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ABSTRACT. In this article we solve four special cases of the truncated Hamburger moment problem
(THMP) of degree 2k with one or two missing moments in the sequence. As corollaries we obtain,
by using appropriate substitutions, the solutions to bivariate truncated moment problems of degree
2k for special curves. Namely, for the curves y = x3 (first solved by Fialkow [Fia11]), y2 = x3,
y = x4 where a certain moment of degree 2k + 1 is known and y3 = x4 with a certain moment
given. The main technique is the completion of the partial positive semidefinite matrix (ppsd) such
that the conditions of Curto and Fialkow’s solution of the THMP are satisfied. The main tools are
the use of the properties of positive semidefinite Hankel matrices and a result on all completions of
a ppsd matrix with one unknown entry, proved by the use of the Schur complements for 2 × 2 and
3× 3 block matrices.

1. INTRODUCTION

For x = (x1, . . . , xd) ∈ Rd and i = (i1, . . . , id) ∈ Zd
+, we set |i| = i1 + . . . + id and xi =

xi1
1 · · ·xid

d . Given a real d-dimensional multisequence β = β(2k) = {βi}i∈Zd
+,|i|≤2k of degree 2k and

a closed subset K of Rd, the truncated moment problem (TMP) supported on K for β asks to
characterize the existence of a positive Borel measure µ on R with support in K, such that

(1.1) βi =

∫
K

xidµ(x) for i ∈ Zd
+, |i| ≤ 2k.

If such measure exists, we say that β has a representing measure supported on K and µ is its
K-representing measure.

We denote by M(k) = M(k)(β) = (βi,j)
k
i,j=0 the moment matrix associated with β, where the

rows and columns are indexed by X i, |i| ≤ k, in degree-lexicographic order. Let R[x]k := {p ∈
R[x] : deg p ≤ k} stand for the set of polynomials in d variables of degree at most k. To every
p :=

∑
i∈Zd

+,|i|≤k aix
i ∈ R[x]k, we denote by p(X) =

∑
i∈Zd

+,|i|≤k aiX
i the vector from the column

space C(M(k)) of the matrix M(k). Recall from [CF96], that β has a representing measure µ with
the support supp µ being a subset of Zp := {x ∈ Rd : p(x) = 0} if and only if p(X) = 0. We say
that the matrix M(k) is recursively generated (rg) if for p, q, pq ∈ R[x]k such that p(X) = 0, it
follows that (pq)(X) = 0.

The full moment problem (MP), where βi is given for every i ∈ Zd
+, being the classical question

in analysis and also due to its relation with real algebraic geometry via the duality with positive
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polynomials given by Haviland’s theorem [Hav35], has been widely studied, see e.g., [Akh65,
AhK62, KN77, Las09, Lau05, Lau09, Mar08, PS06, PS08, Put93, PV99, Sch91, Sch03, Sch17].
The TMP, which is more general than the full MP [Sto01], has been intensively studied in a series
of papers by Curto and Fialkow [CF91, CF96, CF98a, CF98b, CF02, CF04, CF05, CF08] with
the celeberated flat extension theorem they established as a core tool in the field. There are also
various generalizations of the TMP (e.g., [?, Bol96, ?, DU18], to matrix moments, [BK10, ?] to
tracial moments, [IKLS17] to infinitely many variables). Recently, Fialkow’s core variety [Fia17]
approach led to many new results on the TMP; see also [BF20, DS18]. A concrete solution to the
TMP is a set of necessary and sufficient conditions for the existence of a K-representing measure.
Among necessary conditions, M(k) must be psd and rg [CF91, CF98b], which also suffice in some
cases. Concrete solutions to the TMP are known in the following cases:

(1) (Truncated Hamburger moment problem (THMP)) d = 1 and K = R. See [AhK62,
Theorem I.3] or [Ioh82, Theorem A.II.1] for the special case of even k with an invertible
moment matrix and [CF91, Section 3] for the general case.

(2) (Truncated Hausdorff moment problem) d = 1 and K = [0,∞). See [KN77, p. 175] for
the special case of an invertible moment matrix and [CF91, Section 5] for the general case.

(3) (Truncated Stieltjes moment problem) d = 1 and K = [a, b], a < b. See [KN77, Theorems
III.2.4 and II.2.3] and [CF91, Section 4] for the general case.

(4) d = 2 and K is a curve p(x, y) = 0 with deg p ≤ 2. See [CF02, CF04, CF05, FN10, Fia14,
CS16].

(5) d = 2 and K is a curve y = x3. See [Fia11].
(6) d = 2 and the moment matrix has a special feature called recursive determinateness. See

[CF13] for details.
(7) (Extremal case) The rank of the moment matrix is the same as the cardinality of the corre-

sponding variety; see [CFM08].
(8) Some special cases are solved in [CS15, Fia17, Ble15, BF20].

In (5), β must satisfy certain numerical conditions, which are equivalent to the conditions from
Corollary 3.3 below. The proof is by separating the nonsingular case from the singular one. In
the nonsingular case the existence of a flat extension is established by a detailed and technically
demanding analysis, while the singular case is done by the use of additional features of the moment
matrix such as recursive determinateness and known results for such matrices.

In this article we present concrete solutions to the four cases of the THMP of degree 2k with
some unknown moments βi1 , . . . , βij , 1 ≤ i1 ≤ · · · ≤ ij ≤ 2k − 1, in the sequence, which
we call the THMP with gaps (βi1 , . . . , βij ). Namely, we solve the THMP with gaps (β2k−1),
(β2k−2, β2k−1), (β1) and (β1, β2). The motivation to solve this cases of the THMP with gaps is
to obtain the solutions to the special cases of the 2-dimensional TMP. Namely, the solution of the
THMP with gaps:

(1) (β2k−1) gives an alternative solution to the TMP with d = 2 and K being the curve y = x3

(see (5) above). The advantage of our approach is that the proof is short and we also do not
need to separate three subcases, i.e., k = 1, k = 2 and k ≥ 3.

(2) (β2k−2, β2k−1) solves the TMP with d = 2, K being the curve y = x4 and in addition the
moment β3,2k−2 of degree 2k + 1 is known. To solve the TMP for the curve y = x4 with-
out this additional moment, one needs to solve the THMP with gaps (β2k−5, β2k−2, β2k−1)
which is a possible topic of future research.

(3) (β1) solves the TMP with d = 2 and K being the curve y2 = x3.
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(4) (β1, β2) solves the TMP with d = 2, K being the curve y3 = x4 and known β 5
3
,0. By β 5

3
,0

we mean the moment of x
5
3
1 , i.e.,

∫
K
x

5
3
1 dµ. To solve the TMP for the curve y3 = x4 without

this additional information, one needs to solve the THMP with gaps (β1, β2, β5), which is
another open question for future research.

1.1. Readers Guide. The paper is organized as follows. In Section 2 we present the tools used in
the proofs of our main results:

• Generalized Schur complements and verification of positive semidefiniteness of block ma-
trices (Subsection 2.1).

• Properties of psd Hankel matrices (Subsection 2.2).
• The solution to the THMP (Subsection 2.3).
• A result about psd completions of partial psd matrices with one unknown entry (Subsetion

2.4).
• An extension principle for psd matrices (Subsection 2.5).
• A result about subsequences of moment sequences (Subsection 2.6).

In Section 3 we solve the THMP of degree 2k with gaps (β2k−1) (see Theorem 3.1) and (β2k−2, β2k−1)
(see Theorem 3.5). Corollary 3.3, being a special case of the (β2k−1)-case, is the solution to the
TMP with d = 2 and the curve y = x3 as K, while Corollary 3.6, being a special case of the
(β2k−2, β2k−1)-case, is the solution to the TMP with d = 2, the curve y = x4 as K and an addi-
tional moment β3,2k−2 known.

In Section 4 we solve the THMP of degree 2k with gaps (β1) (see Theorem 4.1) and (β1, β2) (see
Theorem 4.5). Corollary 4.4, being a special case of the (β1)-case, is the solution to the TMP with
d = 2 and the curve y2 = x3 as K, while Corollary 4.7, being a special case of the (β1, β2)-case, is
the solution to the TMP with d = 2, the curve y3 = x4 as K and an additional moment β 5

3
,0 known.

Acknowledgement. I would like to thank Jaka Cimprič and Abhishek Bhardwaj for useful sugges-
tions on the preliminary versions of this article.

2. PRELIMINARIES

In this section we present some tools which will be needed in the proofs of our main results in
Sections 3 and 4.

We write Mn,m (resp. Mn) for the set of n ×m (resp. n × n) real matrices. For a matrix M we
denote by C(M) its column space. The set of real symmetric matrices of size n will be denoted by
Sn. For a matrix A ∈ Sn the notation A ≻ 0 (resp. A ⪰ 0) means A is positive definite (pd) (resp.
positive semidefinite (psd)).

2.1. Generalized Schur complements. Let

(2.1) M =

(
A B
C D

)
∈ Sn+m

be a real matrix where A ∈ Mn, B ∈ Mn,m, C ∈ Mm,n and D ∈ Mm. The generalized Schur
complement [Zha05] of A (resp. D) in M is defined by

M/A = D − CA+B (resp. M/D = A−BD+C),

where A+ (resp. D+) stands for the Moore-Penrose inverse of A (resp. D).
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Remark 2.1. (1) If A (resp. D) is invertible, then M/A (resp. M/D) is the usual Schur com-
plement of A (resp. D) in M .

(2) Note that M/A =

(
D C
B A

)
/A.

The following theorem gives conditions for verifying positive semidefiniteness of a block matrix
of size 2.

Theorem 2.2. [Alb69] Let

(2.2) M =

(
A B
BT C

)
∈ Sn+m

be a real symmetric matrix where A ∈ Sn, B ∈ Mn,m and C ∈ Sm. Then the following conditions
are equivalent:

(1) M ⪰ 0 .
(2) C ⪰ 0, C(BT ) ⊆ C(C) and M/C ⪰ 0.
(3) A ⪰ 0, C(B) ⊆ C(A) and M/A ⪰ 0.

If m = 1 in (2.2), then rankM ∈ {rankA, rankA+1}. The following proposition characterizes
w.r.t. the value of M/A when each of the possibilities occurs in the case M is psd.

Proposition 2.3. Let

M =

(
A b
bT c

)
∈ Sn+1

be a real symmetric matrix where A ∈ Sn, b ∈ Rn and c ∈ R. Then rankM = rankA if and only
if M/A = 0. Otherwise rankM = rankA+ 1.

Proof. By Theorem 2.2, the psd assumption implies that b ∈ C(A). By the properties of the Moore-
Penrose inverse {A+b+ w : w ∈ kerA} is the set of solutions z of the system Az = b. Therefore,

(2.3) C(M) = C
(( A 0

bT c− bT (A+b+ w)

))
= C

(( A 0
bT M/A

))
,

where the second equality follows from the fact that A is symmetric, b ∈ C(A) and w ∈ kerA.
Now, the statement of the proposition follows from (2.3). □

The following proposition gives an explicit formula, called the quotient formula [CH69], for
expressing the Schur complement of a 2× 2 upper left-hand or a 2× 2 lower right-hand block in a
3× 3 block matrix using 2× 2 block submatrices.

