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Abstract. A ∗-linear map Φ between matrix spaces is positive if it maps positive

semidefinite matrices to positive semidefinite ones, and is called completely positive

if all its ampliations In ⊗ Φ are positive. In this article quantitative bounds on the

fraction of positive maps that are completely positive are proved. A main tool is the

real algebraic geometry techniques developed by Blekherman to study the gap between

positive polynomials and sums of squares. Finally, an algorithm to produce positive

maps that are not completely positive is given.

1. Introduction

For F ∈ {R,C} and n ∈ N, let Mn(F) be the vector space of n × n matrices over F
equipped with the involution ∗ which is conjugate transposition for F = C and trans-

position for F = R. Let Hn (resp. Sn) stand for its subspace {A ∈Mn(F) : A∗ = A} of

hermitian (resp. real symmetric) matrices. A matrix A ∈ Hn (resp. A ∈ Sn) is positive

semidefinite (psd) if and only if all of its eigenvalues are nonnegative; equivalently,

v∗Av ≥ 0 for all v ∈ Fn. We write A ⪰ 0. A linear map Φ : S → T between matrix

spaces is ∗-linear if Φ(A∗) = Φ(A)∗ for all A ∈ S. It is positive if Φ(A) ⪰ 0 for every

A ⪰ 0 in its domain S. For k ∈ N, a ∗-linear map Φ : S → T induces a ∗-linear map

Φ(k) :Mk(F)⊗ S =Mk(S) →Mk(F)⊗ T =Mk(T ), M ⊗ A 7→M ⊗ Φ(A)

where ⊗ stands for the Kronecker tensor product of matrices. A ∗-linear map Φ is k-

positive if Φ(k) is positive. If Φ is k-positive for every k ∈ N, then Φ is completely

positive (cp). Obviously, every cp map is positive, and the transpose map M2(F) →
M2(F) is positive but not 2-positive and thus not cp.

Positive maps occur frequently in matrix theory [Hog14, Wor76] and functional anal-

ysis (e.g., positive linear functionals). Cp maps are ubiquitous in quantum physics

(where they are called quantum channels or operations) [NC10], and operator alge-

bra [Pau02]. Both types of maps are also important topics in random matrix theory

and free probability [VDN92]. In quantum information theory cp maps are used to

describe the quantum mechanical generalization of a noisy channel. The Stinespring
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representation theorem [Pau02, Theorem 4.1] provides the justification for their phys-

ical interpretation as reduction of a unitary evolution to a subsystem. Positive maps

that are not cp do not possess such physical realizability, since they may fail to pre-

serve positivity on entangled states. However, they do preserve positivity on separa-

ble states, and thus are of great importance for detecting entanglement of a system.

We refer to [AS06, ASY14, HSR03, P-GWPR06, SWŻ11] for a small sample of the

vast quantum information theory literature on entanglement breaking maps; see also

[JKPR11, Stø08, PTT11]. Verifying whether a linear map is positive is computationally

intractable; numerical algorithms, based on Lasserre’s [Las09] polynomial sum of squares

relaxations for detecting positivity are given in [NZ16].

Recently Collins, Hayden, Nechita [CHN17] studied entanglement breaking maps from

a free probability viewpoint [VDN92] using von Neumann algebras. Among other results

they present random techniques for constructing k-positive maps that are not k + 1-

positive in large dimensions [CHN17, Theorem 4.2]. The gap between positive and cp

maps was also investigated by Arveson [Arv09a, Arv09b], and Aubrun, Szarek, Werner,

Ye, Życzkowski [SWŻ08, ASY14]. Arveson used operator algebra to establish:

Theorem 1.1 (Arveson [Arv09a]). Let n,m ≥ 2. Then the probability p that a positive

map φ :Mn(C) →Mm(C) is cp satisfies 0 < p < 1.

Remark 1.2. Theorem 1.1 is established by considering the dual problem to estimating

the probability that a positive map φ : Mn(C) → Mm(C) is cp, which is to estimate

the probability that a random state on Mn(C) ⊗Mm(C) is separable. Now we briefly

explain the probability distribution on the state space from [Arv09a]. Arveson introduces

a compact Riemannian manifold V of dimension n2(2m− 1) on which the unitary group

U(nm) acts as a transitive group of isometries and induces a probability measure on V .
The state space can be parametrized as the orbit space of the subgroup {[λijIm]ni,j=1 : λij ∈
C} of U(nm) where Im stands for the identity m × m matrix, and as such inherits the

probability measure from V which is the underlying measure in Theorem 1.1.

Szarek, Werner and Życzkowski use classical convexity and geometry of Banach spaces

to improve upon Arveson’s results by providing quantitative bounds on the probability p

(in the case where n = m) and establish its asymptotic behavior, see [SWŻ08, Theorem 5].

In this paper we investigate the gap between positive and completely positive maps by

translating the problem into the language of real algebraic geometry [BCR98].

1.1. Main results and reader’s guide. The contribution of this paper is threefold.

First, we will study nonnegative biquadratic biforms that are not sums of squares by

estimating volumes of appropriate cones of positive polynomials. The study of positive

polynomials is one of the pillars of real algebraic geometry, starting with Artin’s solution

of Hilbert’s 17th problem, cf. [Mar08, Lau09, Rez95, Put93, Sce09, Scw03, KS10, Pow11,

Cim12, Oza13]. To estimate the ratio between compact base sections of the cones of

sums of squares biforms and nonnegative biquadratic biforms we shall employ powerful

techniques, based on harmonic analysis and classical convexity, developed by Blekherman

[Ble06] and Barvinok-Blekherman [BB05].

Let R[x, y] be the vector space of real polynomials in the variables x := (x1, . . . , xn)

and y := (y1, . . . , ym). Let R[x, y]k1,k2 be the subspace of biforms of bidegree (k1, k2),

i.e., polynomials from R[x, y] that are homogeneous of degree k1 in x and of degree k2 in
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y. Note that the dimension of R[x, y]k1,k2 is equal to
(
n+k1−1

k1

)(
m+k2−1

k2

)
. Let

Pos
(n,m)
(2k1,2k2)

= {f ∈ R[x, y]2k1,2k2 : f(x, y) ≥ 0 for all (x, y) ∈ Rn × Rm} ,(1.1)

Sos
(n,m)
(2k1,2k2)

=

{
f ∈ R[x, y]2k1,2k2 : f =

∑
i

f 2
i for some fi ∈ R[x, y]k1,k2

}
,(1.2)

be the cone of nonnegative biforms and the cone of sums of squares biforms; respectively.

In all but a few stray cases the cone of sums of squares biforms is strictly contained in

the cone of nonnegative biforms.

Theorem 1.3 (Choi, Lam, Reznick [CLR80, Theorem 8.4]). Let n,m ≥ 2. Then

Pos
(n,m)
(2k1,2k2)

= Sos
(n,m)
(2k1,2k2)

if and only if n = 2 and k2 = 1 or m = 2 and k1 = 1.

We shall estimate the gap between the cones Pos
(n,m)
(2k1,2k2)

and Sos
(n,m)
(2k1,2k2)

by comparing

volumes of compact sections of these cones obtained by intersecting each with a suitably

chosen affine hyperplane H(n,m)
(2k1,2k2)

⊂ R[x, y]2k1,2k2 . Let T := Sn−1×Sm−1 and consider the

product measure σ = σ1 × σ2 on T , where Sn−1 ⊆ Rn, Sm−1 ⊆ Rm are the unit spheres

and σ1, σ2 are the normalized Lebesgue measures on Sn−1 and Sm−1, respectively. The

Lp norm of a biform f ∈ R[x, y]2k1,2k2 on T is given by

∥f∥pp =
∫
T

|f |p dσ =

∫
x∈Sn−1

(∫
y∈Sm−1

|f(x, y)|p dσ2(y)
)

dσ1(x),

while the supremum norm by

∥f∥∞ := max
(x,y)∈T

|f(x, y)|.

Let H(n,m)
(2k1,2k2)

be the hyperplane of biforms from R[x, y]2k1,2k2 of average 1 on T , i.e.,

H(n,m)
(2k1,2k2)

=

{
f ∈ R[x, y]2k1,2k2 :

∫
T

f dσ = 1

}
.

Let
(
Pos

(n,m)
(2k1,2k2)

)′
and

(
Sos

(n,m)
(2k1,2k1)

)′
be the sections of the cones Pos

(n,m)
(2k1,2k2)

and Sos
(n,m)
(2k1,2k2)

,(
Pos

(n,m)
(2k1,2k2)

)′
= Pos

(n,m)
(2k1,2k2)

⋂
H(n,m)

(2k1,2k2)
,(

Sos
(n,m)
(2k1,2k2)

)′
= Sos

(n,m)
(2k1,2k2)

⋂
H(n,m)

(2k1,2k2)
.

Thus
(
Pos

(n,m)
(2k1,2k2)

)′
and

(
Sos

(n,m)
(2k1,2k2)

)′
are convex and compact full-dimensional sets in the

finite dimensional hyperplane H(n,m)
(2k1,2k2)

. For technical reasons we translate these sections

by subtracting the polynomial (
∑n

i=1 x
2
i )

k1(
∑m

j=1 y
2
j )

k2 , i.e.,

P̃os
(n,m)

(2k1,2k1)
=

{
f ∈ R[x, y]2k1,2k2 : f + (

n∑
i=1

x2i )
k1(

m∑
j=1

y2j )
k2 ∈

(
Pos

(n,m)
(2k1,2k2)

)′}
,

S̃os
(n,m)

(2k1,2k2)
=

{
f ∈ R[x, y]2k1,2k2 : f + (

n∑
i=1

x2i )
k1(

m∑
j=1

y2j )
k2 ∈

(
Sos

(n,m)
(2k1,2k2)

)′}
.
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Let M := M(n,m)
(2k1,2k2)

be the hyperplane of biforms from R[x, y]2k1,2k2 with average 0 on T ,

(1.3) M =

{
f ∈ R[x, y]2k1,2k2 :

∫
T

f dσ = 0

}
.

Notice that

P̃os
(n,m)

(2k1,2k1)
⊆ M and S̃os

(n,m)

(2k1,2k1)
⊆ M.

The natural L2 inner product in R[x, y]2k1,2k2 is defined by

⟨f, g⟩ =
∫
T

fg dσ.

With this inner product M is a Hilbert subspace of R[x, y]2k1,2k2 of dimension DM and

so it is isomorphic to RDM as a Hilbert space. Let SM, BM be the unit sphere and the

unit ball in M, respectively. Let ψ : RDM → M be a unitary isomorphism and ψ∗µ the

pushforward of the Lebesgue measure µ on RDM to M, i.e., ψ∗µ(E) := µ(ψ−1(E)) for

every Borel measurable set E ⊆ M.

Lemma 1.4. The measure of a Borel set E ⊆ M does not depend on the choice of

the unitary isomorphism ψ, i.e., if ψ1 : RDM → M and ψ2 : RDM → M are unitary

isomorphisms, then (ψ1)∗µ(E) = (ψ2)∗µ(E).

Proof. We have

(ψ2)∗µ(E) = µ(ψ−1
2 (E)) = µ((ψ−1

2 ◦ ψ1 ◦ ψ−1
1 )(E)) = µ((ψ−1

2 ◦ ψ1)(ψ
−1
1 (E)))

= µ(ψ−1
1 (E)) = (ψ1)∗µ(E),

where the first equality in the second line holds since ψ−1
2 ◦ ψ1 is a linear isometry and µ

is the Lebesgue measure.

The bounds for the volume of the section of nonnegative biforms are as follows.

Theorem 1.5. For n,m ∈ N we have

c2k1,2k2 ≤

Vol P̃os
(n,m)

(2k1,2k2)

VolBM

 1
DM

≤ 2

(
min

(
2k21

2k21 + n
,

2k22
2k22 +m

)) 1
2

,

where

c2k1,2k2 =

{
33 · 10− 20

9 max(n,m)−
1
2 , if k1 = k2 = 1

exp(−3) (2⌈max(n,m) ln(2max(k1, k2) + 1)⌉)−
1
2 , otherwise.

Next we give bounds for the volume of the section of sums of squares biforms.

Theorem 1.6. For integers n,m ≥ 3 we have

d2k1,2k2 ≤

Vol S̃os
(n,m)

(2k1,2k2)

VolBM

 1
DM

≤ e2k1,2k2 ,
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where

d2k1,2k2 =

 2−8 · 6− 1
2 ·

√
nm+n+m

(n+4)(m+4)
, if k1 = k2 = 1

(k1! k2!)
3
2

2
√
6·42k1+2k2 ·

√
(2k1)! (2k2)!

n
k1
2 m

k2
2

(n
2
+2k1)k1 (

m
2
+2k2)k2

, otherwise
,

e2k1,2k2 =

{
210

√
6 · 1√

nm+n+m
, if k1 = k2 = 1

2
√
6 · 42k1+2k2 ·

√
(2k1)! (2k2)!

k1! k2!
· n− k1

2 m− k2
2 , otherwise

.

Combining the previous two theorems we obtain:

Corollary 1.7. For integers n,m ≥ 3 we have

f2k1,2k2 ≤

Vol S̃os
(n,m)

(2k1,2k2)

Vol P̃os
(n,m)

(2k1,2k2)

 1
DM

≤ g2k1,2k2 ,

where

f2k1,2k2 =


3
√
3

21072
√

min(n,m)
, if k1 = k2 = 1

C2k1,2k2 ·

(
nk1mk2

(
2+max

(
n

k21
, m
k22

))) 1
2

(n
2
+2k1)k1 (

m
2
+2k2)k2

, otherwise,

g2k1,2k2 =

 212·52·6
1
2 ·10

2
9

33·
√

min(n,m)+1
, if k1 = k2 = 1

D2k1,2k2 · (nk1−1mk2−1min(n,m))−
1
2 , otherwise,

and

C2k1.2k2 =
2 · (k1! k2!)

3
2

√
3 · 42(k1+k2+1) ·

√
(2k1)! (2k2)! ·min(k1, k2)

,

D2k1,2k2 =
√
3 · e3 · 42k1+2k2+1 ·

√
(2k1)! (2k2)!

k1! k2!
⌈ln(2max(k1, k2) + 1)⌉.

