y + axy = 0, a ∈ R \ {0}, is a hyperbola, since the discriminant

a2 is positive. Similarly, the conic ay + x2 − y2 = 0, a ∈ R, is a hyperbola, since its discriminant
is equal to 4. Clearly, the conic ay + x2 + y2 = 0, a ∈ R, is a circle with the center (0,−a

2
) and

radius a
2
.

Now we prove Proposition 3.1.

Proof of Proposition 3.1. Since p(x, y) is reducible, it is of the form p = p1p2, where

p1(x, y) = a0 + a1x+ a2y with ai ∈ R, (a1, a2) ̸= (0, 0),

p2(x, y) = b0 + b1x+ b2y + b3x
2 + b4xy + b5y

2 with bi ∈ R, (b3, b4, b5) ̸= (0, 0, 0).

Without loss of generality we can assume that a2 ̸= 0, since otherwise we apply the alt (x, y) 7→
(y, x) to exchange the roles of x and y. Since a2 ̸= 0, the alt

ϕ1(x, y) = (x, a0 + a1x+ a2y)
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is invertible and hence:
A sequence ϕ1(β) has a moment matrix ϕ1

(
M(k; β)

)
satisfying the column relation

c0Y + c1X + c2Y
2 + c3X

2Y + c4XY 2 + c5Y
3 = 0 with ci ∈ R, (c3, c4, c5) ̸= (0, 0, 0).

(3.1)

We separate two cases according to the value of c3.

Case 1: c3 = 0. In this case (3.1) is equal to

A sequence ϕ1(β) has a moment matrix ϕ1

(
M(k; β)

)
satisfying the column relation

c0Y + c1XY + c2Y
2 + c4XY 2 + c5Y

3 = 0 with ci ∈ R, (c4, c5) ̸= (0, 0).
(3.2)

If c0 = c1 = c2 = 0, then (3.2) is equal to c4XY 2 + c5Y
3 = 0. Since by assumption β and hence

ϕ1(β) admit a rm, supported on

Z(y2(c4x+ c5y)) = Z(y(c4x+ c5y)),

it follows by [CF96] that c4XY + c5Y
2 = 0 is a nontrivial column relation in ϕ1

(
M(k; β)

)
.

Hence, also M(k; β) satisfies a nontrivial column relation between columns indexed by monomials
of degree at most 2, which is a contradiction with the assumption of the proposition. Therefore
(c0, c1, c2) ̸= (0, 0, 0).

Case 1.1: c0 ̸= 0. Dividing the relation in (3.2) by c0, we get:

A sequence ϕ1(β) has a moment matrix ϕ1

(
M(k; β)

)
satisfying the column relation

Y + c̃1XY + c̃2Y
2 + c̃4XY 2 + c̃5Y

3 = 0 with c̃i ∈ R, (c̃4, c̃5) ̸= (0, 0).
(3.3)

Case 1.1.1: c̃1 = 0. In this case (3.3) is equivalent to:

A sequence ϕ1(β) has a moment matrix ϕ1

(
M(k; β)

)
satisfying the column relation

Y + c̃2Y
2 + c̃4XY 2 + c̃5Y

3 = 0 with c̃i ∈ R, (c̃4, c̃5) ̸= (0, 0).
(3.4)

Case 1.1.1.1: c̃4 = 0. In this case (3.4) is equivalent to

A sequence ϕ1(β) has a moment matrix ϕ1

(
M(k; β)

)
satisfying the column relation

Y + c̃2Y
2 + c̃5Y

3 = 0 with c̃2 ∈ R, c̃5 ∈ R \ {0}.
(3.5)

The quadratic equation 1+ c̃2y+ c̃5y
2 = 0 must have two different real nonzero solutions, otherwise

Z(y(1 + c̃2x + c̃5y)) is a union of two parallel lines. Then it follows by [CF96] that there is a
nontrivial column relation in M(k; β) between columns indexed by monomials of degree at most
2, which is a contradiction with the assumption of the proposition. So we have the parallel lines
type relation from the proposition.

Case 1.1.1.2: c̃4 ̸= 0. In this case the alt

ϕ2(x, y) = (−c̃2 − c̃4x− c̃5y, y
)

is invertible and applying it to ϕ1(β), we obtain:

A sequence (ϕ2 ◦ ϕ1)(β) has a moment matrix (ϕ2 ◦ ϕ1)
(
M(k; β)

)
satisfying

the hyperbolic type 1 relation from the proposition.

Case 1.1.2: c̃1 ̸= 0. We apply the alt

ϕ3(x, y) = (1 + c̃1x, y)
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to ϕ1(β) and obtain:

A sequence (ϕ3 ◦ ϕ1)(β) has a moment matrix (ϕ3 ◦ ϕ1)
(
M(k; β)

)
satisfying

the column relation XY + ĉ2Y
2 + ĉ4XY 2 + ĉ5Y

3 = 0 with ĉi ∈ R, (ĉ4, ĉ5) ̸= (0, 0).
(3.6)

Case 1.1.2.1: ĉ4 ̸= 0. We apply the alt

ϕ4(x, y) =
(
x− ĉ5

ĉ4
y, y
)

to (ϕ3 ◦ ϕ1)(β) and obtain:

A sequence (ϕ4 ◦ ϕ3 ◦ ϕ1)(β) has a moment matrix (ϕ4 ◦ ϕ3 ◦ ϕ1)
(
M(k; β)

)
satisfying

the column relation XY + c̆2Y
2 + ĉ4XY 2 = 0 with c̆2, ĉ4 ∈ R, ĉ4 ̸= 0.

(3.7)

Case 1.1.2.1.1: c̆2 = 0. In this case the relation in (3.7) is of the form

XY + ĉ4XY 2 = 0 with ĉ4 ∈ R \ {0}.
Applying the alt

ϕ5(x, y) = (x, ĉ4y)

to (ϕ4 ◦ ϕ3 ◦ ϕ1)(β) we obtain:

A sequence (ϕ5 ◦ ϕ4 ◦ ϕ3 ◦ ϕ1)(β) has a moment matrix (ϕ5 ◦ ϕ4 ◦ ϕ3 ◦ ϕ1)
(
M(k; β)

)
satisfying

the intersecting lines type relation from the proposition.

Case 1.1.2.1.2: c̆2 ̸= 0. We apply the alt

ϕ6(x, y) = (x, c̆2y)

to (ϕ4 ◦ ϕ3 ◦ ϕ1)(β) and obtain:

A sequence (ϕ6 ◦ ϕ4 ◦ ϕ3 ◦ ϕ1)(β) has a moment matrix (ϕ6 ◦ ϕ4 ◦ ϕ3 ◦ ϕ1)
(
M(k; β)

)
satisfying

the hyperbolic type 2 relation in the proposition.

Case 1.1.2.2: ĉ4 = 0. In this case (3.6) is equivalent to:

A sequence (ϕ3 ◦ ϕ1)(β) has a moment matrix (ϕ3 ◦ ϕ1)
(
M(k; β)

)
satisfying

the column relation XY + ĉ2Y
2 + ĉ5Y

3 = 0 with ĉ2, ĉ5 ∈ R, ĉ5 ̸= 0.
(3.8)

Case 1.1.2.2.1: c̃2 = 0. Applying the alt

ϕ7(x, y) = (x,−ĉ5y),

to (ϕ3 ◦ ϕ1)(β) we obtain:

A sequence (ϕ7 ◦ ϕ3 ◦ ϕ1)(β) has a moment matrix (ϕ7 ◦ ϕ3 ◦ ϕ1)
(
M(k; β)

)
satisfying

the parabolic type relation in the proposition.

Case 1.1.2.2.2: c̃2 ̸= 0. Applying the alt

ϕ8(x, y) = (x, ĉ2y)

to (ϕ3 ◦ ϕ1)(β) and obtain:

A sequence (ϕ8 ◦ ϕ3 ◦ ϕ1)(β) has a moment matrix (ϕ8 ◦ ϕ3 ◦ ϕ1)
(
M(k; β)

)
satisfying

the column relation XY + Y 2 + c̆5Y
3 = 0 with c̆5 ∈ R, (

c 5 ̸= 0.
(3.9)
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Further on, the relation in (3.9) is equivalent to

(3.10) (

(

c 5)
−1(XY + Y 2) + Y 3 = 0 with (

c 5 ∈ R, (

c 5 ̸= 0.

Finally, applying the alt
ϕ9(x, y) =

(
(− (

c 5)
−1(x+ y), y

)
to (ϕ8 ◦ ϕ3 ◦ ϕ1)(β), we obtain:

A sequence (ϕ9 ◦ ϕ8 ◦ ϕ3 ◦ ϕ1)(β) has a moment matrix (ϕ9 ◦ ϕ8 ◦ ϕ3 ◦ ϕ1)
(
M(k; β)

)
satisfying the parabolic type relation in the proposition.

Case 1.2: c0 = 0. In this case (3.2) is equivalent to:

A sequence ϕ1(β) has a moment matrix ϕ1

(
M(k; β)

)
satisfying the column relation

c1XY + c2Y
2 + c4XY 2 + c5Y

3 = 0 with ci ∈ R, (c4, c5) ̸= (0, 0).
(3.11)

Assume that c1 = 0. Since by assumption β and hence ϕ1(β) admits a rm, supported on

Z(y2(c2 + c4x+ c5y)) = Z(y(c2 + c4x+ c5y)),

it follows by [CF96] that c2Y + c4XY + c5Y
2 = 0 is a nontrivial column relation in ϕ1

(
M(k; β)

)
.

Hence, also M(k; β) satisfies a nontrivial column relation between columns indexed by monomials
of degree at most 2, which is a contradiction with the assumption of the proposition. Hence,
c1 ̸= 0. Applying the alt (x, y) 7→ (c1x, y) to ϕ1(β), we obtain a sequence with the moment matrix
satisfying the column relation of the form (3.6) and we can proceed as in the Case 1.1.2 above.

Case 2: c3 ̸= 0. Applying the alt

ϕ10(x, y) =
(√

|c3|x, y
)

to ϕ1(β), we obtain:

A sequence (ϕ10 ◦ ϕ1)(β) has a moment matrix (ϕ10 ◦ ϕ1)
(
M(k; β)

)
satisfying

the column relation c0Y + c̃1XY + c2Y
2 +

|c3|
c3

X2Y + c̃4XY 2 + c5Y
3 = 0 with ci, c̃i ∈ R.

(3.12)

Case 2.1: c̃1 = 0. In this case (3.12) is equivalent to:

A sequence (ϕ10 ◦ ϕ1)(β) has a moment matrix (ϕ10 ◦ ϕ1)
(
M(k; β)

)
satisfying

the column relation c0Y + c2Y
2 +

|c3|
c3

X2Y + c̃4XY 2 + c5Y
3 = 0 with ci, c̃i ∈ R.

(3.13)

Case 2.1.1: c0 = 0. Dividing the relation in (3.13) with |c3|
c3

, (3.13) is equivalent to:

A sequence (ϕ10 ◦ ϕ1)(β) has a moment matrix (ϕ10 ◦ ϕ1)
(
M(k; β)

)
satisfying

the column relation c̃2Y
2 +X2Y + ĉ4XY 2 + c̃5Y

3 = 0 with c̃2, ĉ4, c̃5 ∈ R.
(3.14)

Applying the alt

ϕ11(x, y) =
(
x+

ĉ4
2
y, y
)

to (ϕ10 ◦ ϕ1)(β), we obtain:

A sequence (ϕ11 ◦ ϕ10 ◦ ϕ1)(β) has a moment matrix (ϕ11 ◦ ϕ10 ◦ ϕ1)
(
M(k; β)

)
satisfying the column relation c̆2Y

2 +X2Y + c̆5Y
3 = 0 with c̆2, c̆5 ∈ R.

(3.15)
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Case 2.1.1.1: c̆5 = 0. Since by assumption of the proposition, (ϕ11 ◦ ϕ10 ◦ ϕ1)(β) admits a rm,
supported on Z(y(c̆2y + x2)), c̆2 in (3.15) cannot be equal to 0. Indeed, c̆2 = 0 would imply
that Z(y(c̆2y + x2)) = Z(yx2) = Z(yx) and by [CF96], XY = 0 would be a nontrivial column
relation in (ϕ11 ◦ ϕ10 ◦ ϕ1)

(
M(k; β)

)
. Hence, also M(k; β) would satisfy a nontrivial column

relation between columns indexed by monomials of degree at most 2, which is a contradiction with
the assumption of the proposition. Since c̆2 ̸= 0, after applying the alt

ϕ12(x, y) = (x,−c̆2y)

to (ϕ11 ◦ ϕ10 ◦ ϕ1)(β), we obtain:

A sequence (ϕ12 ◦ ϕ11 ◦ ϕ10 ◦ ϕ1)(β) has a moment matrix (ϕ12 ◦ ϕ11 ◦ ϕ10 ◦ ϕ1)
(
M(k; β)

)
satisfying the parabolic type relation in the proposition.