Proposition 2.4. Let

K =

 A B D
BT C E
DT ET F

 =

 M
D
E

DT ET F

 =

 A B D
BT

DT N

 ∈ Sn1+n2+n3

be a 3 × 3 block real matrix, where A ∈ Sn1 , C ∈ Sn2 , F ∈ Sn3 are real symmetric matrices and
B ∈ Mn1,n2 , Dn1,n3 , En2,n3 are rectangular matrices. If M and A are nonsingular, then

(2.4) K/M =

(
A D
DT F

)
/A−

[(
A B
DT ET

)/
A

]
(M/A)−1

[(
A D
BT E

)/
A

]
.

If N and C are nonsingular, then

(2.5) K/N =

(
C BT

B A

)/
C −

[(
C E
B D

)/
C

]
(N/C)−1

[(
C BT

ET DT

)/
C

]
.



THE TRUNCATED HAMBURGER MOMENT PROBLEMS WITH GAPS IN THE INDEX SET 5

Proof. By an easy calculation we have that

K/A =

 M/A

(
A D
BT E

)
/A(

A B
DT ET

)
/A

(
A D
DT F

)
/A

 .

Now the quotient formula [CH69] K/M = (K/A)/(M/A) yields (2.4).
By Remark 2.1 (2), it is true that K/N = L/N where

L =

 N
BT

DT

B D A

 .

Now (2.5) follows from (2.4). □

2.2. Hankel matrices. Let k ∈ N. For

β = (β0, . . . , β2k) ∈ R2k+1,

we denote by

Aβ := (βi+j)
k
i,j=0 =



β0 β1 β2 · · · βk

β1 β2 . .
.

. .
.

βk+1

β2 . .
.

. .
.

. .
. ...

... . .
.

. .
.

. .
.

β2k−1

βk βk+1 · · · β2k−1 β2k


∈ Sk+1

the corresponding Hankel matrix. We denote by vj := (βj+ℓ)
k
ℓ=0 the (j + 1)-th column of Aβ ,

0 ≤ j ≤ k, i.e.,
Aβ =

(
v0 · · · vk

)
.

As in [CF91], the rank of β, denoted by rank β, is defined by

rank β =

{
k + 1, if Aβ is nonsingular,

min {i : vi ∈ span{v0, . . . ,vi−1}} , if Aβ is singular.

We denote the upper left-hand corner of Aβ of size m+ 1 by

Aβ(m) = (βi+j)
m
i,j=0 ∈ Sm+1.

The following proposition is the alternative description of rank β if Aβ is singular.

Proposition 2.5. [CF91, Proposition 2.2] Let k ∈ N, β = (β0, . . . , β2k), and assume that A is
positive semidefinite and singular. Then

rank β = min{j : 0 ≤ j ≤ k such that Aβ(j) is singular}.

Important property of psd Hankel matrices is the following rank principle.

Theorem 2.6. [CF91, Corollary 2.5] Let k ∈ N, β = (β0, . . . , β2k), β̃ = (β0, . . . , β2k−2), Aβ ⪰ 0

and r = rank β̃. Then:
(1) rankAβ̃ = r.
(2) r ≤ rankAβ ≤ r + 1.
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(3) rankAβ = r + 1 if and only if

β2k > φ0β2k−r + . . .+ φr−1β2k−1,

where (φ0, . . . , φr−1) := Aβ(r − 1)−1(βr, . . . , β2r−1)
T

We will use the following corollary of Proposition 2.5 and Theorem 2.6 in the sequel.

Corollary 2.7. In the notation of Theorem 2.6, under the assumptions Aβ ⪰ 0, Aβ is singular, and
r = rank β̃, then

r = rank β = rankAβ(r − 1) = rankAβ(r) = . . . = rankAβ(k − 1) = rankAβ̃.

We denote the lower right-hand corner of Aβ of size m+ 1 by

Aβ[m] = (βi+j)
k
i,j=m−k =



β2(k−m) β2(k−m)+1 β2(k−m+1) · · · β2k−m

β2(k−m)+1 β2(k−m+1) . .
.

. .
.

β2k−m+1

β2(k−m+1) . .
.

. .
.

. .
. ...

... . .
.

. .
.

. .
.

β2k−1

β2k−m β2.k−m+1 · · · β2k−1 β2k


∈ Sm+1

Let

β(rev) := (β2k, β2k−1, . . . , β0)

be the sequence obtained from β by reversing the order of numbers. Using Corollary 2.7 for a
reversed sequence implies the following corollary.

Corollary 2.8. In the notation of Theorem 2.6, under the assumption Aβ ⪰ 0, Aβ is singular and
r = rank β̃(rev), where β̃(rev) := (β2k, . . . , β2), it holds that

r = rank β(rev) = rankAβ[r − 1] = rankAβ[r] = . . . = rankAβ[k − 1] = rankAβ̃(rev) .

Proof. Corollary 2.7 used for β(rev) implies that

(2.6) r = rank β(rev) = rankAβ(rev)(r − 1) = rankAβ(rev)(r) = . . . = Aβ(rev)(k − 1) = rankAβ̃(rev) .

For ℓ = 0, . . . , k define the permutation matrices Pℓ : Rℓ+1 → Rℓ+1 by e
(ℓ)
i 7→ e

(ℓ)
ℓ+2−i, i =

1, . . . , ℓ + 1, where e
(ℓ)
1 , . . . , e

(ℓ)
ℓ+1 is the standard basis for Rℓ+1. Note that Aβ(rev)(ℓ) = P T

ℓ Aβ[ℓ]Pℓ

and hence rankAβ(rev)(ℓ) = rankAβ[ℓ], which together with (2.6) implies the statement of the
corollary. □

A sequence β = (β0, . . . , β2k) with r := rank β is positively recursively generated if Aβ(r −
1) ≻ 0 and denoting (φ0, . . . , φr−1) := Aβ(r − 1)−1(βr, . . . , β2r−1)

T , it is true that

(2.7) βj = φ0βj−r + · · ·+ φr−1βj−1 for j = r, . . . , 2k.

Note that (2.7) is equivalent to

(2.8) vj = φ0vj−r + · · ·+ φr−1vj−1 for j = r, . . . , k.
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2.3. Solution of the truncated Hamburger moment problem.

Theorem 2.9. [CF91, Theorem 3.9] For k ∈ N and β = (β0, . . . , β2k) with β0 > 0, the following
statements are equivalent:

(1) There exists a representing measure for β supported on K = R.
(2) There exists a (rank β)-atomic representing measure for β.
(3) β is positively recursively generated.
(4) Aβ ⪰ 0 and rankAβ = rank β.

A straightforward corollary of Theorem 2.9 and Corollary 2.7 is the following.

Corollary 2.10. Let k ∈ N and β = (β0, . . . , β2k) with β0 > 0. Suppose that Aβ is singular. The
following statements are equivalent:

(1) There exists a representing measure for β supported on K = R.
(2) There exists a (rank β)-atomic representing measure for β.
(3) β is positively recursively generated.
(4) Aβ ⪰ 0 and rankAβ = rankAβ(k − 1).

2.4. Partially positive semidefinite matrices and their completions. A partial matrix A =
(aij)

n
i,j=1 is a matrix of real numbers aij ∈ R, where some of the entries are not specified.

A partial symmetric matrix A = (aij)
n
i,j=1 is partially positive semidefinite (ppsd) (resp. par-

tially positive definite (ppd)) if the following two conditions hold:
(1) aij is specified if and only if aji is specified and aij = aji.
(2) All fully specified principal minors of A are psd (resp. pd).

It is well-known that a ppsd matrix A(x) of the form as in Lemma 2.11 below admits a psd
completion. (This follows from the fact that the corresponding graph is chordal, see e.g. [GJSW84,
Dan92, BW11].) In the notation of Lemma 2.11, if A(x0), x0 ∈ R, is a psd Hankel matrix, then
Corollary 2.7 implies that (2.9) below holds. Since we will need an additional information about
the rank of the completion A(x0) and the explicit interval of all possible x0 for our results, we give
a proof of Lemma 2.11 based on the use of generalized Schur complements assuming (2.9) holds.

Lemma 2.11. Let

A(x) :=

 A1 a b
aT α x
bT x β

 ∈ Sn

be a partially positive semidefinite symmetric matrix, where A1 ∈ Sn−2, a, b ∈ Rn−2, α, β ∈ R and
x is a variable. Let

A2 :=

(
A1 a
aT α

)
∈ Sn−1, A3 :=

(
A1 b
bT β

)
∈ Sn−1,

and
x± := bTA+

1 a±
√

(A2/A1)(A3/A1) ∈ R.
Suppose the following holds:

(2.9) A1 is invertible or rankA1 = rankA2.

Then:
(1) A(x0) is positive semidefinite if and only if x0 ∈ [x−, x+].
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(2)

rankA(x0) =

{
max

{
rankA2, rankA3

}
, for x0 ∈ {x−, x+},

max
{
rankA2, rankA3

}
+ 1, for x0 ∈ (x−, x+).

(3) If A(x) is partially positive definite, then A(x′) is positive definite for x′ ∈ (x−, x+).

Proof. By Theorem 2.2, A(x) ⪰ 0 if and only if

(2.10) A2 ⪰ 0,

(
b
x

)
∈ C(A2) and f(x) := A(x)/A2 ≥ 0,

The first condition of (2.10) is true by the ppsd assumption.
Since A2 ⪰ 0, it follows by Theorem 2.2 that a ∈ C(A1) and hence by the properties of the

Moore-Penrose inverse we have that A1(A
+
1 a) = a. Thus,

(2.11) C(A2) = C
(( A1 0

aT α− aTA+
1 a

))
= C

(( A1 0
aT A2/A1

))
.

Now we separate two cases according to A2/A1.

Case 1: A2/A1 > 0.

(2.11) and the assumption of Case 1 imply that C(A2) = C(A1 ⊕ 1). Since A3 ⪰ 0, it follows by
Theorem 2.2 that b ∈ C(A1). Therefore

(
b x

)T ∈ C(A1 ⊕ 1) for every x ∈ R. Thus the second
condition of (2.10) is true for every x ∈ R.

Note that the assumption of Case 1 and Proposition 2.3 imply that rankA2 > rankA1 and hence
the assumption (2.9) implies invertibility of A1 and A2. By Proposition 2.4, used for A(x) as K,
A2 as M and A1 as A, we have that

(2.12) f(x) = A3/A1 − (A2/A1)
−1(x− bTA+

1 a)
2.

Therefore f(x0) ≥ 0 if and only if x0 ∈ [x−, x+], which is the third condition of (2.10). Now by
Proposition 2.3 we know that rankA(x) > rankA2 if and only if f(x0) > 0, which establishes
(1),(2) in the case A2/A1 > 0.

Case 2: A2/A1 = 0.

(2.11) and the assumption of Case 2 imply that

(2.13) C(A2) = C
(( A1

aT

))
.

Therefore, using (2.13), it is true that

(2.14)
(

b
x

)
∈ C(A2) ⇔

(
b
x

)
=

(
A1

aT

)
z =

(
A1z
aT z

)
for some z ∈ Rn−2.

Since A3 ⪰ 0, it follows by Theorem 2.2 that b ∈ C(A1) and hence by the properties of the Moore-
Penrose inverse {A+

1 b + w : w ∈ kerA1} is the set of all solutions z of the system A1z = b.
Therefore, using (2.14), it follows that(

b
x

)
∈ C(A2) ⇔ x ∈ {aTA+

1 b+ aTw : w ∈ kerA1} = {aTA+
1 b},
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where we used the fact that A1 is symmetric, a ∈ C(A1) and w ∈ kerA1 for the last equality. So
only x0 = aTA+

1 b satisfies the second condition of (2.10).
Now by definition of the generalized Schur complement, we have

f(x) = β −
(
bT x

)
A+

2

(
b
x

)
.