Proof. For the case k1 = k2 = 1 see Theorem 3.2. For the other constants f2k1,2k2 , g2k1,2k2 ,

C2k1,2k2 , D2k1,2k2 combine Theorems 1.5 and 1.6 together with the estimate ⌈Nt⌉ ≤ N⌈t⌉,
used for N = max(n,m) and t = ln(2max(k1, k2) + 1).

Section 2 is devoted to Theorems 1.5 and 1.6. The proof of Theorem 1.5 is given

in Subsection 2.1, while for the proof of Theorem 1.6 we need some preliminary results

about the apolar inner product on the vector space of biforms introduced and studied in

Subsection 2.2. Finally, Theorem 1.6 is established in Subsection 2.3.

The second contribution of the paper is the estimate on the gap between the cones of

positive and completely positive maps. By converting the problem into the language of

real algebraic geometry, the following estimate will follow from Theorems 1.5 and 1.6 by

choosing k1 = k2 = 1.

Corollary 1.8. For integers n,m ≥ 3 the probability pn,m that a positive map Φ : Sn → Sm

is completely positive, is bounded by(
3
√
3

210 · 72 ·
√

min(n,m)

)DM

< pn,m <

(
212 · 52 · 6 1

2 · 10 2
9

33 ·
√
min(n,m) + 1

)DM

,
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where DM =
(
n+1
2

)(
m+1
2

)
− 1. In particular, if min(n,m) ≥ 225·54·10

4
9

35
, then

lim
max(n,m)→∞

pn,m = 0.

Here, the probability pn,m is defined as the ratio between the volumes of the sections

S̃os
(n,m)

(2,2) and P̃os
(n,m)

(2,2) in M.

Remark 1.9.

(1) Szarek, Werner, and Życzkowski in [SWŻ08] provide bounds similar to those in

Corollary 1.8 in the case of complex matrix algebras with n = m. However, their

normalization is different from ours. We normalize using tr(Φ(In)) = nm (see

Proposition 3.4), whereas in [SWŻ08] the compact cross-section is obtained by

fixing tr(Φ(In)) = n.

(2) We note that the normalized probability pn,m
1

DM (as in Corollary 1.8) does not go

to 0 if min(m,n) is bounded and max(m,n) → ∞.

Section 3 converts the positive–cp gap problem into the language of real algebraic

geometry [BCR98]. To each linear map Φ : Sn → Sm we associate the biquadratic biform

pΦ ∈ R[x, y], pΦ = y∗Φ(xx∗)y. Then Φ is positive if and only if pΦ is nonnegative on Rn+m,

and Φ is cp if and only if pΦ is a sum of squares of polynomials, see Proposition 3.1 below.

Therefore positive maps that are not cp correspond exactly to nonnegative biquadratic

biforms that are not sums of squares biforms. We note that a different connection between

(completely) positive maps and real algebraic geometry was introduced and investigated

in [HKM13, HKM17].

The third contribution of the paper is the construction (from random input data) of

positive maps Φ : Sn → Sm (n,m ≥ 3) that are not completely positive, see Section

4. Again, by Proposition 3.1, it suffices to construct nonnegative biquadratic biforms

that are not sums of squares biforms. This construction is done in Algorithm 4.1 by

specializing the [BSV16] algorithm to our context. Algorithm 4.1 depends on semidefinite

programming [WSV00], so produces a floating point output. We discuss implementation

and rationalization, i.e., producing exact output, in Subsection 4.5.

1.1.1. Positive but not completely positive maps on full matrix algebras Mn(F). The coun-

terpart of Corollary 1.8 that gives the upper bound for the probability pFn,m that a random

positive map Φ :Mn(F) →Mm(F) is completely positive is the following.

Theorem 1.10. For integers n,m ≥ 3, the probability pFn,m that a random positive map

Φ :Mn(F) →Mm(F) is completely positive, is bounded above by

pFn,m <

(
C

min(n,m)− 1
2

)DMCF
2

,

where C :=
(228−dimR F)·54·10

4
9

35
and DMCF

=

{
n2m2 − 1, if F = C,
nm(nm+1)

2
− 1, if F = R.

Theorem 1.10 is established in Subsection 3.3 as a corollary of the extensions (in Sub-

section 2.4) of the special case k1 = k2 = 1 of Theorems 1.5 and 1.6 from real biforms to
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symmetric multiforms of multidegree (1, 1, 1, 1), i.e.,

SymF[z, z, w, w]1,1,1,1 :=

{
n∑

i,j=1

m∑
k,ℓ=1

aijkℓzizjwkwℓ : aijkℓ ∈ F, aijkℓ = ajiℓk for all i, j, k, ℓ

}
.

By extending a positive map Φ : Sn → Sm that is not completely positive with a linear

map Ψ : Kn → Km where Kn stands for the vector space {A ∈Mn(R) | A∗ = −A} of real

antisymmetric n×n matrices, one obtains a positive map Γ := Φ⊕Ψ :Mn(R) →Mm(R)
that is not completely positive. The complexification (Φ⊕ 0)C :Mn(C) →Mm(C) where
0 : Kn → Km stands for the trivial map, i.e., ker0 = Kn, is a positive map that is not

completely positive. Thus, the algorithm from Section 4 can also be used to produce

positive maps Φ :Mn(F) →Mm(F) that are not completely positive.

1.1.2. Comparison with the original work of Blekherman. In [Ble06] Blekherman estab-

lished estimates on the volumes of compact sections of the cones of nonnegative forms and

sums of squares forms. If the degree is fixed and the number of variables goes to infinity

the ratio between the volumes goes to 0. We restrict ourselves to special subcones of these

cones, i.e., the cones of nonnegative biforms and sums of squares biforms. It is not clear

how to directly apply the estimates from [Ble06] to this special case. In fact, [BR+] gives

the example of symmetric nonnegative forms vs sums of squares, where the ratio between

the corresponding volumes behaves differently, i.e., does not tend to 0. Regarding biforms

as tensor products of forms we establish estimates for biforms following the techniques

of [Ble06]. In [BSV16] there is an explicit construction of nonnegative quadratic forms

on special projective varieties that are not sums of squares forms. We specialize their

construction to the context of biquadratic biforms to produce nonnegative biforms that

are not sums of squares biforms.

Recently, Ergür posted the preprint [Erg+] on arXiv. There he extends some of Blekher-

man’s volume estimates to biforms; like our results in Section 2 his results readily gener-

alize to multiforms. While there is certain overlap with our results, we explicitly compute

all constants appearing in the estimates. Furthermore, some of our estimates are strictly

better than the ones of [Erg+]; cf. Theorem 2.1 and [Erg+, Section 3].

Acknowledgments. The authors thank Greg Blekherman for many inspiring discussions

and for bringing the preprint [Erg+] to their attention. Thanks to Benoit Collins for

helpful suggestions. We also thank the anonymous referees whose useful comments and

interesting questions led to marked improvement in the manuscript.

2. Blekherman type estimates for biforms

In this section we extend the estimates on the volumes of compact sections of the cones

of nonnegative forms and sums of squares forms established in [Ble06] to biforms. Our

proofs borrow heavily from [Ble06] and to a lesser extent from [BB05]. For clarity and

completeness of exposition we give proofs with all the details, even if some of the reasoning

repeats arguments from [Ble06].

At various places we will regard the vector space R[x, y]2k1,2k2 of biforms of bidegree

(2k1, 2k2) as a module over the product SO(n) × SO(m) of special orthogonal groups

with the action given by rotating the coordinates, i.e., for (A,B) ∈ SO(n)× SO(m) and
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f ∈ R[x, y]2k1,2k2 we define

(2.1) (A,B) · f(x, y) = f(A−1x, B−1y).

Note that the cones Pos
(n,m)
(2k1,2k2)

and Sos
(n,m)
(2k1,2k2)

, and the sections P̃os
(n,m)

(2k1,2k2)
and S̃os

(n,m)

(2k1,2k2)

are invariant under this action.

2.1. Nonnegative biforms. In this subsection we establish bounds for the volume of

the section of nonnegative biforms. The main result is the following.

Theorem 2.1. For n,m ∈ N we have:

c2k1,2k2 ≤

Vol P̃os
(n,m)

(2k1,2k2)

VolBM

 1
DM

≤ 2

(
min

(
2k21

2k21 + n
,

2k22
2k22 +m

)) 1
2

,

where

c2k1,2k2 =

{
33 · 10− 20

9 max(n,m)−
1
2 , if k1 = k2 = 1

exp(−3) (2⌈max(m,n) ln(2max(k1, k2) + 1)⌉)−
1
2 , otherwise.

The proof of Theorem 2.1 occupies the next two subsections. It is inspired by Blekher-

man’s proof of [Ble06, Theorem 4.1].

Let V be a real vector space. Recall that, for a convex body K with the origin in its

interior, the gauge GK is defined by

GK : V → R, GK(p) = inf {λ > 0: p ∈ λ · K} .

Lemma 2.2. Let p, q ∈ N be natural numbers such that p > q. For every natural number

n ∈ N we have (
pn

qn

) 1
qn

<
p

q

(
p

p− q

) p−q
q

.

Proof. Using Stirling’s approximation [Fel68, inequality (9.14)]

√
2π · nn+ 1

2 · exp
(
−n+

1

12n+ 1

)
< n! <

√
2π · nn+ 1

2 · exp
(
−n+

1

12n

)
in
(
pn
qn

)
, we obtain

(2.2)

(
pn

qn

)
=

(pn)!

(qn)!((p− q)n)!
<

(
p

2πq(p− q)n

) 1
2

· exp (f(p, q, n)) ·
(

pp

qq(p− q)p−q

)n

,

where

f(p, q, n) :=
1

12pn
− 1

12qn+ 1
− 1

12(p− q)n+ 1
.

Claim: Let p, q, n ∈ N be natural numbers with p > q. Then

exp (f(p, q, n)) < 1 and
p

2πq(p− q)n
< 1.

Note that f(p, q, n) < 0 and hence exp (f(p, q, n)) < 1. To prove the other inequality

in the claim first notice that it suffices to assume that n = 1 and then we have that

(2.3)
p

2πq(p− q)
< 1 ⇔ p < 2πq(p− q) ⇔ 2πq2 < p(2πq − 1).
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Now since q + 1 ≤ p it follows that

2πq2 < 2πq2 + 2πq − (q + 1) = (q + 1)(2πq − 1) ≤ p(2πq − 1).

Using this together with the equivalences (2.3) concludes the proof of the claim.

Using the Claim in the inequality (2.2) it follows that(
pn

qn

)
<

(
pp

qq(p− q)p−q

)n

=

(
p

q

)qn(
p

p− q

)(p−q)n

,

which proves the lemma.

2.1.1. Proof of the lower bound in Theorem 2.1. We denote K = P̃os
(n,m)

(2k1,2k2)
. Note that K

is a convex body in M with origin in its interior and the boundary of K consists of biforms

with minimum −1 on T . Indeed, it is easy to see that K consists exactly of biforms from

M with minimum at least −1 on T and that every biform with minimum −1 on T belongs

to its boundary. However, if f ∈ K satisfies mf := min(x,y)∈T f(x, y) > −1, then the ball

B(f,mf + 1) := {g ∈ R[x, y]2k1,2k2 : ∥f − g∥∞ < mf + 1}

also belongs to K and hence f belongs to the interior of K. Therefore the gauge GK :

M → R of K in M is given by

GK(f) = |min
v∈T

f(v)| for f ∈ M.

Let µ̃ be the rotation invariant probability measure on SM. By [Pis89, p. 91],(
VolK
VolBM

) 1
DM

=

(∫
SM

G−DM
K dµ̃

) 1
DM

.

By Hölder’s inequality we have(∫
SM

G−DM
K dµ̃

) 1
DM

≥
∫
SM

G−1
K dµ̃,

and so (
VolK
VolBM

) 1
DM

≥
∫
SM

G−1
K dµ̃.

By Jensen’s inequality (applied to the convex function y = 1
x
on R>0),∫

SM

G−1
K dµ̃ ≥

(∫
SM

GKdµ̃

)−1

.

Since ∥f∥∞ = maxv∈T |f(v)| ≥ |minv∈T f(v)|, it follows that(
VolK
VolBM

) 1
DM

≥
(∫

SM

∥f∥∞ dµ̃

)−1

.

The proof of the lower bound in Theorem 2.1 now reduces to proving the following claim.

Claim 1:

∫
SM

∥f∥∞ dµ̃ ≤ 1

c2k1,2k2
.
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To prove this claim we will use [Bar02, Corollary 2]. Write G = SO(n) × SO(m) and

consider the tensor product (Rn)⊗2k1 ⊗ (Rm)⊗2k2 . Let e1 ∈ Rn, f1 ∈ Rm be standard unit

vectors and let w be the tensor

w := (e1)
⊗2k1 ⊗ (f1)

⊗2k2 ∈ (Rn)⊗2k1 ⊗ (Rm)⊗2k2 .

We also define

v := w − q, where q =

∫
(g,h)∈G

(g, h)w d(g, h),

and we integrate w.r.t. the Haar measure on G. Similarly as in [BB05, Example 1.2] we

proceed as follows:

(1) We identify the vector space of biforms from R[x, y]2k1,2k2 with the vector space V1
of the restrictions of linear functionals ℓ : (Rn)⊗2k1 ⊗ (Rm)⊗2k2 → R to the orbit

{(g, h)w : (g, h) ∈ G} .
(2) We identify the vector space of biforms from M with the vector space V2 of the

restrictions of linear functionals ℓ : (Rn)⊗2k1 ⊗ (Rm)⊗2k2 → R to

B = conv((g, h)v : (g, h) ∈ G).

(3) We introduce an inner product on V2 by defining

⟨ℓ1, ℓ2⟩ :=
∫
G

ℓ1((g, h)v) · ℓ2((g, h)v) d(g, h).

This inner product also induces the dual inner product on V ∗
2
∼= V2 which we also

denote by ⟨·, ·⟩.
By [Bar02, Corollary 2],

∥f∥∞ ≤ (Dk)
1
2k · ∥f∥2k ,

where Dk = dim span{(g, h)w⊗k : (g, h) ∈ G}. Clearly,

Dk = dim span{ge⊗2k1k
1 : g ∈ SO(n)} · dim span{hf⊗2k2k

1 : h ∈ SO(m)}

=

(
2k1k + n− 1

2k1k

)(
2k2k +m− 1

2k2k

)
,

where the second equality follows as in [Bar02, p. 404].

