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Abstract. Regular normalized W -valued spectral measures on a com-
pact Hausdorff space X are in one-to-one correspondence with unital
∗-representations ρ : C(X,C) → W , where W stands for a von Neu-
mann algebra. In this paper we show that for every compact Hausdorff
space X and every von Neumann algebras W1,W2 there is a one-to-one
correspondence between unital ∗-representations ρ : C(X,W1) → W2

and special B(W1,W2)-valued measures on X that we call non-negative
spectral measures. Such measures are special cases of non-negative mea-
sures that we introduced in our previous paper [3] in connection with
moment problems for operator polynomials.
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1. Introduction

A ∗-representation of a C∗-algebraA is an algebra homomorphism ρ : A →W
such that ρ(a∗) = ρ(a)∗ for every a ∈ A, where W is a von Neumann algebra.
Our main result is the following theorem on ∗-representations of the form
ρ : C(X,W1) → W2, where X is a compact Hausdorff space and W1, W2

are von Neumann algebras. It is a generalization of the usual situation, i.e.,
∗-representations of the form ρ : C(X,C)→W (see Theorem 2.1 below). By
B(W1,W2) we denote the Banach space of all bounded linear operators from
W1 to W2.

Theorem 1.1. Let X, W1,W2, B(W1,W2) be as above and ρ : C(X,W1) →
W2 a linear map. Let Bor(X) be a Borel σ-algebra on X. The following
statements are equivalent.

1. ρ : C(X,W1)→W2 is a unital ∗-representation.



2 Aljaž Zalar

2. There exists a unique regular normalized non-negative spectral measure
M : Bor(X)→ B(W1,W2) such that

ρ(F ) =

∫
X

F dM

for every F ∈ C(X,W1).

A set function

M : Bor(X)→ B(W1,W2)

is a non-negative spectral measure if for every hermitian projection P ∈ W1

the set function

MP : Bor(X)→W2, MP (∆) := M(∆)(P )

is a spectral measure such that

MP (∆1)MQ(∆2) = MPQ(∆1 ∩∆2)

holds for all hermitian projections P,Q ∈W1 and all sets ∆1,∆2 ∈ Bor(X).

Remark 1.2. 1. Spectral measures and their adaptations are well-studied
in the representation theory (e.g., [2], [6], [7], [10]). We introduced non-
negative measures in [3], where we studied moment problems in the case
of operator polynomials (see Sections 3-5 below for a concise treatment
of non-negative measures). Non-negative spectral measures are their
special cases (see Sections 7, 8).

2. Note that since every von Neumann algebra is a dual of a Banach space,
the existence of a representing measure in Theorem 1.1 is already cov-
ered as a special case of [8, Theorem 3.3.]. The interesting part of The-
orem 1.1 is a concrete description of the representing measure in this
special case and a one-to-one correspondence between ∗-representations
and measures.

The paper is structured in the following way. In Section 2 we introduce
some terminology and state a well-known representation theorem for abelian
C∗-algebras. In Section 3 we present the complex version of the measure
and integration theory from [3] in a more systematic way. Section 4 provides
a characterization of non-negative measures (see Theorem 4.1). In Section
5 we extend the integration theory to a Banach space which in particular
constists of all bounded measurable W1-valued functions and obtain a slight
extension of [3, Proposition 2]; see Theorem 5.2. In Section 6 we show how our
measures are connected with the measures from [8] (see Proposition 6.1). In
Section 7 we introduce non-negative spectral measures. Section 8 provides a
characterization of non-negative spectral measures (see Theorem 8.1), which
is then used in Section 9 to prove Theorem 1.1 (see Theorem 9.1 and Corollary
9.2).
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2. Preliminaries

Let (X,S,H) be a measure space, i.e., X is a set, S a σ-algebra on X and H a
Hilbert space, and IdH denotes the identity operator on H. Spectral measure
F : S → B(H) is a positive operator-valued measure with an additional
property that it maps into the set of hermitian projections; see [1, Definition
2]. F is normalized if F (X) = IdH. F on a locally compact space X, equipped
with a Borel σ-algebra Bor(X), is regular if the complex measures

Fh1,h2
: Bor(X)→ C, Fh1,h2

(∆) := 〈F (∆)h1, h2〉

are regular for all h1, h2 ∈ H. It is a well-known fact that every normal
operator A can be represented as an integral with respect to a unique regular
normalized spectral measure F , i.e., A =

∫
R t dF (t).

A ∗-representation of a C∗-algebra A is an algebra homomorphism ρ :
A →W such that ρ(a∗) = ρ(a)∗ for every a ∈ A, where W is a von Neumann
algebra. Spectral measures are interesting also due to the following result; see
[4, p. 259] and note that B(H) can be replaced by W by [9, Theorem 2.7.4].

Theorem 2.1. Let X be a compact Hausdorff space, W a von Neumann algebra
and ρ : C(X,C)→ W a linear map. Let Bor(X) be a Borel σ-algebra on X.
The following statements are equivalent.

1. ρ : C(X,C)→W is a unital ∗-representation.
2. There exists a unique regular normalized spectral measure F : Bor(X)→
W such that ρ(f) =

∫
X
f dF for every f ∈ C(X,C).

Remark 2.2. 1. The assumptions that X is a compact Hausdorff space
and ρ a linear map of the form ρ : C(X,C) → W can be replaced by
the assumptions that X is a locally compact Hausdorff space and ρ a
linear map of the form ρ : C0(X,C) → W , where C0(X,C) denotes
the space of functions vanishing at infinity. By compactifying X with
one point to X∞ and using Theorem 2.1, ∗-representations of the form
ρ : C0(X,C) → W are in one-to-one correspondence with the regular
normalized spectral measures F : Bor(X∞) → W , where Bor(X∞) is
the Borel σ-algebra on X∞. However, this result is also covered by [8,
Theorem 4.1.].

2. The Baire σ-algebra is a σ-algebra generated by all compact subsets
of X, which are Gδ sets, i.e., a countable intersection of open sets. [1,
Theorem 19] is the same result as Theorem 2.1, where the Borel σ-
algebra is replaced by the Baire σ-algebra. In general one has to be
cautious when working with Baire or Borel σ-algebras. For σ-compact
and metrizable spaces they coincide, but for general topological spaces
this is not the case. The reason for Borel σ-algebra being appropriate
in Theorem 2.1 is the following lemma (see [4, Proposition V.4.1]) and
working with nets instead of sequences.

Lemma 2.3. The ball in C(X,C) is a dense subset of the ball in the
second dual C(X,C)∗∗ equipped with a weak∗-topology.
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3. Non-negative measures

For Banach spaces Y, Z we denote by B(Y,Z) the Banach space of all
bounded linear operators from Y to Z. In the case Y = Z we write B(Y) for
B(Y,Y). For a von Neumann algebra W ⊆ B(H), where H is a Hilbert space,
we denote by Wh, W+ the subsets of W of all hermitian operators and all
positive operators respectively. By a positive operator we mean a hermitian
operator A, which satisfies 〈Ah, h〉 ≥ 0 for every h ∈ H (Here 〈·, ·〉 denotes
the inner product on H.).

Let X be a set, S a σ-algebra on X,H, K Hilbert spaces over F ∈ {R,C}
and W1 ⊆ B(H),W2 ⊆ B(K) von Neumann algebras. For F = C (F = R) a
set function

m : S → B(W1,W2) (m : S → B ((W1)h, (W2)h))

is a non-negative measure if for every A ∈ (W1)+ the set function

mA : S →W2, mA(∆) := m(∆)(A),

is a positive operator-valued measure. A quadruple (X,S,W1,W2) is a mea-
sure space and a pentuple (X,S,W1,W2,m) a space with a measure m.

Remark 3.1. The reason for the distinction in the definition of m between
the real and the complex case lies in the fact, that in the complex case every
element A ∈ W1 can be written as a C-linear combination of two hermitian
elements, i.e., A = A+A∗

2 + iA−A
∗

2i , while this is not true in the real case.
Hence, in the real case for the uniqueness of m it is not sufficient to know
all set functions mA for every A ∈ (W1)+. However, it suffices if m is of the
form m : S → B ((W1)h, (W2)h).