By the properties of the Moore-Penrose inverse

A+
2

(
b
x0

)
=

(
A+

1 b
0

)
+ v for some v ∈ kerA2.

Hence,

f(x0) = β −
(
bT x0

) (( A+
1 b
0

)
+ v
)
= β − bTA+

1 b = A3/A1 ≥ 0,

where the second equality follows from the fact that A2 is symmetric,
(
bT x0

)T ∈ C(A2) and
v ∈ kerA2, and the last inequality follows by the ppsd assumption. Note that x0 = x+ = x−
and by Proposition 2.3, rankA(x0) = rankA2 if and only if A3/A1 = 0, in which case also
rankA3 = rankA2. Otherwise we have f(x0) = A3/A1 > 0, which implies by Proposition 2.3
that rankA(x0) = rankA3 = rankA1 + 1. Thus (1),(2) are true in the case A2/A1 = 0.

(3) follows from (2) by noticing that A2/A1 > 0, A3/A1 > 0 and rankA2 = rankA3 =
n− 1. □

2.5. Extension principle. The extension principle for psd matrices is the following.

Lemma 2.12. Let A ∈ Sn be a positive semidefinite matrix, Q ⊆ {1, . . . , n} a subset and AQ be
the restriction of A to rows and columns from the set Q. If v ∈ kerAQ is a nonzero vector from
the kernel of AQ, then the vector v̂ with the only nonzero entries in rows from Q and such that the
restriction v̂|Q to the rows from Q equals to v, belongs to kerA.

Proof. By permuting rows and columns we may assume that A is of the form A =
(
AQ B
BT C

)
. We

have to prove that

(2.15) A
(
v
0

)
= 0.

Since A is psd, for every w :=
(
vT uT

)
∈ Rn we have that

(2.16) 0 ≤ wAwT = 2uTBTv + uTCu.

If BTv ̸= 0, then we define u := −αBTv where α > 0 is an arbitrary positive real number, and
plug into (2.16) to get

(2.17) 0 ≤ −2α
∥∥BTv

∥∥2 + α2vTBCBTv = α(αvTBCBTv − 2
∥∥BTv

∥∥2) =: αS(α).

Since limα→0 S(α) = −2
∥∥BTv

∥∥2 < 0, (2.17) cannot be true for α small enough. Hence BTv = 0,
which proves (2.15). □
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2.6. Subsequences of one-dimensional moment sequences.

Proposition 2.13. Let k ∈ N and β = (β0, . . . , β2k) with β0 > 0 be a sequence which admits a
representing measure supported on K = R. Then for every i, j ∈ N, where 0 ≤ i ≤ j ≤ k, a
subsequence β(i,j) := (β2i, . . . , β2j) also admits a representing measure supported on K = R.

Proof. Note that Aβ is of the form

Aβ =

 Aβ(0,i−1) ∗ ∗
∗ Aβ(i,j) ∗
∗ ∗ Aβ(j+1,k)

 .

By Theorem 2.9, Aβ ⪰ 0 and hence Aβ(i,j) ⪰ 0. For i = j the statement is clear, i.e., the
representing atom is β2i with density 1. Assume that i < j. We separate two cases according to the
invertibility of Aβ(i,j) .

(1) If Aβ(i,j) ≻ 0, then rankAβ(i,j) = rank β(i,j) = j − i+ 1 and by Theorem 2.9, β(i,j) admits
a measure.

(2) Else

Aβ(i,j) =

(
Aβ(i,j−1) vT

v β2j

)
is singular, where v =

(
βj · · · β2j−1

)
. We separate two cases according to the invert-

ibility of Aβ(i,j−1) .
• If Aβ(i,j−1) is invertible, then rankAβ(i,j−1) = rankAβ(i,j) .
• Else Aβ(i,j−1) is singular and by Corollary 2.7 used for β(i,j) as β, we get rankAβ(i,j−2) =
rankAβ(i,j−1) . This implies that the last column of Aβ(i,j−1) is in the span of the other
columns of Aβ(i,j−1) . By Lemma 2.12, the j-th column of Aβ is in the span of the
columns i+1, . . . , j−1. Since β is positively recursively generated, the (j+1)-th col-
umn of Aβ is in the span of the columns i+2, . . . , j and in particular the last column of
Aβ(i,j) is in the span of the other columns of Aβ(i,j) . Hence rankAβ(i,j−1) = rankAβ(i,j) .

In both subcases of (2), rankAβ(i,j−1) = rankAβ(i,j) and Corollary 2.10 implies that β(i,j)

admits a measure.
□

3. TRUNCATED HAMBURGER MOMENT PROBLEM OF DEGREE 2k WITH GAP (β2k−1) AND
(β2k−2, β2k−1)

In this section we solve the THMP of degree 2k with gaps (β2k−1) (see Theorem 3.1) and
(β2k−2, β2k−1) (see Theorem 3.5). As a corollary of Theorem 3.1 we obtain the solution to the
TMP for the curve y = x3 (see Corollary 3.3), while as a corollary of Theorem 3.5 we get the
solution to the TMP for the curve y = x4 and an additional moment β3,2k−2 given (see Corollary
3.6).

3.1. Truncated Hamburger moment problem of degree 2k with gap (β2k−1).

Theorem 3.1. Let k ∈ N and

β(x) := (β0, β1, . . . , β2k−2, x, β2k)

be a sequence where each βi is a real number, β0 > 0 and x is a variable. Let

β̂ := (β0, . . . , β2k−4) and β̃ := (β0, . . . , β2k−2)
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be subsequences of β(x), v := ( βk · · · β2k−2 ) a vector and

Ã :=

(
Aβ̂ vT

v β2k

)
a matrix. Then the following statements are equivalent:

(1) There exists x0 ∈ R and a representing measure for β(x0) supported on K = R.
(2) There exists x0 ∈ R and a (rank β̃)-atomic representing measure for β(x0).
(3) Aβ(x) is partially positive semidefinite and one of the following conditions is true:

(a) k = 1.
(b) k > 1 and one of the following conditions is true:

(i) Aβ̃ ≻ 0.

(ii) rankAβ̂ = rankAβ̃ = rank Ã.

Proof. First we prove the implication (1) ⇒ (3). By Theorem 2.9, Aβ(x0) ⪰ 0 and rankAβ(x0) =
rank β(x0). Aβ(x0) ⪰ 0 in particular implies that Aβ(x) is ppsd. If k = 1, then (3a) holds. Otherwise
k > 1. If Aβ̃ ≻ 0, then (3(b)i) holds. Else Aβ̃ is singular and hence

(3.1) rankAβ̂ = rankAβ̃ = rank β(x0) = Aβ(x0),

where the first two equalities follow by Corollary 2.7 used for β(x0) as β and the last by Theorem
2.9. Aβ̂ being a principal submatrix of Ã and Ã being a principal submatrix of

Aβ(x0) =

 Aβ̂ uT vT

u β2k−2 x0

v x0 β2k

 ,

where u = ( βk−1 · · · β2k−3 ), imply together with (3.1) that (3(b)ii) holds and concludes the
proof of the implication (1) ⇒ (3).

Second we prove the implication (3) ⇒ (2). We separate two cases according to k.

• k = 1. We have that Aβ(x) =

(
β0 x
x β2

)
. For x0 =

√
β0β2, Aβ(x0) is of rank 1 and the

second column is the multiple of the first. Hence, by Corollary 2.10, a 1-atomic measure
exists, proving the implication (3) ⇒ (2) in this case.

• k > 1. Notice that Aβ(x) is of the same form as A(x) from Lemma 2.11, where Aβ̂ , Aβ̃ ,
Ã correspond to A1, A2, A3, respectively. Since both cases (3(b)i) and (3(b)ii) satisfy the
assumption (2.9), it follows by Lemma 2.11 that there exists x0 such that Aβ(x0) ⪰ 0 and

(3.2) rankAβ(x0) = max
{
rankAβ̃, rank Ã

}
.

Since in the case (3(b)i), it holds that rank Ã ≤ rankAβ̃ , while in the case (3(b)ii),
rank Ã = rankAβ̃ , we obtain from (3.2) that rankAβ(x0) = rankAβ̃. By Corollary 2.10,

(rank β̃)-representing measure for β(x0) exists, which proves (2).

The implication (2) ⇒ (1) is trivial. □
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Example 3.2. For k = 9, let

β(1)(x) = (1, 0, 1, 0, 2, 0, 5, 0, 14, 0, 42, 0, 132, 0, 429, 0, 2000, x, 338881),

β(2)(x) =
(
14,

7

2
,
79

4
,−67

8
,
1055

16
,−1935

32
,
18195

64
,−43115

128
,
336151

256
,−926695

512
,
6407195

1024
,−19736547

2048
,

124731423

4096
,−419176415

8192
,
2469281827

16384
,−8894873563

32768
,
49568350247

65536
, x,

1006568996907

262144

)
,

β(3)(x) = (8, 0, 78, 0, 1446, 0, 32838, 0, 794886, 0, 19651398, 0, 489352326, 0, 12216629958, 0, 305262005766,

x, 7630169896518).

Let Ã(i), i = 1, 2, 3, denote Ã from Theorem 3.1 corresponding to β(i)(x). Using Mathematica
[Wol] one can check that:

• Ã(i) ⪰ 0 for i = 1, 2, 3.

• Aβ̃(1) ≻ 0, Aβ̃(2) ̸⪰ 0, Aβ̃(3) ⪰ 0 and dim
(
kerAβ̃(3)

)
= 1.

• rankAβ̂(3) = rank Ã(3) = rankAβ̃(3) = 8.
Therefore:

• Aβ(1)(x) is ppsd and β̃(1) satisfies (3(b)i) of Theorem 3.1, implying that a 9-atomic measure
for β(1)(x) exists.

• Aβ(2)(x) is not ppsd and by Theorem 3.1, there is no representing measure for β(2)(x).
• Aβ(3)(x) is ppsd and β̃(3) satisfies (3(b)ii) of Theorem 3.1, implying that an 8-atomic measure

for β(3)(x) exists.

The following corollary is a consequence of Theorem 3.1 and is an alternative solution of the
bivariate TMP for the curve y = x3, first solved by Fialkow in [Fia11].

Corollary 3.3. Let k ∈ N and β = (βi,j)i,j∈Z2
+,i+j≤2k be a 2-dimensional real multisequence of

degree 2k. Suppose M(k) is positive semidefinite and recursively generated. Let

u(i) := (β0,i, β1,i, β2,i) for i = 0, . . . , 2k − 2,

β̂ := (u(0), . . . , u(2k−2)) and β̃ := (u(0), . . . , u(2k−2), β0,2k−1, β1,2k−1)

be subsequences of β. Then β has a representing measure supported on y = x3 if and only if the
following statements hold:

(1) One of the following holds:
• If k ≥ 3, then Y = X3 is a column relation of M(k).
• If k = 2, then the equalities β0,1 = β3,0, β1,1 = β4,0, β0,2 = β3,1 hold.

(2) One of the following holds:
(a) Aβ̃ ≻ 0.
(b) Aβ̃ ⪰ 0 and rankAβ̂ = rankAβ̃ = rankM(k).