(2.4) Dk =

(
2k1k + n− 1

2k1k

)(
2k2k +m− 1

2k2k

)
≤
(
2max(k1, k2)k +max(n,m)− 1

2max(k1, k2)k

)2

.

We now distinguish two cases.

Case 1: k1 = k2 = 1.

If max(n,m) is odd, we let 2k0 = 9(max(n,m)− 1). Otherwise take 2k0 = 9max(n,m)

to get

D
1

2k0
k0

≤
(

20
9
k0

2k0

) 1
k0

.

Since 2k0 = 9ℓ0 for some ℓ0 ∈ N we get

D
1

2k0
k0

≤
(
10ℓ0
9ℓ0

) 2
9ℓ0

≤
(
10

9
· 10

1
9

)2

,
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where we used Lemma 2.2 in the last inequality.

Case 2: k1 > 1 or k2 > 1.

Claim 2: For k0 ≥ ⌈max(m,n) ln(2max(k1, k2) + 1)⌉,

D
1

2k0
k0

≤ exp(3).

We define the function

H(x) = −x ln(x)− (1− x) ln(1− x) for x ∈ (0, 1).

For λ ∈
(
0, 1

2

]
we have the estimate

1 = (λ+ (1− λ))n =
n∑

i=0

(
n

i

)
λi(1− λ)n−i =

n∑
i=0

(
n

i

)
(1− λ)n

(
λ

1− λ

)i

>

⌊λn⌋∑
i=0

(
n

i

)
(1− λ)n

(
λ

1− λ

)λn

=

⌊λn⌋∑
i=0

(
n

i

)
exp(−nH(λ)),

where we used that λ
1−λ

≤ 1 for λ ∈ (0, 1
2
] in the inequality. It follows that(

a

b

)
≤ exp

(
aH

(
b

a

))
for a, b ∈ N and b ≤ ⌊a

2
⌋.

Since
(
a
b

)
=
(

a
a−b

)
and H

(
b
a

)
= H

(
a−b
a

)
, we conclude

(2.5)

(
a

b

)
≤ exp

(
aH

(
b

a

))
for a, b ∈ N and b ≤ a.

Writing C1 = max(k1, k2), C2 = max(m,n) and using (2.4), (2.5) we get

D
1
2k
k ≤

(
exp

(
(2C1k + C2 − 1)H

(
2C1k

2C1k + C2 − 1

))) 1
k

= exp

(
2C1 ln

(
1 +

C2 − 1

2C1k

)
+
C2 − 1

k
ln

(
1 +

2C1k

C2 − 1

))
= exp

(
2C1 ln

(
1 +

C2 − 1

2C1k

))
· exp

(
C2 − 1

k
ln

(
1 +

2C1k

C2 − 1

))
≤ exp

(
C2 − 1

k

)
· exp

(
C2 − 1

k
ln

(
1 +

2C1k

C2 − 1

))
,

where we used ln(1 + x) ≤ x for x > −1 in the second inequality. Let as assume that

k0 ≥ ⌈C2 ln(2C1 + 1)⌉.

Then

exp

(
C2 − 1

k0

)
< exp(1),

since k0 ≥ C2. To prove Claim 2 it remains to establish

(2.6) exp

(
C2 − 1

k0
ln

(
1 +

2C1k0
C2 − 1

))
≤ exp(2).
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Notice that (2.6) holds if and only if

ln

(
1 +

2C1k0
C2 − 1

)
≤ 2k0
C2 − 1

.

Now

ln

(
1 +

2C1k0
C2 − 1

)
≤︸︷︷︸

k0≥C2

ln

(
(2C1 + 1)k0
C2 − 1

)
.

Thus it suffices to prove that

ln

(
(2C1 + 1)k0
C2 − 1

)
≤ 2k0
C2 − 1

,

or equivalently

(C2 − 1)

(
ln (2C1 + 1) + ln

(
k0

C2 − 1

))
≤ 2k0.

Using ln(x) ≤ x− 1 < x for x > 0 we estimate the left hand side from above by

(C2 − 1) ln (2C1 + 1) + k0

and since

(C2 − 1) ln (2C1 + 1) + k0 ≤ 2k0

if and only if

(C2 − 1) ln (2C1 + 1) ≤ k0,

(2.6) holds. Hence Claim 2 follows.

To prove Claim 1 it remains to estimate the average L2k0 norm, i.e.,

(2.7) A =

∫
SM

∥f∥2k0 dµ̃ =

∫
SM

(∫
T

f 2k0 dσ

) 1
2k0

dµ̃.

Notice that

(2.8)

∫
SM

(∫
T

f 2k0 dσ

) 1
2k0

dµ̃ =

∫
SV2

(∫
G

⟨c, (g, h)v⟩2k0d(g, h)
) 1

2k0

dc,

where SV2 is the unit sphere in V2 endowed with the rotation invariant probability measure

c. Combining (2.7), (2.8) we obtain

A =

∫
SV2

(∫
G

⟨c, (g, h)v⟩2k0d(g, h)
) 1

2k0

dc ≤

√
2k0⟨v, v⟩
DM

=
√

2k0,

where we used [BB05, Lemma 3.5] for the inequality and [BB05, Remark p. 62] for the

last equality. This equality proves Claim 1 and establishes the lower bound in Theorem

2.1.
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2.1.2. Proof of the upper bound in Theorem 2.1. Before proving the upper bound in Theo-

rem 2.1 we introduce the gradient inner products needed in the proof. Let f ∈ R[x, y]2k1,2k2
be a biform. For every fixed y ∈ Rm we define a form f y ∈ R[x]2k1 by

f y(x) := f(x, y).

Recall [Ble06, p. 367] that the gradient inner product on R[x]2k1 is defined by

⟨h1, h2⟩gr =
1

4k21

∫
Sn−1

⟨∇h1,∇h2⟩ dσ1 for h1, h2 ∈ R[x]2k1 ,

where

∇h = (
∂h

∂x1
, . . . ,

∂h

∂xn
) for h ∈ R[x]2k1 and ⟨∇h1,∇h2⟩ =

n∑
i=1

∂h1
∂xi

∂h2
∂xi

.

We define the x-gradient inner product on R[x, y]2k1,2k2 by

⟨f, g⟩grx =
∫
Sm−1

⟨f y, gy⟩gr dσ2(y).

Note that positive definiteness follows by noticing that if f ∈ R[x, y]2k1,2k2 is a nonzero

biform, then there exists (x, y) ∈ Sn−1 × Sm−1 such that f(x, y) ̸= 0. By continuity it

follows that f y0 is nonzero for every y0 in some neighbourhood of y. Thus ⟨f y0 , f y0⟩gr > 0

for every y0 in some neighbourhood of y. Hence ⟨f, f⟩grx > 0.

Let ∥f∥grx be the x-gradient norm of f and let Bgrx be the unit ball in the x-gradient

norm.

Proof of the upper bound in Theorem 2.1. Let P̃os◦ denote the polar dual of the section

P̃os
(n,m)

(2k1,2k2)
in M,

P̃os◦ =
{
f ∈ M : ⟨f, g⟩ ≤ 1 for all g ∈ P̃os

(n,m)

(2k1,2k2)

}
.

By the Blaschke-Santaló inequality [MP90] applied to P̃os
(n,m)

(k1,k2)
we get that

(2.9) Vol
(
P̃os

(n,m)

(2k1,2k2)

)
Vol
(
P̃os◦

)
≤ (VolBM)2 .

(Note that for the validity of (2.9) we used the fact that the origin is the Santaló point

of P̃os
(n,m)

(2k1,2k2)
. This fact follows by observing that the origin is the unique point in the

convex body P̃os
(n,m)

(2k1,2k2)
fixed by the action of SO(n)×SO(m) and that P̃os

(n,m)

(2k1,2k2)
is also

invariant under the action of SO(n)× SO(m).) Hence it suffices to prove that

(2.10)

(
Vol P̃os◦

VolBM

) 1
DM

≥ 1

2

(
max

(
2k21 + n

2k21
,
2k22 +m

2k22

)) 1
2

.

Let B∞ be the unit ball of the supremum norm in M. We notice that

B∞ = P̃os
(n,m)

(2k1,2k2)

⋂
−P̃os

(n,m)

(2k1,2k2)
,

and by taking polar duals we get

B◦
∞ = ConvexHull{P̃os◦,−P̃os◦}

By a theorem of Rogers and Shephard [RS58, Theorem 3], it follows that

VolB◦
∞ ≤ 2DM Vol P̃os◦.
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Thus

(2.11)

(
Vol P̃os◦

VolB◦
∞

) 1
DM

≥ 1

2
.

Using (2.10) and (2.11) the proof of the upper bound in Theorem 2.1 reduces to estab-

lishing

(2.12)

(
VolB◦

∞
VolBM

) 1
DM

≥
(
max

(
2k21 + n

2k21
,
2k22 +m

2k22

)) 1
2

.

Claim:

(
VolB◦

∞
VolBM

) 1
DM

≥
(
2k21 + n

2k21

) 1
2

.

We estimate

(2.13) ∥f∥∞ = max
y∈Sm−1

(
max

x∈Sn−1
|f y(x)|

)
≥ max

y∈Sm−1
∥f y(x)∥gr ≥ ∥f∥grx ,

where the first inequality follows by [Kel28, Theorem IV],

∥⟨∇f y,∇f y⟩∥∞ ≤ 4k21 ∥f y∥2∞ .

Using (2.13) we get the inclusion

(2.14) B∞ ⊆ Bgrx and hence B◦
grx

⊆ B◦
∞,

where B◦
∞ and B◦

grx
are the polar duals of B∞ and Bgrx , respectively. Since Bgrx is an

ellipsoid (the x-gradient norm is induced from an inner product), we deduce

VolB◦
grx

=
(VolBM)2

VolBgrx

and hence by (2.14),

VolB◦
∞ ≥ (VolBM)2

VolBgrx

.

Therefore the proof of the Claim reduces to showing that

⟨f, f⟩grx ≥
2k21 + n

2k21
⟨f, f⟩ .

We estimate

⟨f, f⟩grx =

∫
Sm−1

⟨f y, f y⟩gr dσ2(y)

≥ 2k21 + n

2k21

∫
Sm−1

⟨f y, f y⟩ dσ2(y) =
2k21 + n

2k21
⟨f, f⟩ ,

where the inequality follows by [Ble06, (4.3.1)]. This proves the Claim.

By interchanging the roles of x and y in the Claim we also obtain the inequality(
VolB◦

∞
VolBM

) 1
DM

≥
(
2k22 +m

2k22

) 1
2

,

which proves (2.12) and concludes the proof of the upper bound in Theorem 2.1.
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2.2. The apolar inner product on R[x, y]2k1,2k2. Before tackling the bounds for the

volume of the section of sum of squares biforms we have to extend some of the results on

the apolar inner product given in [Ble06, §5].
For technical reasons we identify R[x, y]2k1,2k2 with R[x]2k1 ⊗R[y]2k2 in the natural way.

Recall from [Rez92, p. 11] that for a form

r =
∑

α=(i1,...,in)

cαx
i1
1 · · ·xinn ∈ R[x]2k1 ,

the associated differential operator Dx
r is defined by

Dx
r =

∑
α=(i1,...,in)

cα
∂i1

∂xi11
· · · ∂

in

∂xinn
.

The operator Dx
r induces the inner product on R[x]2k1 , called the x-apolar inner prod-

uct, defined by

⟨r, s⟩dx = Dx
r(s) for s ∈ R[x]2k1 .

Note that positive definiteness follows from Dx
r(r) =

∑
α c

2
α · i1! · · · in!. Analogously we

define the differential operatorDy
t for a form t ∈ R[y]2k2 and the y-apolar inner product

⟨·, ·⟩dy on R[y]2k2 .
To every form f ∈ R[x]2k1 ⊗ R[y]2k2 ,

f =
∑
ℓ

fℓ1(x)⊗ fℓ2(y)

=
∑
ℓ

 ∑
α=(i1,...,in)

c(ℓ)α xi11 · · ·xinn ⊗
∑

β=(j1,...,jm)

d
(ℓ)
β yj11 · · · yjmm

 ,

we associate the differential operator Df by

Df =
∑
ℓ

Dx
fℓ1

⊗Dy
fℓ2

=
∑
ℓ

 ∑
α=(i1,...,in)

c(ℓ)α

∂i1

∂xi11
· · · ∂

in

∂xinn
⊗

∑
β=(j1,...,jm)

d
(ℓ)
β

∂j1

∂yj11
· · · ∂

jm

∂yjmm

 ,

and the corresponding inner product, called the apolar inner product, by

⟨f, g⟩d = Df (g) for g ∈ R[x]2k1 ⊗ R[y]2k2 .

Example 2.3. For f = f1 ⊗ f2 ∈ R[x]2k1 ⊗ R[y]2k2 and g = g1 ⊗ g2 ∈ R[x]2k1 ⊗ R[y]2k2 ,
we have

Df (g) = Df1(g1)Df2(g2).

Note that this inner product is invariant under the action of SO(n) × SO(m). For a

point v = (v1, . . . , vn) ∈ Sn−1, we denote by v2k1 the form

v2k1 := (v1x1 + · · ·+ vnxn)
2k1 ∈ R[x]2k1 .

We define a linear operator Tv : R[x]2k1 → R[x]2k1 by

(2.15) Tv(r) =

∫
Sn−1

r(v)v2k1dσ1(v).
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Analogously for a point u = (u1, . . . , um) ∈ Sm−1 we denote by u2k2 and T u the form and

the linear operator on R[y]2k2 given by

u2k2 = (
m∑
j=1

ujyj)
2k2 ∈ R[y]2k2 and T u(t) =

∫
Sm−1

t(u)u2k2dσ2(u).

Finally let

T : R[x]2k1 ⊗ R[y]2k2 → R[x]2k1 ⊗ R[y]2k2
be the linear operator defined by

T

(∑
ℓ

fℓ1 ⊗ fℓ2

)
=
∑
ℓ

Tv (fℓ1)⊗ T u (fℓ2) .

Some properties of the operator T we will need are collected in the following lemma.

Lemma 2.4. The following statements hold:

(1) The operator T relates the two inner products by the following identity,

⟨Tf, g⟩d = (2k1)!(2k2)! ⟨f, g⟩ .

(2) The operator T is bijective.