Case 2.1.1.2: c̆5 > 0. Applying the alt

ϕ13(x, y) = (x,
√

c̆5y)

to (ϕ11 ◦ ϕ10 ◦ ϕ1)(β) we obtain:

A sequence (ϕ13 ◦ ϕ11 ◦ ϕ10 ◦ ϕ1)(β) has a moment matrix (ϕ13 ◦ ϕ11 ◦ ϕ10 ◦ ϕ1)
(
M(k; β)

)
satisfying the circular type relation in the proposition.

Case 2.1.1.3: c̆5 < 0. Applying the alt

ϕ14(x, y) = (x,
√

−c̆5y)

to (ϕ11 ◦ ϕ10 ◦ ϕ1)(β), we obtain:

A sequence (ϕ14 ◦ ϕ11 ◦ ϕ10 ◦ ϕ1)(β) has a moment matrix (ϕ14 ◦ ϕ11 ◦ ϕ10 ◦ ϕ1)
(
M(k; β)

)
satisfying the hyperbolic type 3 relation in the proposition.

Case 2.1.2: c0 ̸= 0. Dividing the relation in (3.13) with c0, (3.13) is equivalent to:

A sequence (ϕ10 ◦ ϕ1)(β) has a moment matrix (ϕ10 ◦ ϕ1)
(
M(k; β)

)
satisfying

the column relation Y + c̃2Y
2 + c̃3X

2Y + ĉ4XY 2 + c̃5Y
3 = 0 with c̃i, ĉ4 ∈ R, c̃3 ̸= 0.

(3.16)

Applying the alt

ϕ15(x, y) =
(
x+

ĉ4
2c̃3

, y
)

to (ϕ10 ◦ ϕ1)(β), we obtain:

A sequence (ϕ15 ◦ ϕ10 ◦ ϕ1)(β) has a moment matrix (ϕ15 ◦ ϕ10 ◦ ϕ1)
(
M(k; β)

)
satisfying the mixed type relation in the proposition.

Case 2.2: c̃1 ̸= 0. Dividing the relation in (3.12) with |c3|
c3

, (3.12) is equivalent to:

A sequence (ϕ10 ◦ ϕ1)(β) has a moment matrix (ϕ10 ◦ ϕ1)
(
M(k; β)

)
satisfying the

column relation ĉ0Y + ĉ1XY + ĉ2Y
2 +X2Y + ĉ4XY 2 + ĉ5Y

3 = 0 with ĉi ∈ R, ĉ1 ̸= 0.
(3.17)

Now we apply the alt

ϕ16(x, y) =
(
x+

ĉ1
2
, y
)
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to (ϕ10 ◦ ϕ1)(β) and obtain:

A sequence (ϕ16 ◦ ϕ10 ◦ ϕ1)(β) has a moment matrix (ϕ16 ◦ ϕ10 ◦ ϕ1)
(
M(k; β)

)
satisfying the column relation c̆0Y + c̆2Y

2 +X2Y + c̆4XY 2 + c̆5Y
3 = 0 with c̆i ∈ R.

(3.18)

Case 2.2.1: c̆0 = 0. In this case the relation in (3.18) becomes equal to the relation in (3.14) from
the Case 2.1.1, so we can proceed as above.

Case 2.2.2: c̆0 ̸= 0. Dividing the relation in (3.18) with c̆0, it becomes equal to the relation in
(3.16) from the Case 2.1.2, so we can proceed as above. □

4. SOLVING THE TMP ON CANONICAL REDUCIBLE CUBIC CURVES

Let β = {βi}i∈Z2
+,|i|≤2k be a sequence of degree 2k, k ∈ N, and

(4.1) C = {1 , X, Y,X2, XY, Y 2, . . . , Xk, Xk−1Y, . . . , Y k}

the set of rows and columns of the moment matrix M(k; β) in the degree-lexicographic order. Let

(4.2) p(x, y) = y · c(x, y) ∈ R[x, y]≤3

be a polynomial of degree 3 in one of the canonical forms from Proposition 3.1. Hence, c(x, y) a
polynomial of degree 2. β will have a Z(p)–rm if and only if it can be decomposed as

(4.3) β = β(ℓ) + β(c),

where

β(ℓ) := {β(ℓ)
i }i∈Z2

+,|i|≤2k has a representing measure on y = 0,

β(c) := {β(c)
i }i∈Z2

+,|i|≤2k has a representing measure on the conic c(x, y) = 0,

and the sum in (4.3) is a component-wise sum. On the level of moment matrices, (4.3) is equivalent
to

(4.4) M(k; β) = M(k; β(ℓ)) +M(k; β(c)).

Note that if β has a Z(p)–rm, then the matrix M(k; β) satisfies the relation p(X, Y ) = 0 and it
must be rg, i.e.,

(4.5) X iY jp(X, Y ) = 0 for i, j = 0, . . . , k − 3 such that i+ j ≤ k − 3.

We write X⃗(0,k) := (1 , X, . . . , Xk). Let T ⊆ C be a subset, such that the columns from T span
the column space C(M(k; β)) and

P is a permutation matrix such that moment matrix M̃(k; β) := PM(k; β)P T

has rows and columns indexed in the order X⃗(0,k), T \ X⃗(0,k), C \ (X⃗(0,k) ∪ T ).
(4.6)

In this new order of rows and columns, (4.4) becomes equivalent to

(4.7) M̃(k; β) = M̃(k; β(ℓ)) + M̃(k; β(c)).
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We write

M̃(k; β) =


X⃗(0,k) T \ X⃗(0,k) C \ (X⃗(0,k) ∪ T )

(X⃗(0,k))T A11 A12 A13

(T \ X⃗(0,k))T (A12)
T A22 A23

(C \ (X⃗(0,k) ∪ T ))T (A13)
T (A23)

T A33

.(4.8)

By the form of the atoms, we know that M̃(k; β(ℓ)) and M̃(k; β(c)) will be of the forms

M̃(k; β(c)) =


X⃗(0,k) T \ X⃗(0,k) C \ (X⃗(0,k) ∪ T )

(X⃗(0,k))T A A12 A13

(T \ X⃗(0,k))T (A12)
T A22 A23

(C \ (X⃗(0,k) ∪ T ))T (A13)
T (A23)

T A33

,

M̃(k; β(ℓ)) =


X⃗(0,k) T \ X⃗(0,k) C \ (X⃗(0,k) ∪ T )

(X⃗(0,k))T A11 − A 0 0

(T \ X⃗(0,k))T 0 0 0

(C \ (X⃗(0,k) ∪ T ))T 0 0 0


(4.9)

for some Hankel matrix A ∈ Sk+1. Define matrix functions F : Sk+1 → S (k+1)(k+2)
2

and H :

Sk+1 → Sk+1 by

F(A) =

 A A12 A13

(A12)
T A22 A23

(A13)
T (A23)

T A33

 and H(A) = A11 −A.(4.10)

Using (4.9), (4.7) becomes equivalent to

(4.11) M̃(k; β) = F(A) +H(A)⊕ 0 k(k+1)
2

for some Hankel matrix A ∈ Sk+1.

Lemma 4.1. Assume the notation above. The sequence β = {βi}i∈Z2
+,|i|≤2k, where k ≥ 3, has a

Z(p)–representing measure if and only if there exist a Hankel matrix A ∈ Sk+1, such that:
(1) The sequence with the moment matrix F(A) has a Z(c)–representing measure.
(2) The sequence with the moment matrix H(A) has a R–representing measure.

Proof. First we prove the implication (⇒). If β has a Z(p)–rm µ, then µ is supported on the union
of the line y = 0 and the conic c(x, y) = 0. Since the moment matrix, generated by the measure
supported on y = 0, can be nonzero only when restricted to the columns and rows indexed by
X⃗(0,k), it follows that the moment matrix generated by the restriction µ|{c=0} (resp. µ|{y=0}) of the
measure µ to the conic c(x, y) = 0 (resp. line y = 0), is of the form F(A) (resp. H(A) ⊕ 0 k(k+1)

2

)
for some Hankel matrix A ∈ Sk+1.

It remains to establish the implication (⇐). Let M(c)(k) (resp. M(ℓ)(k)) be the moment matrix
generated by the measure µ1 (resp. µ2) supported on Z(c) (resp. y = 0) such that

PM(c)(k)P T = F(A), PM(ℓ)(k)P T = H(A)⊕ 0 k(k+1)
2

,(4.12)
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respectively, where P is as in (4.6). The equalities (4.12) imply that M(k; β) = M(c)(k) +
M(ℓ)(k; β). Since the measure µ1 + µ2 is supported on the curve Z(c) ∪ {y = 0} = Z(p), the
implication (⇐) holds. □

Lemma 4.2. Assume the notation above and let the sequence β = {βi}i∈Z2
+,|i|≤2k, where k ≥ 3,

admit a Z(p)–representing measure. Let A := A(
β
(c)
0,0,β

(c)
1,0,...,β

(c)
2k,0

) ∈ Sk+1 be a Hankel matrix such

that F(A) admits a Z(c)–representing measure and H(A) admits a R–representing measure. Let
c(x, y) be of the form

c(x, y) = a00 + a10x+ a20x
2 + a01y + a02y

2 + a11xy with aij ∈ R
and exactly one of the coefficients a00, a10, a20 is nonzero.

(4.13)

If:
(1) a00 ̸= 0, then

β
(c)
i,0 = − 1

a00
(a01βi,1 + a02βi,2 + a11βi+1,1) for i = 0, . . . , 2k − 2.

(2) a10 ̸= 0, then

β
(c)
i,0 = − 1

a10
(a01βi,1 + a02βi,2 + a11βi+1,1) for i = 1, . . . , 2k − 1.

(3) a20 ̸= 0, then

β
(c)
i,0 = − 1

a20
(a01βi,1 + a02βi,2 + a11βi+1,1) for i = 2, . . . , 2k.

Proof. By Lemma 4.1, F(A) has a Z(c)–rm for some Hankel matrix A ∈ Sk+1. Hence, F(A)
satisfies the rg relations X iY jc(X, Y ) = 0 for i, j ∈ Z+, i+ j ≤ k−2. Let us assume that a00 ̸= 0
and a10 = a20 = 0. In particular, F(A) satisfies the relations

a001 + a01Y + a02Y
2 + a11XY = 0,

a00X
k−2 + a01X

k−2Y + a02X
k−2Y 2 + a11X

k−1Y = 0.
(4.14)

Observing the rows 1 , X, . . . , Xk of F(A), the relations (4.14) imply that

(4.15) β
(c)
i,0 = − 1

a00

(
a01β

(c)
i,1 + a02β

(c)
i,2 + a11β

(c)
i+1,1

)
for i = 0, . . . , 2k − 2.

Using the forms of M̃(k; β) and F(A) (see (4.8) and (4.10)), it follows that β(c)
i,1 = βi,1 and

β
(c)
j,2 = βj,2 for each i, j. Using this in (4.15) proves the statement (1) of the lemma. The proofs of

the statements (2) and (3) are analogous. □

Lemma 4.2 states that for all canonical relations from Proposition 3.1 except for the mixed type
relation, all but two entries of the Hankel matrix A from Lemma 4.1 are uniquely determined by
β. The following lemma gives the smallest candidate for A in Lemma 4.1 with respect to the usual
Loewner order of matrices.

Lemma 4.3. Assume the notation above and let β = {βi}i∈Z2
+,|i|≤2k, where k ≥ 3, be a sequence

of degree 2k. Assume that M̃(k; β) is positive semidefinite and satisfies the column relations (4.5).
Then:

(1) F(A) ⪰ 0 for some A ∈ Sk+1 if and only if A ⪰ A12(A22)
†(A12)

T .
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(2) F
(
A12(A22)

†(A12)
T
)
⪰ 0 and H

(
A12(A22)

†(A12)
T
)
⪰ 0.

(3) F
(
A12(A22)

†(A12)
T
)

satisfies the column relations X iY jc(X, Y ) = 0 for i, j ∈ Z+ such
that i+ j ≤ k − 2.

(4) We have that

rankM̃(k; β) = rankA22 + rank
(
A11 − A12(A22)

†(A12)
T
)

= rankF
(
A12(A22)

†(A12)
T
)
+ rankH

(
A12(A22)

†(A12)
T
)
.

Proof. By the equivalence between (1a) and (1b) of Theorem 2.2 used for (M,A) = (M̃(k; β), A11)

and (M,A) = (
(
M̃(k; β)

)
X⃗(0,k)∪T , A11), it follows in particular that

C
(((A12)

T

(A13)
T

))
⊆ C

(( A22 A23

(A23)
T A33

))
,

C(AT
12) ⊆ C(A22).