Moreover, if the representing measure exists, then:
• If Aβ̃ is nonsingular, there exists a (3k)-atomic measure.
• If Aβ̃ is singular, then the measure is (rankM(k))-atomic.

Proof. For m ∈ {0, 1 . . . , 6k − 2, 6k} we define the numbers β̃m by the following rule

β̃m := βm (mod 3),⌊m
3
⌋.
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Claim 1. Every number β̃m is well-defined.

We have to prove that m (mod 3) + ⌊m
3
⌋ ≤ 2k. We separate three cases according to m.

• m ≤ 6k − 4: ⌊m
3
⌋+m (mod 3) ≤ (2k − 2) + 2 = 2k.

• m ∈ {6k − 3, 6k − 2}: ⌊m
3
⌋+m (mod 3) ≤ (2k − 1) + 1 = 2k.

• m = 6k: ⌊m
3
⌋+m (mod 3) = 2k + 0 = 2k.

Claim 2. Let t ∈ N. The atoms (x1, x
3
1), . . . (xt, x

3
t ) with densities λ1, . . . , λt are the (y − x3)-

representing measure for β if and only if the atoms x1, . . . , xt with densities λ1, . . . , λt are the
R-representing measure for β̃(x) = (β̃0, . . . , β̃2k−2, x, β̃2k).

The if part follows from the following calculation:

β̃m = βm (mod 3),⌊m
3
⌋ =

t∑
ℓ=1

λℓx
m (mod 3)
ℓ x

3⌊m
3
⌋

ℓ =
t∑

ℓ=1

λℓx
m (mod 3)+3⌊m

3
⌋

ℓ =
t∑

ℓ=1

λℓx
m
ℓ ,

where m = 0, 1, . . . , 6k − 2, 6k.
The only if part follows from the following calculation:

βi,j = βi−3,j+1 = · · · = βi (mod 3),j+⌊ i
3
⌋

= β̃i (mod 3)+3(j+⌊ i
3
⌋) =

t∑
ℓ=1

λℓx
i (mod 3)+3(j+⌊ i

3
⌋)

ℓ =
t∑

ℓ=1

λℓx
i (mod 3)+3⌊ i

3
⌋

ℓ x3j
ℓ =

t∑
ℓ=1

λℓx
i
ℓ(x

3
ℓ)

j,

where the equalities in the first line follow by M(k) being rg.

Using Claim 2 and a theorem of Bayer and Teichmann [BT06], implying that if a finite sequence
has a K-representing measure, then it has a finitely atomic K-representing measure, the statement
of the Corollary follows by Theorem 3.1. □

Remark 3.4. (1) Corollary 3.3 in case k = 1 is an improvement of [Fia11, Proposition 5.6.ii)]
by decreasing the number of atoms from 6 to 3.

(2) For M(1) ≻ 0 and Aβ̃ ̸≻ 0, (2) of Corollary 3.3 is not satisfied and hence the measure does
not exist. Since this is the case under the assumptions of [Fia11, Proposition 5.6.iii)], the
additional conditions in [Fia11, Proposition 5.6.iii)] are never satisfied.

(3) Examples in the Example 3.2 above are derived from [Fia11, Example 5.2], [Fia08, Exam-
ple 4.18], [Fia08, Example 3.3], which demonstrate the solution of the moment problem
for the curve y = x3.

3.2. Truncated Hamburger moment problem of degree 2k with gaps (β2k−2, β2k−1).

Theorem 3.5. Let k ∈ N, k > 1, and

β(x, y) := (β0, β1, . . . , β2k−3, y, x, β2k)

be a sequence, where each βi is a real number, β0 > 0 and x, y are variables. Let

β̂ := (β0, . . . , β2k−6) and β̃ := (β0, . . . , β2k−4)

be subsequences of β(x, y),

u :=
(
βk · · · β2k−3

)
, s :=

(
βk−1 · · · β2k−3

)
and w :=

(
βk−2 · · · β2k−5

)
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vectors and

Ã :=

(
Aβ̂ uT

u β2k

)
a matrix. Then the following statements are equivalent:

(1) There exist x0, y0 ∈ R and a representing measure for β(x0, y0) supported on K = R.
(2) There exist x0, y0 ∈ R and a (rank β̃) or (rank β̃ + 1)-atomic representing measure for

β(x0, y0).
(3) Aβ(x,y) is partially positive semidefinite and one of the following conditions holds:

(a) k = 2 and β2
1

β0
≤

√
β0β4.

(b) k > 2, the inequality

(3.3) sA+

β̃
sT ≤ uA+

β̂
wT +

√
(Aβ̃/Aβ̂)(Ã/Aβ̂).

holds and one of the following conditions is true:
(i) Aβ̃ ≻ 0.

(ii) rankAβ̂ = rankAβ̃ = rank
(
Aβ̃ sT

)
= rank Ã.

Moreover, if the representing measure for β exists, then:

• If k = 2, then there is a 1-atomic measure if β2
1

β0
=

√
β0β4. Otherwise there is a 2-atomic

measure.
• If k > 2, there exists a (rank β̃)-atomic if and only if one of the equalities

(3.4) sA+

β̃
sT = uA+

β̂
wT −

√
(Aβ̃/Aβ̂)(Ã/Aβ̂) or sA+

β̃
sT = uA+

β̂
wT +

√
(Aβ̃/Aβ̂)(Ã/Aβ̂)

holds.

Proof. Note that β(x, y) admits a measure if and only if there exist y0 ∈ R such that β(x, y0) admits
a measure. Theorem 3.1 implies that the following claim holds.

Claim 1. β(x, y0) admits a measure if and only if the following conditions hold:
(1) Aβ(x,y0) is ppsd.
(2) One of the following is true:

(a) A(β̃,β2k−3,y0)
≻ 0, where

A(β̃,β2k−3,y)
=



(
β0 β1

β1 y

)
, if k = 2,

(
Aβ̃ sT

s y0

)
=

 Aβ̂ wT sT1
w β2k−4 β2k−3

s1 β2k−3 y0

 where sT1 =

 βk−1

...
β2k−4

 , otherwise.

(b) rankAβ̃ = rank Â(y0), where

Â(y) :=



(
β0 y
y β4

)
, if k = 2,(

Aβ̃ u(y)T

u(y) β2k

)
=

 Aβ̂ wT uT

w β2k−4 y
u y β2k

 and u(y) :=
(
u y

)
, otherwise.



THE TRUNCATED HAMBURGER MOMENT PROBLEMS WITH GAPS IN THE INDEX SET 15

Claim 2. Let k > 2. Assume Aβ̂ ≻ 0 or rankAβ̂ = rankAβ̃ . Then Â(y0) ⪰ 0 if and only if
(3.5)

Â(y) is ppsd and y0 ∈
[
uA+

β̂
wT−

√
(Aβ̃/Aβ̂)(Ã/Aβ̂), uA

+

β̂
wT+

√
(Aβ̃/Aβ̂)(Ã/Aβ̂)

]
=: [y−, y+].

Moreover,

(3.6) rank Â(y0) =

{
max

{
rankAβ̃, rank Ã

}
, for y0 ∈ {y−, y+},

max
{
rankAβ̃, rank Ã

}
+ 1, for y0 ∈ (y−, y+).

The assumption (2.9) of Lemma 2.11 used for Â(y), Aβ̂, Aβ̃, Ã as A(x), A1, A2, A3, respectively,
are by the assumption of Claim 2 satisfied and hence Claim 2 follows by Lemma 2.11.

Claim 3. Let k > 2. Assume Aβ̂ ≻ 0 or rankAβ̂ = rankAβ̃ . Then Aβ(x,y0) is ppsd for some
y0 ∈ R if and only if Aβ(x,y) is ppsd, sT ∈ C(Aβ̃) and (3.3) holds.

Note that Aβ(x,y0) is ppsd if and only if A(β̃,β2k−3,y0)
⪰ 0 and Â(y0) ⪰ 0. By Theorem 2.2,

A(β̃,β2k−3,y0)
⪰ 0 if and only if

(3.7) Aβ̃ ⪰ 0, sT ∈ C(Aβ̃) and A(β̃,β2k−3,y0)
/Aβ̃ = y0 − sA+

β̃
sT ≥ 0,

By Claim 2, Â(y0) is psd if and only if (3.5) holds. Now note that the first condition of (3.5) (which
also includes the first condition of (3.7)) is equivalent to Aβ(x,y) being ppsd and that y0 satisfying
the third condition of (3.7) and the second condition of (3.5) exists if and only if (3.3) holds. This
proves Claim 3.

First we prove the implication (1) ⇒ (3). By Claim 1, in particular Aβ(x,y0) is ppsd.
If k = 2, then A(β̃,β1,y)

⪰ 0, which implies that y0 ≥ β2
1

β0
, and Â(y0) ⪰ 0, which implies that

y0 ≤
√
β0β4. Hence, β2

1

β0
≤

√
β0β4, which is (3a). Since Aβ(x,y0) being ppsd implies that also Aβ(x,y)

is ppsd, this proves the implication (1) ⇒ (3) in this case.
It remains to prove (1) ⇒ (3) in the case k > 2. We separate two cases according to the

invertibility of Aβ̃ .
• Aβ̃ ≻ 0: Using Claim 3, Aβ(x,y) is ppsd, (3.3) and (3(b)i) holds, which proves the implica-

tion (1) ⇒ (3) in this case.
• Aβ̃ ̸≻ 0: It follows that A(β̃,β2k−3,y0)

̸≻ 0 and hence (2b) of Claim 1 must hold. Corollary

2.7 used for (β̃, β2k−3, y0) as β implies that

(3.8) rankAβ̂ = rankAβ̃.

By Proposition 2.13, (β̃, β2k−3, y0) also admits a measure and Corollary 2.10 used for
(β̃, β2k−3, y0) as β implies that

(3.9) rankAβ̃ = rankA(β̃,β2k−3,y0)
.

(2b) of Claim 1 together with (3.8) implies that all the inequalities in the estimate rankAβ̂ ≤
rank Ã ≤ rank Â(y0) are equalities and in particular,

(3.10) rankAβ̂ = rank Ã.
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(3.8), (3.9), (3.10) and Claim 3 imply that Aβ(x,y) is ppsd, (3.3) and (3(b)ii) holds, which
proves the implication (1) ⇒ (3) in this case.

Second we prove the implication (3) ⇒ (1). We separate two cases according to k.
If k = 2, then we are in the case (3a). For y0 =

√
β0β4, β(x, y0) is ppsd and satisfies (2a) of

Claim 1 if β2
1

β0
<

√
β0β4 and (2b) if β2

1

β0
=

√
β0β4. In both cases Claim 1 implies the implication

(3) ⇒ (1) is true in this case.
Else k > 2. If (3(b)i) holds, then in particular Aβ̂ ≻ 0. Otherwise (3(b)ii) holds and in particular

rankAβ̂ = rankAβ̃ . In both cases the assumptions of Claims 2 and 3 are fulfilled. By Claim 3, the
matrix Aβ(x,y+) is ppsd and by (3.6) of Claim 2, rank Â(y+) = max{rankAβ̃, rank Ã}. If (3(b)i)
holds, then rank Â(y+) = rankAβ̃ = k − 1. Else (3(b)ii) holds and rank Â(y+) = rankAβ̃ =

rank Ã. In both cases, β(x, y+) satisfies (1) and (2b) of Claim 1 above and thus the measure exists
which proves the implication (3) ⇒ (1).