(3) The operator T has eigenspace span
{
(
∑n

i=1 x
2
i )

k1 ⊗ (
∑m

j=1 y
2
j )

k2

}
, i.e.,

T

(
(

n∑
i=1

x2i )
k1 ⊗ (

m∑
j=1

y2j )
k2

)
= c ·

(
(

n∑
i=1

x2i )
k1 ⊗ (

m∑
j=1

y2j )
k2

)
,

where

c =
Γ(k1 +

1
2
)Γ(n

2
)

√
πΓ(k1 +

n
2
)

Γ(k2 +
1
2
)Γ(m

2
)

√
πΓ(k2 +

m
2
)
.

Proof. By bilinearity it suffices to prove Lemma 2.4 (1) only for elementary tensors f =

f1 ⊗ f2, g = g1 ⊗ g2 ∈ R[x]2k1 ⊗ R[y]2k2 . Since

⟨Tf, g⟩d = ⟨Tvf1, g1⟩dx ⟨T
uf2, g2⟩dy ,

⟨f, g⟩ = ⟨f1, g1⟩ ⟨f2, g2⟩ ,

Lemma 2.4 (1) follows by [Ble06, Lemma 5.1].

Since T maps from the finite-dimensional vector space into itself, to prove Lemma 2.4

(2), it suffices to prove that the kernel of T is trivial. Let us assume that Tf = 0 for some

f ∈ R[x]2k1 ⊗ R[y]2k2 . By Lemma 2.4 (1) it follows that ⟨f, f⟩ = 0. Hence f = 0 and the

kernel of T is trivial.

Finally, Lemma 2.4 (3) follows by

T

(
(

n∑
i=1

x2i )
k1 ⊗ (

m∑
j=1

y2j )
k2

)
= Tv

(
(

n∑
i=1

x2i )
k1

)
⊗ T u

(
(

m∑
j=1

y2j )
k2

)

=

(
Γ(k1 +

1
2
)Γ(n

2
)

√
πΓ(k1 +

n
2
)
(

n∑
i=1

x2i )
k1

)
⊗

(
Γ(k2 +

1
2
)Γ(m

2
)

√
πΓ(k2 +

m
2
)
(

m∑
j=1

y2j )
k2

)
,

where the second equality follows by [Ble06, p. 371] used for Tv and T u.
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Let L be a full-dimensional cone in R[x]2k1⊗R[y]2k2 containing (
∑n

i=1 x
2
i )

k1⊗(
∑m

j=1 y
2
j )

k2

in its interior, and satisfying
∫
T
fdσ > 0 for all non-zero f ∈ L. Let L̃ be the subset of

M defined by

L̃ =

{
f ∈ M : f + (

n∑
i=1

x2i )
k1 ⊗ (

m∑
j=1

y2j )
k2 ∈ L

}
.

Let L∗ be the dual cone of L w.r.t. the L2 inner product and L∗
d the dual cone of L in the

apolar inner product,

L∗ = {f ∈ R[x]2k1 ⊗ R[y]2k2 : ⟨f, g⟩ ≥ 0 for all g ∈ L} ,
L∗

d = {f ∈ R[x]2k1 ⊗ R[y]2k2 : ⟨f, g⟩d ≥ 0 for all g ∈ L} .

Proposition 2.5. The biform (
∑n

i=1 x
2
i )

k1 ⊗ (
∑m

j=1 y
2
j )

k2 belongs to the interiors of L∗

and L∗
d.

Proof. The biform rk1x ⊗sk2y := (
∑n

i=1 x
2
i )

k1 ⊗ (
∑m

j=1 y
2
j )

k2 is in the interior of L∗ (resp. L∗
d)

if and only if
〈
rk1x ⊗ sk2y , g

〉
> 0 (resp.

〈
rk1x ⊗ sk2y , g

〉
d
> 0) is true for all g ∈ L. Since〈

rk1x ⊗ sk2y , g
〉
=

∫
T

(rk1x ⊗ sk2y ) · gdσ =

∫
T

gdσ,

(resp.〈
rk1x ⊗ sk2y , g

〉
d

=
1

(2k1)!(2k2)!

〈
T−1

(
rk1x ⊗ sk2y

)
, g
〉
=

1

(2k1)!(2k2)!c

〈(
rk1x ⊗ sk2y

)
, g
〉

=
1

(2k1)!(2k2)!c

∫
T

gdσ,

where c is defined as in Lemma 2.4 (3), and the first equality follows by Lemma 2.4 (1),

(2), while the second one by Lemma 2.4 (3)), this is true by definition of L.

Let L̃∗ and L̃∗
d be defined by

L̃∗ =

{
f ∈ M : f + (

n∑
i=1

x2i )
k1 ⊗ (

m∑
j=1

y2j )
k2 ∈ L∗

}
,

L̃∗
d =

{
f ∈ M : f + (

n∑
i=1

x2i )
k1 ⊗ (

m∑
j=1

y2j )
k2 ∈ L∗

d

}
.

The following is an analog of [Ble06, Lemma 5.2].

Lemma 2.6. Let L be a full dimensional cone in R[x]2k1⊗R[y]2k2 such that the polynomial

(
∑n

i=1 x
2
i )

k1⊗(
∑m

j=1 y
2
j )

k2 is the interior point of L and
∫
T
fdσ > 0 for all non-zero f ∈ L.

Then we have the following relationship between the volumes of L̃∗ and L̃∗
d:

k1!

(n
2
+ 2k1)k1

k2!

(m
2
+ 2k2)k2

≤

(
Vol L̃∗

d

Vol L̃∗

) 1
DM

≤
(

k1!

(n
2
+ k1)k1

k2!

(m
2
+ k2)k2

)α2k1,2k2

,

where

α2k1,2k2 = 1−
(

2k1 − 1

n+ 2k1 − 1

)2

−
(

2k2 − 1

m+ 2k2 − 1

)2

+

(
2k1

n+ 2k1 − 2

2k2
m+ 2k2 − 2

)2

.
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Proof. From Lemma 2.4 (1) it follows that for all f, g ∈ R[x]2k1 ⊗R[y]2k2 , ⟨f, g⟩ ≥ 0 if and

only if ⟨Tf, g⟩d ≥ 0. Therefore, T maps L∗ to L∗
d. By Lemma 2.4 it follows that for all

f, g ∈ R[x]2k1 ⊗ R[y]2k2 , ⟨f, g⟩d ≥ 0 if and only if ⟨T−1f, g⟩ ≥ 0, where T−1 is the inverse

of T . Therefore, T maps L∗ onto L∗
d,

(2.16) T (L∗) = L∗
d.

Let ∆x =
∑n

i=1
∂2

∂x2
i
(resp. ∆y =

∑m
j=1

∂2

∂y2j
) be the Laplace differential operator on R[x]

(resp. R[y]). Then R[x]2k1 (resp. R[y]2k2) splits into irreducible SO(n)-modules (resp.

SO(m)-modules) [Vil68, Chapter IX §2],

R[x]2k1 = ⊕k1
i=0r

i
xHn,2k1−2i, (resp. R[y]2k2 = ⊕k2

j=0s
j
yHm,2k2−2j),

where

rx =
n∑

i=1

x2i and Hn,2i = {r ∈ R[x]2i : ∆xr = 0}

(resp. sy =
∑m

j=1 y
2
j and Hm,2j = {s ∈ R[y]2j : ∆ys = 0}). Then the SO(n) × SO(m)-

module R[x]2k1 ⊗ R[y]2k2 splits into submodules as follows:

R[x]2k1 ⊗ R[y]2k2 = ⊕k1
i=0 ⊕

k2
j=0 (r

i
xHn,2k1−2i ⊗ sjyHm,2k2−2j).

By Lemma 2.4 (3),

T
(
rk1x ⊗ sk2y

)
= c ·

(
rk1x ⊗ sk2y

)
,

where

c =
Γ(k1 +

1
2
)Γ(n

2
)

√
πΓ(k1 +

n
2
)

Γ(k2 +
1
2
)Γ(m

2
)

√
πΓ(k2 +

m
2
)
.

Since 1
c
T commutes with the action of SO(n)×SO(m) and fixes rk1x ⊗ sk2y , it also fixes the

orthogonal complement of rk1x ⊗ sk2y , which is the hyperplane of all biforms with integral

0 on T . Using this and (2.16), we conclude that 1
c
T maps L̃∗ to L̃∗

d. Applying [Ble04,

Lemma 7.4] componentwise for 1
c
T we have that

1

c
T

(∑
ℓ

fℓ1 ⊗ fℓ2

)
=

∑
ℓ

(
k1∑
j=0

k2∑
k=0

cjkℓ
x
2j(fℓ1)⊗ ℓy2k(fℓ2)

)

=

k1∑
j=0

k2∑
k=0

cjk

(∑
ℓ

ℓx2j(fℓ1)⊗ ℓy2k(fℓ2)

)
,

where

cjk =
k1! Γ(k1 +

n
2
)

(k1 − j)! Γ(k1 + j + n
2
)

k2! Γ(k2 +
m
2
)

(k2 − k)! Γ(k2 + k + m
2
)

and ℓx2j(fℓ1) (resp. ℓy2k(fℓ2)) denotes the orthogonal projection of fℓ1 to rk1−j
x Hn,2j (resp.

fℓ2 to s
k2−k
y Hm,2k). Note that ck1k2 is the smallest among the coefficients cjk and the lower

bound on the change in volume is(
Vol L̃∗

d

Vol L̃∗

) 1
DM

≥
k1! Γ(k1 +

n
2
)

Γ(2k1 +
n
2
)

k2! Γ(k2 +
m
2
)

Γ(2k2 +
m
2
)

= ck1k2 .

Estimate
k1! Γ(k1 +

n
2
)

Γ(2k1 +
n
2
)

k2! Γ(k2 +
m
2
)

Γ(2k2 +
m
2
)

≥ k1!

(n
2
+ 2k1)k1

k2!

(m
2
+ 2k2)k2

.

This proves the lower bound in Lemma 2.6.
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To prove the upper bound in Lemma 2.6 observe that the largest coefficient of contrac-

tion occurs in the submodule Hn,2k1 ⊗Hm,2k2 which has dimension

DH = (dimR[x]2k1 − dimR[x]2k1−2)(dimR[y]2k2 − dimR[y]2k2−2)

=
((n+ 2k1 − 1

2k1

)
−
(
n+ 2k1 − 3

2k1 − 2

))
·
((m+ 2k2 − 1

2k2

)
−
(
m+ 2k2 − 3

2k2 − 2

))
.

The dimension DM of the ambient space M is

DM =

(
n+ 2k1 − 1

2k1

)(
m+ 2k2 − 1

2k2

)
− 1.

We have

DH =

(
n+ 2k1 − 1

2k1

)(
m+ 2k2 − 1

2k2

)
· C,

where

C =

(
1− 2k1 − 1

n+ 2k1 − 2

2k1
n+ 2k1 − 1

)(
1− 2k2 − 1

m+ 2k2 − 2

2k2
m+ 2k2 − 1

)
.

Thus

DH = DM · C + C <︸︷︷︸
C<1

DM · C + 1.

If k1 > 1 or k2 > 1, then

DH

DM
< C +

1

DM
< C +

1(
n+2k1−1

2

)(
m+2k2−1

2

)
= C +

4

(n+ 2k1 − 1)(n+ 2k1 − 2)(m+ 2k2 − 1)(m+ 2k2 − 2)
< α2k1,2k2 ,

where α2k1,2k2 is as in the statement of Lemma 2.6. On the other hand, if k1 = k2 = 1,

then
DH

DM
< C +

4

n(n+ 1)m(m+ 1)− 4
< C +

8

n(n+ 1)m(m+ 1)
< α2,2.

Estimating ck1k2 from above gives

ck1k2 =
k1! Γ(k1 +

n
2
)

Γ(2k1 +
n
2
)

k2! Γ(k2 +
m
2
)

Γ(2k2 +
m
2
)

≤ k1!

(n
2
+ k1)k1

k2!

(m
2
+ k2)k2

,

which concludes the proof of the lemma.

Lemma 2.7. The dual cone Sos∗d to the cone of sums of squares Sos
(n,m)
(2k1,2k2)

in the apolar

inner product is contained in the cone of sums of squares Sos
(n,m)
(2k1,2k2)

,

Sos∗d ⊆ Sos
(n,m)
(2k1,2k2)

.

Proof. Let W be the space of quadratic forms on R[x]k1 ⊗R[y]k2 . For A,B ∈ W with the

corresponding symmetric matrices MA and MB with respect to an orthonormal basis for

the apolar differential inner product, we define the inner product of A,B by

⟨A,B⟩ = tr (MAMB).

For q ∈ R[x]k1 ⊗ R[y]k2 , let Aq be the rank one quadratic form given by

Aq(p) = ⟨p, q⟩2d for p ∈ R[x]k1 ⊗ R[y]k2 .
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For any B ∈ W we have

⟨Aq, B⟩ = B(q).

For f ∈ R[x]2k1 ⊗ R[y]2k2 , let Hf be the quadratic form on R[x]k1 ⊗ R[y]k2 given by

(2.17) Hf (p) =
〈
p2, f

〉
d

for p ∈ R[x]k1 ⊗ R[y]k2 .

If f ∈ Sos∗d, then Hf is positive semidefinite by definition. Therefore it can be written as

a finite nonnegative linear combination of forms of rank 1,

Hf =
∑
k

Aqk for some qk ∈ R[x]k1 ⊗ R[y]k2 .

Let W1 be the subspace of W given by the linear span of the forms Hg with g ∈ R[x]2k1 ⊗
R[y]2k2 . Let PW1 be the orthogonal projection onto W1. We claim that

(2.18) PW1(Aqk) =

(
2k1
k1

)−1(
2k2
k2

)−1

Hq2k
.

From

{h ∈ R[x]2k1 : h(v) = 0 for all v ∈ Rn} = {0} ,
it follows by [Rez92, equality (1.9)] that

span
{
v2k1 : v ∈ Rn

}
= R[x]2k1 .

Analogously span
{
u2k2 : u ∈ Rm

}
= R[y]2k2 . Thus

(2.19) span
{
v2k1 ⊗ u2k2 : v ∈ Rn, u ∈ Rm

}
= R[x]2k1 ⊗ R[y]2k2 .