Let (X,S,W1,W2,m) be a space with a measure m. A S-measurable
complex function f : X → C is m-integrable, if it is mA-integrable for every
A ∈ (W1)+. The set of all m-integrable functions is denoted by I(m).

Remark 3.2. Given a positive operator-valued measure E : S → B(K), where
K is a Hilbert space, a S-measurable function f : X → C is called E-
integrable, if there exists a constant Kf ∈ R such that

∫
X
|f | dEk ≤ Kf ‖k‖2

for every k ∈ K. Here Ek denotes a positive measure Ek : S → [0,∞) defined
by Ek(∆) := 〈E(∆)k, k〉 for every ∆ ∈ S. Then in the case F = R the map-
ping (k1, k2) 7→ 1

4

(∫
X
f dEk1+k2 −

∫
X
f dEk1−k2

)
is a bounded bilinear form,

while in the case F = C the mapping (k1, k2) 7→ 1
4

∑3
j=0 i

j
∫
X
f dEk1+ijk2 is

a bounded sesquilinear form.

The set I(m) is a complex vector space and it consists of at least all
bounded S-measurable complex functions. In particular, for S = Bor(X) we
have Cc(X,C) ⊂ I(m).

The following convergence theorem will be frequently used in the sequel.

Theorem 3.3. Let {fn}n∈N be an increasing sequence of positive E-integrable
functions that pointwise converges to a S-measurable function f . If there
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exists B ∈ B(K) such that
∫
X
fn dE � B, then f is E-integrable and

lim
n

∫
X

fn dE =

∫
X

f dE,

where the limit is taken in the strong operator topology.

Proof. Since by the usual convergence theorem we have∫
X

f dEk = lim
n

∫
X

fn dEk ≤ 〈Bk, k〉

for every k ∈ K, f is E-integrable (take Kf = ‖B‖ in Remark 3.2). Then
proceed as in the proof of [1, Theorem 11(iii)]. �

Given A ∈ W1 we write Re(A) := 1
2 (A + A∗) ∈ W1 and Im(A) :=

i
2 (A∗ − A) ∈ W1 for its the real and imaginary part, while for A ∈ (W1)h
we write A+ and A− for its positive and negative part (A+, A− ∈ W by [5,
Proposition 2 on p. 3]).

For each m-integrable function f and each operator A ∈ W1 we define∫
X
f dmA as∫
X

f dmRe(A)+ −
∫
X

f dmRe(A)− + i ·
∫
X

f dmIm(A)+ − i ·
∫
X

f dmIm(A)− .

Let I(m) ⊗F W1 be an algebraic tensor product of I(m) and W1 over F ∈
{R,C}. We define the map

B : I(m)×W1 →W2, B(f,A) =

∫
X

f dmA.

Let I(m)+ be the set of all functions f ∈ I(m), such that f(x) ≥ 0 for every
x ∈ X.

Proposition 3.4. The map B is bilinear.

Proof. It suffices to consider f, g ∈ I(m)+, A,B ∈ (W1)h. Equality B(αf +
βg,A) = αB(f,A) + βB(g,A) easily follows by the definitions. Equality
B(f,A + B) = αB(f,A) + βB(f,B) is equivalent to the equality of C :=∫
X
f dm(A+B)+ +

∫
X
f dmA− +

∫
X
f dmB− and D :=

∫
X
f dm(A+B)− +∫

X
f dmA+

+
∫
X
f dmB+

. There is an increasing sequence {sk}k∈N of simple
functions sk ∈ I(m)+ such that limk sk = f . By Theorem 3.3,

C = lim
k

∫
X

sk dm(A+B)+ +

∫
X

sk dmA− +

∫
X

sk dmB−

= lim
k

∫
X

sk dm(A+B)++A−+B− =

∫
X

f dm(A+B)++A−+B− .

Similarly D =
∫
X
f dm(A+B)−+A++B+

. By (A + B)+ + A− + B− = (A +
B)− +A+ +B+, it follows C = D, which concludes the proof. �



6 Aljaž Zalar

By the universal property of the tensor product the bilinear map B can
be extended to the linear map

B̄ : I(m)⊗FW1 →W2, B̄

(
F :=

n∑
i=1

fi ⊗Ai

)
=

n∑
i=1

∫
X

fi dmAi
=:

∫
X

F dm.

We call F ∈ I(m)⊗FW1 positive if F (x) � 0 for every x ∈ X and write
F � 0. In the following proposition we list some properties of the integral
with respect to m.

Proposition 3.5. Let (X,S,W1 ⊆ B(H),W2 ⊆ B(K),m) be a space with a
measure m and F ∈ {R,C}. For all F,G ∈ I(m)⊗FW1, all operators A ∈W1,
all numbers λ ∈ F and all sets ∆ ∈ S the following equalities hold.∫

X

(F +G) dm =

∫
X

F dm+

∫
X

G dm, (3.1)∫
X

λF dm = λ

∫
X

F dm. (3.2)∫
X

(χ∆ ⊗A) dm = mA(∆). (3.3)

If F ∈ I(m)⊗F W1 satisfies F � 0, then∫
X

F dm � 0. (3.4)

Proof. (3.1), (3.2) follow by the construction of the map B̄. It suffices to prove
(3.3) for A ∈ (W1)+. Since mA is a positive operator-valued measure it follows∫
X

(χ∆ ⊗A) dm=
∫
X
χ∆ dmA = mA(∆). It remains to prove (3.4). Every

F ∈ I(m) ⊗F W1, F � 0 can be expressed as
∑n1

i=1 ri ⊗ Bi −
∑n2

j=1 sj ⊗ Cj ,
where ri ⊗ Bi, sj ⊗ Cj ∈ I(m)+ ⊗F (W1)+, n1, n2 ∈ N. For every ` ∈ N
we define the set X` :=

(⋂
i r
−1
i [0, `]

)⋂ (⋂
i s
−1
j [0, `]

)
. The sequence X` is

increasing and X = ∪`∈NX`. For every i, j there are positive simple functions

t1`i, t
2
`j such that

∥∥t1`i − χ`ri∥∥∞ ≤ 1
2n1`‖Bi‖ ,

∥∥∥t2`j − χ`sj∥∥∥∞ ≤ 1
2n2`‖Cj‖ , where

χ` is a characteristic function of X`. For every ` ∈ N we define G`(x) :=(∑n1

i=1 t
1
`i ⊗Bi −

∑n2

j=1 t
2
`j ⊗ Cj

)
. Therefore ‖χ`F −G`‖ ≤ 1

` . Together with

χ`F � 0 it follows that G` � − 1
` IdH, where IdH denotes the identity operator

on H. Each G` is of the form
∑
k χ∆k`

⊗Dk`, where ∆k` ∈ S, ∆k` ∩∆k′` = ∅
for k 6= k′, ∪k∆k` = X and Dk` � − 1

` IdH. It follows that∫
X

G` dm =

∫
X

(∑
k

χ∆k`
⊗Dk`

)
dm =

∑
k

mDk`
(∆k`)

�
∑
k

m− 1
` IdH(∆k`) = −1

`

∑
k

mIdH(∆k`) = −1

`
·mIdH (∪k∆k`)

= −1

`
·mIdH(X)
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Since for every i, j, the functions ri, sj are positive and the sequence X`

increases, the sequences t1`i, t
2
`j can be chosen such that they increase, i.e.,

for fixed i, j we have t11i ≤ t12i ≤ t13i ≤ . . . and t21j ≤ t22j ≤ t23j ≤ . . .. By

Theorem 3.3, lim`

∫
X
t1`i dmBi

=
∫
X
ri dmBi

, lim`

∫
X
t2`j dmCj

=
∫
X
sj dmCj

.