The implication (2) ⇒ (1) is trivial.
Now we prove the implication (1) ⇒ (2). If β(x, y0) has a representing measure, then:

• By Theorem 3.1 it has a (rank(β̃, β2k−3, y0))-atomic representing measure.
• By Proposition 2.13, β̃ and (β̃, β2k−3, y0) also have measures and hence by Theorem 2.9,
rankAβ̃ = rank β̃ and rank(β̃, β2k−3, y0) = rankA(β̃,β2k−3,y0)

.

Since rankA(β̃,β2k−3,y0)
∈ {rankAβ̃, rankAβ̃ + 1}, the implication (1) ⇒ (2) is true.

It remains to prove the moreover part. We separate two cases according to k.
• If k = 2, then rankAβ̃ = rank(β0) = 1. So 1-atomic measure exists if and only if
rankA(β0,β1,y0) = rank Â(y0) = 1 for some y0. But from the form of A(β0,β1,y) and Â(y)

this is possible only if y0 =
β2
1

β0
=

√
β0β4. Otherwise there is a 2-atomic measure.

• Else k > 2. By Proposition 2.3 and (3.7) above, rankA(β̃,β2k−3,y0)
= rankAβ̃ if and only

if y0 = sA+

β̃
sT . In the proof of the implication (3) ⇒ (1) we see that rankAβ̃ ≥ rank Ã.

Using this in (3.6) above, it follows that sA+

β̃
sT must be equal to y− or y+, which is exactly

(3.4).
This concludes the proof of the theorem. □

The following corollary is a consequence of Theorem 3.5 and solves the bivariate TMP for the
curve y = x4 where also β3,2k−2 is given.

Corollary 3.6. Let β = (βi,j)i,j∈Z2
+,i+j≤2k be a 2-dimensional real multisequence of degree 2k and

let β3,2k−2 be also given. Suppose M(k) is positive semidefinite and recursively generated. Let

u(i) = (β0,i, β1,i, β2,i, β3,i) for i = 0, . . . , 2k − 1,

β̂ := (u(0), . . . , u(2k−3), β0,2k−2, β1,2k−2, β2,2k−2) and β̃ := (β̂, β3,2k−2, β0,2k−1)

be subsequences of β,

u :=
(
u(k) · · · u(2k−1) β1,2k−1

)
, s :=

(
β3,k−1 u(k) · · · u(2k−1) β1,2k−1

)
,

w :=
(
β2,k−1 β3,k−1 u(k) · · · u(2k−2) β1,2k−2 β2,2k−2 β3,2k−2

)
vectors and

Ã :=

(
Aβ̂ uT

u β0,2k

)
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a matrix. Then β has a representing measure supported on y = x4 if and only if

sA+

β̃
sT ≤ uA+

β̂
wT +

√
(Aβ̃/Aβ̂)(Ã/Aβ̂).

one of the following statements hold:
(1) One of the following holds:

• If k ≥ 4, then Y = X4 is a column relation of M(k).
• If k = 3, then the equalities β0,1 = β4,0, β1,1 = β5,0, β2,1 = β6,0 hold.
• If k = 2, then the equality β0,1 = β4,0 holds.
• k = 1.

(2) One of the following conditions holds:
(a) Aβ̃ ≻ 0.

(b) Aβ̃ ⪰ 0 and rankAβ̂ = rankAβ̃ = rank
(
Aβ̃ sT

)
= rank Ã.

Moreover, if the representing measure exists, then there is a (rank β̃)-atomic measure if

sA+

β̃
sT ∈

{
uA+

β̂
wT −

√
(Aβ̃/Aβ̂)(Ã/Aβ̂), uA

+

β̂
wT +

√
(Aβ̃/Aβ̂)(Ã/Aβ̂)

}
.

and (rank β̃ + 1)-atomic otherwise.

Proof. For m ∈ {0, 1 . . . , 8k − 3, 8k} we define the numbers β̃m by the following rule

β̃m := βm (mod 4),⌊m
4
⌋.

Claim 1. Every number β̃m is well-defined.

We will prove that m (mod 4) + ⌊m
4
⌋ ≤ 2k if m ̸= 8k − 5, while for m = 8k − 5 we have

β̃8k−5 = β3,2k−2. We separate three cases according to m.
• m < 8k − 8: ⌊m

4
⌋+m (mod 4) ≤ (2k − 3) + 3 = 2k.

• m ∈ {8k − 8, 8k − 7, 8k − 6}: ⌊m
4
⌋+m (mod 4) ≤ (2k − 2) + 2 = 2k.

• m ∈ {8k − 4, 8k − 3}: ⌊m
4
⌋+m (mod 4) ≤ (2k − 1) + 1 = 2k.

• m = 8k: ⌊m
4
⌋+m (mod 3) = 2k + 0 = 2k.

Claim 2. Let t ∈ N. The atoms (x1, x
4
1), . . . (xt, x

4
t ) with densities λ1, . . . , λt are the (y − x4)-

representing measure for β and β3,2k−2 if and only if the atoms x1, . . . , xt with densities λ1, . . . , λt

are the R-representing measure for β̃(x, y) = (β̃0, . . . , β̃2k−2, y, x, β̃2k).

The if part follows from the following calculation:

β̃m = βm (mod 4),⌊m
4
⌋ =

t∑
ℓ=1

λℓx
m (mod 4)
ℓ x

4⌊m
4
⌋

ℓ =
t∑

ℓ=1

λℓx
m (mod 4)+4⌊m

4
⌋

ℓ =
t∑

ℓ=1

λℓx
m
ℓ ,

where m = 0, . . . , 8k − 3, 8k.
The only if part follows from the following calculation for i+ j ≤ 2k:

βi,j = βi−4,j+1 = · · · = βi (mod 4),j+⌊ i
4
⌋

= β̃i (mod 4)+4(j+⌊ i
4
⌋) =

t∑
ℓ=1

λℓx
i (mod 4)+4(j+⌊ i

4
⌋)

ℓ =
t∑

ℓ=1

λℓx
i (mod 4)+4⌊ i

4
⌋

ℓ x4j
ℓ =

t∑
ℓ=1

λℓx
i
ℓ(x

4
ℓ)

j,
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where the equalities in the first line follow by M(k) being rg, and

β3,2k−2 = β̃8k−5 =
t∑

ℓ=1

λℓx
8k−5
ℓ =

t∑
ℓ=1

λℓx
3
ℓ(x

4
ℓ)

2k−2.

Using Claim 2 and a theorem of Bayer and Teichmann [BT06], implying that if a finite sequence
has a K-representing measure, then it has a finitely atomic K-representing measure, the statement
of the Corollary follows by Theorem 3.5. □

4. TRUNCATED HAMBURGER MOMENT PROBLEM OF DEGREE 2k WITH GAP(S) (β1), (β1, β2)

In this section we solve the THMP of degree 2k with gaps (β1) (see Theorem 4.1) and (β1, β2)
(see Theorem 4.5). As a corollary of Theorem 4.1 we obtain the solution to the TMP for the curve
y2 = x3 (see Corollary 4.4), while as a corollary of Theorem 4.5 we get the solution to the TMP
for the curve y3 = x4 and an additional moment β 5

3
,0 given (see Corollary 4.7).

4.1. Truncated Hamburger moment problem of degree 2k with gaps (β1).

Theorem 4.1. Let k ∈ N, k > 1, and

β(x) := (β0, x, β2, . . . , β2k)

be a sequence where each βi is a real number, β0 > 0 and x is a variable. Let

β̂ := (β2, . . . , β2k−2), β̃ := (β2, . . . , β2k), β := (β4, . . . , β2k−2) and

(

β := (β4, . . . , β2k)

be subsequences of β(x),

v :=
(
β2 · · · βk−1

)
and u :=

(
β2 . . . βk

)
vectors, and

Ã :=

(
β0 v
vT Aβ

)
and Â :=

(
β0 u
uT A (

β

)
matrices. Then the following statements are equivalent:

(1) There exists x0 ∈ R and a representing measure for β(x0) supported on K = R.
(2) There exists x0 ∈ R and a (rank β̃) or a (rank β̃ + 1)-atomic representing measure for

β(x0).
(3) Aβ(x) is partially positive semidefinite and one of the following conditions is true:

(a) (i) k = 2 and Aβ̃ ≻ 0.

(ii) k > 2, Aβ̃ ≻ 0 and Ã ≻ 0.
(b) rankAβ̂ = rankAβ̃ = rankAβ̆.

Moreover, if the representing measure exists, then there does not exist a (rank β̃)-atomic measure
if and only if (3b) holds and rankAβ̂ < rank Â.

Proof. First we prove the implication (1) ⇒ (3). By Theorem 2.9, Aβ(x0) ⪰ 0 and rankAβ(x0) =
rank β(x0). The condition Aβ(x0) ⪰ 0 implies that Aβ(x) is ppsd. We separate two cases according
to the invertibility of Aβ̃ .
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• Aβ̃ ≻ 0: Since Aβ̃ is a principal submatrix of Aβ(x0), we conclude that rankAβ(x0) ≥
rankAβ̃ = k, and hence Aβ(x0) is either invertible or rankAβ(x0) is singular and by Corol-
lary 2.10 used for β(x0) as β, rankAβ(x0) = rankA(β0,x0,β̂)

. In both cases

A(β0,x0,β̂)
=



(
β0 x0

x0 β2

)
, if k = 2, β0 x0 v

x0 β2 v1
vT vT1 Aβ

 where v1 =
(
β3 · · · βk

)
, if k > 2,

,

is invertible. If k > 2, Ã is a principal submatrix of A(β0,x0,β̂)
and it follows that Ã ≻ 0.

Hence, (3a) holds. Together with Aβ(x) being ppsd, proves the implication (1) ⇒ (3) in this
case.

• Aβ̃ is singular: Since β̃ is a subsequence of β(x0) of the form from Proposition 2.13 with

i = 1, j = k, it admits a measure. By Corollary 2.10 used for β̃ as β, it follows that

(4.1) rankAβ̃ = rankAβ̂.

By Corollary 2.8 used for β(x0) as β, it follows that

(4.2) rankAβ̃ = rankAβ̆.

Hence, (4.1) and (4.2) imply that (3b) holds. Together with Aβ(x) being ppsd, proves the
implication (1) ⇒ (3) in this case.

Second we prove the implication (3) ⇒ (2). Let P1 : Rk+1 → Rk+1 be the following permutation
matrix

P1 =

 0 0 1
0 1 0

Ik−1 0 0

 ,

where 0 stands for the row of k − 2 zeros and Ik−1 is the identity matrix of size k − 1. Then
P T
1 Aβ(x)P1 is of the form

P T
1 Aβ(x)P1 =

 A (

β
wT uT

w β2 x
u x β0

 ,

where w =
(
β3 · · · βk+1

)
is a vector.

Claim. Aβ(x0) is psd if and only if

x0 ∈
[
uA+

β̆
wT −

√
(Aβ̃/A (

β
)(Â/A (

β
), uA+

β̆
wT +

√
(Aβ̃/A (

β
)(Â/A (

β
)

]
=: [x−, x+].

Moreover,

(4.3) rankAβ(x0) :=

{
max{rankAβ̃, rank Â}, if x0 ∈ {x−, x+},

max{rankAβ̃, rank Â}+ 1, if x0 ∈ (x−, x+).