(4.16)

and

(4.17) H(Amin) ⪰ 0,

where

Amin :=
(
A12 A13

)( A22 A23

(A23)
T A33

)†(
(A12)

T

(A13)
T

)
.

Using the equivalence between (1a) and (1b) of Theorem 2.2 again for the pairs (M,A) = (F(A), A)
and (M,A) = (

(
F(A)

)
X⃗(0,k)∪T , A), it follows that

F(A) ⪰ 0 ⇔ A ⪰ Amin,(
F(A)

)
X⃗(0,k)∪T ⪰ 0 ⇔ A ⪰ A12(A22)

†(A12)
T =: Ãmin.

(4.18)

Since F(A) ⪰ 0 implies, in particular, that
(
F(A)

)
X⃗(0,k)∪T ⪰ 0, (4.18) implies that

(4.19) Amin ⪰ Ãmin.

Claim. Amin = Ãmin.

Proof of Claim. By (4.18) and (4.19), it suffices to prove that F(Ãmin) ⪰ 0. By definition of T
and the relations X iY jp(X, Y ) = X iY j+1c(X, Y ) = 0, i, j ∈ Z+, i + j ≤ k − 3, which hold in
M̃(k; β), it follows, in particular, that

(4.20) C
((A23

A33

))
⊆ C

(( A22

(A23)
T

))
(4.16) and (4.20) together imply that

(4.21) C
(((A12)

T

(A13)
T

))
⊆ C

(( A22

(A23)
T

))
.
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(4.16) and (4.21) can be equivalently expressed as(
A22

(A23)
T

)
W =

(
A23

A33

)
for some matrix W,

(
A22

(A23)
T

)
X =

(
(A12)

T

(A13)
T

)
for some matrix X.

(4.22)

We have that

0 ⪯

XT

I
W T

A22

(
X I W

)

=

XTA22X XTA22 XTA22W

A22X A22 A22W

W TA22X W TA22 W TA22W



=

A12(A22)
†(A12)

T A12 A13

(A12)
T A22 A23

(A13)
T (A23)

T A33

 = F(Ãmin)

where I is the identity matrix of the same size as A22 and we used (4.22) in the second equality.
This proves the Claim. ■

Using (4.17), (4.18) and Claim, the statements (1) and (2) follow. By Theorem 2.2.(2), used for
(M,A) = (M̃(k; β), A11), we have that

rankM̃(k; β) = rank

(
A22 A23

(A23)
T A33

)
+ rankH(Amin)

= rankF(Amin) + rankH(Amin).

(4.23)

By (4.20) and

B :=

(
A22 A23

(A23)
T A33

)
⪰ 0,

it follows by Theorem 2.2, used for (M,A) = (B,A22), that rankB = rankA22. Using this and
the Claim, (4.23) implies the statement (4).

Since M̃(k; β) satisfies the relations (4.5), it follows that the restriction
(
F(Ãmin)

)
C\X⃗(0,k),C

satisfies the column relations X iY jc(X, Y ) = 0 for i, j ∈ Z+ such that i + j ≤ k − 2. By
Proposition 2.3, these relations extend to F(Ãmin), which proves (3). □

Remark 4.4. By Lemmas 4.1–4.3, solving the Z(p)–TMP for the sequence β = {βi}i∈Z2
+,|i|≤2k,

where k ≥ 3, with p being any but the mixed type relation from Proposition 3.1, the natural
procedure is the following:

(1) First compute Amin := A12(A22)
†A12. By Lemma 4.3.(3), there is one entry of Amin, which

might need to be changed to obtain a Hankel structure. Namely, in the notation (4.13), if:
(a) a00 ̸= 0, then the value of (Amin)k,k must be made equal to (Amin)k−1,k+1.
(b) a10 ̸= 0, then the value of (Amin)1,k+1 must be made equal to (Amin)2,k.
(c) a20 ̸= 0, then the value of (Amin)2,2 must be made equal to (Amin)3,1.
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Let Âmin be the matrix obtained from Amin after performing the changes described above.

(2) Study if F(Âmin) and H(Âmin) admit a Z(c)–rm and a R–rm, respectively. If the answer
is yes, β admits a Z(p)–rm. Otherwise by Lemma 4.2, there are two antidiagonals of the
Hankel matrix Âmin, which can by varied so that the matrices F(Âmin) and H(Âmin) will
admit the corresponding measures. Namely, in the notation (4.13), if:
(a) a00 ̸= 0, then the last two antidiagonals of Âmin can be changed.
(b) a10 ̸= 0, then the left–upper and the right–lower corner of Âmin can be changed.
(c) a20 ̸= 0, then the first two antidiagonals of Âmin can be changed.

To solve the Z(p)–TMP for β one needs to characterize, when it is possible to change these
antidiagonals in such a way to obtain a matrix Ămin, such that F(Ămin) and H(Ămin) admit
a Z(c)–rm and a R–rm, respectively.

In Sections 5 and 6 we solve concretely the TMP on reducible cubic curves in the circular and
parabolic type form (see the classification from Proposition 3.1). The parallel lines type form was
solved in [Zal22a], while the hyperbolic type forms will be solved in the forthcoming work [YZ+].

5. CIRCULAR TYPE RELATION: p(x, y) = y(ay + x2 + y2), a /∈ R \ {0}.

In this section we solve the Z(p)–TMP for the sequence β = {βi,j}i,j∈Z+,i+j≤2k of degree 2k,
k ≥ 3, where p(x, y) = y(ay + x2 + y2), a ∈ R \ {0}. Assume the notation from Section 4. If β
admits a Z(p)–TMP, then M(k; β) must satisfy the relations

(5.1) aY 2+jX i + Y 1+jX2+i = −Y 3+jX i for i, j ∈ Z+ such that i+ j ≤ k − 3.

In the presence of all column relations (5.1), the column space C(M(k; β)) is spanned by the
columns in the set

(5.2) T = X⃗(0,k) ∪ Y X⃗(0,k−1) ∪ Y 2X⃗(0,k−2),

where

Y iX⃗(j,ℓ) := (Y iXj, Y iXj+1, . . . , Y iXℓ) with i, j, ℓ ∈ Z+, j ≤ ℓ, i+ ℓ ≤ k.

Let M̃(k; β) be as in (4.9). Let

(5.3) Amin := A12(A22)
†(A12)

T .

As described in Remark 4.4, Amin might need to be changed to

Âmin = Amin + ηE
(k+1)
2,2 ,

where

η := (Amin)1,3 − (Amin)2,2.
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Let F(A) and H(A) be as in (4.10). Write

H(Âmin) :=


1 X X⃗(2,k)

1 β0,0 − (Amin)1,1 β1,0 − (Amin)1,2 (h
(1)
12 )

T

X β1,0 − (Amin)1,2 β2,0 − (Amin)1,3 (h
(2)
12 )

T

(X⃗(2,k))T h
(1)
12 h

(2)
12 H22

,

H1 := (H(Âmin)){1}∪X⃗(2,k) =

( 1 X⃗(2,k)

1 β0,0 − (Amin)1,1 (h
(1)
12 )

T

(X⃗(2,k))T h
(1)
12 H22

)
,

H2 := (H(Âmin))X⃗(1,k) =

( X X⃗(2,k)

X β2,0 − (Amin)1,3 (h
(2)
12 )

T

(X⃗(2,k))T h
(2)
12 H22

)
.

(5.4)

Define also the matrix function

(5.5) G : R2 → Sk+1, G(t,u) = Âmin + tE
(k+1)
1,1 + u

(
E

(k+1)
1,2 + E

(k+1)
2,1

)
.

The solution to the cubic circular type relation TMP is the following.

Theorem 5.1. Let p(x, y) = y(ay + x2 + y2), a ∈ R \ {0}, and β = (βi,j)i,j∈Z+,i+j≤2k, where
k ≥ 3. Assume also the notation above. Then the following statements are equivalent:

(1) β has a Z(p)–representing measure.

(2) M̃(k; β) is positive semidefinite, the relations

(5.6) aβi,2+j + β2+i,1+j = −βi,3+j hold for every i, j ∈ Z+ with i+ j ≤ 2k − 3

and one of the following statements holds:
(a) η = 0 and one of the following holds:

(i) rank(H(Amin))X⃗(0,k−1) = k.
(ii) rank(H2)X⃗(1,k−1) = rankH2.

(b) η > 0, H2 is positive semidefinite and defining a real number

u0 = β1,0 − (Amin)1,2 − (h
(1)
12 )

T (H22)
†h

(2)
12 ,(5.7)

a function

(5.8) h(t) =
√
(H1/H22 − t)(H2/H22)

and a set
I =

{
(t,

√
ηt) ∈ R+ × R+ :

√
ηt = u0 + h(t)},

∪
{
(t,

√
ηt) ∈ R+ × R− :

√
ηt = u0 − h(t)},

∪
{
(t,−

√
ηt) ∈ R+ × R+ : −

√
ηt = u0 + h(t)},

∪
{
(t,−

√
ηt) ∈ R+ × R− : −

√
ηt = u0 − h(t)},

(5.9)

one of the following holds:
(i) The set I has two elements and H2 is positive definite.
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(ii) I = {(t̃, ũ)} and

(5.10) rank
((
H(G(t̃, ũ))

)
X⃗(0,k−1)

)
= rankH(G(t̃, ũ)).

Moreover, if a Z(p)–representing measure for β exists, then:

• There exists at most (rankM̃(k; β) + 1)–atomic Z(p)–representing measure.
• There exists a (rankM̃(k; β))–atomic Z(p)–representing measure if and only if any of the

following holds:

– η = 0.

– η > 0 and H(Amin) is positive definite.

In particular, a p–pure sequence β with a Z(p)–representing measure admits a (rankM̃(k; β))–
atomic Z(p)–representing measure.

Remark 5.2. In this remark we explain the idea of the proof of Theorem 5.1 and the meaning of the
conditions in the statement of the theorem.

By Lemmas 4.1–4.2, the existence of a Z(p)–rm for β is equivalent to the existence of t, u ∈ R
such that F(G(t, u)) admits a Z(ay + x2 + y2)–rm and H(G(t, u)) admits a R–rm. Let

R1 =
{
(t, u) ∈ R2 : F(G(t, u)) ⪰ 0

}
and R2 =

{
(t, u) ∈ R2 : H(G(t, u)) ⪰ 0

}
.

We denote by ∂Ri and R̊i the topological boundary and the interior of the set Ri, respectively. By
the necessary conditions for the existence of a Z(p)–rm [CF04, Fia95, CF96], M̃(k; β) must be
psd and the relations (5.6) must hold. Using also Theorem 2.6, Theorem 5.1.(1) is equivalent to

M̃(k; β) ⪰ 0, the relations (5.6) hold and

∃(t0, u0) ∈ R1 ∩R2 : H(G(t0, u0)) admits a R–rm.
(5.11)

In the proof of Theorem 5.1 we show that (5.11) is equivalent to Theorem 5.1.(2):

(1) First we establish (see Claims 1 and 2 below) that the form of:
• R1 is one of the following:

where the left case occurs if η > 0 and the right if η = 0. The case η < 0 cannot occur.
• R2 is one of the following:
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where the left case occurs if H2/H22 > 0 and the right if H2/H22 = 0.
(2) If η = 0, then we show that (5.11) is equivalent to

M̃(k; β) ⪰ 0, the relations (5.6) hold and H(G(0, 0)) admits a R–rm.

The latter statement is further equivalent to Theorem 5.1.(2a).
(3) If η > 0, then by the forms of R1 and R2, I = ∂R1 ∩ ∂R2 is one of the following: (i) ∅,

(ii) a one-element set, (iii) a two-element set. In the case:
• (i), a Z(p)–rm for β clearly cannot exist.

• (ii), then denoting I = {(t̃, ũ)}, (5.11) is equivalent to

M̃(k; β) ⪰ 0, the relations (5.6) hold and H(G(t̃, ũ)) admits a R–rm.

The latter statement is equivalent to Theorem 5.1.(2(b)ii).

• (iii), (5.11) is equivalent to H2 being positive definite, which is Theorem 5.1.(2(b)i).
Moreover, in this case for at least one of the points (t, u) ∈ I, a Z(ay + x2 + y2)–rm
and a R–rm exist for F(G(t, u)) and H(G(t, u)), respectively.

Proof of Theorem 5.1. Let R1,R2 be as in Remark 5.2. As explained in Remark 5.2, Theorem
5.1.(1) is equivalent to (5.11), thus it remains to prove that (5.11) is equivalent to Theorem 5.1.(2).

First we establish a few claims needed in the proof. Claim 1 (resp. 2) describes R1 (resp. R2)
concretely.

Claim 1. Assume that M̃(k; β) ⪰ 0. Then

(5.12) R1 =

{ {
(t, u) ∈ R2 : t ≥ 0, u ∈ [−

√
ηt,

√
ηt]
}
, if η ≥ 0,

∅, if η < 0.