It follows that
∫
X
F dm = lim`

∫
X
G` dm � lim`

(
− 1
` ·mIdH(X)

)
= 0. This

proves
∫
X
F dm � 0, which is (3.4). �

4. Characterization of non-negative measures

Let (X,S,H) be a measure space, i.e., X is a set, S a σ-algebra on X and H a
Hilbert space. [1, Theorem 2] characterizes positive operator-valued measures
on (X,S,H) via families {µh}h∈H of finite positive measures. We would like
to have an analoguous characterization in the case of non-negative measures
on a measure space (X,S,W1,W2), i.e., X is a set, S a σ-algebra on X and
W1, W2 are von Neumann algebras.

The following theorem provides a characterization of non-negative mea-
sures on (X,S,W1,W2) via families {EA}A∈(W1)+

of positive operator-valued
measures.

Theorem 4.1. Let (X,S,W1 ⊆ B(H),W2 ⊆ B(K)) be a measure space and

{EA}A∈(W1)+

a family of positive operator-valued measures EA : S →W2.
There exists a unique non-negative measure m such that

mA = EA

for all operators A ∈ (W1)+ iff the following conditions hold.

EA+B(∆) = EA(∆) + EB(∆), (4.1)

EλA(∆) = λEA(∆), (4.2)

for all operators A,B ∈ (W1)+, all real numbers λ ∈ R+, and all sets ∆ ∈ S,
and for each set ∆ ∈ S there exists a constant k∆ ∈ R>0 such that

‖EA(∆)‖ ≤ k∆ ‖A‖ (4.3)

for all operators A ∈ (W1)+.

Every family {EA}A∈(W1)+
which satisfies the conditions above is called

a compatible family of positive operator-valued measures.

Proof. The nontrivial direction is the if part. We have to prove the well-
definedness of the set function

m : S → B(W1,W2),

m(∆)(A) :=
(
ERe(A)+(∆)− ERe(A)−(∆)

)
+ i
(
EIm(A)+(∆)− EIm(A)−(∆)

)
,

where B(W1,W2) denotes the Banach space of all bounded linear operators
from W1 to W2. For the well-definedness we have to show that for each
∆ ∈ S the map m∆ : W1 → W2, m∆(A) := m(∆)(A) is linear and bounded.
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If Hilbert spaces H, K are complex, then by the usual decompositions of
λ ∈ C and A ∈ W1 into the real and imaginary part it suffices to prove the
R-linearity and the boundedness of m∆ over (W1)h.

Additivity of m∆. For A,B ∈ (W1)h the equality m∆(A+B) = m∆(A)+
mS(B) is equivalent to

E(A+B)+(∆)−E(A+B)−(∆) =
(
EA+

(∆)− EA−(∆)
)

+
(
EB+

(∆)− EB−
)

(∆),

which is further equivalent to

E(A+B)+(∆) + EA−(∆) + EB−(∆) = E(A−B)+(∆) + EA+
(∆) + EB+

(∆).

By (4.1) this is equivalent to E(A+B)++A−+B−(∆) = E(A+B)−+A++B+
(∆),

which is true due to (A+B)+ +A− +B− = (A+B)− +A+ +B+.
Homogeneity ofm∆. To provem∆(λA) = λm∆(A) for A ∈ (W1)h, λ ∈ R

it suffices to consider A ∈ (W1)+ (due to λA = λA+−λA− and additivity of
m∆). For λ ≥ 0 this is (4.2). For λ < 0 we have

m∆(λA) := E(λA)+(∆)−E(λA)−(∆) = −E|λ|A(∆) =︸︷︷︸
by (4.2)

− |λ|EA(∆) = λm∆(A).

Boundedness of m∆. For A ∈ (W1)h we have∥∥m∆(A)
∥∥ =

∥∥EA+
(∆)− EA−(∆)

∥∥ ≤ ∥∥EA+
(∆)

∥∥+
∥∥EA−(∆)

∥∥
≤︸︷︷︸

by (4.3)

k∆ (‖A+‖+ ‖A−‖) ≤︸︷︷︸
‖A+‖,‖A−‖≤‖A‖

2 ‖A‖ k∆.

�

5. Extension of the integration to I(m)⊗F W1

Assume the notation from Section 3. Let (X,S,W1 ⊆ B(H),W2 ⊆ B(K),m)
be a measure space with a measure m, I(m) the set of m-integrable functions
and F ∈ {R,C}. We equip I(m)⊗FW1 with a supremum norm, i.e., for every

F ∈ I(m) ⊗F W1 we define ‖F‖∞ := supx∈X ‖F (x)‖. Let I(m)⊗F W1 be a

norm completion of I(m)⊗F W1. For every F ∈ I(m)⊗F W1 we define∫
X

F dm := lim
i→∞

∫
X

Fi dm, (5.1)

where {Fi}i is any sequence of elements from I(m) ⊗F W1 converging to F
in the supremum norm.

The definition is well-defined by the following proposition.

Proposition 5.1. The integral
∫
X
F dm exists and is independent of the choice

of the sequence {Fi}i.

Proof. Since {Fi}i is a Cauchy sequence, for each ε > 0 there exists nε ∈ N
such that ‖Fm − Fn‖∞ < ε for every m,n ≥ nε. By (3.4),

∫
X
ε · IdH dm �∫

X
(Fn − Fm) dm � −

∫
X
ε · IdH dm, where IdH denotes the identity oper-

ator on H. Hence
∥∥∫
X

(Fn − Fm) dm
∥∥ ≤ ∥∥∫

X
(ε · IdH) dm

∥∥ = ε ‖mIdH(X)‖ .
Therefore

∫
X
Fi dm is a Cauchy sequence and hence convergent.
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Independence of
∫
X
F dm of the sequence is proved similarly. Namely,

for the sequences Fi, Gi converging to F , the sequence Fi −Gi converges to
0 and by the above argument

∫
X

(Fi −Gi) dm is a convergent sequence with
the limit 0. �

For a locally compact Hausdorff space X and a Banach space Y over
F ∈ {R,C}, let Cc(X,Y), C0(X,Y) be the vector spaces of Y-valued functions
with a compact support and Y-valued functions which vanish at infinity re-
spectively, i.e., F ∈ Cc(X,Y) iff F ∈ C(X,Y) and the set {x ∈ X : F (x) 6= 0}
is compact and F ∈ C0(X,Y) iff F ∈ C(X,Y) and for every ε > 0 there exists
a compact set Kε, such that ‖F (x)‖ < ε for every x ∈ Kc

ε .
Let (X,Bor(X),W1,W2,m) be a space with a measure m. Since the vec-

tor space Cc(X,F)⊗FW1 is dense in C0(X,W1) endowed with the supremum
norm (see [12, Proposition 44.2.]), we have

C0(X,W1) ⊆ I(M)⊗F W1.

Let V ≤ C0(X,W1) be a vector subspace of C0(X,W1) and L : V →W2

a bounded linear map. We call L positive if L(V+) ⊆ (W2)+, where V+ :=
V ∩ C0(X,W1)+ is a positive cone of V inherited from the positive cone

C0(X,W1)+ := {F ∈ C0(X,W1) : F (x) ∈ (W1)+ for every x ∈ X}

of C0(X,W1).
Theorem 5.2 is a version of the Riesz representation theorem and slightly

extends [3, Proposition 2] from the case of a positive bounded linear map L :
Cc(X,R)⊗RB(H)h → B(K)h on a locally compact and σ-compact metrizable
space X and real Hilbert spaces H,K, to the case of a positive bounded
linear map L : C0(X,W1) → W2 on a locally compact Hausdorff space X
and Hilbert spaces H, K over F ∈ {R,C}.

Theorem 5.2. Let X be a locally compact Hausdorff space, H, K Hilbert spaces
over F ∈ {R,C} and W1 ⊆ B(H), W2 ⊆ B(K) von Neumann algebras.