Denoting the matrices

A :=

(
Aβ̆ wT

w β2

)
and B :=

(
Aβ̆ uT

u β0

)
,
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and the permutation matrix P2 : Rk → Rk by

P2 =

(
0 1

Ik−1 0

)
,

where 0 stands for the row of k − 1 zeroes and Ik−1 the identity matrix of size k − 1, we have that

A = P T
2 Aβ̃P2 and B = P T

2 ÂP2.

In particular,

(4.4) rankA = rankAβ̃ and rankB = rank Â.

If (3a) holds, then Aβ̃ ≻ 0 implies that Aβ̆ ≻ 0. If (3b) holds, then in particular rankAβ̆ =

rankAβ̃ = rankA. Hence, the assumption (2.9) of Lemma 2.11 used for P T
1 Aβ(x)P1, Aβ̆,A,B

as A(x), A1, A2, A3, respectively, is satisfied and using also A/Aβ̆ = Aβ̃/Aβ̆ and B/Aβ̆ = Â/Aβ̆ ,
Claim follows.

First assume that (3a) holds. We separate two cases according to the inverbility of Â.
• Â ≻ 0: From Aβ̃ ≻ 0 and Â ≻ 0 it follows, using Proposition 2.3, that Aβ̃/A (

β
> 0 and

Â/A (

β
> 0. Hence by the definition of x±, we have x− < x+ and by Claim, Aβ(x0) ≻ 0 for

x0 ∈ (x−, x+). By Theorem 2.9, (rank β(x0)) = (rank β̃+1)-atomic representing measure
for β(x0) exists, which proves the implication (3) ⇒ (2) in this case.

• Â is singular: From Aβ̃ ≻ 0 it follows that Aβ̆ ≻ 0. Since Â is singular, Proposition 2.3
implies that Â/A (

β
= 0, and hence by the definition of x±, we have x− = x+. By Claim,

Aβ(x±) ⪰ 0 with rankAβ(x±) = rankAβ̃ . We separate two cases according to k.

– k = 2: Since Â =

(
β0 β2

β2 β4

)
and β0 > 0, it follows that the second (also the last)

column of Â is in the span of the first (also the others) one.

– k > 2: By assumptions Ã ≻ 0 and Â =

(
Ã uT

1

u1 β2k

)
being singular, where the u1 is

equal to u1 =
(
βk βk+2 · · · β2k−1

)
, it follows that the last column of Â is in the

span of the others.
By Lemma 2.12, the last column of Aβ(x±) is also in the span of the others and by Corollary
2.10, we have that (rank β(x±)) = (rank β̃)-atomic representing measure for β(x±) exists,
which proves the implication (3) ⇒ (2) in this case.

Otherwise (3b) holds. Proposition 2.3 implies that Aβ̃/Aβ̂ = 0, and hence by the definition of
x±, we have x− = x+. By Claim, Aβ(x±) ⪰ 0. The assumption rankAβ̃ = rankAβ̂ , also implies

that the last column of Aβ̃ =

(
Aβ̂ uT

2

u2 β2k

)
, where u2 =

(
βk · · · β2k−1

)
, is in the span of the

others. By Lemma 2.12, the last column of Aβ(x±) is in the span of the others. Hence, by Corollary
2.10, (rank β(x±))-atomic measure for β(x±) exists. Since β̃ is a subsequence of β(x0) of the
form from Proposition 2.13 with i = 1, j = k, it admits a measure and hence Theorem 2.9 implies
that rankAβ̃ = rank β̃. From (4.3), it follows that:

• If rank Â ≤ rankAβ̃ , then rank β(x±) = rankAβ̃ = rank β̃.

• Else rank Â = rankAβ̃ + 1 and rank β(x±) = rank Â = rank β̃ + 1.
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This proves the implication (3) ⇒ (2) in this case.
The implication (2) ⇒ (1) is trivial.
It remains to prove the moreover part. Observe that in the proof of the implication (3) ⇒ (2),

(rank β̃)-atomic measure might not exist if (3a) holds with Â ≻ 0 and does not exist if (3b) holds
with rankAβ̃ < rank Â. We will prove that in the first case there always exists a (rank β̃)-atomic
measure. Assume that Aβ̃ ≻ 0 and Â ≻ 0. We will prove that one of Aβ(x±) or Aβ(x+) satisfies

(4.5) rankAβ(x±) = rankAβ(x±)(k − 1),

and hence by Corollary 2.10, a (rank β(x±)) = (rank β̃)-atomic measure exists. Using Proposition
2.4 with for Aβ(x), Aβ̃, Aβ̂ as K,N,C, respectively, and denoting u := Aβ̃/Aβ̂ , we have that

f(x) := Aβ(x)/Aβ̃ =
(
β0 − e(x)A−1

β̂
e(x)T

)
− 1

u

(
βk − e(x)A−1

β̂
zT
)2

=: g(x)− 1

u
h(x)2,

where e(x) :=
(
x β2 · · · βk−1

)
and z :=

(
βk+1 · · · β2k−1

)
. From the proof of the

implication (3) ⇒ (2), we know that x− < x+ and

(4.6) f(x−) = f(x+) = 0.

Note that g(x) = A(β0,x,β̂)
/Aβ̂ . If

(4.7) g(x−) = g(x+) = 0,

then h(x−) = h(x+) = 0. But h(x) is a linear function in x, so this is possible only if h(x) = 0 for
every x ∈ R. This is possible only if

(4.8) A−1

β̂
zT =

(
0 b2 · · · bk−1

)T for some b2, . . . , bk ∈ R and βk =
k−1∑
i=2

βibi.

We write (Aβ(x))|S1,S2 for the restriction of Aβ(x) to rows from S1 and columns from S2. Since
Aβ(x) is a Hankel matrix, we have

(Aβ(x)){1,...,Xk−1},{X,...,Xk} = (Aβ(x)){X,...,Xk},{1,...,Xk−1},

which is equal to (
e(x) βk

Aβ̂ zT

)
=

(
e(x)T Aβ̂

βk z

)
.

(4.8) implies that the last column of (Aβ(x)){1,...,Xk−1},{X,...,Xk} is in the span of the columns 2, . . . , k−
1. From (Aβ(x)){X,...,Xk},{1,...,Xk−1} this in particular implies that the last column of Aβ̂ is in the span
of the others and Aβ̂ is singular, which is a contradiction with the assumption Aβ̃ ≻ 0. Therefore
(4.7) cannot be true and one of g(x−) and g(x+) is positive. By Proposition 2.3, this means that
A(β0,x+,β̂) ≻ 0 or A(β0,x−,β̂) ≻ 0 and hence rankA(β0,x−,β̂) = k or rankA(β0,x+,β̂) = k. By
Proposition 2.3 and (4.6), rankAβ(x−) = rankAβ(x+) = rankAβ̃ = k. Therefore rankAβ(x−) =

rankA(β0,x−,β̂) or rankAβ(x+) = rankA(β0,x+,β̂). Noticing that A(β0,x±,β̂) = Aβ(x±)(k − 1), it
follows that one of x± satisfies (4.5). This concludes the proof of the moreover part. □

Remark 4.2. For k = 1, the THMP with gaps (β1) coincides with the THMP with gaps (β2k−1) and
hence the case k = 1 is already covered by Theorem 3.1.
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Example 4.3. For k = 9, let

β(1)(x) =
(
1, x, 11, 0,

979

5
, 0, 4103, 0,

462979

5
, 0, 2174855, 0,

261453379

5
, 0, 1275350087, 0,

156925970179

5
,

0, 776760884999
)
,

β(2)(x) =
(
1, x,

15

2
, 0,

177

2
, 0,

2445

2
, 0,

36177

2
, 0,

554325

2
, 0,

8656377

2
, 0,

136617405

2
, 0,

2169039777

2
, 0,

138214318741

8

)
,

β(3)(x) =
(
1, x,

15

2
, 0,

177

2
, 0,

2445

2
, 0,

36177

2
, 0,

554325

2
, 0,

8656377

2
, 0,

136617405

2
, 0,

2169039777

2
, 0,

34553579685

2

)
,

β(4)(x) =
1

9
(9, x, 133,−235, 3157,−7987, 86893,−281995, 2598757,−10096867, 82154653,−362972155,

2699153557,−13062280147, 91112865613,−470199300715, 3134918735557,−16926788453827,

109327177835773),

Let Ã(i) and Â(i), i = 1, 2, 3, denote Ã, Â, respectively, from Theorem 4.1 corresponding to β(i)(x).
Using Mathematica [Wol] one can check that:

• Â(1) ≻ 0, while for i = 2, 3, 4 it holds that Â(i) ⪰ 0 and dim
(
ker Â(i)

)
= 1.

• For i = 1, 4 we have Ã(i) ≻ 0 for i = 1, 4, while for i = 2, 3 it holds that Ã(i) ⪰ 0 and
dim

(
ker Ã(i)

)
= 1.

• Aβ̃(i) ≻ 0 for i = 1, 2, 4, Aβ̃(3) ⪰ 0 and dim
(
kerAβ̃(3)

)
= 1.

• Aβ̂(3) ≻ 0 and Aβ̆(3) ≻ 0.
Therefore:

• Aβ(1)(x) is ppsd and (3a) of Theorem 4.1 is true, implying that a 9-atomic measure for
β(1)(x) exists.

• β(2)(x) does not satisfy (3a) neither (3b) of Theorem 4.1, implying there is no representing
measure for β(2)(x).

• Aβ(3)(x) is ppsd and β̃(3) satisfies (3b) of Theorem 4.1 together with rankAβ̂(3) = rank Â(3),
implying that an 8-atomic measure for β(3)(x) exists.

• Aβ(4)(x) is ppsd and β̃(4) satisfies (3a) of Theorem 4.1, implying that a 9-atomic measure for
β(4)(x) exists.

The following corollary is a consequence of Theorem 4.1 and gives the solution of the bivariate
TMP for the curve y2 = x3.

Corollary 4.4. Let β = (βi,j)i,j∈Z2
+,i+j≤2k be a 2-dimensional real multisequence of degree 2k.

Suppose M(k) is positive semidefinite and recursively generated. Let

u(i) := (β1,i, β0,i+1, β2,i) for i = 0, . . . , 2k − 2,

β̂ := (u(0), . . . , u(2k−2)), β̃ := (β̂, β1,2k−1, β0,2k), β := (β2,0, u
(1), . . . , u(2k−2))

and

(

β := (β, β1,2k−1, β0,2k)
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be subsequences of β,

v :=
(
u(0) · · · u(k−2) β1,k−1

)
a vector and

Ã :=

(
β0 v
vT Aβ

)
a matrix. Then β has a representing measure supported on y2 = x3 if and only if the following
statements hold:

(1) One of the following holds:
• If k ≥ 3, then Y 2 = X3 is a column relation of M(k).
• If k = 2, then the equalities β0,2 = β3,0, β1,2 = β4,0, β0,3 = β3,1 hold.
• k = 1.

(2) One of the following holds:
(a) Aβ̃ ≻ 0 and Ã ≻ 0.
(b) Aβ̃ ⪰ 0 and rankAβ̂ = rankAβ̃ = rankAβ̆.

Moreover, if the representing measure exists, then there exists a (rank β̃)-atomic measure if (2a) is
true or (2b) holds with rankAβ̂ = rankM(k). Otherwise there is a (rank β̃ + 1)-atomic measure.