To establish (2.18) it suffices to show that Aqk −
(
2k1
k1

)−1(2k2
k2

)−1
Hq2k

is orthogonal to the

forms Hv2k1⊗u2k1 since these span W1. We observe that

Hv2k1⊗u2k1 (p) = (2k1)! (2k2)! p(u, v)
2 =

(2k1)! (2k2)! Avk1⊗uk2 (p)

(k1! k2!)2

=

(
2k1
k1

)(
2k2
k2

)
Avk1⊗uk2 (p).

Therefore〈
Aqk −

(
2k1
k1

)−1(
2k2
k2

)−1

Hq2k
, Hv2k1⊗u2k1

〉
= Hv2k1⊗u2k1 (qk)−

〈
Hq2k

, Avk1⊗uk1

〉
= Hv2k1⊗u2k1 (qk)−Hq2k

(vk1 ⊗ uk1) = 0.

Hence,

Hf = PW1(
∑
k

Aqk)
(2.18)
=
∑
k

(
2k1
k1

)−1(
2k2
k2

)−1

Hq2k
= H

(2k1k1
)
−1
(2k2k2

)
−1 ∑

k q2k
,

and

H
f−(2k1k1

)
−1
(2k2k2

)
−1 ∑

k q2k
≡ 0.

From (2.17) it follows that

(2.20)

〈
p2, f −

(
2k1
k1

)−1(
2k2
k2

)−1∑
k

q2k

〉
d

= 0 for all p ∈ R[x]k1 ⊗ R[y]k2 .



THERE ARE MANY MORE POSITIVE MAPS THAN COMPLETELY POSITIVE MAPS 21

In particular, by the equality (2.19), the linear span of the squares of forms from R[x]k1 ⊗
R[y]k2 is the whole space R[x]2k1 ⊗ R[y]2k2 . Therefore (2.20) implies that〈

g, f −
(
2k1
k1

)−1(
2k2
k2

)−1∑
k

q2k

〉
d

= 0 for all g ∈ R[x]2k1 ⊗ R[y]2k2 ,

and hence f is a sum of squares,

f =

(
2k1
k1

)−1(
2k2
k2

)−1∑
k

q2k.

This concludes the proof of Lemma 2.7.

2.3. Sums of squares biforms. In this subsection we establish the bounds for the

volume of the section of sums of squares biforms. The main result is as follows.

Theorem 2.8. For integers n,m ≥ 3 we have

d2k1,2k2 ≤

Vol S̃os
(n,m)

(2k1,2k2)

VolBM

 1
DM

≤ e2k1,2k2 ,

where

d2k1,2k2 =


1

28
√
6

√
nm+n+m

(n+4)(m+4)
, if k1 = k2 = 1

(k1! k2!)·
√
k1! k2!

2
√
6·42k1+2k2 ·

√
(2k1)! (2k1)!

n
k1
2 m

k2
2

(n
2
+2k2)k1 (

m
2
+2k2)k2

, otherwise,

e2k1,2k2 =

{
210

√
6 · 1√

nm+n+m
, if k1 = k2 = 1

2
√
6 · 42k1+2k2 ·

√
(2k1)! (2k2)!

k1! k2!
· n− k1

2 m− k2
2 , otherwise,

Blekherman [Ble06, Theorem 6.1] established volume bounds for sum of squares forms.

Our proof freely borrows from his ideas. An important ingredient in the proof will also

be the following version of the Reverse Hölder inequality.

Lemma 2.9. For a biform g ∈ R[x, y]k1,k2 of bidegree (k1, k2) we have(∫
T

g2 dσ

) 1
2

= ∥g∥2 ≤ 4k1+k2 ∥g∥1 = 4k1+k2

(∫
T

g dσ

)
.

Proof. By definition,

(2.21)

∫
T

g2dσ =

∫
x∈Sn−1

(∫
y∈Sm−1

g2(x, y) dσ2(y)

)
dσ1(x).

For every fixed x ∈ Sn−1, g2(x, y) is a polynomial in y of degree 2k2. By the Reverse

Hölder inequality [Duo87, Corollary 3] used for p = 1, k = k2, Pk(y) = g(x, y) we obtain

(2.22)

(∫
Sm−1

g2(x, y) dσ2(y)

) 1
2

≤ 4k2
(∫

Sm−1

g(x, y) dσ2(y)

)
,

for each x ∈ Sn−1. Hence using (2.22) in (2.21) we have

(2.23)

∫
T

g2 dσ ≤ 42k2
∫
x∈Sn−1

(∫
y∈Sm−1

g(x, y) dσ2(y)

)2

dσ1(x).
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The expression
∫
y∈Sm−1 g(x, y) dσ2(y) is a polynomial in x of degree k1. Using the Reverse

Hölder inequality [Duo87, Corollary 3] for p = 1, k = k1, Pk(x) =
∫
y∈Sm−1 g(x, y) dσ2(y),(∫

x∈Sn−1

(∫
y∈Sm−1

g(x, y) dσ2(y)

)2

dσ1(x)

) 1
2

≤ 4k1
(∫

Sn−1

∫
Sm−1

g(x, y) dσ2(y)dσ1(x)

)
.

Using this in (2.23) we get∫
T

g2 dσ ≤ 42k1+2k2

(∫
x∈Sn−1

∫
y∈Sm−1

g(x, y) dσ2(y) dσ1(x)

)2

= 42k1+2k2 ∥g∥21 .

Taking square roots concludes the proof of the lemma.

2.3.1. Proof of the upper bound in Theorem 2.8. We write S̃os = S̃os
(n,m)

(2k1,2k2)
. We define

the support function LS̃os of S̃os by

LS̃os : M → R, LS̃os(f) = max
g∈S̃os

⟨f, g⟩ .

The average width WS̃os of S̃os is given by

(2.24) WS̃os = 2

∫
SM

LS̃os dµ̃.

By Urysohn’s inequality [Scn93, p. 318] applied to S̃os we have

(2.25)

(
Vol S̃os

VolBM

) 1
DM

≤
WS̃os

2
.

Let SU be the unit sphere in U := R[x, y]k1,k2 equipped with the L2 norm, i.e.,

∥g∥22 =
∫
T

|g|2 dσ =

∫
x∈Sn−1

(∫
y∈Sm−1

|g(x, y)|2 dσ2(y)
)

dσ1(x).

The extreme points of S̃os are of the form

g2 − (
n∑

i=1

x2i )
k1(

m∑
j=1

y2j )
k2 where g ∈ R[x, y]k1,k2 and

∫
T

g2dσ = 1.

For f ∈ M, 〈
f, (

n∑
i=1

x2i )
k1(

m∑
j=1

y2j )
k2

〉
=

∫
T

fdσ = 0,

and thus

LS̃os(f) = max
g∈SU

⟨f, g2⟩.

Let ∥ ∥sq be the norm on R[x, y]2k1,2k2 defined by

∥f∥sq = max
g∈SU

|⟨f, g2⟩|,

Clearly,

(2.26) LS̃os(f) ≤ ∥f∥sq.
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Using (2.24), (2.25) and (2.26) we deduce(
Vol S̃os

VolBM

) 1
DM

≤
∫
SM

∥f∥sq dµ̃.

To prove the upper bound in Theorem 2.8 it now suffices to prove the following claim.

Claim:

∫
SM

∥f∥sq dµ̃ ≤ e2k1,2k2 .

For f ∈ R[x, y]2k1,2k2 let Hf be the quadratic form on R[x, y]k1,k2 defined by

Hf (g) = ⟨f, g2⟩ for all g ∈ R[x, y]k1,k2 .

Note that

∥f∥sq = ∥Hf∥∞.
Here ∥Hf∥∞ stands for the supremum norm of Hf on the unit sphere SU . Let µ̂ be the

SO(n)× SO(m)-invariant probability measure on SU . The L
2p norm of Hf for a positive

integer p is defined by

∥Hf∥2p :=
(∫

SU

H2p
f (g)dµ̂

) 1
2p

.

We will bound ∥Hf∥∞ by a L2p norm of Hf for p high enough. Note that Hf is a form

of degree 2 in the vector space U of dimension DU . By the proof of [Ble06, Theorem 4.2]

we have that

∥Hf∥∞ ≤ 2
√
3∥Hf∥2DU .

It suffices to estimate

A =

∫
SM

∥Hf∥2DUdµ̃ =

∫
SM

(∫
SU

⟨f, g2⟩2DUdµ̂(g)

) 1
2DU

dµ̃(f).

Applying Hölder’s inequality and interchanging the order of integration we obtain

(2.27) A ≤
(∫

SU

∫
SM

⟨f, g2⟩2DUdµ̃(f)dµ̂(g)

) 1
2DU

.

We estimate the inner integral as follows:∫
SM

〈
f, g2

〉2DU dµ̃(f) =

∫
SM

〈
f, prM(g2)

〉2DU dµ̃(f)

=
∥∥prM(g2)

∥∥2DU

2

∫
SM

〈
f,

prM(g2)

∥prM(g2)∥2

〉2DU

dµ̃(f)

≤
∥∥g2∥∥2DU

2

∫
SM

〈
f,

prM(g2)

∥prM(g2)∥2

〉2DU

dµ̃(f)(2.28)

where prM(g2) denotes the projection of g2 into M. Observe that

∥g∥2 = 1.

By Lemma 2.9 used for g2 it follows that∥∥g2∥∥
2
≤ 42k1+2k2 .
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Using this in (2.28) we get

(2.29)

∫
SM

〈
f, g2

〉2DU dµ̃(f) ≤ 44(k1+k2)DU

∫
SM

〈
f,

prM(g2)

∥prM(g2)∥

〉2DU

dµ̃(f).

As in [Ble06, p. 376] we estimate

(2.30)

∫
SM

〈
f,

prM(g2)

∥prM(g2)∥2

〉2DU

dµ̃(f) ≤

(√
2DU

DM

)2DU

.

Combining (2.29) and (2.30) we see

(2.31)

∫
SM

〈
f, g2

〉2DU dµ̃(f) ≤ 44(k1+k2)DU

(√
2DU

DM

)2DU

.

Using (2.31) in (2.27) we obtain

A ≤ 42(k1+k2) ·
√

2DU

DM
·
∫
SU

1 dµ̂(g) = 42(k1+k2) ·
√

2DU

DM
.

To prove the Claim it remains to establish

(2.32)

√
2DU

DM
≤ e2k1,2k2

2
√
3 · 42(k1+k2)

.

The dimensions DU , DM are easily verified to be

DU = dimR[x, y]k1,k2 =
(
n+ k1 − 1

k1

)(
m+ k2 − 1

k2

)
,

DM = dimR[x, y]2k1,2k2 − 1 =

(
n+ 2k1 − 1

2k1

)(
m+ 2k2 − 1

2k2

)
− 1.

We distinguish two cases depending on k1, k2.

Case 1: k1 = k2 = 1. Observe that

2DU

DM
=

23 · nm
n(n+ 1)m(m+ 1)− 4

=
23

(n+ 1)(m+ 1)− 4
nm

<︸︷︷︸
n,m≥3

23

(n+ 1)(m+ 1)− 1
=

23

nm+ n+m
.

Case 2: k1 > 1 or k2 > 1.

Note that

DM >
((n+ 2k1 − 1

2k1

)
− 1
)
·
((m+ 2k2 − 1

2k2

)
− 1
)
.

Hence

(2.33)

√
2DU

DM
<

√√√√2

(
n+k1−1

k1

)(
n+2k1−1

2k1

)
− 1

(
m+k2−1

k2

)(
m+2k2−1

2k2

)
− 1

.

Using (2.33) together with the estimates

(2.34)

(
n+k1−1

k1

)(
n+2k1−1

2k1

)
− 1

<
(2k1)!

k1!
n−k1 (resp.

(
m+k2−1

k2

)(
m+2k2−1

2k2

)
− 1

<
(2k2)!

k2!
m−k2),
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which we prove below, it follows that√
2DU

DM
<

√
2
(2k1)!(2k2)!

k1!k2!
n− k1

2 m− k2
2 .

This proves (2.32) and establishes the upper bound in Theorem 2.8. Hence it only remains

to prove (2.34). We have(
n+k1−1

k1

)(
n+2k1−1

2k1

)
− 1

≤︸︷︷︸
(n+2k1−1

2k1
)≥(n+1

2 )

(
n+k1−1

k1

)
n2+n−2
n2+n

(
n+2k1−1

2k1

) =
(2k1)! · n(n+ 1) · (n+ k1 − 1)!

(k1)! · (n− 1)(n+ 2) · (n+ 2k1 − 1)!

≤︸︷︷︸
k1≥1

(2k1)! · n(n+ 1)

(k1)! · (n− 1)(n+ 2)(n+ 1)nk1−1
<︸︷︷︸
n≥3

(2k1)!

(k1)!
n−k1 ,

which proves (2.34).

2.3.2. Proof of the lower bound in Theorem 2.8. Let Bsq be the unit ball of the ∥ ∥sq norm

Bsq = {f ∈ M : ∥f∥sq ≤ 1} =

{
f ∈ M : max

g∈SU

∣∣〈f, g2〉∣∣ ≤ 1

}
,

where SU stands for the unit sphere in U := R[x, y]k1,k2 equipped with the L2 norm. By

the Claim in the proof of the upper bound of Theorem 2.8, we have

(2.35)

∫
SM

∥f∥sq dµ̃ ≤ e2k1,2k2 .

By [Pis89, p. 91], (
VolBsq

VolBM

) 1
DM

=

(∫
SM

G−DM
Bsq

dµ̃

) 1
DM

,

where GBsq is the gauge of Bsq in M. Observe that

GBsq(f) = ∥f∥sq .

By Hölder’s inequality we have(∫
SM

G−DM
Bsq

dµ̃

) 1
DM

≥
∫
SM

G−1
Bsq

dµ̃,

and so (
VolBsq

VolBM

) 1
DM

≥
∫
SM

G−1
Bsq

dµ̃.

By Jensen’s inequality (applied to the convex function y = 1
x
on R>0),∫

SM

G−1
Bsq

dµ̃ ≥
(∫

SM

GBsqdµ̃

)−1

.

Therefore using (2.35) we have

(2.36)

(
VolBsq

VolBM

) 1
DM

≥ e−1
2k1,2k2

.

Let (Sos′)
◦
be the polar dual of Sos′ :=

(
Sos

(n,m)
(2k1,2k2)

)′
. By definition,

(Sos′)
◦
= {f ∈ M : ⟨f, g⟩ ≤ 1 for all g ∈ Sos′} .
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Claim: Bsq = (Sos′)
◦⋂− (Sos′)

◦
.