If η ≥ 0, we have

rankF(G(t, u)) =


rankF(Amin), if t = 0, η = 0,

rankF(Amin) + 1, if (t > 0 or η > 0) and u ∈ {−
√
ηt,

√
ηt},

rankF(Amin) + 2, if t > 0, η > 0, u ∈ (−
√
ηt,

√
ηt) ,

(5.13)

where Amin is an in (5.3).
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Proof of Claim 1. Note that

G(t,u) = Amin + ηE
(k+1)
2,2 + tE

(k+1)
1,1 + u

(
E

(k+1)
1,2 + E

(k+1)
2,1

)
= Amin +

(
t u
u η

)
⊕ 0k−1.

(5.14)

By Lemma 4.3, we have that

(5.15) F(G(t, u)) ⪰ 0 ⇔ G(t, u) ⪰ Amin

Using (5.14), (5.15) and the definition of R1, we have that

(t, u) ∈ R1 ⇔
(
t u
u η

)
⪰ 0 ⇔ t ≥ 0, η ≥ 0, tη ≥ u2,(5.16)

which proves (5.12).
To prove (5.13) first note that by construction of F(Amin), the columns 1 and X are in the span

of the columns indexed by C \ X⃗(0,k). Hence, there are vectors

(5.17) v1, v2 ∈ kerF(Amin)

of the forms

v1 =
(
1 01,k (ṽ1)

T
)T ∈ R

(k+1)(k+2)
2 and v2 =

(
0 1 01,k−2 (ṽ2)

T
)T ∈ R

(k+1)(k+2)
2 .

Let r := rank

(
t u
u η

)
. Clearly,

(5.18) rankF(G(t, u)) ≤ rankF(Amin) + r.

We separate three cases according to r.

Case 1: r = 0. In this case t = u = η = 0 and G(0, 0) = Amin. In this case (5.13) clearly holds.

Case 2: r = 1. In this case tη = u2. Together with (5.16), this is equivalent to (t > 0 or η >
0) and u ∈ {−

√
ηt,

√
ηt}. By (5.18) and F(G(t, u)) ⪰ F(Amin) to prove (5.13), it suffices to find

v ∈ kerF(Amin) and v /∈ kerF(G(t, u)). Note that at least one of v1, v2 from (5.17) is such a
vector, since

(v1)
TF(G(t, u))v1 = t and (v2)

TF(G(t, u))v2 = η.

Case 3: r = 2. In this case tη > u2. Together with (5.16), this is equivalent to t > 0, η > 0, u ∈
(−

√
ηt,

√
ηt). Note that

(5.19) F(G(t, u)) = F
(
G
(u2

η
, u
))

+
(
t− u2

η

)
⊕ 0 (k+1)(k+2)

2
−1

⪰ F
(
G
(u2

η
, u
))

.

By Case 2, we have rankF
(
G
(

u2

η
, u
))

= rankF(Amin) + 1. By (5.18) and (5.19), to prove

(5.13), it suffices to find v ∈ kerF
(
G
(

u2

η
, u
))

and v /∈ kerF(G(t, u)). We will check below, that
v3, defined by

v3 = v1 −
u

η
v2 =

(
1 −u

η
(ṽ3)

T
)T ∈ R

(k+1)(k+2)
2 ,

is such a vector. This follows by

F
(
G
(u2

η
, u
))

v3 = F(Amin)v3 +

((
u2

η
u

u η

)
⊕ 0 (k+1)(k+2)−1

2

)
v3 = 0 (k+1)(k+2)

2
,1
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and

(v3)
TF(G(t, u))v3 = t− u2

η
> 0.

This concludes the proof of Claim 1. ■

Claim 2. Assume that M̃(k; β) ⪰ 0. Let u0, h(t) be as in (5.7),(5.8) and

t0 = β0,0 − (Amin)1,1 − (h
(1)
12 )

T (H22)
†h

(1)
12 .

Then

(5.20) R2 =

{ {
(t, u) ∈ R2 : t ≤ t0, u ∈ [u0 − h(t), u0 + h(t)]

}
, if H2 ⪰ 0,

∅, if H2 ̸⪰ 0.

If H2 ⪰ 0, we have that

rankH(G(t, u)) =


rankH2, for t = t0, u = u0,

rankH22 + 1, for t < t0, u ∈ {u0 − h(t), u0 + h(t)},
rankH22 + 2, for t < t0, u ∈ (u0 − h(t), u0 + h(t)).

(5.21)

Proof of Claim 2. Write

H(t) :=
(
H(G(t,u)

)
1∪X⃗(2,k) =

( 1 X⃗(2,k)

1 β0,0 − (Amin)1,1 − t (h
(1)
12 )

T

X⃗(2,k) h
(1)
12 H22

)
Note that H(0) = (H(Amin)){1}∪X⃗(2,k) . By Lemma 4.3.(2), H(Amin) ⪰ 0 and hence, H(0) ⪰ 0.

By Theorem 2.2, used for (M,C) = (H(0), H22), it follows that H2 ⪰ 0 and h
(1)
12 ∈ C(H22). Again,

by Theorem 2.2, used for (M,C) = (H(t), H22), it follows that H(t) ⪰ 0 iff t ≤ t0. For a fixed t
satisfying t ≤ t0, Lemma 2.4, used for A(x) = H(G(t,x)), together with H(t)/H22 = H1/H22−t,
implies (5.20)–(5.21) and proves Claim 2. ■

Claim 3. If η = 0, then (0, 0) ∈ ∂R1 ∩R2.

Proof of Claim 3. By Claim 1, η = 0 implies that (0, 0) ∈ ∂R1. By (5.14) and η = 0,
H(Amin) = H(G(0, 0)). By Lemma 4.3.(2), H(Amin) ⪰ 0. Hence, (0, 0) ∈ R2, which proves
Claim 3. ■

Claim 4. If η > 0, then:

• The set I (see (5.9)) has at most 2 elements.

• R1 ∩R2 ̸= ∅ if and only if I ≠ ∅.
• If I has two elements, then H2/H22 > 0.

• If I has one element, which we denote by (t̃, ũ), then one of the following holds:

– R1 ∩R2 = I.

– ∂R2 = R2 = {(t, u0) : t ≤ t0} and I ⊊ R1 ∩R2 = {(t, u0) : t̃ ≤ t ≤ t0}.
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Proof of Claim 4. Note that the set I is equal to ∂R1 ∩ ∂R2 (see (5.12) and (5.20)). Further on,
∂R1 is the union of the square root functions ±

√
ηt, defined for t ∈ [0,∞). Similarly, ∂R2 is

the union of the square root functions u0 ±
√

(H1/H22 − t)(H2/H22), defined for t ∈ (−∞, t0].
If H2/H22 = 0, then the latter could be a half-line {(t, u0) : t ≤ t0}. If R1 ∩ R2 ̸= ∅, then
geometrically it is clear that I contains one or two elements. Assume that I contains only one
element, denoted by (t̃, ũ). Clearly, I ⊆ R1 ∩ R2. Further on, we either have I = R1 ∩ R2 or
I ⊊ R1 ∩R2. By the forms of ∂R1 and ∂R2, the latter case occurs if H2/H22 = 0 or equivalently
∂R2 = R2 = {(t, u0) : t ≤ t0}. But then the whole line segment {(t, u0 : t̃ ≤ t ≤ t0} lies in R1,
which proves Claim 4. ■

Claim 5. Let H2 (see (5.4)) be positive definite, (t1, u1) ∈ ∂R2, (t2, u2) ∈ ∂R2 and u1 ̸= u2. Then
at least one of H(G(t1, u1)) and H(G(t2, u2)) admits a R–rm.

Proof of Claim 5. Note that H(G(ti, ui)), i = 1, 2, is of the form

H(G(ti, ui)) =



1 X X⃗(2,k−1) Xk

1 β0,0 − (Amin)1,1 − ti β1,0 − (Amin)1,2 − ui (ĥ
(1)
12 )

T β̃k,0

X β1,0 − (Amin)1,2 − ui β2,0 − (Amin)1,3 (ĥ
(2)
12 )

T β̃k+1,0

(X⃗(2,k−1))T ĥ
(1)
12 ĥ

(2)
12 Ĥ2 ĥ3

Xk β̃k,0 β̃k+1,0 (ĥ3)
T β̃2k,0

.

Assume on the contrary that none of H(G(t1, u1)) and H(G(t2, u2)) admits a R–rm. Theorem 2.5
implies that the column Xk of H(G(ti, ui)), i = 1, 2, is not in the span of the other columns.
Using this fact, the facts that H(G(ti, ui)), i = 1, 2, are not pd (by (ti, ui) ∈ ∂R2, i = 1, 2) and
H2 is pd, it follows that there is a column relation 1 =

∑k−1
j=1 α

(i)
j Xj, α

(i)
j ∈ R, in H(G(ti, ui)),

i = 1, 2. Since H(G(ti, ui)) ⪰ 0, i = 1, 2, it follows in particular by Theorem 2.2, used for
(M,A) = (H(G(ti, ui)), (H(G(ti, ui)))X⃗(0,k−1)), i = 1, 2, that(

β̃k,0 β̃k+1,0 (ĥ3)
T
)T

∈ C
((

H(G(ti, ui))
)
X⃗(0,k−1)

)
, i = 1, 2.(5.22)

Since the first column of H(G(ti, ui)) ⪰ 0, i = 1, 2, is in the span of the others, (5.22) is equivalent
to (

β̃k,0 β̃k+1,0 (ĥ3)
T
)T

∈ C
((

H(G(ti, ui))
)
X⃗(0,k−1),X⃗(1,k−1)

)
, i = 1, 2.(5.23)

Since
H̃2 :=

(
H(G(ti, ui))

)
X⃗(1,k−1) , i = 1, 2,

is invertible as a principal submatrix of H2, it follows that(
β̃k,0 β̃k+1,0 (ĥ3)

T
)T

=
((

H(G(ti, ui))
)
X⃗(0,k−1),X⃗(1,k−1)

)
v, i = 1, 2.(5.24)

with

v = H̃−1
2

(
β̃k+1,0 ĥ3

)T
=
(
v1 v2 · · · vk−1

)T
.

If v1 ̸= 0, this contradicts to (5.24) since u1 ̸= u2. Hence, v1 = 0. By the Hankel structure of
H(G(ti, ui)), i = 1, 2, we have that(

H(G(ti, ui))
)
X⃗(0,k−2),X⃗(2,k) =

(
H(G(ti, ui))

)
X⃗(1,k−1),X⃗(1,k−1) , i = 1, 2.
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Then (5.24) and v1 = 0 imply that

(5.25)
((

H(G(ti, ui))
)
X⃗(0,k−2),X⃗(2,k)

)
ṽ =

((
H(G(ti, ui))

)
X⃗(1,k−1),X⃗(1,k−1)

)
ṽ = 0k+1,1,

where ṽ =
(
v2 · · · vk−1 −1

)
. Since

(
H(G(ti, ui))

)
X⃗(1,k−1),X⃗(1,k−1) , i = 1, 2, is a principal sub-

matrix of H2, (5.25) contradicts to H2 being pd. This proves Claim 5. ■

Now we prove the implication (5.11) ⇒ Theorem 5.1.(2). Since (t0, u0) ∈ R1, it follows that
R1 ̸= ∅. By (5.12), η ≥ 0. We separate two cases according to the value of η.

Case 1: η = 0. We separate two cases according to the invertibility of H2.

Case 1.1: H2 is not pd. Since H2 is not pd, then by Theorem 2.5, the last column of H(G(t0, u0))
is in the span of the previous ones. But then by rg, the last column of H2 is in the span of the
previous ones. This is the case Theorem 5.1.(2(a)ii).

Case 1.2: H2 is pd. We separate two cases according to the invertibility of (H(Amin))X⃗(0,k−1) .

Case 1.2.1: rank(H(Amin)X⃗(0,k−1)) = k. This is the case Theorem 5.1.(2(a)i).

Case 1.2.2: rank(H(Amin)X⃗(0,k−1)) < k. We will prove that this case cannot occur. It follows
from the assumption in this case that rankH(Amin) = rankH2 = k. Further on, the last column
of H(Amin) cannot be in the span of the previous ones (otherwise rankH(Amin) < k). Hence,
by Theorem 2.5, H(Amin) = H(G(0, 0)) does not admit a R–rm. Using this fact and Claim 3,
(0, 0) ∈ ∂R2. If t0 = 0, then R1 ∩ R2 = {(0, 0)}, which contradicts to the third condition in
(5.11). So 0 < t0 must hold. Since η = 0, Claim 1 implies that R1 = {(t, 0) : t ≥ 0} is a
horizontal half-line. By the form of ∂R2, which is the union of the graphs of two square root
functions on the interval (−∞, t0], intersecting in the point (t0, u0) and such that (t0, u0) ∈ ∂R2,
it follows that R1 ∩ R2 = {(0, 0)}. Note that by H2 ≻ 0, we have H2/H22 > 0 and hence
h(t) ̸≡ 0 (see (5.8)), which implies that the square root functions are indeed not just a horizontal
half-line. As above this contradicts to the third condition in (5.11). Hence, Case 1.2.2 cannot occur.