Proof. For m ∈ {0, 2 . . . , 6k} we define the numbers β̃m by the following rule

β̃m :=


β0,m

3
, if m (mod 3) = 0,

β2,⌊m
3
⌋−1, if m (mod 3) = 1,

β1,⌊m
3
⌋, if m (mod 3) = 2.

Claim 1. Every number β̃m is well-defined.

We have to prove that i + j ≤ 2k, where i, j are indices of βi,j used in the definition of β̃m. We
separate three cases according to m:

• m (mod 3) = 0: m
3
≤ 2k.

• m (mod 3) = 1: 2 + (⌊m
3
⌋ − 1) ≤ 2 + (2k − 2) = 2k.

• m (mod 3) = 2: 1 + ⌊m
3
⌋ ≤ 1 + (2k − 1) = 2k.

Claim 2. Let t ∈ N. The atoms (x2
1, x

3
1), . . . (x

2
t , x

3
t ) with densities λ1, . . . , λt are the (y2 − x3)-

representing measure for β if and only if the atoms x1, . . . , xt with densities λ1, . . . , λt are the
R-representing measure for β̃(x) = (β̃0, x, β̃2, . . . , β̃2k).

The if part follows from the following calculation:

β̃m =


β0,m

3
, if m (mod 3) = 0,

β2,⌊m
3
⌋−1, if m (mod 3) = 1,

β1,⌊m
3
⌋, if m (mod 3) = 2,

=


∑t

ℓ=1 λℓ(x
3
ℓ)

m
3 , if m (mod 3) = 0,∑t

ℓ=1 λℓ(x
2
ℓ)

2(x3
ℓ)

⌊m
3
⌋−1, if m (mod 3) = 1,∑t

ℓ=1 λℓx
2
ℓ(x

3
ℓ)

⌊m
3
⌋, if m (mod 3) = 2,

=
t∑

ℓ=1

λℓx
m
ℓ ,

where m = 0, 2, . . . , 6k.
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The only if part follows from the following calculation:

βi,j = βi−3,j+2 = · · · = βi (mod 3),j+2⌊ i
3
⌋ = β̃2(i (mod 3))+3(j+2⌊ i

3
⌋)

=
t∑

ℓ=1

λℓx
2(i (mod 3))+3(j+2⌊ i

3
⌋)

ℓ =
t∑

ℓ=1

λℓx
2(i (mod 3)+3⌊ i

3
⌋)

ℓ x3j
ℓ =

t∑
ℓ=1

λℓ(x
2
ℓ)

i(x3
ℓ)

j,

where the first three equalities in the first line follow by M(k) being rg.

Using Claim 2 and a theorem of Bayer and Teichmann [BT06], implying that if a finite sequence
has a K-representing measure, then it has a finitely atomic K-representing measure, the statement
of the Corollary follows by Theorem 4.1. □

4.2. Truncated Hamburger moment problem of degree 2k with gaps (β1, β2).

Theorem 4.5. Let k ∈ N, k > 2, and

β(x, y) := (β0, x, y, β3, . . . , β2k)

be a sequence, where each βi is a real number, β0 > 0 and x, y are variables. Let

β̃ := (β4, . . . , β2k−2), β := (β4, . . . , β2k), β̆ := (β6, . . . , β2k−2), β := (β6, . . . , β2k)

be subseqeunces of β(x, y),

v :=
(
β3 . . . βk−1

)
, u :=

(
β3 · · · βk

)
, s :=

(
β3 · · · βk+1

)
,

w :=
(
β5 · · · βk+2

)
,

vectors, and

A :=

(
β0 v
vT Aβ̆

)
and Ã :=

(
β0 u
uT A

β

)
matrices. Then the following statements are equivalent:

(1) There exist x0, y0 ∈ R and a representing measure for β(x0, y0) supported on K = R.
(2) There exist x0, y0 ∈ R and a (rank β) or (rank β + 1)-atomic representing measure for

β(x0, y0).
(3) Aβ(x,y) is partially positive semidefinite,

(4.9) sA+

β
sT ≤ uA+

β
wT +

√
(Aβ/Aβ

)(Ã/A
β
)

and one of the following statements is true:
(a) Aβ ≻ 0 and one of the following holds:

(i) (A) k = 3 and the inequality in (4.9) is strict..
(B) k > 3, A ≻ 0 and the inequality in (4.9) is strict.

(ii) The following inequalities holds:

uA+

β̃
uT < sA+

β
sT and uA+

β
wT −

√
(Aβ/Aβ

)(Ã/A
β
) ≤ sA+

β
sT .

(b) rankAβ̃ = rankAβ = rank
(
sT Aβ

)
.

Moreover, if the representing measure exists, then there is a (rank β)-atomic if and only if (3(a)ii)
or (3b) holds.
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Proof. Note that β(x, y) admits a measure if and only if there exist y0 ∈ R such that β(x, y0) admits
a measure. Theorem 4.1 implies the following claim holds.

Claim 1. β(x, y0) admits a measure if and only if the following conditions hold:
(1) Aβ(x,y0) is ppsd.
(2) Denoting

β̃(y0) := (y0, β3, . . . , β2k−2) and β(y0) := (y0, β3, . . . , β2k),

one of the following is true:

(a) Aβ(y0)
=

(
y0 s
sT Aβ

)
≻ 0 and A(y0) ≻ 0, where

A(y) :=



 β0 y β3

y
β3

Aβ̃

 , if k = 3,

(
β0 v(y)

v(y)T Aβ̃

)
=

 β0 y v
y β4 w1

vT wT
1 Aβ̆

 , v(y)T =

(
y
v

)
and wT

1 =

 β5

...
βk+2

 , otherwise.

(b) rankAβ̃(y0)
= rankAβ(y0)

= rankAβ.

We denote by

Ã(y) :=

(
β0 u(y)

u(y)T Aβ

)
where u(y) =

(
y u

)
.

Claim 2. Assume A
β
≻ 0 or rankA

β
= rankAβ. Then Ã(y0) ⪰ 0 if and only if

(4.10)

Ã(y) is ppsd and y0 ∈
[
uA+

β
wT−

√
(Aβ/Aβ

)(Ã/A
β
), uA+

β
wT+

√
(Aβ/Aβ

)(Ã/A
β
)
]
=: [y−, y+].

Moreover,

(4.11) rank Ã(y0) =

{
max{rankAβ, rank Ã}, y ∈ {y−, y+},

max{rankAβ, rank Ã}+ 1, y ∈ (y−, y+).

Let P2 be the permutation matrix as in the proof of Theorem 4.1. We have that P T
2 Ã(y)P2 is of

the form

(4.12) P T
2 Ã(y)P2 =

 A
β

wT uT

w β4 y
u y β0

 ,

and denoting the matrices

A :=

(
A

β
wT

w β4

)
and B :=

(
A

β
uT

u β0

)
,

and the permuation matrix P3 : Rk−1 → Rk−1 by

P3 =

(
0 1

Ik−2 0

)
,



26 ALJAŽ ZALAR

where 0 stands for the row of k− 2 zeros and Ik−2 is the identity matrix of size k− 2, we have that

(4.13) A = P T
3 AβP3 and B = P T

3 ÃP3.

By the assumptions in Claim 2 and (4.13), A
β
≻ 0 or rankA

β
= rankA. Hence, the assumption

(2.9) of Lemma 2.11 used for P T
2 Ã(y)P2, Aβ

,A,B as A(x), A1, A2, A3, respectively, is satisfied

and using also A/A
β
= Aβ/Aβ

, B/A
β
= Ã/A

β
, Claim 2 follows.

Theorem 2.2 implies the following claim.

Claim 3. It is true that:

(1) Aβ(y0)
⪰ 0 if and only if

(4.14) Aβ ⪰ 0, sT ∈ C(Aβ) and Aβ(y0)
/Aβ = y0 − sA+

β
sT ≥ 0.

(2) Aβ̃(y0)
⪰ 0 if and only if

(4.15) Aβ̃ ⪰ 0, uT ∈ C(Aβ̃) and Aβ̃(y0)
/Aβ̃ = y0 − uA+

β̃
uT ≥ 0.

Claim 4. Assume A
β
≻ 0 or rankA

β
= rankAβ. Then Aβ(x,y0) is ppsd for some y0 ∈ R if and

only if Aβ(x,y) is ppsd, sT ∈ C(Aβ) and (4.9) holds.

Note that Aβ(x,y0) is ppsd if and only if Aβ(y0)
⪰ 0 and Ã(y0) ⪰ 0. The first condition of (4.10)

(which also includes the first condition of (4.14)) is equivalent to Aβ(x,y) being ppsd. Further on, y0
satisfying the third condition of (4.14) and the second condition of (4.10) exists if and only if (4.9)
holds. This proves Claim 4.

First we prove the implication (1) ⇒ (3). By Claim 1, in particular Aβ(x,y0) (and hence also
Aβ(x,y)) is ppsd. Since β̃(y0) also admits a measure by Proposition 2.13, we either have Aβ̃(y0)

≻ 0
and in particular A

β
≻ 0, or Aβ̃(y0)

is singular and it follows by Corollary 2.8 that A
β
≻ 0 or

rankA
β
= rankAβ.

If (2a) of Claim 1 holds, then in particular Aβ ≻ 0 and if k > 3 also A ≻ 0. Since Aβ(y0) ≻ 0,
it follows using Proposition 2.3 that Aβ(y0)/Aβ > 0 or equivalently y0 > sA

β
+sT . Since by Claim

2, y0 ∈ [y−, y+], this implies that sA
β
+sT < y+ which means that the inequality in (4.9) is strict.

Hence, Aβ(x,y) is ppsd, Aβ ≻ 0 and (3(a)i) holds. This proves the implication (1) ⇒ (3) in this
case.

Assume now that (2b) of Claim 1 holds. There are two cases to consider:

• Aβ ≻ 0: It follows that rankAβ̃(y0)
= rankAβ(y0)

= k − 1, which implies that:
– Aβ̃(y0)

≻ 0 since Aβ̃(y0)
is of size k − 1.

– By Proposition 2.3, y0 = sA+

β
sT since Aβ(y0)

=

(
y0 s
sT Aβ

)
is singular.

– k − 1 ≤ rankAβ(x0,y0) ≤ k for some x0 ∈ R such that Aβ(x0,y0) ⪰ 0, since

Aβ(x0,y0) =

(
β0 u(x0, y0)

u(x0, y0)
T Aβ(y0)

)
where u(x0, y0) =

(
x0 y0 u

)
.
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From Aβ̃(y0)
≻ 0 and y0 = sA+

β
sT , it follows by Proposition 2.3 and (4.15) that uA+

β̃
uT <

sA+

β
sT . Further on, y− ≤ sA+

β
sT since by Claim 2, Ã(y0) ⪰ 0 implies that y0 ∈ [y−, y+].

Hence, Aβ(x,y) is ppsd, Aβ ≻ 0 and (3(a)ii) holds. This proves the implication (1) ⇒ (3) in
this case.

• Aβ ̸≻ 0: By Lemma 2.13, β also admits a measure and hence by Corollary 2.10 used for
β as β, rankAβ̃ = rankAβ . Together with the second condition in (4.14), this implies that
(3b) holds. Since Aβ(x,y) is ppsd and (4.9) holds, this proves the implication (1) ⇒ (3) in
this case.

Second we prove the implication (3) ⇒ (1). If (3a) holds, then Aβ ≻ 0 and in particular A
β
≻ 0.