1. F = R: For every positive bounded linear map L : C0(X, (W1)h) →
(W2)h there exists a unique regular non-negative measure

m : Bor(X)→ B((W1)h, (W2)h)

such that L(F ) =
∫
X
F dm holds for all F ∈ C0(X, (W1)h).

2. F = C: For every positive bounded linear map L : C0(X,W1) → W2

there exists a unique regular non-negative measure

m : Bor(X)→ B(W1,W2)

such that L(F ) =
∫
X
F dm holds for all F ∈ C0(X,W1).

Proof. We replace some assumptions of [3, Proposition 2] by weaker ones
stepwise:

1. Replacing a locally compact and σ-compact metrizable space X by a
locally compact Hausdorff space X:



10 Aljaž Zalar

(a) F = R: Since Cc(X,R) is dense in C0(X,R), T in [1, Theorem 19]
can be uniquelly extended to the bounded map on C0(X,R). By
complexifying H, K and linearly extending T to the complexifica-
tion C0(X,C) of C0(X,R), T remains a positive bounded linear
map. The construction of the representing measure E of T in the
proof of [1, Theorem 19] remains the same, just that we use the
version of Riesz theorem for C0(X,C) (see [4, C.17. Theorem.]), use
Lemma 2.3 and work with nets as in the proof of [4, IX.1.14. The-
orem.]. Applying this to [3, Proposition 2] yields (1).

(b) F = C: Restricting a positive bounded linear map L : Cc(X,C)⊗C
B(H) → B(K) to a positive bounded linear map L : Cc(X,R)⊗R
B(H)h → B(K)h and applying the proof of F = R case above
yields the statement of [3, Proposition 2] for the locally compact
Hausdorff space and L : Cc(X,C)⊗C B(H)→ B(K).

2. Replacing B(H), B(K) by W1,W2: This follows trivially.
3. Replacing Cc(X,F) ⊗F W1 by C0(X,W1): By (2), L|Cc(X,F)⊗FW1

has a
unique non-negative representing measure m. For F ∈ C0(X,W1) there
exists a sequence Fi ∈ Cc(X,F) ⊗F W1 such that limi Fi = F and by
the continuity of L we have L(F ) = limi L(Fi). By the definition also∫
X
F dm = limi

∫
X
Fi dm. Hence L(F ) =

∫
X
F dm.

�

6. Connection with measures and integration from [8]

Let (X,S,W1 ⊆ B(H),W2 ⊆ B(K),m) be a space with a measure m (see
Section 3). From now on up to the end of this section we will assume that
X is a locally compact Hausdorff space, S = Bor(X) is a σ-algebra of Borel
sets on X and mA are regular measures for every A ∈ (W1)+, i.e., for every
A ∈ (W1)+ and every k1, k2 ∈ K

〈mA(·)k1, k2〉 : Bor(X)→ C, ∆ 7→ 〈mA(∆)k1, k2〉

is a regular complex measure.
Semivariation of m is the map m : Bor(X)→ [0,∞] defined by

m(X) := sup


∥∥∥∥∥∥
n∑
j=1

mAj (∆j)

∥∥∥∥∥∥
 ,

where the supremum is taken over all finite collections of disjoint sets ∆1,∆2,
. . . ,∆n such that X = ∪nj=1∆j and all A1, A2, . . . , An ∈ W1 with norm at
most 1.

Let (W2)∗ denote a predual of a von Neumann algebra W2. Recall that
(W2)∗ is the set of all ultra-weakly (or equivalently ultra-strongly) continuous
linear functionals on W2 (see [5, I.3. Theorem 1.(iii)]). For every T ∈ (W2)∗
and every A ∈W1 we define a map

〈T,mA(·)〉 : Bor(X)→ C, 〈T,mA(∆)〉 := T (mA(∆)).
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The next proposition shows that by the assumptions of the first para-
graph our non-negative measures have the properties of measures obtained
in [8, Theorem 3.3].

Proposition 6.1. Assume X, Bor(X) and mA are as above. We claim that m
is a finitely additive measure with a finite semivariation, i.e., m(X) < ∞,
such that for every T ∈ (W2)∗ and every A ∈ W1 the maps 〈T,mA(·)〉 are
regular countably additive complex measures with a bounded variation.

Proof. Firstly we prove that m(X) <∞.

m(X) = sup


∥∥∥∥∥∥
n∑
j=1

mAj (∆j)

∥∥∥∥∥∥


= sup


∥∥∥∥∥∥
n∑
j=1

(mRe(Aj)(∆j)− i ·mIm(Aj)(∆j))

∥∥∥∥∥∥


= sup


∥∥∥∥∥∥
n∑
j=1

((mRe(Aj)+ −mRe(Aj)−)(∆j) + i(mIm(Aj)+ −mIm(Aj)−(∆j)))

∥∥∥∥∥∥


≤ 4 sup


∥∥∥∥∥∥
n∑
j=1

mIdH(∆j)

∥∥∥∥∥∥
 = 4 ‖mIdH(X)‖ <∞,

where the supremum is taken over all finite collections of disjoint sets ∆1,∆2,
. . ., ∆n, such that X = ∪nj=1∆j and all A1, A2, . . . , An ∈ W1 with norm at
most 1, and IdH denotes the identity operator on a Hilbert space H. Note
that the first inequality in the last line follows by ‖Re(Aj)±‖, ‖Im(Aj)±‖ ≤ 1,
which further implies Re(Aj)±, Im(Aj)± � IdH and finally mRe(Aj)±(∆j),
mIm(Aj)±(∆j) � mIdH(∆j) for every j = 1, 2, . . . , n.

We have to prove that the measures

〈T,mA(·)〉 : Bor(X)→ C, ∆ 7→ 〈T,mA(∆)〉 , (6.1)

where T ∈ (W2)∗ and A ∈ W1, are countably additive, regular and have
a finite variation. By the usual decompositions of T and A into the linear
combination of the positive elements it suffices to take T ∈ ((W2)∗)+ and
A ∈ (W1)+ (for T this follows by [5, I.4. Theorem 6.(i)]). Here ((W2)∗)+

denotes the set of all T ∈ (W2)∗, such that T (B) ≥ 0 for every B ∈ (W2)+.

Let us first prove the countable additivity. Take ∆ ∈ Bor(X) and a
sequence ∆j ⊆ Bor(X), such that ∆ = ∪∞j=1∆j and ∆j are mutually dis-

joint sets. To prove 〈T,mA(∆)〉 =
∑∞
j=1 〈T,mA(∆j)〉 it suffices to show that

mA(∆) =
∑∞
j=1mA(∆j) in the ultra-strong topology of W2. Since the ultra-

strong and strong topologies coincide on bounded subsets of W2, this imedi-
atelly follows by the definition of mA.

By the countable additivity, it follows that the sum
∑∞
j=1 〈T,mA(∆j)〉

is absolutely convergent and hence the variation of (6.1) is finite.
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To prove the inner regularity, let us take an open set U . Since 〈T,mA(·)〉
is a finite positive measure, it suffices to prove that for every ε > 0 there ex-
ists a compact set Kε ⊂ U , such that 〈T,mA(U \Kε)〉 < ε. Since T is ultra-

strongly continuous, there exists a sequence {kj}∞j=1 ⊆ K with
∑∞
j=1 ‖kj‖

2
<

∞, such that for every B ∈W2 satisfying
∑∞
j=1 ‖(mA(U)−B)kj‖2 < 1, it fol-

lows |〈T,mA(U)−B〉| < ε. There exists N ∈ N, such that
∑∞
j=N+1 ‖kj‖

2
<

1
22‖mA(X)‖2 . By the inner regularity of the measures mA, for every ` =

1, 2, . . . , N there exists a compact set K` ⊂ U , such that

〈mA(U \K`)k`, k`〉 <
1

22N2 ‖mA(X)‖3 ‖k`‖2
. (6.2)