Case 2: η > 0. By assumptions, (t0, u0) ∈ R1 ∩ R2. By Claim 4, I ≠ ∅ and I has one or two
elements. We separate two cases according to the number of elements in I.

Case 2.1: I has two elements. By Claim 4, H2/H22 > 0. If H2 is not pd, then the fact
that H(G(t0, u0)) has a R–rm, implies that H2/H22 = 0, which is a contradiction. Indeed,
if H2/H22 > 0 and H2 is not pd, then there is a nontrivial column relation among columns
X2, . . . , Xk in H2. By Proposition 2.3, the same holds for H(G(t0, u0)). Let

∑k−2
i=0 ciX

i+2 = 0 be
the nontrivial column relation in H(G(t0, u0)). But then Z(x2

∑k−2
i=0 cix

i) = Z(x
∑k−2

i=0 cix
i) and

it follows by [CF96] that
∑k−2

i=0 ciX
i+1 = 0 is also a nontrivial column relation in H(G(t0, u0)). In

particular, H2/H22 = 0. Hence, H2 is pd. This is the case Theorem 5.1.(2(b)i).

Case 2.2: I has one element. Let us denote this element by (t̃, ũ). By Claim 4, I = R1 ∩ R2 or
∂R2 = R2 = {(t, u0) : t ≤ t0} and I ⊊ R1 ∩R2 = {(t, u0) : t̃ ≤ t ≤ t0} . We separate two cases
according to these two possibilities.
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Case 2.2.1: I = R1 ∩R2. In this case (t0, u0) = (t̃, ũ) and hence H(G(t̃, ũ) admits a R–rm. Since
(t̃, ũ) ∈ ∂R1, H(G(t̃, ũ)) is not pd. Hence, by Theorem 2.5, the statement Theorem 5.1.(2(b)ii)
holds.

Case 2.2.2: ∂R2 = R2 = {(t, u0) : t ≤ t0} and I ⊊ R1 ∩R2 = {(t, u0) : t̃ ≤ t ≤ t0}. By (5.20),
it follows that H2/H22 = 0 (see the definition (5.8) of h(t)). Since H2 is not pd, Theorem 2.5
used for H(G(t0, u0)), implies that the last column of H2 is in the span of the others. Hence, the
same holds by Proposition 2.3 for H(G(t̃, ũ)) and H(G(t̃, ũ)) admits a R–rm by Theorem 2.5. Since
H(G(t̃, ũ)) is not pd, it in particular satisfies (5.10). Hence, we are in the case Theorem 5.1.(2(b)ii).

This concludes the proof of the implication (5.11) ⇒ Theorem 5.1.(2).

Next we prove the implication Theorem 5.1.(2) ⇒ (5.11). We separate four cases according to
the assumptions in Theorem 5.1.(2).

Case 1: Theorem 5.1.(2(a)i) holds. By Claim 3, (0, 0) ∈ R1 ∩ R2. This and the assumption
rank(H(Amin))X⃗(0,k−1) = k, imply by Theorem 2.5, that H(G(0, 0)) = H(Amin) admits a R–rm.
This proves (5.11) in case of Theorem 5.1.(2(a)i).

Case 2: Theorem 5.1.(2(a)ii) holds. By Claim 3, (0, 0) ∈ R1∩R2. Since the last column of H2 is
by assumption in the span of the previous ones, the same holds for H(G(0, 0)) by Proposition 2.3.
By Theorem 2.5, H(G(0, 0)) admits a R–rm. This proves (5.11) in case of Theorem 5.1.(2(a)ii).

Case 3: Theorem 5.1.(2(b)i) holds. By assumption, I = ∂R1 ∩ ∂R2 = {(t1, u1), (t2, u2)}. Since
H2 is pd, ∂R2 is not a half-line and hence u1 ̸= u2. By Claim 5, at least one of H(G(t1, u1)) and
H(G(t2, u2)) admits a R–rm. This proves (5.11) in case of Theorem 5.1.(2(b)i).

Case 4: Theorem 5.1.(2(b)ii) holds. The assumptions imply by Theorem 2.5, that H(G(t̃, ũ)) ad-
mits a R–rm. This proves (5.11) in case of Theorem 5.1.(2(b)ii).

This concludes the proof of the implication Theorem 5.1.(2) ⇒ (5.11).

Up to now we established the equivalence (1) ⇔ (2) in Theorem 5.1. It remains to prove the
moreover part. We observe again the proof of the implication (2) ⇒ (5.11). By Lemma 4.3.(4),

(5.26) rankM̃(k; β) = rankF(Amin) + rankH(Amin).

In the proof of the implications Theorem 5.1.(2(a)i) ⇒ (5.11) and Theorem 5.1.(2(a)ii) ⇒ (5.11)
we established that H(G(0, 0)) has a R–rm. By Theorem 2.5, there also exists a (rankH(G(0, 0)))–
atomic one. By Theorem 2.6, the sequence with the moment matrix F(G(0, 0)) can be represented
by a (rankF(G(0, 0)))–atomic Z(ay + x2 + y2)–rm. By (5.26) and G(0, 0) = Amin if η = 0, in
these two cases β has a (rankM̃(k; β))–atomic Z(p)–rm.

In the proof of the implication Theorem 5.1.(2(b)i) ⇒ (5.11) we established that H(G(t′, u′))
has a R–rm for some (t′, u′) ∈ I. Analogously as for the point (0, 0) in the previous paragraph, it
follows that β has a (rankF(G(t′, u′))+ rankH(G(t′, u′)))–atomic Z(p)–rm. Using (5.13), (5.21)
and rankH2 = rankH22 + 1 (by H2 being pd), it follows that

(5.27) rankF(G(t′, u′)) + rankH(G(t′, u′)) = rankF(Amin) + rankH2 + 1.
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We separate two cases:

• If H(Amin) is pd, then rankH(Amin) = rankH2 + 1. This, (5.26) and (5.27) imply that β
admits a (rankM̃(k; β))–atomic Z(p)–rm.

• If H(Amin) is not pd, then we must have rankH(Amin) = rankH2, Otherwise we have
(H(Amin))X⃗(1,k)/H22 = 0 and hence (H(Amin−ηE

(k+1)
2,2 ))X⃗(1,k)/H22 < 0, which contradicts

to H(Amin − ηE
(k+1)
2,2 ) being psd. Hence, in this case β has a (rankM̃(k; β) + 1)–atomic

Z(p)–rm. Moreover, there cannot exist a (rankM̃(k; β))–atomic Z(p)–rm. Indeed, since
η > 0, at least rankF(Amin)+1 (resp. rankH2) atoms are needed to represent F(G(t′′, u′′))
(resp. H(G(t′′, u′′))) for any (t′′, u′′) ∈ R1 ∩ R2 (see (5.13) and (5.21)). Hence, at least
rankF(Amin) + rankH2 + 1 atoms are needed in a Z(p)–rm for any (t′′, u′′) ∈ R1 ∩R2.

In the proof of the implication Theorem 5.1.(2(b)ii) ⇒ (5.11) we established that H(G(t̃, ũ))
has a R–rm. Analogously as for the point (0, 0) in two paragraphs above, it follows that β has
a (rankF(G(t̃, ũ)) + rankH(G(t̃, ũ)))–atomic Z(p)–rm. By (5.13) and (5.21), this measure is
(rankF(Amin) + rankH22 + 2)–atomic.

• If H(Amin) is pd, then rankH(Amin) = rankH22 + 2. This and (5.26) imply that β admits
a (rankM̃(k; β))–atomic Z(p)–rm.

• If H(Amin) is not pd, then we have rankH(Amin) = rankH22 + 1, since otherwise the
equality (H(Amin))X⃗(1,k)/H22 = 0 implies (H(Amin − ηE

(k+1)
2,2 ))X⃗(1,k)/H22 < 0, which

contradicts to H(Amin−ηE
(k+1)
2,2 ) being psd. Hence, in this case β has a (rankM̃(k; β)+1)–

atomic Z(p)–rm. Moreover, there cannot exist a (rankM̃(k; β))–atomic Z(p)–rm in this
case. Indeed,

(R1 ∩R2) \ I = (∂R1 ∩ R̊2) ∪ (R̊1 ∩ ∂R2) ∪ (R̊1 ∩ R̊2).

Using (5.13) and (5.21), in every point from (R1 ∩ R2) \ I at least rankF(Amin) +
rankH22 + 2 atoms are needed in a Z(p)–rm.

This concludes the proof of the moreover part.
Since for a p–pure sequence with M̃(k; β)) ⪰ 0, (5.26) implies that H(Amin) is pd, it follows

by the moreover part that the existence of a Z(p)–rm implies the existence of a (rankM̃(k; β))–
atomic Z(p)–rm. □

The following example demonstrates the use of Theorem 5.1 to show that there exists a bivariate
y(−2y + x2 + y2)–pure sequence β of degree 6 with a positive semidefinite M(3) and without a
Z(y(−2y + x2 + y2))–rm.

Example 5.3. Let β be a bivariate degree 6 sequence given by

β00 = 10, β10 =
38

5
, β01 =

39

5
,

β20 =
602

25
, β11 =

3

25
, β02 =

313

25
,

β30 =
9152

125
, β21 =

421

125
, β12 =

3

125
,

β03 =
2709

125
, β40 =

172118

625
, β31 =

27

625
,
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β22 =
2717

625
, β13 =

3

625
, β04 =

24373

625
,

β50 =
3303368

3125
, β41 =

7789

3125
, β32 =

27

3125
,

β23 =
19381

3125
, β14 =

3

3125
, β05 =

224349

3125
,

β60 = 4156, β51 =
243

15625
, β42 =

44453

15625
,

β33 =
27

15625
, β24 =

149357

15625
, β15 =

3

15625
,

β06 =
2094133

15625
.

Assume the notation as in Theorem 5.1. M̃(3) is psd with the eigenvalues ≈ 4445, ≈ 189.2,
≈ 16.6, ≈ 11.9, ≈ 3.2, ≈ 1.22, ≈ 0.57, ≈ 0.022, ≈ 0.0030, 0 and the column relation

−2Y 2 +X2Y + Y 3 = 0.

We have that

Amin =


324330
55873

132789
278915

77
25

27
125

132789
278915

4180091
1394575

27
125

1493
625

77
25

27
125

1493
625

243
3125

27
125

1493
625

243
3125

33437
15625


and so

η =
77

25
− 4180091

1394575
=

4608

55783
.

The matrix H2 is equal to:

H2 =

 21 73 273
73 273 1057
273 1057 64904063

15625

 .

The eigenvalues of H2 are ≈ 4441.1, ≈ 6.74, ≈ −0.019 and hence H2 is not psd. By Theorem 5.1,
β does not have a Z(y(−2y + x2 + y2))–rm, since by (2b) of Theorem 5.1, H2 should be psd.

6. PARABOLIC TYPE RELATION: p(x, y) = y(x− y2).

In this section we solve the Z(p)–TMP for the sequence β = {βi}i,j∈Z+,i+j≤2k of degree 2k,
k ≥ 3, where p(x, y) = y(x− y2). Assume the notation from Section 4. If β admits a Z(p)–TMP,
then M(k; β) must satisfy the relations

(6.1) Y 3+jX i = Y 1+jX i+1 for i, j ∈ Z+ such that i+ j ≤ k − 3.

In the presence of all column relations (6.1), the column space C(M(k; β)) is spanned by the
columns in the set

(6.2) T = X⃗(0,k) ∪ Y X⃗(0,k−1) ∪ Y 2X⃗(0,k−2),

where

Y iX⃗(j,ℓ) := (Y iXj, Y iXj+1, . . . , Y iXℓ) with i, j, ℓ ∈ Z+, j ≤ ℓ, i+ ℓ ≤ k.
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Let M̃(k; β) be as in (4.8). Let

(6.3) Amin := A12(A22)
†(A12)

T .

As described in Remark 4.4, Amin might need to be changed to

Âmin = Amin + η
(
E

(k+1)
1,k+1 + E

(k+1)
k+1,1

)
,

where
η := (Amin)2,k − (Amin)1,k+1.

Let F(A) and H(A) be as in (4.10). Define also the matrix function

(6.4) G : R2 → Sk+1, G(t,u) = Âmin + tE
(k+1)
1,1 + uE

(k+1)
k+1,k+1.