First we prove the inclusion (⊆) in the Claim. Let us take f ∈ Bsq and show that

f ∈ (Sos′)
◦⋂− (Sos′)

◦
. By definition of (Sos′)

◦
we have to prove that

(2.37) |⟨f, h⟩| ≤ 1 for all h ∈ Sos′ .

By assumption f ∈ Bsq we have

(2.38)
∣∣〈f, g2〉∣∣ ≤ 1 for all g ∈ SR[x,y]k1,k2 .

Notice that every h =
∑k

i=1 h
2
i ∈ (Sos′)

◦
can be written as h =

∑k
i=1 λi

(
hi√
λi

)2
, where λi =∫

T
h2idσ and

∑k
i=1 λi = 1. Since hi√

λi
∈ SR[x,y]k1,k2 , it follows by (2.38) that

∣∣∣〈f, hi√
λi

〉∣∣∣ ≤ 1.

Hence |⟨f, h⟩| ≤ 1. This proves (2.37).

The inclusion (⊇) in the Claim is trivial (since the definition (2.38) is a special case of

the definition (2.37)).

Let Sos∗ be the dual cone of Sos in the L2 inner product,

Sos∗ = {f ∈ R[x, y]2k1,2k2 : ⟨f, g⟩ ≥ 0 for all g ∈ Sos},

and let S̃os∗ be the set

S̃os∗ =

{
f ∈ R[x, y]2k1,2k2 : f + (

∑
i

x2i )
k1(
∑
j

y2j )
k2 ∈ Sos∗

⋂
H(n,m)

(2k1,2k2)

}

=

{
f ∈ M : ⟨f + (

∑
i

x2i )
k1(
∑
j

y2j )
k2 , g⟩ ≥ 0 for all g ∈ Sos

}

=

{
f ∈ M : ⟨f + (

∑
i

x2i )
k1(
∑
j

y2j )
k2 , g⟩ ≥ 0 for all g ∈ Sos′

}
= {f ∈ M : ⟨f, g⟩ ≥ −1 for all g ∈ Sos′}
= {f ∈ M : ⟨−f, g⟩ ≤ 1 for all g ∈ Sos′}
= − (Sos′)

◦
,

where the second equality follows by definitions of Sos∗ and H(n,m)
(2k1,2k2)

, the third by homo-

geneity of the inner product and the forth by
〈
(
∑

i x
2
i )

k1(
∑

j y
2
j )

k2 , g
〉
= 1 for g ∈ Sos′.

Using S̃os∗ = − (Sos′)
◦
together with (2.36) and the Claim we get

(2.39)

(
Vol S̃os∗

VolBM

) 1
DM

≥ e−1
2k1,2k2

.

Since (
∑

i x
2
i )

k1(
∑

j y
2
j )

k2 is in the interior of Sos
(n,m)
(2k1,2k2)

and for all non-zero f ∈
Sos

(n,m)
(2k1,2k2)

we have
∫
T
fdσ > 0, it follows by Lemma 2.6 that

(2.40)

(
Vol S̃os∗d

Vol S̃os∗

) 1
DM

≥ k1!

(n
2
+ 2k1)k1

k2!

(m
2
+ 2k2)k2

,
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where

S̃os∗d =

{
f ∈ R[x, y]2k1,2k2 : f + (

∑
i

x2i )
k1(
∑
j

y2j )
k2 ∈ Sos∗d

⋂
H(n,m)

(2k1,2k2)

}
,

and Sos∗d ⊂ R[x, y]2k1,2k2 is the dual cone in the apolar inner product of Sos
(n,m)
(2k1,2k2)

. Com-

bining (2.39) and (2.40) we obtain(
Vol S̃os∗d
VolBM

) 1
DM

≥ e−1
2k1,2k2

k1!

(n
2
+ 2k1)k1

k2!

(m
2
+ 2k2)k2

.

By Lemma 2.7, S̃os∗d ⊆
˜

Sos
(n,m)
(2k1,2k2)

and the lower bound of Theorem 2.8 is proved.

2.4. Extension of the results to symmetric multiforms. Let F ∈ {R,C} and

F[z, z, w, w] be the vector space of polynomials over F in the complex variables z :=

(z1, . . . , zn) and w := (w1, . . . , wm), equipped with conjugation as the involution ∗ (in case

F = R the involution is trivial on the coefficients). Let SymF[z, z, w, w]1,1,1,1 be the real

subspace of symmetric multiforms of multidegree (1, 1, 1, 1), i.e.,

SymF[z, z, w, w]1,1,1,1 :=

{
n∑

i,j=1

m∑
k,ℓ=1

aijkℓzizjwkwℓ : aijkℓ ∈ F, aijkℓ = ajiℓk for all i, j, k, ℓ

}
.

Remark 2.10. It is easy to check that the real dimension of SymF[z, z, w, w]1,1,1,1 is n2m2

for F = C and 1
2
nm(nm+ 1) for F = R.

Let F[z, w] stand for the vector subspace of F[z, z, w, w] of polynomials in z, w, and

F[z, w]1,1 for the subspace of F[z, w] of bilinear polynomials, i.e., polynomials from F[z, w]
that are linear in z and w. Let

PosF = {f ∈ SymF[z, z, w, w]1,1,1,1 : f(z, w) ≥ 0 for all (z, w) ∈ Cn × Cm} ,

SosF =

{
f ∈ SymF[z, z, w, w]1,1,1,1 : f =

∑
r

f ∗
r fr for some fr ∈ F[z, w]1,1

}
,

be the cone of nonnegative multiforms and the cone of sum of hermitian squares multi-

forms, respectively. Let SymC[z, z, w, w]1,1 stand for the real subspace of C[z, z, w, w] of
symmetric bilinear polynomials in (z, z) and (w, w), i.e.,

SymC[z, z, w, w]1,1 :=

{
n∑

i=1

m∑
j=1

(
aijziwj + aijziwj + bijziwj + bijziwj

)
: aij, bij ∈ C

}
.

Proposition 2.11. We have

SosF ⊆

{
f ∈ SymF[z, z, w, w]1,1,1,1 : f =

∑
r

f 2
r for some fr ∈ SymC[z, z, w, w]1,1

}
.

Proof. The proposition follows by the equality

f ∗f = f 2
re + f 2

im,

where f ∈ F[z, w]1,1 and fre :=
f+f∗

2
, fim := f−f∗

2i
belong to SymC[z, z, w, w]1,1.
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Now we introduce new real variables x := (x1, . . . , x2n) and y := (y1, . . . , y2m) such that

zj = xj + i · xn+j, wk = yk + i · ym+k for j = 1, . . . , n, k = 1, . . . ,m.

Under this identification the real vector space SymF[z, z, w, w]1,1,1,1 becomes a subspace of

R[x, y]2,2 which we denote by CF. We write PosCF ⊂ CF and SosCF ⊂ CF for the images of

sets PosF and SosF, respectively. Let Pos
(2n,2m)
(2,2) and Sos

(2n,2m)
(2,2) be defined as in (1.1) and

(1.2), respectively.

Proposition 2.12. We have

PosCF = Pos
(2n,2m)
(2,2) ∩ CF, SosCF ⊆ Sos

(2n,2m)
(2,2) ∩ CF.

Proof. The equality for PosCF is clear. The set SymC[z, z, w, w]1,1 maps bijectively to

R[x, y]1,1. (Clearly SymC[z, z, w, w]1,1 maps to R[x, y]1,1 and by expressing

xj =
zj + zj

2
, xn+j =

zj − zj
2i

, yk =
wk + wk

2
, ym+k =

wk − wk

2i

for j = 1, . . . , n, k = 1, . . . ,m, we see that each element from R[x, y]1,1 comes from an

element of SymC[z, z, w, w]1,1.) Therefore the set

{f ∈ SymF[z, z, w, w]1,1,1,1 : f =
∑
r

f 2
r for some fr ∈ SymC[z, z, w, w]1,1}

maps bijectively to Sos
(2n,2m)
(2,2) ∩ CF. Thus by Proposition 2.11 the inclusion SosCF ⊆

SymF[z, z, w, w]1,1,1,1 follows.

Recall the definitions of the product measure σ from Subsection 1.1 and the set M(n,m)
(2,2)

from (1.3) and replace (n,m) with (2n, 2m). We define the vector subspace MCF of

M(2n,2m)
(2,2) by

MCF := M(2n,2m)
(2,2) ∩ CF,

and its sections P̃osCF , S̃osCF by

P̃osCF :=

{
f ∈ MCF : f + (

2n∑
i=1

x2i )(
2m∑
j=1

y2j ) ∈ PosCF

}
,

S̃osCF :=

{
f ∈ MCF : f + (

2n∑
i=1

x2i )(
2m∑
j=1

y2j ) ∈ SosCF

}
.

The subspace MCF is a Hilbert subspace of R[x, y]2,2 equipped with the L2(σ) inner prod-

uct and we write DMCF
for its dimension; so it is isomorphic to RMCF as a Hilbert space.

Let SMCF
, BMCF

be the unit sphere and the unit ball in MCF , respectively. Let µ be the

(unique w.r.t. unitary isomorphism) pushforward of the Lebesgue measure on RDMCF to

MCF (cf. Lemma 1.4).

The bounds for the volume of the set P̃osCF are as follows.

Theorem 2.13. For integers n,m ≥ 3 we have:

33 · 10−
20
9 · 2−

1
2 max(n,m)−

1
2 ≤

(
Vol P̃osCF
VolBMCF

) 1
DMCF

≤ 2

(
min

(
1

1 + n
,

1

1 +m

)) 1
2

.
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We regard the vector space SymF[z, z, w, w]1,1,1,1 as a module over the group G where

G = SU(n)× SU(m) is the product of special unitary groups if F = C and G = SO(n)×
SO(m) is the product of special orhogonal groups if F = R, with the actions given by

(A,B) · f(z, z, w, w) := f(A−1z, A−1z, B−1w, B−1w)

where (A,B) ∈ G, f ∈ SymF[z, z, w, w]1,1,1,1 and conjugations over A−1, B−1 are trivial if

F = R.

Proof of Theorem 2.13. The proofs of both bounds are analogous to the proofs of the

corresponding bounds in Theorem 2.1 with some minor changes:

(1) Since CF is a subspace in R[x, y]2,2 where x = (x1, . . . , x2n), y := (y1, . . . , y2m), we

work with twice as many variables as in Theorem 2.1.

(2) In the proof of the lower bound there is a slight change in the part where we

estimate
∫
SMCF

∥f∥2k0 dµ̃. Namely, we use the fact that the elements in SMCF

correspond to restrictions of linear functionals in SṼ2
where Ṽ2 is a vector subspace

of V2 (that is identified with MCF). On replacing V2 with Ṽ2, the equality (2.8)

remains true and also the rest of the proof is the same.

(3) In the proof of the upper bound the validity of the inequality (2.9) for P̃osCC
(resp. P̃osCR) follows since P̃osCC (resp. P̃osCR) is invariant under the action of

SU(n)×SU(m) (resp. SO(n)×SO(m)) and since the origin is the only fixed point

under this action.

We next present the upper bound for the volume of the set S̃osCF .

Theorem 2.14. For integers n,m ≥ 2 we have(
Vol S̃osCF
VolBMCF

) 1
DMCF

≤ 210+
3−dimR F

2

√
3 · 1√

nm− 1
.

Proof. The proof is analogous to the proof of the upper bound in Theorem 2.8 with some

minor changes:

(1) Since CF is a subspace in R[x, y]2,2 where x = (x1, . . . , x2n), y := (y1, . . . , y2m), we

work with twice as many variables as in Theorem 2.1.

(2) Since LS̃osCF
(f) = maxg∈S̃osCF

⟨f, g⟩ and S̃osCF ⊂ S̃os := S̃os
(2n,2m)

(2,2) , it is true that

LS̃osCF
(f) ≤ max

g∈S̃os
⟨f, g⟩. Now the inequality L

S̃osCF
(f) ≤ ∥f∥sq is established in the

same way as the inequality (2.26) and everything up to the equality (2.32) remains

the same. The estimate of
√

2DU
DMCF

becomes

√
2DU

DMCF

≤


√

8nm
n2m2−1

=
√

8
nm− 1

nm

< 2
√
2√

nm−1
, if F = C,√

16nm
nm(nm+1)−2

=
√

16
nm+1− 2

nm

< 4√
nm−1

, if F = R.

For the first inequality we used Remark 2.10.

3. Positive maps and biforms

In this section we connect linear maps on matrices with biforms, thus translating the

question of comparing the size of the cone of completely positive maps with the size of



30 I. KLEP, S. MCCULLOUGH, K. ŠIVIC, AND A. ZALAR

the cone of positive maps to the question of comparing the size of the cone of sums of

squares biforms with the size of the cone of positive biforms.

We denote by L(Sn,Sm) the vector space of all linear maps from Sn to Sm. There is a

linear bijection Γ between linear maps L(Sn,Sm) and biforms R[x, y]2,2 of bidegree (2, 2)

given by

(3.1) Γ : L(Sn,Sm) → R[x, y]2,2, Φ 7→ pΦ(x, y) := y∗Φ(xx∗)y.

Thus Γ translates between properties of linear maps from L(Sn,Sm) and the corresponding

properties of biforms from R[x, y]2,2. Positivity (resp. complete positivity) of a map Φ

corresponds to nonnegativity (resp. being a sum of squares) of the polynomial pΦ:

Proposition 3.1. Let Φ : Sn → Sm be a linear map. Then

(1) Φ is positive iff pΦ is nonnegative;

(2) Φ is completely positive iff pΦ is a sum of squares.

Proof. The implication (⇒) of (1) is trivial. For the implication (⇐) observe that any

positive semidefinite matrix X ∈ Sn can be written as the sum X =
∑k

i=1 viv
∗
i where

vi ∈ Rn for each i. Hence y∗Φ(X)y =
∑k

i=1 y
∗pΦ(viv

∗
i )y is positive for every y ∈ Rm.