Therefore

‖mA(U \K`)k`‖4 = 〈mA(U \K`)k`,mA(U \K`)k`〉2

≤ 〈mA(U \K`)k`, k`〉 ·
〈

(mA(U \K`))
2
k`,mA(U \K`)k`

〉
≤ 〈mA(U \K`)k`, k`〉 · ‖mA(U \K`)‖3‖k`‖2

≤ 〈mA(U \K`)k`, k`〉 · ‖mA(X)‖3‖k`‖2

<
1

22N2
,

where we used Cauchy-Schwarz inequality for the semi-inner product defined
by [k1, k2] := 〈mA(U \K`)k1, k2〉 , k1, k2 ∈ K in the first inequality (Notice
that mA is a positive operator-valued measure, since we are considering A
from (W1)+.), Cauchy-Schwarz inequality in K in the second, finite additivity
of mA in the third (i.e., from U \K` ⊆ X it follows 0 � mA(U \K`) � mA(X)
and hence ‖mA(U \K`)‖ ≤ ‖mA(X)‖), and (6.2) in the last one. Hence, for

Kε := ∪N`=1K` it follows
∑N
`=1 ‖mA(U \Kε)k`‖2 ≤ 1

2 . Therefore

∞∑
`=1

‖mA(U \Kε)k`‖2 <
1

2
+ ‖mA(U \Kε)‖2

∞∑
`=N+1

‖k`‖2

≤ 1

2
+ ‖mA(X)‖2 1

2 ‖mA(X)‖2
≤ 1.

It follows that 〈T,mA(U \Kε)〉 < ε. Since ε > 0 was arbitrary, this
proves the inner regularity.

The outer regularity is proved analoguously. �

By Proposition 6.1, m has a finite semivariation. Now we will compare
our integration with the integration with respect to the measure of finite
semivariation from [8, Section 3]. Let B stand for the simple Borel measur-
able functions on X. By (3.3), Theorem 3.3 and (5.1), it easily follows that
the integrations coincide on B ⊗W1. But B ⊗W1 consists just of bounded
W1-valued function, while not all elements from I(m)⊗W1 are necessarily
bounded. Hence, our integration theory extends the integration theory, when
m is regarded as a finitely additive measure with a finite semivariation.
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Now we will comment on the connection between Theorem 5.2 and [8,
Theorem 3.3.]. Since every von Neumann algebra is a dual of a Banach space,
L : C0(X,W1) → W2 from Theorem 5.2 has a representing measure given
by [8, Theorem 3.3.]. By Proposition 6.1 and the uniqueness of the measures
from Theorem 5.2 and [8, Theorem 3.3.], it follows that both representing
measures coincide. Hence, we derived another proof for the special case of [8,
Theorem 3.3.] and obtained a concrete description of measures given by [8,
Theorem 3.3.] for this special case.

7. Non-negative spectral measures

Notation remains as in Section 3. Let (X,S,W1 ⊆ B(H),W2 ⊆ B(K)) be a
measure space, where H, K are complex Hilbert spaces. We denote by (W1)p
the set of all hermitian projections in W1, i.e., A ∈ (W1)p ⇔ A = A∗ = A2.

A non-negative measure

M : S → B(W1,W2)

is a non-negative spectral measure if for every P ∈ (W1)p the set function

MP : S →W2, MP (∆) := M(∆)(P ),

is a spectral measure and if the equality

MP (∆1)MQ(∆2) = MPQ(∆1 ∩∆2)

holds for all hermitian projections P,Q ∈ (W1)p and all sets ∆1,∆2 ∈ S. A
pentuple (X,S,W1,W2,M) is a space with a measure M .

Remark 7.1. 1. Recall that in the introduction we defined M to be just a
set function with the above properties and not a non-negative measure.
However, in the next section (see Corollary 8.2) we will show that a
set function with the above properties is automatically a non-negative
measure.

2. We will need non-negative spectral measures to represent ∗-representa-
tions of the form ρ : C(X,W1)→ W2 (see Section 9). Since in the case
H is a real Hilbert space, C(X,W1) is not even an algebra, we cannot
study ∗-representations ρ. Therefore, from now on all the Hilbert spaces
will be complex.

By the well-known result, e.g., [11, Theorem 5.1], every hermitian op-
erator A ∈ (W1)h ⊆ B(H)h, has a unique spectral measure E : Bor([a, b])→
B(H) such that A =

∫
[a,b]

λ dE(λ) and σ(A) ⊆ [a, b], where σ(A) denotes

the spectrum of A. From A ∈ (W1)h it follows by [5, I. Proposition 2], that
E(∆) ∈W1 for every ∆ ∈ Bor([a, b]). By [11, p. 63-64], there exists a sequence
S`(A) of Riemann sums of the form

S`(A) =

n∑̀
k=1

ζk,`(E(λk,`)− E(λk−1,`)), (7.1)
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where the family {E(λ) | λ ∈ R} is the resolution of identity (see [11, Defini-
tion 4.1]) corresponding to the spectral measure E, S`+1(A) is a refinement
of S`(A) and ‖A− S`(A)‖ ≤ 1

` .
Recall that the set I(M) of all M -integrable functions is a complex

vector space and it consists of at least all bounded S-measurable complex
functions (Here we integrate with respect to M by regarding M as a non-
negative measure and use integration theory from Section 3.).

The next proposition shows that the integration with respect to a non-
negative spectral measure is multiplicative.

Proposition 7.2. Let (X,S,W1,W2,M) be a space with a non-negative spectral

measure M and F,G elements from I(M)⊗W1. Then the equality∫
X

FG dM =

(∫
X

F dM

)(∫
X

G dM

)
(7.2)

holds.

Proof. We will prove (7.2) in two steps. First we will consider the case F,G ∈
I(M)⊗W1 and then use it in the proof of the general case F,G ∈ I(M)⊗W1.

Case 1 - F,G ∈ I(M) ⊗ W1: By the linearity it suffices to consider
F = f ⊗A,G = g ⊗B for f, g ∈ I(M)+, A,B ∈ (W1)+ and prove∫

X

(fg ⊗AB) dM =

(∫
X

(f ⊗A) dM

)(∫
X

(g ⊗B) dM

)
(7.3)

Let us first show that (7.3) holds for every A,B ∈ (W1)p. There are
increasing sequences {sk}k, {tk}k of simple functions such that limk sk =
f, limk tk = g. By Theorem 3.3,

lim
k

∫
X

(sktk ⊗AB) dM =

∫
X

(fg ⊗AB) dM,

lim
k

∫
X

(sk ⊗A) dM =

∫
X

(f ⊗A) dM,

lim
k

∫
X

(tk ⊗B) dM =

∫
X

(g ⊗B) dM,

where all the limits are in the strong operator topology (For the first equality
we have also used the decomposition of PQ into four positive parts and
applied the convergence theorem to each of them.). By the definition of M
and the linearity of the integration, the equality (7.3) is true for all simple
functions sk, tk and for every A,B ∈ (W1)p. Hence it is true also for every
f, g ∈ I(M)+ and every A,B ∈ (W1)p.

Let now A,B ∈ (W1)+ be arbitrary. If S`(A), S`(B) are defined as in
(7.1), then

1

`
IdH � A− S`(A) � 0,

1

`
IdH � B − S`(B) � 0,

where IdH denotes the identity operator of H, and by (3.4) we get∥∥∥∥∫
X

(f ⊗ (A− S`(A))) dM

∥∥∥∥ ≤ 1

`

∥∥∥∥∫
X

(f ⊗ IdH) dM

∥∥∥∥ ,
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X

(g ⊗ (B − S`(B))) dM

∥∥∥∥ ≤ 1

`

∥∥∥∥∫
X

(g ⊗ IdH) dM

∥∥∥∥ .
Therefore ∫

X

(f ⊗A) dM = lim
`

∫
X

(f ⊗ S`(A)) dM∫
X

(g ⊗B) dM = lim
`

∫
X

(g ⊗ S`(B)) dM.

Since (7.3) holds for all hermitian projections A,B ∈ (W1)p, it follows by the
linearity that∫
X

(fg ⊗ S`(A)S`(B)) dM =

(∫
X

(f ⊗ S`(A)) dM

)(∫
X

(g ⊗ S`(B)) dM

)
.