Write

H(Âmin) =


1 X⃗(1,k−1) Xk

1 β0,0 − (Amin)1,1 (h12)
T βk,0 − (Amin)2,k

(X⃗(1,k−1))T h12 H22 h23

Xk βk,0 − (Amin)2,k (h23)
T β2k,0 − (Amin)k+1,k+1

,

H1 := (H(Âmin))X⃗(0,k−1) =

( 1 X⃗(1,k−1)

1 β0,0 − (Amin)1,1 (h12)
T

(X⃗(1,k−1))T h12 H22

)
,

H2 := (H(Âmin))X⃗(1,k) =

( X⃗(1,k−1) Xk

(X⃗(1,k−1))T H22 h23

Xk (h23)
T β2k,0 − (Amin)k+1,k+1

)
.

(6.5)

Let us define the matrix

K := H(Âmin)/H22

=

(
β0,0 − (Amin)1,1 βk,0 − (Amin)2,k
βk,0 − (Amin)2,k β2k,0 − (Amin)k+1,k+1.

)
−
(
(h12)

T

(h23)
T

)
(H22)

† (h12 h23

)
:=

(
β0,0 − (Amin)1,1 − (h12)

T (H22)
†h12 βk,0 − (Amin)2,k − (h12)

T (H22)
†h23

βk,0 − (Amin)2,k − (h23)
T (H22)

†h12 β2k,0 − (Amin)k+1,k+1 − (h12)
T (H22)

†h12

)
:=

(
k11 k12
k12 k22

)
.

Let
T̂ = {1 , Y,X,XY,X2, X2Y, . . . , X i, X iY, . . . , Xk−1, Xk−1Y,Xk},

and

P̂ be a permutation matrix such that moment matrix M̂(k; β) := P̂M(k; β)(P̂ )T

has rows and columns indexed in the order T̂ , C \ T̂ .
(6.6)

Write
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F̂(t,u) = P̂F(G(t,u))(P̂ )T

=


1 T̂ \ {1 , Xk} Xk C \ T̂

1 (Amin)1,1 + t (f12)
T (Amin)2,k (f14)

T

(T̂ \ {1 , Xk})T f12 F22 f23 F24

Xk (Amin)2,k (f23)
T (Amin)k+1,k+1 + u (f34)

T

C \ T̂ f14 (F24)
T f34 F44

.

(6.7)

The solution to the cubic parabolic type relation TMP is the following.

Theorem 6.1. Let p(x, y) = y(x− y2) and β := β(2k) = (βi,j)i,j∈Z+,i+j≤2k, where k ≥ 3. Assume
also the notation above. Then the following statements are equivalent:

(1) β has a Z(p)–representing measure.

(2) M̃(k; β) is positive semidefinite, the relations

(6.8) βi,j+3 = βi+1,j+1 hold for every i, j ∈ Z+ with i+ j ≤ 2k − 3,

H(Âmin) is positive semidefinite, defining real numbers

t1 = H1/H22 = β0,0 − (Amin)1,1 − (h12)
T (H22)

†h12,

u1 = H2/H22 = β2k,0 − (Amin)k+1,k+1 − (h23)
T (H22)

†h23,
(6.9)

and the property

(H(Âmin))X⃗(0,k−1) ≻ 0 or rank(H(Âmin))X⃗(0,k−1) = rankH(Âmin),(6.10)

one of the following statements holds:
(a) F22 is not positive definite, η = 0 and (6.10) holds.
(b) F22 is positive definite, H22 is not positive definite and one of the following holds:

(i) u1 = η = 0.
(ii) u1 > 0, t1 > 0, t1u1 ≥ η2 and βk,0 − (Amin)2,k = (h12)

T (H22)
†h23.

(c) F22, H22 are positive definite and one of the following holds:
(i) η = 0 and (6.10) holds.

(ii) η ̸= 0 and

(6.11) (
√

k11k22 − sign(k12)k12)
2 ≥ η2,

where sign is the sign function and sign(0) = 0.
Moreover, if a Z(p)–representing measure for β exists, then:

• There exists at most (rankM̃(k; β) + 1)–atomic Z(p)–representing measure.
• There exists a (rankM̃(k; β))–atomic Z(p)–representing measure if and only if any of the

following holds:
– η = 0.
– rankH(Amin) = rankH22 + 2.

– rankH(Amin) = rankH22 + 1 and one of the following holds:
∗ H22 is not positive definite and t1u1 = η2.
∗ H22 is positive definite, k12 = 0 and k11k22 = η2.
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In particular, a p–pure sequence β with a Z(p)–representing measure admits a (rankM̃(k; β))–
atomic Z(p)–representing measure.

Remark 6.2. In this remark we explain the idea of the proof of Theorem 6.1 and the meaning of
conditions in the statement of the theorem.

By Lemmas 4.1–4.2, the existence of a Z(p)–rm for β is equivalent to the existence of t, u ∈ R
such that F(G(t, u)) admits a Z(x− y2)–rm and H(G(t, u)) admits a R–rm. Let

R1 =
{
(t, u) ∈ R2 : F(G(t, u)) ⪰ 0

}
and R2 =

{
(t, u) ∈ R2 : H(G(t, u)) ⪰ 0

}
.

We denote by ∂Ri and R̊i the topological boundary and the interior of the set Ri, respectively. By
the necessary conditions for the existence of a Z(p)–rm [CF04, Fia95, CF96], M̃(k; β) must be
psd and the relations (6.8) must hold. Then Theorem 6.1.(1) is equivalent to

M̃(k; β) ⪰ 0, the relations (6.8) hold and

∃(t0, u0) ∈ R1 ∩R2 : F(G(t0, u0)) and H(G(t0, u0)) admit

a Z(x− y2)–rm and a R–rm, respectively.

(6.12)

In the proof of Theorem 6.1 we show that (6.12) is equivalent to Theorem 6.1.(2):
(1) First we establish (see Claims 1 and 2 below) that the form of:

• R1 is one of the following:

where the left case occurs if η ̸= 0 and the right if η = 0.
• R2 is one of the following:

where the left case occurs if k12 ̸= 0 and the right if k12 = 0.
(2) If F22 is only positive semidefinite but not definite, then we show that (6.12) is equivalent

to

M̃(k; β) ⪰ 0, the relations (6.8) hold, η = 0 and H(G(0, 0)) admits a R–rm.(6.13)
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The latter statement is further equivalent to Theorem 6.1.(2a).
(3) Assume that F22 is positive definite and H22 is only positive semidefinite but not definite.

If:
• u1 = 0, then we show that (6.12) is equivalent to (6.13). The latter statement is further

equivalent to Theorem 6.1.(2(b)i).
• u1 > 0, then we show that (6.12) is equivalent to

M̃(k; β) ⪰ 0, the relations (6.8) hold, F(G(t1, u1)) and

H(G(t1, u1)) admit a Z(x− y2)–rm and a R–rm, respectively.

The latter statement is further equivalent to Theorem 6.1.(2(b)ii).
• u1 < 0, then (6.12) cannot hold.

(4) Assume that F22 and H22 are positive definite. If:
• η = 0, then we show that (6.12) is equivalent to (6.13). The latter statement is further

equivalent to Theorem 6.1.(2(c)i).
• η ̸= 0, then we show that (6.12) is equivalent to R1 ∩ R2 ̸= ∅. The latter statement is

further equivalent to Theorem 6.1.(2(c)ii).

Proof of Theorem 6.1. Let R1,R2 be as in Remark 6.2. As explained in Remark 6.2, Theorem
6.1.(1) is equivalent to (6.12), thus it remains to prove that (6.12) is equivalent to Theorem 6.1.(2).

First we establish a few claims needed in the proof. Claim 1 (resp. 2) describes R1 (resp. R2)
concretely.

Claim 1. Assume that M̃(k; β) ⪰ 0. Then

(6.14) R1 =
{
(t, u) ∈ R2 : t ≥ 0, u ≥ 0, tu ≥ η2

}
.

If (t, u) ∈ R1, we have

rankF(G(t, u)) =


rankF(Amin), if η = t = u = 0,

rankF(Amin) + 1, if (η = t = 0, u > 0) or (η = u = 0, t > 0)

or (η ̸= 0, tu = η2),

rankF(Amin) + 2, if tu > η2.

(6.15)

where Amin is as in (6.3).

Proof of Claim 1. Note that

G(t,u) = Amin + η
(
E

(k+1)
1,k+1 + E

(k+1)
k+1,1

)
+ tE

(k+1)
1,1 + uE

(k+1)
k+1,k+1

= Amin +

 t 01,k−1 η
0k−1,1 0k−1 0k−1,1

η 01,k−1 u

 .
(6.16)

By Lemma 4.3, we have that

(6.17) F(G(t, u)) ⪰ 0 ⇔ G(t, u) ⪰ Amin

Using (6.16), (6.17) and the definition of R1, we have that

(t, u) ∈ R1 ⇔
(
t η
η u

)
⪰ 0 ⇔ t ≥ 0, u ≥ 0, tu ≥ η2,(6.18)
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which proves (6.14).
To prove (6.15) first note that by construction of F(Amin), the columns 1 and Xk are in the span

of the columns indexed by C \ X⃗(0,k). Hence, there are vectors

(6.19) v1, v2 ∈ kerF(Amin)

of the forms

(6.20) v1 =
(
1 01,k (ṽ1)

T
)T ∈ R

(k+1)(k+2)
2 and v2 =

(
01,k 1 (ṽ2)

T
)T ∈ R

(k+1)(k+2)
2 .

Let r := rank

(
t η
η u

)
. Clearly,

(6.21) rankF(G(t, u)) ≤ rankF(Amin) + r.

We separate three cases according to r.

Case 1: r = 0. In this case t = u = η = 0 and G(0, 0) = Amin. In this case (6.15) clearly holds.

Case 2: r = 1. In this case tu = η2. Together with (6.18), this is equivalent to (η = t = 0, u > 0)
or (η = u = 0, t > 0) or (η ̸= 0, tu = η2). By (6.21) and F(G(t, u)) ⪰ F(Amin) to prove (6.15),
it suffices to find v ∈ kerF(Amin) and v /∈ kerF(G(t, u)). Note that at least one of v1, v2 from
(6.20) is such a vector, since

(v1)
TF(G(t, u))v1 = t and (v2)

TF(G(t, u))v2 = u.

Case 3: r = 2. In this case tu > η2. Note that

(6.22) F(G(t, u)) = F
(
G
(η2
u
, u
))

+
(
t− η2

u

)
⊕ 0 (k+1)(k+2)

2
−1

⪰ F
(
G
(η2
u
, u
))

.

By Case 2, we have rankF
(
G
(

η2

u
, u
))

= rankF(Amin) + 1. By (6.21) and (6.22), to prove

(6.15), it suffices to find v ∈ kerF
(
G
(

η2

u
, u
))

and v /∈ kerF(G(t, u)). We will check below, that
v3, defined by

v3 = v1 −
η

u
v2 =

(
1 01,k−1 − η

u
(ṽ3)

T
)T ∈ R

(k+1)(k+2)
2 ,

is such a vector. This follows by

F
(
G
(η2
u
, u
))

v3 = 0 (k+1)(k+2)
2

,1

and

(v3)
TF(G(t, u))v3 = t− η2

u
> 0.

This concludes the proof of Claim 1. ■

Note that

H(G(t,u)) =


1 X⃗(1,k−1) Xk

1 β0,0 − (Amin)1,1 − t (h12)
T βk,0 − (Amin)2,k

(X⃗(1,k−1))T h12 H22 h23

Xk βk,0 − (Amin)2,k (h23)
T β2k,0 − (Amin)k+1,k+1 − u

.
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Define the matrix function

K(t,u) = H(G(t,u))
/
H22 = H(Âmin)

/
H22 −

(
t 0
0 u

)
= K −

(
t 0
0 u

)
=

(
k11 − t k12
k12 k22 − u

)
.

(6.23)

Claim 2. Assume that M̃(k; β) ⪰ 0. Then

R2 =
{
(t, u) ∈ R2 : K(t, u) ⪰ 0

}
=
{
(t, u) ∈ R2 : t ≤ k11, u ≤ k22, (k11 − t)(k22 − u) ≥ k2

12

}
.

(6.24)

If (t, u) ∈ R2, we have

rankH(G(t, u)) =


rankH22, if k12 = 0, t = k11, u = k22,

rankH22 + 1, if (k11 − t)(k22 − u) = k2
12, (t ̸= k11 or u ̸= k22),

rankH22 + 2, if (k11 − t)(k22 − u) > k2
12.

(6.25)

where Amin is as in (6.3).

Proof of Claim 2. Permuting rows and columns of H(G(t,u)) we define

H̃(G(t,u)) =


1 Xk X⃗(1,k−1)

1 β0,0 − (Amin)1,1 − t βk,0 − (Amin)2,k (h12)
T

Xk βk,0 − (Amin)2,k β2k,0 − (Amin)k+1,k+1 − u (h23)
T

(X⃗(1,k−1))T h12 h23 H22

.