To prove the implication (⇒) of (2) first invoke the Arveson’s extension theorem [Pau02,

Theorem 7.5] to extend Φ to a completely positive map Φ̃ : Mn → Mm and then the

Stinespring’s representation theorem (see [Pau02, Theorem 4.1] or [Cho75, Theorem 1])

to represent Φ̃ in the form X 7→
∑ℓ

i=1 V
∗
i XVi for some ℓ ∈ N where

∑ℓ
i=1 V

∗
i Vi is a

bounded operator of norm ∥Φ∥. (The proofs of the real finite-dimensional versions of

[Pau02, Theorem 7.5] and [Pau02, Theorem 4.1] can be found, for example, in [HKM13,

§3.1].) Hence

pΦ(x, y) =
ℓ∑

i=1

y∗V ∗
i xx

∗Viy =
ℓ∑

i=1

q2i (x, y),

where qi(x, y) = x∗Viy for each i.

It remains to prove the implication (⇐) of (2). It suffices to prove that there is an

extension of Φ to a completely positive map Φ̃ : Mn → Mm. Since pΦ(x, y) is a sum of

squares, it is of the form

pΦ(x, y) =
ℓ∑

i=1

qi(x, y)
2 =

ℓ∑
i=1

(
m∑
j=1

n∑
k=1

qijkxkyj

)2

=
ℓ∑

i=1

(y∗(qijk)jkx)
2

=
ℓ∑

i=1

y∗(qijk)jkxx
∗(qijk)

∗
jky,

where qi(x, y) =
∑m

j=1

∑n
k=1 qijkxkyj ∈ R[x, y]. From pΦ(x, y) := y∗Φ(xx∗)y it follows that

Φ(xx∗) =
ℓ∑

i=1

(qijk)jkxx
∗(qijk)

∗
jk.

Hence the map Φ̃ :Mn →Mm defined by

Φ̃(X) =
ℓ∑

i=1

(qijk)jkX(qijk)
∗
jk for all X ∈Mn(R)

is a completely positive extension of Φ.



THERE ARE MANY MORE POSITIVE MAPS THAN COMPLETELY POSITIVE MAPS 31

Let Pos(Sn,Sm) and CP(Sn,Sm) denote the cone of positive maps and the cone of

completely positive maps from Sn to Sm, respectively. By Proposition 3.1, comparing

the cones Pos(Sn,Sm) and CP(Sn,Sm) is equivalent to comparing the cones Pos
(n,m)
(2,2) and

Sos
(n,m)
(2,2) .

3.1. Comparing the volumes of P̃os
(n,m)

(2,2) and S̃os
(n,m)

(2,2) . In this subsection we obtain

bounds on the ratio between the volumes of the sets S̃os
(n,m)

(2,2) and P̃os
(n,m)

(2,2) . By Theorem

1.3 the sets are the same if and only if n ≤ 2 or m ≤ 2. Here is the main result of this

subsection.

Theorem 3.2. For integers n,m ≥ 3 we have

3 ·
√
3

210 · 72 ·
√

min(n,m)
<

Vol S̃os
(n,m)

(2,2)

Vol P̃os
(n,m)

(2,2)

 1
DM

<
212 · 52 · 6 1

2 · 10 2
9

33 ·
√

min(n,m) + 1
,

where DM =
(
n+1
2

)(
m+1
2

)
− 1 = (n+1)n(m+1)m−4

4
. In particular,Vol S̃os

(n,m)

(2,2)

Vol P̃os
(n,m)

(2,2)

 1
DM

= Θ
(
min(n,m)−

1
2

)
.

Proof. We first prove the upper bound. Combining the lower bound in Theorem 2.1 with

the upper bound in Theorem 2.8 we haveVol S̃os
(n,m)

(2,2)

Vol P̃os
(n,m)

(2,2)

 1
DM

≤
212 · 52 · 6 1

2 · 10 2
9 ·
√

max(n,m)

33 ·
√
nm+ n+m

.

Observe that√
max(n,m)√
nm+ n+m

=
1√

min(m,n) + 1 + min(m,n)
max(m,n)

<
1√

min(n,m) + 1
.

It remains to prove the lower bound. Use the lower bound from Theorem 2.8 and the

upper bound in Theorem 2.1 to obtain

√
nm+ n+m

28
√
6(n+ 4)(m+ 4)

√
2 + max(n,m)

2
√
2

≤

Vol S̃os
(n,m)

(2,2)

Vol P̃os
(n,m)

(2,2)

 1
DM

.

Note that√
(nm+ n+m)(2 + max(n,m))

210
√
3(n+ 4)(m+ 4)

=

√
(1 + 1

m
+ 1

n
)( 2

nm
+ 1

min(n,m)
)

210
√
3(1 + 4

n
)(1 + 4

m
)

>

√
1

min(n,m)

21072

3
√
3

,

where the estimate in the denominator follows by

(1 +
4

n
)(1 +

4

m
) ≤︸︷︷︸
n,m≥3

72

32
.

This concludes the proof of Theorem 3.2.
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3.2. Comparing the volumes of cones of positive and completely positive maps.

We define the probability pn,m that a randomly chosen positive map Φ : Sn → Sm is

completely positive to be the ratio between the volumes of the sections S̃os
(n,m)

(2,2) and

P̃os
(n,m)

(2,2) in M, i.e.,

pn,m =
Vol S̃os

(n,m)

(2,2)

Vol P̃os
(n,m)

(2,2)

.

Corollary 3.3. For n,m ∈ N, n ≥ 3,m ≥ 3, the probability pn,m that a random positive

map Φ : Sn → Sm is completely positive, is bounded by(
3
√
3

21072
√

min(n,m)

)DM

< pn,m <

(
212 · 52 · 6 1

2 · 10 2
9

33 ·
√
min(n,m) + 1

)DM

,

where DM =
(
n+1
2

)(
m+1
2

)
− 1 = (n+1)n(m+1)m−4

4
. In particular, if min(n,m) ≥ 225·54·10

4
9

35
,

then

lim
max(n,m)→∞

pn,m = 0.

Proof. Corollary 3.3 follows by the definition of pn,m and Theorem 3.2.

The hyperplane H(n,m)
(2,2) corresponds, under our identification, to linear maps Φ : Sn →

Sm satisfying tr(Φ(In)) = nm by the following proposition.

Proposition 3.4. Let Φ : Sn → Sm be a linear map and pΦ the corresponding biform.

Then pΦ ∈ H(n,m)
(2,2) if and only if tr(Φ(In)) = nm.

To prove Proposition 3.4 we need the following lemma.

Lemma 3.5. Let σ̃ be a normalized Lebesgue measure on Sn−1. Then∫
Sn−1

xxtdσ̃(x) =
1

n
In.

Proof. Since the measure σ̃ is rotation invariant, it follows that for every orthogonal matrix

Q ∈Mn(R) we have∫
Sn−1

xxtdσ̃(x) =

∫
Sn−1

(Qx)(Qx)tdσ̃(x) =

∫
Sn−1

(QxxtQt)dσ̃(x) = Q

(∫
Sn−1

xxtdσ̃(x)

)
Qt,

where the last equality follows by linearity of Q. Thus

Q

(∫
Sn−1

xxtdσ̃(x)

)
=

(∫
Sn−1

xxtdσ̃(x)

)
Q.

Since orthogonal matrices span the vector space Mn(R),
∫
Sn−1

xxtdσ̃(x) commutes with

every matrix from Mn(R). Therefore∫
Sn−1

xxtdσ̃(x) = αIn

for some α ∈ R. Now

nα = tr

(∫
Sn−1

xxtdσ̃(x)

)
=

∫
Sn−1

tr(xxt)dσ̃(x) =

∫
Sn−1

tr(xtx)dσ̃(x) = 1,

where the the second equality follows by tr being linear and the last equality follows by

σ being normalized. This proves Lemma 3.5.
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Proof of Proposition 3.4. By definition,

pΦ ∈ H(n,m)
(2,2) if and only if

∫
T

pΦ(x, y)dσ = 1.

We have∫
T

pΦ(x, y)dσ =

∫
T

ytΦ(xxt)ydσ =

∫
Sn−1

(∫
Sm−1

tr
(
Φ(xxt)yyt

)
dσ2(y)

)
dσ1(x)

=

∫
Sn−1

tr

(
Φ(xxt)

∫
Sm−1

yytdσ2(y)

)
dσ1(x)

=︸︷︷︸
Lemma 3.5

1

m

∫
Sn−1

tr
(
Φ(xxt)

)
dσ1(x) =

1

m
tr

(
Φ

(∫
Sn−1

xxtdσ1(x)

))
=︸︷︷︸

Lemma 3.5

1

nm
tr (Φ(In)) ,

where the third and the fifth equality follow by linearity of the maps tr and Φ. Therefore

pΦ ∈ H(n,m)
(2,2) if and only if tr (Φ(In)) = nm.

3.3. Extension of the results to all real or complex matrices. In this subsection

we connect linear maps on the full matrix algebra over F where F ∈ {R,C} with the

subspace of real biforms. This connection will translate the question of comparing the

size of the cone of completely positive maps with the size of the cone of positive maps to

the question of comparing the size of the cone of sums of squares biforms with the size of

the cone of positive biforms on the subspace of biforms.

We denote by L(Mn(F),Mm(F)) the vector space of all ∗-linear maps from Mn(F) to

Mm(F). Let ΦC : Mn(C) → Mm(C) stand for the complexification of a ∗-linear map

Φ :Mn(R) →Mm(R), i.e.,

ΦC(A+ iB) := Φ(A) + iΦ(B)

where A,B ∈Mn(R). It is easy to check that ΦC is ∗-linear. We write

LC(Mn(R),Mm(R)) :=
{
ΦC | Φ ∈ L(Mn(R),Mm(R))

}
for the real vector subspace of L(Mn(C),Mm(C)) obtained by complexifying the maps

from L(Mn(R),Mm(R)).
There is a natural bijection Γ between ∗-linear maps L(Mn(C),Mm(C)) and symmetric

multiforms SymC[z, z, w, w]1,1,1,1 given by

(3.2) Γ : L(Mn(C),Mm(C)) → SymC[z, z, w, w]1,1,1,1, Φ 7→ pΦ(z, w) := w∗Φ(z z∗)w.

Note that

(3.3) Γ
(
LC(Mn(R),Mm(R))

)
= SymR[z, z, w, w]1,1,1,1.

Thus Γ converts properties of ∗-linear maps in L(Mn(C),Mm(C)) and LC(Mn(R),Mm(R))
to corresponding properties of multiforms in SymC[z, z, w, w]1,1,1,1 and SymR[z, z, w, w]1,1,1,1,
respectively. Positivity (resp. complete positivity) of a map Φ corresponds to nonnega-

tivity (resp. being a sum of hermitian squares) of the polynomial pΦ:

Proposition 3.6. Let Φ :Mn(F) →Mm(F) be a ∗-linear map. If F = C, then:
(1) Φ is positive iff pΦ is nonnegative;
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(2) Φ is completely positive iff pΦ =
∑

r q
∗
rqr is a sum of hermitian squares with

qm ∈ C[z, w]1,1.

If F = R, then:

(3) Φ is positive iff pΦC|Rn×Rm is nonnegative.

(4) Φ is completely positive iff pΦC =
∑

r q
∗
rqr is a sum of hermitian squares with

qm ∈ R[z, w]1,1.

Proof. The proof of Proposition 3.6 is analogous to the proof of Proposition 3.1. Since in

the case F = R, positivity of Φ is determined on real symmetric matrices, (3) is clear. Since

a ∗-linear map Φ is cp iff the Choi matrix [Φ(Eij)]i,j is psd [Pau02, Theorem 3.14] where

Eij stand for the matrix units, Φ in (4) is cp iff ΦC is cp. Hence (4) follows from (2) by

noticing that since pΦC belongs to SymR[z, z, w, w]1,1,1,1, we can further replace each qr =∑
j,k

a
(r)
jk zjwk in pΦC =

∑
r

q∗rqr with qr,1 =
∑
j,k

a
(r)
jk + a

(r)
jk

2
zjwk and qr,2 =

∑
j,k

a
(r)
jk − a

(r)
jk

2i
zjwk

such that
∑
r

q∗rqr =
∑
r

(
q∗r,1qr,1 + q∗r,2qr,2

)
and qr,1, qr,2 ∈ R[z, w]1,1.

Let Pos(Mn(F),Mm(F)) and CP(Mn(F),Mm(F)) denote the cone of positive maps and

the cone of completely positive maps fromMn(F) toMm(F), respectively. By Proposition

3.6, comparing the cones Pos(Mn(C),Mm(C)) and CP(Mn(C),Mm(C)) is equivalent to

comparing the cones PosC and SosC, while comparing the cones Pos(Mn(R),Mm(R)) and
CP(Mn(R),Mm(R)) is equivalent to comparing the cones

PR := {p ∈ SymR[z, z, w, w]1,1,1,1 : p|Rn×Rm ≥ 0}

and SosR. Since PosR ⊂ PR the upper bound for the probability of a random map from

Pos(Mn(R),Mm(R)) belonging to CP(Mn(R),Mm(R)) can be obtained by comparing the

cones PosR and SosR. By identifying SymF[z, z, w, w]1,1,1,1 with a subspace CF of R[x, y]2,2
where x = (x1, . . . , x2n) and y = (y1, . . . , y2m), comparing the cones PosF and SosF is

equivalent to comparing the cones PosCF and SosCF . We also write PCR ⊂ CR for the image

of the cone PR under the identification between SymR[z, z, w, w]1,1,1,1 and CR.
We define the probability pFn,m that a randomly chosen positive map Φ : Mn(F) →

Mm(F) is completely positive to be the ratio

pFn,m =


Vol S̃osCC
Vol P̃osCC

, if F = C,
Vol S̃osCR
Vol P̃CR

, if F = R,

where P̃CR :=
{
f ∈ MCR : f + (

∑2n
i=1 x

2
i )(
∑2m

j=1 y
2
j ) ∈ PCR

}
.

Corollary 3.7. For n,m ∈ N, n ≥ 3,m ≥ 3, the probability pFn,m that a random positive

map Φ :Mn(F) →Mm(F) is completely positive, is bounded by

pFn,m ≤ Vol S̃osCF

Vol P̃osCF
<

(228−dimR F) 1
2 · 3−

5
2 · 52 · 10

2
9 · 1√

min(n,m)− 1
2

DMCF

,
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where DMCF
=

{
n2m2 − 1, if F = C,
nm(nm+1)

2
− 1, if F = R.

In particular, if min(n,m) ≥ (228−dimR F)·54·10
4
9

35
,

then

lim
max(n,m)→∞

pFn,m = 0.