To prove (7.3) for A,B ∈ (W1)+, it remains to prove that∫
X

(fg ⊗AB) dM = lim
`→∞

∫
X

(fg ⊗ S`(A)S`(B)) dM. (7.4)

We denote C` := AB−S`(A)S`(B) and ε` := ‖C`‖. By the usual decomposi-
tion of C` into the linear combination of four positive elements, we conclude
that ∥∥∥∥∫

X

(fg ⊗ C`) dM
∥∥∥∥ ≤ 4ε`

∥∥∥∥∫
X

(fg ⊗ IdH) dM

∥∥∥∥ .
Here we used ‖Re(C`)±‖ , ‖Im(C`)±‖ ≤ ‖C`‖ and (3.4). Since lim` ε` = 0,
(7.4) follows.

Case 2 - F,G ∈ I(M)⊗W1: By the definition of the integration with
respect to M (see (5.1)),∫

X

F dM = lim
i

∫
X

Fi dM,

∫
X

G dM = lim
i

∫
X

Gi dM

where Fi, Gi ∈ I(M) ⊗ W1 are any sequences converging to F , G in the
supremum norm. Since FiGi converges to FG in the supremum norm, it
follows

∫
X
FG dM = limi

∫
X
FiGi dM . By Case 1, equality (7.2) holds for

every pair Fi, Gi; hence also for the pair F,G. �

Remark 7.3. In the sequel we will use the statement of Proposition 7.2 just
for the pairs F,G from the set C0(X,W1), where X is a locally compact
Hausdorff space X and Bor(X) a Borel σ-algebra on X. Since elements from
C0(X,W1) are bounded, it would suffice to prove the validity of the statement
of Proposition 7.2 in a much lesser generality, i.e., bounded elements F,G
from I(M)⊗W1 would do the job. But this is simple. Let us write it down:

Take bounded elements F,G from I(M)⊗W1. There are sequences
{Sk}k, {Tk}k of simple functions from I(M) ⊗W1 (i.e., Sk =

∑
i ski ⊗ Aki

and Tk =
∑
j tkj ⊗ Bkj , where ski, tkj are the usual simple functions and

Aki, Bkj ∈ W1), such that limk ‖F − Sk‖∞ = 0 and limk ‖G− Tk‖∞ = 0.
Therefore it is also true that limk ‖FG− SkTk‖∞ = 0. By the definition of
the integration with respect to M (see (5.1)),

∫
X
F dM= limk

∫
X
Sk dM ,
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∫
X
G dM= limk

∫
X
Tk dM and

∫
X
FG dM= limk

∫
X
SkTk dM . By the lin-

earity and the multiplicativity of M on hermitian projections, it folows that(∫
X
Sk dM

) (∫
X
Tk dM

)
=
∫
X
SkTk dM . Therefore (7.2) holds for F,G.

8. Characterization of non-negative spectral measures

Let (X,S,W1,W2) be a measure space (see Section 3). In Theorem 4.1 we
characterized non-negative measures on the measure space (X,S,W1,W2) via
families {EA}A∈(W1)+

of positive operator-valued measures. We would like

to have an analoguous characterization in the case of non-negative spectral
measures.

The following theorem provides a characterization of non-negative spec-
tral measures on (X,S,W1,W2) via families {FP }P∈(W1)p

of spectral mea-

sures (Recall that (W1)p denotes the set of all hermitian projections in W1.).
This characterization will be used to prove our main results (see Theorem
9.1 and Corollary 9.2) in the next section.

Theorem 8.1. Let (X,S,W1,W2) be a measure space, {FP }P∈(W1)p
a family

of spectral measures FP : S →W2.
There is a unique non-negative spectral measure M such that

MP = FP

for all hermitian projections P ∈ (W1)p iff the following conditions hold.
n∑
i=1

λiFPi
(∆) =

m∑
j=1

µjFQj
(∆), (8.1)

for all hermitian projections Pi, Qj ∈ (W1)p, all real numbers λi, µj ∈ R, and
all sets ∆ ∈ S such that

∑n
i=1 λiPi =

∑m
j=1 µjQj, for each set ∆ ∈ S there

exists a constant k∆ ∈ R>0 such that

‖FP (∆)‖ ≤ k∆ (8.2)

for all hermitian projections P ∈ (W1)p, and

MP (∆1)MQ(∆2) = MPQ(∆1 ∩∆2) (8.3)

holds for all hermitian projections P,Q ∈ (W1)p and all sets ∆1,∆2 ∈ S.

Every family {FP }P∈(W1)p
which satisfies the conditions above is called

a compatible family of spectral measures.

Proof. The nontrivial direction is the if part. Suppose that we are given a
family {FP }P∈(W1)p

of spectral measures FP : S → W2, which satistfies the

conditions (8.1), (8.2), (8.3). By the statement of Theorem 8.1, we have to
find a non-negative measure M : S → B(W1,W2) such that MP = FP for
all P ∈ (W1)p, where MP : S → W2 is defined by MP (∆) := M(∆)(P )
for every ∆ ∈ S. Therefore all that remains is to define the set functions
MA : S →W2 for every A ∈ (W1)+ and prove that the family {MA}A∈(W1)+ is
a well-defined family of positive operator-valued measures, which satisfies the
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conditions (4.1), (4.2), (4.3) of Theorem 4.1. Take A ∈ (W1)+. We separate
two possibilities:

(i) If A has a finite spectral decomposition
∑n
k=1 λkPk, where Pk are mu-

tually orthogonal hermitian projections (i.e., PiPj = 0 for every i 6= j),
then

MA(∆) :=

n∑
k=1

λkFPk
(∆).

(ii) If A does not have a finite spectral decomposition, then for S`(A) as in
(7.1)

MA(∆) := lim
`
MS`(A)(∆),

where the limit is taken in the norm topology.

We will prove the facts we need stepwise:

Step 1 - existence and uniqueness of MA(∆): For A with a finite spectral
decomposition both facts are clear. The tougher part is to prove them for A
without a finite spectral decomposition. Take the sequence S`(A) as in (ii). By
the definition of S`(A), we conclude that ‖S`1(A)− S`2(A)‖ ≤ 2

` for `1, `2 ≥ `
and S`1(A)− S`2(A) has a finite spectral decomposition. Let us denote it by∑
k λkQk, where Qk are mutually orthogonal hermitian projections and λk

real numbers. Hence∥∥∥MS`1
(A)(∆)−MS`2

(A)(∆)
∥∥∥ =︸︷︷︸

by (8.1)

∥∥∥∥∥∑
k

λkMQk
(∆)

∥∥∥∥∥
≤︸︷︷︸

MQk
(∆)�0,

|λk|≤ 2
`

2

`

∥∥∥∥∥∑
k

MQk
(∆)

∥∥∥∥∥ =︸︷︷︸
by (8.1)

2

`

∥∥M∑
k Qk

(∆)
∥∥ ≤︸︷︷︸

by (8.2)
for

∑
k Qk

2

`
k∆

(Note that for the last inequality
∑
kQk has to be a hermitian projec-

tion, which is true since Qk are mutually orthogonal hermitian projections.).
Therefore the sequence MS`(A)(∆) is Cauchy in W2 and hence convergent. So
the operator MA(∆) exists. Its uniqueness is proved analoguously, namely if

S̃`(A) is another sequence satisfying (7.1), then MS`(A)(∆) −MS̃`1
(A)(∆) is

a Cauchy sequence converging to 0.