Else (3b) holds and in particular Aβ is singular. By Claim 3, Aβ(sA+

β
sT ) ⪰ 0 and hence by Corollary

2.8 used for β(sA+

β
sT ) as β we conclude that rankA

β
= rankAβ. Hence the assumption of Claims

2 and 4 is satisfied and Aβ(x,y0) is ppsd for every y0 from the interval [max{y−, sA+

β
sT}, y+]. We

separate cases three cases according to the assumptions:

• Case (3(a)i): We separate two cases according to the invertibility of Ã.
– Ã ≻ 0: Since Aβ ≻ 0 and Ã ≻ 0, it follows that Aβ/Aβ

> 0 and Ã/A
β
> 0. By

the form of y± given in Claim 2, we have that y− < y+. Since by assumption also the
inequality (4.9) is strict, the interval (max{y−, sA+

β
sT}, y+) is not empty and hence

for every y0 ∈ (max{y−, sA+

β
sT}, y+), Aβ(x,y0) satisfies (2a) above by Claims 2 and 3.

This proves the implication (3) ⇒ (1) in this case.
– Ã in singular: First we show that the last column of Ã is in the span of others. We

separate two cases according to k.

∗ k = 3: Since Ã =

(
β0 β3

β3 β6

)
and β0 > 0, it follows that the second (also the

last) column of Ã is a multiple of the first (also it the span of the others).

∗ k > 3: Since A ≻ 0, the last column of Ã =

(
A rT

r β2k

)
is in the span of the

others, where r =
(
βk βk+2 · · · β2k−1

)
.

Since Aβ ≻ 0, it follows that A
β
≻ 0 and Ã/A

β
= 0. By the form of y± given in

Claim 2, we have that y− = y+. By Claim 2, Ã(y+) =
(

A(y+) rT1
r1 β2k

)
⪰ 0, where

r1 =
(
βk · · · β2k−1

)
, and rank Ã(y+) = rankAβ = k − 1. By Lemma 2.12,

the last column of Ã(y+) is in the span of the others and hence A(y+) ≻ 0. Since by
assumption also the inequality (4.9) is strict, Aβ(y+) ≻ 0 by Claim 3. Hence, (2a) of
Claim 1 holds for y0 = y+, which proves the implication (3) ⇒ (1) in this case.

• Case (3(a)ii): β(x, sA+

β
sT ) is ppsd. Since

Aβ(sA+

β
sT ) =

(
Aβ̃(sA+

β
sT ) rT2

r2 ββ2k

)
,
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where r2 =
(
βk+1 · · · β2k−1

)
, is singular, the assumption uA+

β̃
uT < sA+

β
sT and Claim

3 imply that Aβ̃(sA+

β
sT ) ≻ 0, hence rankAβ̃(sA+

β
sT ) = rankAβ(sA+

β
sT ) = rankAβ. Hence,

(2b) of Claim 1 for y0 = sA+

β
sT holds, which proves the implication (3) ⇒ (1) in this case.

• Case (3b): By assumption rankAβ̃ = rankAβ , it follows that the last column of Aβ is
in the span of the others. There exists x0 ∈ R such that Aβ(x0,y+) is psd and by Lemma
2.12, the last column of Aβ(y+) is in the span of the others and hence rankAβ̃(y+) =

rankAβ(y+). Since Aβ(y+) is singular, using Corollary 2.8 with β equal to β(x0, y+),
we get rankAβ(y+) = rankAβ , which in particular implies that y+ = sA+

β
sT . Hence,

rankAβ̃(y+) = rankAβ(y+) = rankAβ , which is (2b) of Claim 1. This proves the implica-
tion (3) ⇒ (1) in this case.

It remains to prove the implication (1) ⇒ (2). By Theorem 4.1, if β(x, y0) has a representing
measure, then there is a (rank β(y0)) or (rank β(y0) + 1)-atomic representing measure. By Corol-
lary 2.8, rank β(y0) = rankAβ(y0)

= rankAβ if Aβ(y0)
is singular and rank β(y0) = rankAβ+1 =

rank β + 1 otherwise.
For the moreover part, note from the previous paragraph that (rank β)-atomic measure exists if

and only if Aβ(y0)
= rankAβ for some y0 such the β(x, y0) admits a measure. The only y0 ∈ R

satisfying rankAβ(y0)
= rankAβ is sA+

β
sT and hence a (rank β)-atomic measure exists if and only

if β(x, sA+

β
sT ) admits a measure. From the proof of the implication (3) ⇒ (1) we see that this is

true in the cases (3(a)ii) and (3b). Finally, if (3(a)i) holds, then we see that:

• If Ã ≻ 0, then we must have y− ≤ sA+

β
sT and uA+

β̃
uT < sA+

β
sT (see the proof of (3(a)ii)),

which means that (3(a)ii) holds.
• If Ã is singular, then sA+

β
sT < y− = y+ and β(x, sA+

β
sT ) does not admit a (rank β)-atomic

measure.
This establishes the proof of the moreover part. □

Remark 4.6. For k = 2, the THMP with gaps (β1, β2) coincides with the THMP with gaps
(β2k−2, β2k−1) and hence the case k = 2 is already covered by Theorem 3.5 .

The following corollary is a consequence of Theorem 4.5 and solves the bivariate TMP for the
curve y3 = x4 where also β 5

3
,0 is given. Here β 5

3
,0 stands for the integral of x

5
3 w.r.t. µ, i.e.,∫

K
x

5
3dµ.

Corollary 4.7. Let β = (βi,j)i,j∈Z2
+,i+j≤2k β be a 2-dimensional real multisequence of degree 2k

and let β 5
3
,0 be also given. Suppose M(k) is positive semidefinite and recursively generated. Let

u(1) = (β0,1, β 5
3
,0, β2,0, β1,2), u(i) = (β0,i, β3,i−2, β2,i−1, β1,i) for i = 2, . . . , 2k − 1,

β̃ := (u(1), . . . , u(2k−2), β0,2k−1, β3,2k−3, β2,2k−2), β := (β̃, β1,2k−1, β0,2k),

β̆ := (β̂, β3,2k−3, β2,2k−2) and β := (β̆, β3,2k−1, β0,2k)

be subsequences of β,

v :=
(
β1,0 u(1) · · · u(k−2) β0,k−1 β3,k−3 β2,k−2 β1,k−1

)
, u :=

(
v β0,k

)
,

s :=
(
u β3,k−2

)
, w :=

(
β 5

3
,0 β2,0 β1,1 u(2) · · · u(k−1) β0,k β3,k−2 β2,k−1

)
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vectors and

A :=

(
β0 v
vT Aβ̆

)
and Ã :=

(
β0 u
uT A

β

)
matrices. Then β has a representing measure supported on y3 = x4 if and only if

(4.16) sA+

β
sT ≤ uA+

β
wT +

√
(Aβ/Aβ

)(Ã/A
β
)

one of the following statements hold:
(1) One of the following holds:

• If k ≥ 4, then Y 3 = X4 is a column relation of M(k).
• If k = 3, then the equalities β0,3 = β4,0, β1,3 = β5,0, β2,3 = β6,0, β0,4 = β4,1,
β0,5 = β4,2.

• If k = 2, then the equality β0,3 = β4,0 holds.
• k = 1.

(2) One of the following holds:
(a) Aβ ≻ 0, A ≻ 0 and the inequality in (4.16) is strict.
(b) Aβ ≻ 0 and the following inequalities holds:

uA+

β̃
uT < sA+

β
sT and uA+

β
wT −

√
(Aβ/Aβ

)(Ã/A
β
) ≤ sA+

β
sT .

(c) Aβ ⪰ 0 and rankAβ̃ = rankAβ = rank
(
sT Aβ

)
.

Moreover, if the representing measure exists, then there exists a (rank β)-atomic measure if and
only if (2b) or (2c) holds. Otherwise there is a (rank β + 1)-atomic measure

Proof. For {0, 3, 4, 6, . . . , 8k} we define the numbers β̃m by the following rule

β̃m :=


β0,m

4
, if m (mod 4) = 0,

β3,⌊m
4
⌋−2, if m (mod 4) = 1,

β2,⌊m
4
⌋−1, if m (mod 4) = 2,

β1,⌊m
4
⌋, if m (mod 4) = 3.

Claim 1. Every number β̃m is well-defined.

We have to prove that i + j ≤ 2k, where i, j are indices of βi,j used in the definition of β̃m. We
separate four cases according to m:

• m (mod 4) = 0: m
4
≤ 2k.

• m (mod 4) = 1: ⌊m
4
⌋ − 2 + 3 ≤ (2k − 1) + 1 = 2k.

• m (mod 4) = 2: ⌊m
4
⌋ − 1 + 2 ≤ (2k − 1) + 1 = 2k.

• m (mod 4) = 3: ⌊m
4
⌋+ 1 ≤ (2k − 1) + 1 = 2k.

We also define β̃5 := β 5
3
,0.

Claim 2. Let t ∈ N. The atoms (x3
1, x

4
1), . . . (x

3
t , x

4
t ) with densities λ1, . . . , λt are the (y3 − x4)-

representing measure for β with β 5
3
,0 known if and only if the atoms x1, . . . , xt with densities

λ1, . . . , λt are the R-representing measure for β̃(x, y) = (β̃0, x, y, β̃3, . . . , β̃2k).
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The if part follows from the following calculation:

β̃m =


β0,m

4
, if m (mod 4) = 0,

β3,⌊m
4
⌋−2, if m (mod 4) = 1,

β2,⌊m
4
⌋−1, if m (mod 4) = 2,

β1,⌊m
4
⌋, if m (mod 4) = 3,

=


∑t

ℓ=1 λℓ(x
4
ℓ)

m
4 , if m (mod 4) = 0,∑t

ℓ=1 λℓ(x
3
ℓ)

3(x4
ℓ)

⌊m
4
⌋−2, if m (mod 4) = 1,∑t

ℓ=1 λℓ(x
3
ℓ)

2(x4
ℓ)

⌊m
4
⌋−1, if m (mod 4) = 2,∑t

ℓ=1 λℓx
3
ℓ(x

4
ℓ)

⌊m
4
⌋, if m (mod 4) = 3,

=
t∑

ℓ=1

λℓx
m
ℓ ,

where m = 0, 3, 4, 6, . . . , 8k and

β̃5 = β 5
3
,0 =

t∑
ℓ=1

λℓ(x
3
ℓ)

5
3 =

t∑
ℓ=1

λℓx
5
ℓ .

The only if part follows from the following calculation:

βi,j = βi−4,j+3 = · · · = βi (mod 4),j+3⌊ i
4
⌋ = β̃3(i (mod 4))+4(j+3⌊ i

4
⌋)

=
t∑

ℓ=1

λℓx
3(i (mod 4))+4(j+3⌊ i

4
⌋)

ℓ =
t∑

ℓ=1

λℓx
3(i (mod 4)+4⌊ i

4
⌋)

ℓ x4j
ℓ =

t∑
ℓ=1

λℓ(x
3
ℓ)

i(x4
ℓ)

j,

where the first three equalities in the first line follow by M(k) being rg and

β 5
3
,0 = β̃5 =

t∑
ℓ=1

λℓx
5
ℓ =

t∑
ℓ=1

λℓ(x
3
ℓ)

5
3 .

Using Claim 2 and a theorem of Bayer and Teichmann [BT06], implying that if a finite sequence
has a K-representing measure, then it has a finitely atomic K-representing measure, the statement
of the Corollary follows by Theorem 4.5. □
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