Note that
H(G(t, u)) ⪰ 0 ⇔ H̃(G(t, u)) ⪰ 0

and

H(Amin) =


1 X⃗(1,k−1) Xk

1 β0,0 − (Amin)1,1 (h12)
T βk,0 − (Amin)1,k+1

(X⃗(1,k−1))T h12 H22 h23

Xk βk,0 − (Amin)1,k+1 (h23)
T β2k,0 − (Amin)k+1,k+1

.(6.26)

By Lemma 4.3.(2), H(Amin) ⪰ 0. Permuting rows and columns, this implies that

H̃(Amin) =


1 Xk X⃗(1,k−1)

1 β0,0 − (Amin)1,1 βk,0 − (Amin)1,k+1 (h12)
T

Xk βk,0 − (Amin)1,k+1 β2k,0 − (Amin)k+1,k+1 (h23)
T

(X⃗(1,k−1))T h12 h23 H22

 ⪰ 0.

By Theorem 2.2, used for (M,C) = (H̃(Amin), H22), it follows that H22 ⪰ 0 and h12, h23 ∈
C(H22). Let

L : S2 → Sk+1, L(A) =

 A

(
(h12)

T

(h23)
T

)
(
h12 h23

)
H22

 .
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be a matrix function. Using Theorem 2.2 again for (M,C) = (L(A), H22), it follows that

(6.27) L(A) ⪰ 0 ⇔ A ⪰
(
(h12)

T

(h23)
T

)
(H22)

† (h12 h23

)
and

(6.28) rankL(A) = rankH22 + rank
(
A−

(
(h12)

T

(h23)
T

)
(H22)

† (h12 h23

) )
Further, (6.27) implies that

H̃(G(t, u)) ⪰ 0 ⇔

⇔
(
β0,0 − (Amin)1,1 − t βk,0 − (Amin)2,k
βk,0 − (Amin)2,k β2k,0 − (Amin)k+1,k+1 − u

)
−
(
(h12)

T

(h23)
T

)
(H22)

† (h12 h23

)
⪰ 0

⇔ K(t, u) ⪰ 0,

where we use the definition (6.23) of K(t, u) in the last equivalence. Moreover, rank H̃(G(t, u)) =
rankH22 + rankK(t, u). This proves (6.24) and (6.25). ■

Claim 3. If (t, u) ∈ R2 ∩ (R+)
2, then

tu ≤ (
√
k11k22 − sign(k12)k12)

2 =: pmax.

The equality is achieved if:
• k12 = 0, in the point (t, u) = (k11, k22).

• k12 > 0, in the point (t−, u−) = (k11 − k12
√
k11√

k22
, k22 +

k12
√
k22√

k11
).

• k12 < 0, in the point (t+, u+) = (k11 +
k12

√
k11√

k22
, k22 − k12

√
k22√

k11
).

Moreover, if k12 ̸= 0, then for every p ∈ [0, pmax] there exists a point (t̃, ũ) ∈ R2 ∩ (R+)
2 such that

t̃ũ = p and (k11 − t̃)(k22 − ũ) = k2
12.

Proof of Claim 3. If k12 = 0, then (t, u) ∈ R2 ∩ (R+)
2 = [0, k11]× [0, k22] and Claim 3 is clear.

Assume that k12 ̸= 0. Then clearly tu is maximized in some point satisfying (k11−t)(k22−u) =

k2
12. Let f(t) := t

(
k22 − k212

k11−t

)
. We are searching for the maximum of f(t) on the interval [0, k11].

The stationary points of f are t± = k11 ± k12
√
k11√

k22
. Then u± = k22 ∓ k12

√
k22√

k11
. If k12 > 0, then

t− ∈ [0, k11] (note that k11k22 ≥ k2
12 if R2 ∩ (R+)

2 ̸= ∅). Further on, t−u− = (
√
k11k22 − k12)

2.
Similarly, if k12 < 0, then t+ ∈ [0, k11] and t+u+ = (

√
k11k22 + k12)

2. The moreover part follows
by noticing that f(0) = 0 and hence on the interval [0, t±], f attains all values between 0 and pmax.
■

In the proof of Theorem 6.1 we will need a few further observations:
• Observe that

(H(G(t, u)))X⃗(0,k−1) = H1 − tE
(k)
1,1 ,

(H(G(t, u)))X⃗(1,k−1) = H22,

(H(G(t, u)))X⃗(1,k) = H2 − uE
(k)
k,k .

(6.29)
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• We have

(6.30) (H(G(t, u)))X⃗(0,k−1)

/
(H(G(t, u)))X⃗(1,k−1) = H1/H22 − t = t1 − t,

where in the first equality we used (6.29) and in the second the definition of t1 (see (6.9)).
• We have

(6.31) (H(G(t, u)))X⃗(1,k)

/
(H(G(t, u)))X⃗(1,k−1) = H2/H22 − u = u1 − u,

where in the first equality we used (6.29) and in the second the definition of u1 (see (6.9)).

First we prove the implication (6.12) ⇒ Theorem 6.1.(2). By the necessary conditions for the
existence of a Z(p)–rm [CF04, Fia95, CF96], M̃(k; β) must be psd and the relations (6.8) must
hold. By Lemma 4.3.(2), F(Amin) ⪰ 0. Hence,

F̂ = P̂F(Amin)(P̂ )T

=


1 T̂ \ {1 , Xk} Xk C \ T̂

1 (Amin)1,1 (f12)
T (Amin)1,k+1 (f14)

T

(T̂ \ {1 , Xk})T f12 F22 f23 F24

Xk (Amin)1,k+1 (f23)
T (Amin)k+1,k+1 (f34)

T

C \ T̂ f14 (F24)
T f34 F44

 ⪰ 0.,

(6.32)

where P̂ is as in (6.6). In particular, F22 ⪰ 0. We separate two cases according to the invertibility
of F22.

Case 1: F22 is not pd. Let β(c) be a sequence corresponding to the moment matrix F(G(t0, u0)).
Let γ = (γ0, . . . , γ4k) be a sequence defined by γi = β

(c)

⌊ i
2
⌋,i mod 2

. Note that(
F̂(G(t0, u0))

)
T̂ \{1 ,Xk} = (F̂ )T̂ \{1 ,Xk} = F22 = Aγ̂,

where γ̂ = (γ2, . . . , γ4k−2). Since F22 is not pd, it follows that there is a non-trivial column relation
in F22, which is also a column relation in Aγ by Proposition 2.3. By Theorem 2.7, γ has a R–rm,
which implies by Theorem 2.5, that Aγ is rg. Hence, the last column of Aγ = F̂(G(t0, u0)) is in
the span of the columns in T̂ \ {1, Xk}. It follows that

(6.33)

(f12)
T

F22

(f23)
T

 (F22)
†f23 =

 (Amin)2,k
f23

(Amin)k+1,k+1 + u0

 .

On the other hand, by construction of F̂ , the column Xk is also in the span of the columns in
T̂ \ {1, Xk}. Hence,

(6.34)

(f12)
T

F22

(f23)
T

 (F22)
†f23 =

 (Amin)1,k+1

f23
(Amin)k+1,k+1

 .

By (6.33) and (6.34), it follows that (Amin)2,k = (Amin)1,k+1 or equivalently η = 0, and u0 = 0.
Note that

F̂(G(t0, u0)) = F̂(G(t0, 0)) ⪰ F̂(G(0, 0)) = F(Amin),

H(G(t0, u0)) = H(G(t0, 0)) ⪯ H(G(0, 0)) = H(Amin).
(6.35)
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Further on, F̂(Amin) has a Z(x − y2)–rm by Theorem 2.7 and H(Amin) by Theorem 2.5. Indeed,
the column Xk of F̂(Amin) is in the span of the others and since H(G(t0, 0)) satisfies the conditions
in Theorem 2.5, the same holds for H(Amin). But then the property (6.10) holds (note that η = 0).
This is the case Theorem 6.1.(2a).

Case 2: F22 is pd. By Lemma 4.3.(2), H(Amin) ⪰ 0 (see (6.26)). In particular, H22 ⪰ 0. We
separate two cases according to the invertibility of H22.

Case 2.1: H22 is not pd. By (6.31) and Theorem 2.5, it follows that

(6.36) u1 = u0.

By (6.14),

(6.37) u0 ≥ 0.

We separate two cases according to the value of u1.

Case 2.1.1: u1 = 0. By (6.36), it follows that u0 = 0. Note that

(6.38)
(
F̂(G(t0, u0))

)
T̂ \{1} =

(
F̂(G(t0, 0))

)
T̂ \{1} =

(
F̂
)
T̂ \{1}.

Since in F̂ we have the column relation (6.34) by construction, (6.38) and Proposition 2.3 imply
that (

F̂(G(t0, 0))
)
T̂ ,T̂ \{1 ,Xk}(F22)

†f23 =
(
F̂(G(t0, 0))

)
T̂ ,{Xk},

or equivalently (6.33) with u0 = 0. By (6.33) and (6.34), it follows that (Amin)2,k = (Amin)1,k+1 or
equivalently η = 0. This is the case Theorem 6.1.(2(b)i).

Case 2.1.2: u1 > 0. Since the column Xk of H(G(t0, u1)) is in the span of the columns in X⃗(1,k−1),
it first follows by observing the first row of H(G(t0, u1)) that

(6.39) βk,0 − (Amin)2,k = (h12)
T (H22)

†h23.

Further on,

(6.40) H(G(t, u1))
/
(H(G(t, u1)))X⃗(1,k) = (H(G(t, u1)))X⃗(0,k−1)

/
(H(G(t, u1)))X⃗(1,k−1) = t1 − t,

where we used (6.30) in the second equality. By (6.40) and Theorem 2.2 used for (M,C) =
(H(G(t, u1)), (H(G(t, u1)))X⃗(1,k)), it follows that H(G(t1, u1)) ⪰ 0. By Theorem 2.5, H(G(t1, u1))
admits a R–rm. Note that

F̂(G(t0, u0)) = F̂(G(t0, u1)) ⪯ F̂(G(t1, u1)),(6.41)

where we used that t0 ≤ t1 by (6.40). By Theorem 2.7, (F̂(G(t1, u1)))T̂ \{Xk} must be pd. (Here

we used that since u1 > 0 and F22 ≻ 0, it follows that (F̂(G(t1, u1)))T̂ \{1} ≻ 0.) Therefore Claim
1 implies that t1 > 0 and t1u1 ≥ η2. Together with (6.39), this is the case Theorem 6.1.(2(b)ii).

Case 2.2: H22 is pd. We separate two cases according to the value of η.

Case 2.2.1: η = 0. By Lemma 4.3.(2), H(Amin) ⪰ 0 (see (6.26)).
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If H(Amin) does not admit a R–rm, it follows by Theorem 2.5, that (H(Amin))X⃗(0,k−1) is not pd
and u1 > 0. Equivalently,

t1 = (H(Amin))X⃗(0,k−1)

/
H22 = 0,

which by (6.30) implies that t0 = 0. By Theorem 2.7, since F̂(G(t0, u0)) = F̂(G(0, u0)) admits
a Z(x − y2)–rm, F22 ≻ 0 and (F̂(G(0, u0)))T̂ \{Xk} is not pd, it follows that u0 = 0. But then
H(G(t0, u0)) = H(G(0, 0)) = H(Amin) does not admit a R–rm, which is a contradiction.

Hence, H(Amin) admits a R–rm, which is equivalent to (6.10) (using η = 0). This is the case
Theorem 6.1.(2(c)i).

Case 2.2.2: η ̸= 0. By (6.15) it follows that t0u0 ≥ η2. This fact and Claim 3 imply the second
condition in the case Theorem 6.1.(2(c)ii).

This concludes the proof of the implication (6.12) ⇒ Theorem 6.1.(2).

Next we prove the implication Theorem 6.1.(2) ⇒ (6.12). We separate five cases according to
the assumptions in Theorem 6.1.(2).

Case 1: Theorem 6.1.(2a) holds. By Lemma 4.3.(2), F(Amin) ⪰ 0 and H(Amin) ⪰ 0. Since
η = 0, both matrices have a moment structure. Since by construction, the column Xk of F̂(Amin)
is in the span of the others, it has a Z(x− y2)–rm by Theorem 2.7. Since H(Amin) satisfies (6.10)
(using η = 0), it admits a R–rm by Theorem 2.5. This proves (6.12) in this case.

Case 2: Theorem 6.1.(2(b)i) holds. By the same reasoning as in the Case 1 above, F̂(Amin) has a
Z(x − y2)–rm. Since u1 = 0, the column Xk of H(Amin) is in the span of the other columns. By
Theorem 2.5, H(Amin) admits a R–rm. This proves (6.12) in this case.