Step 2 - MA is a positive operator-valued measure: For A ∈ (W1)+ with
a finite spectral decomposition this is clear. Assume A ∈ (W1)+ does not
have a finite spectral decomposition. Notice that all constants ζk,` in (7.1)
can be chosen such that ζk,l ≥ 0. Using this fact and by

MA(∆) =︸︷︷︸
(8.1)

lim
`

n∑̀
k=1

ζk,`(ME(λk,`)−E(λk−1,`)(∆)),

where E(λk,`) − E(λk−1,`) � 0, it follows that MA(∆) ∈ (W2)+. For MA to
be a positive operator-valued measure we have to prove also the countable



18 Aljaž Zalar

additivity. Take ∆ = ∪∞j=1∆j , where ∆,∆j ∈ S and ∆j are mutually dis-

joint. Then the equality MA

(
∪∞j=1∆j

)
=
∑∞
j=1MA (∆j) holds in the strong

operator topology by tbe following:

MS`(A)

(
∪∞j=1∆j

)
=

n∑̀
k=1

ζk,`
(
ME(λk,`)−E(λk−1,`)

(
∪∞j=1∆j

))
=

k∑
i=1

∞∑
j=1

ζk,`
(
ME(λk,`)−E(λk−1,`) (∆j)

)
=

∞∑
j=1

n∑̀
k=1

ζk,`
(
ME(λk,`)−E(λk−1,`) (∆j)

)
=

∞∑
j=1

MS`(A)(∆j),

where the first and the forth equality hold by (8.1), the second equality by
ME(λk,`)−E(λk−1,`) being spectral measures and the third holds since all the
operators in the sum are positive. Note that the second equality holds in the
strong operator topology and not necessarily in the norm one, but this is all
what we need in the proof.

Step 3 - {MA}A∈(W1)+ satisfies the condition (4.1) of Theorem 4.1: Take
A,B ∈ (W1)+. For A,B with finite spectral decompositions the condition
(4.1) follows by (8.1). If not both A,B have finite spectral decompositions,
then we have to prove that

lim
`→∞

(
MS`(A+B)(∆)−MS`(A)(∆)−MS`(B)(∆)

)
= 0, (8.4)

where the limit is taken in the norm topology and the sequence S`(A) (resp.
S`(B), S`(A + B)) is a constant sequence if A (resp. B, A + B) has a finite
spectral decomposition, i.e., S`(A) = A for every ` ∈ N. Define

T` := S`(A+B)− S`(A)− S`(B)

and notice ‖T`‖ ≤ 3
` . Further on, for every ε > 0 there exists N ∈ N such

that for j ≥ N ,

‖T` − Sj(T`)‖ ≤ ε,
∥∥MT`

(∆)−MSj(T`)(∆)
∥∥ ≤ ε,

where Sj(T`) is defined as in (7.1). Therefore also

‖Sj(T`)‖ = ‖T` − T` + Sj(T`)‖ ≤ ‖T`‖+ ‖T` − Sj(T`)‖ ≤
3

`
+ ε.

As for the existence and uniqueness we estimate
∥∥MSj(T`)(∆)

∥∥ ≤ ( 3
` + ε

)
k∆

and hence ‖MT`
(∆)‖ ≤ ε+

(
3
` + ε

)
k∆. Since ε > 0 was arbitrary, we conclude

that

‖MT`
(∆)‖ ≤ 3 · k∆

`
.

Hence, lim`MT`
(∆) = 0 which proves (8.4).

Step 4 - {MA}A∈(W1)+ satisfies the condition (4.2) of Theorem 4.1:
Analoguous to the proof of the Step 3.

Step 5 - {MA}A∈(W1)+ satisfies the condition (4.3) of Theorem 4.1: Take
A ∈ (W1)+. Each S`(A) =:

∑
i λi`Pi` has a finite spectral decomposition,
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where λi` are real numbers and Pi` mutually orthogonal hermitian projec-
tions. By ‖A− S`(A)‖ ≤ 1

` and Pi`Pj` = 0 for i 6= j, we have ‖A‖ − 1
` ≤∥∥∥∑k`

i=1 λi`Pi`

∥∥∥ ≤ ‖A‖ + 1
` and hence maxi |λi`| ∈

(
‖A‖ − 1

` , ‖A‖+ 1
`

)
. It

follows that

‖MA(∆)‖ =

∥∥∥∥ lim
`→∞

MS`(A)(∆)

∥∥∥∥ = lim
`→∞

∥∥∥∥∥
k∑̀
i=1

λi`MPi`
(∆)

∥∥∥∥∥
≤︸︷︷︸
(∗)

lim
`→∞

(
max
i=1
|λi`|

∥∥∥∥∥
k∑̀
i=1

MPi`
(∆)

∥∥∥∥∥
)
≤ lim
`→∞

((
‖A‖+

1

`

)∥∥∥∥∥
k∑̀
i=1

MPi`
(∆)

∥∥∥∥∥
)

≤︸︷︷︸
by (8.1)

lim
`→∞

((
‖A‖+

1

`

)∥∥∥M∑k
i=1 Pi`

(∆)
∥∥∥) ≤︸︷︷︸

by (8.2)

lim
`→∞

(
‖A‖+

1

`

)
· k∆

= ‖A‖k∆,

where (∗) follows by MPi`
(∆) � 0 for every i, ` ∈ N and every ∆ ∈ S. �

As a corollary we obtain the following equivalent definiton of a non-
negative spectral measure.

Corollary 8.2. Let (X,S,W1,W2) be a measure space. A set function M : S →
B(W1,W2) is a non-negative spectral measure if for every hermitian projec-
tion P ∈ (W1)p the set functions MP are spectral measures and the equality

MP (∆1)MQ(∆2) = MPQ(∆1 ∩∆2)

holds for all hermitian projections P,Q ∈ (W1)p and all sets ∆1,∆2 ∈ S.

Remark 8.3. Notice that by the definition, a non-negative spectral measure is
a a non-negative measure with the properties from Corollary 8.2 (see Section
7). Corollary 8.2 shows that a set function with these properties is automat-
ically a non-negative measure. Hence, we obtained precisely the definition of
a non-negative spectral measure from the Introduction.

9. Integral representations of representations
ρ : C(X,W1)→ W2

Let (X,Bor(X),W1 ⊆ B(H),W2 ⊆ B(K),M) be a space with a non-negative
spectral measure M (see Section 7), where X is a compact Hausdorff space
and Bor(X) is a Borel σ-algebra on X. We call M regular if the spectral
measures MP are regular for every P ∈ (W1)p, i.e., complex measures

(MP )k1,k2 : Bor(X)→ C, (MP )k1,k2(∆) := 〈MP (∆)k1, k2〉

are regular for every k1, k2 ∈ K and every P ∈ (W1)p. M is normalized
if M(IdH) = IdK, where IdH, IdK denote the identity operators on H, K
respectively.

The main result of this article is the following.
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Theorem 9.1. Let X, W1, W2 be as above and

ρ : C(X,C)⊗W1 →W2

a bounded linear map. The following statements are equivalent.

1. ρ : C(X,C) ⊗W1 → W2 is a unital algebra homomorphism such that
ρ(F ∗) = ρ(F )∗ for every F ∈ C(X,C)⊗W1.

2. There exists a unique regular normalized non-negative spectral measure
M : Bor(X)→ B(W1,W2) such that

ρ(F ) =

∫
X

F dM (9.1)

for every F ∈ C(X,C)⊗W1.

Proof. Direction (2) ⇒ (1). For ρ satisfying (9.1) we have to prove the
linearity, the multiplicativity of ρ and the equality ρ(F ∗) = ρ(F )∗ for ev-
ery F ∈ C(X,C) ⊗W1. The linearity follows by Proposition 3.5, while the

multiplicativity by Proposition 7.2. To show
∫
X
F ∗ dM =

(∫
X
F dM

)∗
it

suffices, by the linearity, to consider elements of the form F = f ⊗ A,
f ∈ I(M)+, A ∈ (W1)+. Since MA is a positive operator-valued measure, we

have
∫
X

(f ⊗ A)∗ dM =
∫
X

(f ⊗ A) dM =
(∫
X

(f ⊗A) dM
)∗

and the result
follows.