Case 3: Theorem 6.1.(2(b)ii) holds. By (6.30), (6.31) and the fourth assumption of (2(b)ii), it
follows that H(G(t1, u1)) is psd and the columns 1, Xk are in the span of the columns in X⃗(1,k−1).
By Theorem 2.5, H(G(t1, u1)) admits a R–rm. Since (t1, u1) ∈ R1 by (6.14) and the assumptions
in (2(b)ii), it follows that F̂ (G(t1, u1)) is psd and by construction,

(
F̂ (G(t1, u1))

)
T̂ \{Xk} is pd. By

Theorem 2.7, it has a Z(x− y2)–rm. This proves (6.12) in this case.

Case 4: Theorem 6.1.(2(c)i) holds. F̂(Amin) has a Z(x− y2)–rm and H(Amin) has a R–rm by the
same reasoning as in the Case 1 above. This proves (6.12) in this case.

Case 5: Theorem 6.1.(2(c)ii) holds. We separate three cases according to the sign of k12.
• If k12 = 0, then by Claim 2, H(G(k11, k22)) is psd and the column Xk is in the span of the

previous ones. Since H(G(0, 0)) = H(Âmin) is psd by assumption, it follows that k11 ≥ 0
and k22 ≥ 0. Since η ̸= 0 and k11k22 ≥ η2 by (6.11), it follows that k11 > 0 and k22 > 0.
By Claim 1, F̂(G(k11, k22)) ≻ 0. By Theorem 2.7, it has a Z(x − y2)–rm. This proves
(6.12) in this case.

• If k12 > 0, then by Claim 3, H(G(t−, u−)) is psd and t−u− ≥ η2. By construction,
rankH(G(t−, u−)) = k and since t− < k11, it follows that (H(G(t−, u−)))X⃗(0,k−1) is pd.
Hence, the column Xk of H(G(t−, u−)) is in the span of the others. By Theorem 2.5,
H(G(t−, u−)) admits a R–rm. By Claim 1 and t−u− ≥ η2, it follows that F̂(G(t−, u−)) ⪰



40 S. YOO AND A. ZALAR

0. Since t− > 0, it follows that
(
F̂ (G(t−, u−))

)
T̂ \{Xk} is pd. By Theorem 2.7, it has a

Z(x− y2)–rm. This proves (6.12) in this case.
• If k12 < 0, then the proof of (6.12) is analogous to the case k12 > 0 by replacing (t−, u−)

with (t+, u+).

This concludes the proof of the implication Theorem 6.1.(2) ⇒ (6.12).

By now we established the equivalence (1) ⇔ (2) in Theorem 6.1. It remains to prove the
moreover part. We observe again the proof of the implication (2) ⇒ (6.12). By Lemma 4.3.(4),

(6.42) rankM̃(k; β) = rank F̂(Amin) + rankH(Amin).

In the proofs of the implications Theorem 6.1.(2a) ⇒ (6.12), Theorem 6.1.(2(b)i) ⇒ (6.12) and
Theorem 6.1.(2(c)i) ⇒ (6.12), we established that F̂(Amin) and H(Amin) admit a Z(x − y2)–rm
and a R–rm, respectively. By Theorems 2.5 and 2.7, there also exist a (rank F̂(Amin))–atomic and
a (rankH(Amin))–atomic rms. By (6.42), β has a (rankM̃(k; β))–atomic Z(p)–rm.

Assume that Theorem 6.1.(2(b)ii) holds. We separate two cases according to the value of η:
• η = 0. We separate two cases according to the existence of a R–rm of H(Amin):

– The last column of H(Amin) is in the span of the previous ones. Then as in the previous
paragraph, F̂(Amin) and H(Amin) admit a (rank F̂(Amin))–atomic Z(x− y2)–rm and
a (rankH(Amin))–atomic R–rm, respectively. Hence, β has a (rankM̃(k; β))–atomic
Z(p)–rm.

– The last column of H(Amin) is not in the span of the previous ones. Since also t1 > 0,
it follows that rankH(Amin) = rankH22+2. But then rankH(G(t1, u1)) = rankH22

and rank F̂(G(t1, u1)) = rank F̂(Amin) + 2 (see (6.15)). This implies that M̃(β; k)

admits a (rankM̃(k); β)–atomic Z(p)–rm.
• η ̸= 0. We separate two cases according to rankH(Amin), which can be either rankH22+2

or rankH22 + 1 (since t1 > 0).
– rankH(Amin) = rankH22+2. Then as in the second Case of the case η = 0 above, in

the point (t1, u1) there is a (rankM̃(k; β))–atomic Z(p)–rm for β. (Note that t1u1 is
automatically strictly larger than η2, otherwise the measure was (rankM̃(k; β)− 1)–
atomic, which is not possible.)

– rankH(Amin) = rankH22 + 1. In this case we have

rankH(G(t1, u1)) + rank F̂(G(t1, u1)) = rankH22 + rank F̂(G(t1, u1))

=

{
rankH22 + rank F̂(Amin) + 1, if t1u1 = η2,

rankH22 + rank F̂(Amin) + 2, if t1u1 > η2,

=

{
rankM̃(k; β), if t1u1 = η2,

rankM̃(k; β) + 1, if t1u1 > η2,

where we used (6.15) in the second and (6.42) in the third equality. Hence, β has
a (rankM̃(k; β))–atomic rm if t1u1 = η2 and (rankM̃(k; β) + 1)–atomic rm if
t1u1 > η2. It remains to show that in the case t1u1 > η2, there does not exist a
(rankM̃(k; β))–atomic rm. Since H22 is not pd and u1 > 0, if H(G(t′, u′)) has a
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R–rm, then u′ = u1. Since η ̸= 0, then F̂(G(t′, u1)) with a Z(x − y2)–rm is at
least (rank F̂(Amin) + 1)–atomic (see (6.15)). If t′ ̸= t1, then rankH(G(t′, u1)) =
rankH22 + 1. Hence,

rankH(G(t′, u1))+rank F̂(G(t′, u1)) ≥ (rankH22+1)+(rank F̂(Amin)+1) = rankM̃(k; β)+1,

where we used (6.42) in the last equality.
• Assume that Theorem 6.1.(2(c)ii) holds. We separate two cases according to the value of
k12.

– k12 = 0. We separate two cases according to rankH(Amin), i.e., rankH(Amin) ∈
{k, k + 1}. Note that rankH(Amin) cannot be k − 1, since η ̸= 0 and k12 = 0 imply
that

(
H(Amin)/H22

)
12

̸= 0.

∗ rankH(Amin) = k + 1. Then as in the second case of the case η = 0 of
Theorem 6.1.(2(b)ii) above, in the point (t1, u1) there is a (rankM̃(k; β))–atomic
Z(p)–rm for β. (Note that t1u1 is automatically strictly larger than η2, otherwise
the measure was (rankM̃(k; β)− 1)–atomic, which is not possible.)

∗ rankH(Amin) = k. In this case we have

rankH(G(k11, k22)) + rankF(G(k11, k22)) =
{

rankH22 + rankF(Amin) + 1, if k11k22 = η2,

rankH22 + rankF(Amin) + 2, if k11k22 > η2,

=

{
rankM̃(k; β), if k11k22 = η2,

rankM̃(k; β) + 1, if k11k22 > η2,

where we used (6.15) in the first and (6.42) in the second equality. Hence, β has
a (rankM̃(k; β))–atomic rm if k11k22 = η2 and (rankM̃(k; β)+ 1)–atomic rm
if k11k22 > η2. It remains to show that in the case k11k22 > η2, there does not
exist a (rankM̃(k; β))–atomic rm. Since η ̸= 0, if F(G(t′, u′)) is psd, it follows
that t′u′ ≥ η2 by (6.14). But then if F̂(G(t′, u′)) also admits a Z(x−y2)–rm, this
rm is at least (rank F̂(Amin) + 1)–atomic (see (6.15)). If t′ < k11 or u′ < k22,
then rankH(G(t′, u′)) ≥ rankH22 + 1. Hence,

rankH(G(t′, u′))+rank F̂(G(t′, u′)) ≥ (rankH22+1)+(rank F̂(Amin)+1) = rankM̃(k; β)+1,

where we used (6.42) in the last equality.
– k12 ̸= 0. We separate two cases according to rankH(Amin), i.e. rankH(Amin) ∈
{k, k+1}. Note that rankH(Amin) cannot be k− 1, since otherwise H(Âmin)/H22 =(
0 η
η 0

)
, which cannot be psd by η ̸= 0. By Claim 3, there is a point (t̃, ũ) ∈ R2 ∩

(R+)
2, such that t̃ũ = η2 and (k11 − t̃)(k22 − ũ) = k2

12. By (6.15) and (6.25) we have

rankH(G(t̃, ũ)) + rank F̂(G(t̃, ũ)) = (rankH22 + 1) + (rank F̂(Amin) + 1)

=

{
rankM̃(k; β), if rankH(Amin) = k + 1,

rankM̃(k; β) + 1, if rankH(Amin) = k,

where we used (6.42) in the second equality. It remains to show that in the case
rankH(Amin) = k, there does not exist a (rankM̃(k; β))–atomic rm. Since η ̸= 0,
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if F̂(G(t′, u′)) is psd, it follows that t′u′ ≥ η2 by (6.14). But then if F̂(G(t′, u′)) also
admits a Z(x − y2)–rm, this rm is at least (rank F̂(Amin) + 1)–atomic (see (6.15)).
Since k12 ̸= 0, rankH(G(t′, u′)) ≥ rankH22 + 1 by (6.25). Hence,

rankH(G(t′, u′))+rank F̂(G(t′, u′)) ≥ (rankH22+1)+(rank F̂(Amin)+1) = rankM̃(k; β)+1,

where we used (6.42) in the last equality.
This concludes the proof of the moreover part.

Since for a p–pure sequence with M̃(k; β)) ⪰ 0, (6.42) implies that H(Amin) is pd, it follows
by the moreover part that the existence of a Z(p)–rm implies the existence of a (rankM̃(k; β))–
atomic Z(p)–rm. □

The following example demonstrates the use of Theorem 6.1 to show that there exists a bivariate
y(x− y2)–pure sequence β of degree 6 with a positive semidefinite M(3) and without a Z(y(x−
y2))–rm.

Example 6.3. Let β be a bivariate degree 6 sequence given by

β00 =
1228153

1372615
, β10 =

97

10
, β01 =

21

10
,

β20 =
2289

10
, β11 =

441

10
, β02 =

91

10
,

β30 =
67207

10
, β21 =

12201

10
, β12 =

455

2
,

β03 =
441

10
, β40 =

2142693

10
, β31 =

376761

10
,

β22 =
67171

10
, β13 =

12201

10
, β04 =

455

2
,

β50 =
71340727

10
, β41 =

12313161

10
, β32 =

428519

2
,

β23 =
376761

10
, β14 =

67171

10
, β05 =

12201

10
,

β60 =
2438236509

10
, β51 =

415998681

10
, β42 =

71340451

10
,

β33 =
12313161

10
, β24 =

428519

2
, β15 =

376761

10
,

β06 =
67171

10
.

Assume the notation as in Theorem 6.1. M̃(3) is psd with the eigenvalues ≈ 2.51 · 108, ≈ 47179,
≈ 112.1, ≈ 7.4, ≈ 1.11, ≈ 0.1, ≈ 0.03, ≈ 0.0005, ≈ 4.9 · 10−6, 0, and the column relation
Y 3 = Y X . We have that

Amin =


5537
9230

91
10

455
2

61999553
9230

91
10

455
2

67171
10

428519
2

455
2

67171
10

428519
2

71340451
10

61999553
9230

428519
2

71340451
10

450098209309
1846
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and so

η =
67171

10
− 61999553

9230
= − 72

923
.

The matrices F22 and H22 are equal to:

F22 =



91
10

441
10

455
2

12201
10

67171
10

441
10

455
2

12201
10

67171
10

376761
10

455
2

12201
10

67171
10

376761
10

428519
2

12201
10

67171
10

376761
10

428519
2

12313161
10

67171
10

376761
10

428519
2

12313161
10

71340451
10


, H22 =

(
7
5

18
5

18
5

49
5

)
.

They are both pd with the eigenvalues ≈ 7.3 ·106, ≈ 1987.6, ≈ 5.6, ≈ 0.099, ≈ 0.0013 and ≈ 11.1,
≈ 0.068, respectively. The matrix K is equal to

K =

(
k11 k12
k12 k22

)
=

( 6050329
48143098510

3
95

3
95

4941414
87685

)
and thus

(6.43) (
√
k11k12 − k12)

2 − η2 = −0.0033 < 0.

By Theorem 6.1, β does not have a Z(y(x − y2))–rm, since by (2(c)ii) of Theorem 6.1, (6.43)
should be positive.
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