Direction (1) ⇒ (2). Since ρ is an algebra homomorphism such that
ρ(F ∗) = ρ(F )∗ for every F ∈ C(X,C) ⊗W1, the maps ρP : C(X,C) → W2,
ρP (f) := ρ(f ⊗ P ) are ∗-representations for every P ∈ (W1)p. By Theorem
2.1, there exist unique spectral measures FP : Bor(X) → W2 such that
ρP (f) =

∫
X
f dFP holds for every f ∈ C(X,C) and every P ∈ (W1)p.

The idea is to show that the family {FP }P∈(W1)p satisfies the conditions of
Theorem 8.1 to obtain a non-negative spectral measure M representing ρ.

The family {FP }P∈(W1)p satisfies the condition (8.1) of Theorem 8.1:
Let Pi, Qj ∈ (W1)p be hermitian projections and λi, µj ∈ R real numbers,
such that

∑n
i=1 λiPi =

∑m
j=1 µjQj . We have to show that for every set ∆ ∈

Bor(X), the equality

n∑
i=1

λiFPi
(∆) =

m∑
j=1

µjFQj
(∆)

holds. Since the function χ∆ is a bounded Borel function, by Lemma 2.3,
there is a net {fk} ⊂ C(X,C) such that

∫
X
fk dµ→ µ(∆) for every measure

µ ∈ C(X,C)∗∗. Therefore for all k1, k2 ∈ K〈
ρ

(
fk ⊗

n∑
i=1

λiPi

)
k1, k2

〉
=

(
n∑
i=1

λi

∫
X

fk d(FPi)k1,k2

)
→

→
n∑
i=1

λi

∫
X

χ∆ d(FPi)k1,k2 =

n∑
i=1

λi(FPi)k1,k2(∆).
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and analoguously
〈
ρ
(
fk ⊗

∑m
j=1 µjQj

)
k1, k2

〉
→

∑m
j=1 µj(FQj

)k1,k2(∆).

Since ρ (fk ⊗
∑n
i=1 λiPi) = ρ

(
fk ⊗

∑m
j=1 µjQj

)
holds for every k ∈ N, it

follows that
∑n
i=1 λiFPi

(∆) =
∑m
j=1 µjFQj

(∆).

The family {FP }P∈(W1)p satisfies the condition (8.2) of Theorem 8.1:
Let P ∈ (W1)p be a hermitian projection and ∆ ∈ Bor(X) a Borel set. We
have to find a constant k∆ ∈ R>0 such that ‖FP (∆)‖ ≤ k∆. We know that

‖FP (X)‖ =

∥∥∥∥∫
X

1 dFP

∥∥∥∥ = ‖ρP (1)‖ = ‖ρ(1⊗ P )‖ ≤ ‖ρ‖ ‖1⊗ P‖∞ = ‖ρ‖ ,

where we used the continuity of ρ for the inequality. By the finite additivity
of FP , it follows that ‖FP (∆)‖ ≤ ‖ρ‖ for every ∆ ∈ Bor(X).

The family {FP }P∈(W1)p satisfies the condition (8.3) of Theorem 8.1:
Let P,Q ∈ (W1)p be hermitian projections and ∆1,∆2 ∈ Bor(X) Borel sets.
We have to show that

MP (∆1)MQ(∆2) = MPQ(∆1 ∩∆2).

By Lemma 2.3, there exists a net {fk} ⊂ C(X,C), such that
∫
X
fk · g dµ→∫

X
χ∆1
· g dµ for every µ ∈ C(X,C)∗∗ and every bounded Borel function g.

Therefore
∫
X
fk ·g dMPQ →

∫
X
χ∆1
·g dMPQ and

∫
X
fk dMP →

∫
X
χ∆1

dMP

in the weak operator topology. Hence for g ∈ C(X,C)∫
X

χ∆1
· g dMPQ = lim

∫
X

fk · g dMPQ = lim ρ(fk · g ⊗ PQ)

= lim ρ(fk ⊗ P )ρ(g ⊗Q) = lim

(∫
X

fk dMP

)(∫
X

g dMQ

)
=

(∫
X

χ∆1
dMP

)(∫
X

g dMQ

)
,

where all the limits are in the weak operator topology. By Lemma 2.3, there
exists a net {gk} ⊂ C(X,C), such that

∫
X
χ∆1
·gk dµ→

∫
X
χ∆1
·χ∆2

dµ and∫
X
gk dµ→

∫
X
χ∆2 dµ for every µ ∈ C(X,C)∗∗. Therefore∫

X

χ∆1
· χ∆2

dMPQ = lim

∫
X

χ∆1
· gk dMPQ

= lim

(∫
X

χ∆1 dMP

)(∫
X

gk dMQ

)
=

(∫
X

χ∆1
dMP

)(∫
X

χ∆2
dMQ

)
,

where all the limits are in the weak operator topology. It follows that

MPQ(∆1 ∩∆2) = MP (∆1)MQ(∆2).

M is the representing measure of ρ: By the linearity and the continuity
of ρ and

∫
, it suffices to consider the elements F ∈ C(X,C) ⊗ (W1)p of the

form f ⊗ P . By the construction of the measures FP , we have ρ(f ⊗ P ) =∫
X
f dFP =

∫
X

(f ⊗ P ) dM . Hence M represents ρ.



22 Aljaž Zalar

M is unique, regular and normalized: This follows from the uniqueness
and the regularity of each FP and the unitality of ρ. �

Corollary 9.2 is a slight generalization of Theorem 2.1, i.e., the map
ρ : C(X,C) ⊗W1 → W2 is replaced by the map ρ : C(X,W1) → W2. Note
that we also do not need the boundedness of ρ in the statement of Corollary
9.2, since it automatically follows by (1) or (2).

Corollary 9.2. Let X be a compact Hausdorff space, Bor(X) a Borel σ-algebra
on X, W1, W2 von Neumann algebras and

ρ : C(X,W1)→W2

a linear map. The following statements are equivalent.

1. ρ : C(X,W1)→W2 is a unital ∗-representation.
2. There exists a unique regular normalized non-negative spectral measure
M : Bor(X)→ B(W1,W2) such that

ρ(F ) =

∫
X

F dM

for every F ∈ C(X,W1).

Proof. Direction (2) ⇒ (1): We have to proof that ρ is multiplicative and
satisfies the ∗-condiditon. For the elements from the set C(X,C) ⊗W1 the
proof is the same as the proof of (2)⇒ (1) in Theorem 9.1. By the definition of
the integration with respect to M on a general element from the set C(X,W1)
(see (5.1)), it also follows for all elements from C(X,W1).

For the direction (1) ⇒ (2) we first notice that ρ is bounded by [4,
4.8. Theorem., p. 247]. Then we apply Theorem 9.1 to ρ|C(X,C)⊗W1

to obtain
the unique representing measure M for ρ|C(X,C)⊗W1

. For a general element F
from C(X,W1) there exists a sequence Fi ⊆ C(X,C)⊗W1 such that limi Fi =
F , where the limit is taken in the supremum norm. By the continuity of L, we
have L(F ) = limi L(Fi), where the limit is taken in the usual operator norm.
Again by the definition of the integration with respect to M on a general
element from the set C(X,W1) (see (5.1)),

∫
X
F dM = limi

∫
X
Fi dM . Hence

L(F ) =
∫
X
F dM . �

Remark 9.3. As in Remark 2.2.(1), there is a corresponding version of Corol-
lary 9.2 for a locally compact Hausdorff space X and linear maps of the form
ρ : C0(X,W1)→W2, where the set C0(X,W1) denotes elements of C(X,W1)
vanishing at infinity, i.e., F ∈ C0(X,W1) iff for every ε > 0 there exists a
compact set Kε, such that ‖F (x)‖ < ε for every x ∈ Kc

ε . Namely, for a locally
compact Hausdorff space X, unital ∗-representations ρ : C0(X,W1) → W2

are in one-to-one correspondence with the regular normalized non-negative
spectral measures M : Bor(X∞)→ B(W1,W2), where X∞ stands for the one
point compactification of X.
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