Proof. By combining the lower bound in Theorem 2.13 with the upper bound in Theorem

2.14 as in the proof of Theorem 3.2 and observing that√
max(n,m)√
nm− 1

=
1√

min(m,n)− 1
max(n,m)

<
1√

min(m,n)− 1
2

,

Corollary 3.7 follows by the definition of pFn,m.

4. Constructing positive maps that are not completely positive

By Proposition 3.1, each biform f ∈ R[x, y]2,2 that is positive but not a sum of squares

yields an example of a positive map Φ : Sn → Sm that is not completely positive. By

Proposition 4.1 below, all extensions of Φ to Mn(R) and the complexification of the

trivial extension are positive but not completely positive. In this section we specialize the

Blekherman-Smith-Velasco algorithm [BSV16, Procedure 3.3] to produce many examples

of positive biforms of bidegree (2,2) that are not sums of squares.

4.1. Extending positive maps from real symmetric matrices to the full matrix

algebra Mn(F), F ∈ {R,C}. Let Kn be the vector space of real antisymmetric n × n

matrices, i.e.,

Kn = {A ∈Mn(R) | A∗ = −A} .
The vector space Mn(R) can be expressed as the direct sum

Mn(R) = Sn ⊕Kn,

and a ∗-linear map Φ :Mn(R) →Mm(R) uniquely decomposes as a direct sum

Φ = Φ|Sn ⊕ Φ|Kn ,

where

Φ|Sn : Sn → Sm and Φ|Kn : Kn → Km

are the restrictions of Φ to Sn and Kn, respectively. Conversely, given linear maps Φ :

Sn → Sm and Ψ : Kn → Km, the map Γ := Φ ⊕ Ψ : Mn(R) → Mm(R) defined by

Γ(S + A) := Φ(A) + Ψ(A) is readily seen to be ∗-linear.
Recall that the complexification ΦC :Mn(C) →Mm(C) of a ∗-linear map Φ :Mn(R) →

Mm(R) is defined by

ΦC(A+ iB) := Φ(A) + iΦ(B)

where A,B ∈Mn(R).

Proposition 4.1. Let Φ : Sn → Sm be a positive but not completely positive map and

Ψ : Kn → Km a linear map. Then:

(1) The map Γ := Φ⊕Ψ :Mn(R) →Mm(R) is positive but not completely positive.

(2) Let 0 : Kn → Km be the trivial map, i.e., 0(A) = 0 for all A ∈ Kn. The map

(Φ⊕ 0)C :Mn(C) →Mm(C) is positive but not completely positive.
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Proof. To prove (1) it suffices to observe that Γ is positive iff its restriction Γ|Sn = Φ is

positive and that Γ being cp would imply that Φ is cp. As in the proof of Proposition

3.6 note that (Φ ⊕ 0)C is cp iff Φ ⊕ 0 is cp. Thus to prove (2) it only remains to show

that (Φ⊕ 0)C(X) is psd for all psd matrices X ∈Mn(C). Decompose a psd matrix X as

X = Xre + iXim where Xre, Xim ∈ Mn(R). Since X = X∗, it follows that Xre ∈ Sn and

Xim ∈ Kn. For all v ∈ Rn we have that v∗Xrev = v∗Xv ≥ 0. Hence Xre is psd. Thus

(Φ⊕ 0)C(X) = Φ(Xre) is psd which concludes the proof of (2).

4.2. Specialization of the Blekherman-Smith-Velasco algorithm. To use [BSV16,

Procedure 3.3] we have to observe first that biquadratic forms are in bijective correspon-

dence with quadratic forms on the Segre variety (see [BSV16, Example 5.6]). Indeed,

let

σn,m : Pn−1 × Pm−1 → Pnm−1,

([x1 : . . . : xn], [y1 : . . . : ym]) 7→ [x1y1 : x1y2 : . . . : x1ym : . . . : xnym].

be the Segre embedding. Its image σn,m(Pn−1 × Pm−1) is the zero locus of the ideal

In,m ⊆ R[z11, z12, . . . , z1m, . . . , znm] generated by all 2 × 2 minors of the matrix (zij)i,j.

Moreover, the ideal In,m is radical and consists of all polynomials vanishing on σn,m(Pn−1×
Pm−1) [Har92, p. 98]. It is also well known that σn,m(Pn−1 × Pm−1) is smooth (being the

determinantal variety of all n × m matrices of rank at most 1) [Har92, p. 184-185] and

that its degree equals
(
n+m−2
n−1

)
[Har92, p. 233]. We write V (In,m) for the image of the

Segre embedding σn,m(Pn−1 × Pm−1), i.e.,

V (In,m) = {[z11 : . . . : znm] ∈ Pnm−1 : f(z) = 0 for every f ∈ In,m},

where

z = (z11, z12, . . . , z1m, . . . , znm),

and VR(In,m) for the subset of its real points.

Since In,m is the homogeneous ideal of all polynomials that vanish on V (In,m), the

quotient ring C[z]/In,m is the coordinate ring C[V (In,m)] of the variety V (In,m). Moreover,

the Segre embedding σn,m induces the injective ring homomorphism σ#
n,m : C[z]/In,m →

C[x, y] satisfying σ#
n,m(zij + In,m) = xiyj for 1 ≤ i ≤ n, 1 ≤ j ≤ m. The restriction of σ#

n,m

to the real quadratic forms is then a (linear) bijective correspondence between quadratic

forms from R[z]/In,m and biforms from R[x, y]2,2.

Lemma 4.2. Let f ∈ R[x, y]2,2 be a biform of bidegree (2,2). Then:

(1) If f ∈ R[x, y]2,2 is a sum of squares, then it is a sum of squares of biforms from

R[x, y]1,1.
(2) The biform f ∈ R[x, y]2,2 is a sum of squares if and only if the quadratic form

σ#
n,m

−1
(f) ∈ R[z]/In,m is a sum of squares.

Proof. First we prove (1). We have

(4.1) f =

i0∑
i=1

(
ji∑

j=0

ki∑
k=0

fijk

)2

,
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where i0 ∈ N, ji, ki ∈ N ∪ {0} and fijk ∈ R[x, y]j,k are biforms of bidegree (j, k). Let fjk
be the bihomogenous part of f of bidegree (j, k). Then

f = f22 =

i0∑
i=1

2∑
j=0

2∑
k=0

fijkfi(2−j)(2−k).

Since fj0 = f0k = 0 for every j, k ∈ N ∪ {0}, it follows from (4.1) that fij0 = fj0k = 0 for

each i, j, k. Hence

(4.2) f =

i0∑
i=1

f 2
i11,

which proves (1).

To prove the implication (⇒) of (2) note that all fi11 from (4.2) are in the image of

σ#
n,m. Hence σ

#
n,m

−1
(f) =

∑i0
i=1 σ

#
n,m

−1
(fi11)

2 is a sum of squares. It remains to prove the

implication (⇐) of (2). Since f is in the image of σ#
n,m it follows from

σ#
n,m

−1
(f) =

i1∑
i=1

[hi]
2,

where i1 ∈ N and [hi] is the equivalence class of hi ∈ R[z] in R[z]/In,m, that

f =

i1∑
i=1

σ#
n,m([hi])

2

which proves (⇐) of (2).

We write

Pos(VR(In,m)) = {f ∈ R[z]/In,m : f(z) ≥ 0 for all z ∈ VR(In,m)} ,

Sos(VR(In,m)) = {f ∈ R[z]/In,m : f =
∑
i

f 2
i for some fi ∈ R[z]/In,m},

for the cone of nonnegative polynomials and the cone of sums of squares from R[z]/In,m,
respectively.

For n > 2,m > 2, [BSV16, Procedure 3.3] is an explicit construction of nonnegative

quadratic forms from R[z]/In,m that are not sums of squares forms from random input

data. We now present this procedure specialized to our context of biquadratic biforms.

4.3. Algorithm.

Algorithm 4.1. Let n > 2, m > 2,

d = n+m−2 = dim σn,m(Pn−1×Pm−1) and e = (n−1)(m−1) = codimσn,m(Pn−1×Pm−1).

To obtain a quadratic form in Pos(VR(In,m)) \ Sos(VR(In,m)) proceed as follows:

Step 1 Construction of linear forms h0, . . . , hd.

Step 1.1 Choose e + 1 random points x(i) ∈ Rn and y(i) ∈ Rm and calculate their

Kronecker tensor products z(i) = x(i) ⊗ y(i) ∈ Rnm.
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Step 1.2 Choose d random vectors v1, . . . vd ∈ Rnm from the kernel of the matrix(
z(1) . . . z(e+1)

)∗
.

The corresponding linear forms h1, . . . , hd are

hj(z) = v∗j · z ∈ R[z] for j = 1, . . . , d.

If the number of points in the intersection

ker(
(
v1 . . . vd

)∗
)
⋂

V (In,m)

is not equal to deg(V (In,m)) =
(
n+m−2
n−1

)
or if the points in the intersection are

not in linearly general position, then repeat Step 1.1.

Step 1.3 Choose a random vector v0 from the kernel of the matrix(
z(1) . . . z(e)

)∗
.

(Note that we have omitted z(e+1).) The corresponding linear form h0 is

h0(z) = v∗0 · z ∈ R[z].

If h0 intersects h1, . . ., hd in more than e points on V (In,m), then repeat Step

1.3.

Let a be the ideal in R[z]/In,m generated by h0, h1, . . . , hd.

Step 2 Construction of a quadratic form f ∈ (R[z]/In,m) \ a2.
Step 2.1 Let g1(z), . . . , g(n2)(

m
2 )
(z) be the generators of the ideal In,m, i.e., the 2 × 2

minors zijzkl − zilzkj for 1 ≤ i < k ≤ n, 1 ≤ j < l ≤ m. For each i = 1, . . . , e

compute a basis {w(i)
1 , . . . , w

(i)
d+1} ⊆ Rnm of the kernel of the matrix ∇g1(z(i))∗

...

∇g(n2)(m2 )(z
(i))∗

 .

(Note that this kernel is always (d+1)-dimensional, since the variety V (In,m)

is d-dimensional (in Pnm−1) and smooth.)

Step 2.2 Let ei denote the i-th standard basis vector of the corresponding vector space,

i.e., the vector with 1 on the i-th component and 0 elsewhere. Choose a

random vector v ∈ Rn2m2
from the intersection of the kernels of the matrices(

z(i) ⊗ w
(i)
1 · · · z(i) ⊗ w

(i)
d+1

)∗
for i = 1, . . . , e

with the kernels of the matrices(
ei ⊗ ej − ej ⊗ ei

)∗
for 1 ≤ i < j ≤ nm.

(The latter condition ensures v is a symmetric tensor in Rnm ⊗ Rnm. Note

also that we have omitted the point z(e+1).)

For 1 ≤ i, k ≤ n and 1 ≤ j, l ≤ m denote

Eijkl = (ei ⊗ ej)⊗ (ek ⊗ el) + (ek ⊗ el)⊗ (ei ⊗ ej) ∈ Rn2m2

.

If v is in

span
(
{vi ⊗ vj + vj ⊗ vi : 0 ≤ i ≤ j ≤ d}

⋃
{Eijkl − Eilkj; 1 ≤ i < k ≤ n, 1 ≤ j < l ≤ m}

)
,
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then repeat Step 2.2. Otherwise the corresponding quadratic form f

f(z) = v∗ · (z⊗ z) ∈ R[z]/In,m,

does not belong to a2.

Step 3 Construction of a quadratic form in R[z]/In,m that is positive but not a sum of

squares.

Calculate the greatest δ0 > 0 such that δ0f +
∑d

i=0 h
2
i is nonnegative on VR(In,m).

Then for every 0 < δ < δ0 the quadratic form

(δf +
d∑

i=0

h2i )(z)

is nonnegative on VR(In,m) but is not a sum of squares.

4.4. Correctness of Algorithm 4.1. The main ingredient in the proof is the theory of

minimal degree varieties as developed in [BSV16]. Since the Segre variety σn,m(Pn−1 ×
Pm−1) is not of minimal degree for n,m ≥ 3 [BSV16, Example 5.6], Sos(VR(In,m)) ⊊
Pos(VR(In,m)). Hence results of [BSV16, Section 3] apply; their Procedure 3.3 adapted

to our set-up is Algorithm 4.1. While Step 1 and Step 3 follow immediately from the

corresponding steps in [BSV16, Procedure 3.3], we note for Step 2 that “vanishing to the

second order at z(i)” means f(z(i)) = 0 and ∇f(z(i)) ∈ span
{
∇gj(z(i)) : 1 ≤ j ≤

(
n
2

)(
m
2

)}
.

Moreover, the former step is redundant, as the relation

∇

f −
(n2)(

m
2 )∑

j=1

λjgj

 (z(i)) = 0

together with the well-known identity 2q(z) = (∇q(z))∗z for any quadratic form q imme-

diately yields f(z(i)) = 0, since z(i) ∈ V (In,m). The quadratic form δf +
∑d

i=0 h
2
i is never

a sum of squares, since f ̸∈ a2, while it is nonnegative on VR(In,m) for sufficiently small

δ > 0 by the positive definiteness of the Hessian of
∑d

i=0 h
2
i at its real zeros z(1), . . . , z(e),

see the proof of the correctness of Procedure 3.3 in [BSV16]. We note that the verifi-

cation in Step 1.2 is computationally difficult, but since all steps in the algorithm are

performed with random data, all the generic conditions from [BSV16, Procedure 3.3] are

satisfied with probability 1. Hence, Algorithm 4.1 works well with probability 1 without

implementing verifications.

4.5. Implementation and rationalization. Step 1 and Step 2 are easily implemented

as they only require linear algebra. (The verification in Step 1.2 can be performed using

Gröbner basis ifm,n are small, but is “always” satisfied with random input data.) On the

other hand, Step 3 is computationally difficult; testing nonnegativity even of low degree

polynomials is NP-hard, cf. [LNQY09]. We thus employ a sum of squares relaxation

technique motivated by (the solution to) Hilbert’s 17th problem [BCR98]. Consider the

following polynomial optimization problem: find the maximal δ0 such that

(4.3) σ#
n,m

(
δ0f +

d∑
i=0

h2i

)(∑
j,k

(
xjyk

)2)ℓ
is a sum of squares.

For a given ℓ ∈ N the condition (4.3) can be converted to a linear matrix inequality

using Gram matrices of polynomials. Thus maximizing δ0 subject to this constraint is a
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standard semidefinite programming problem (SDP) [WSV00]. We start by solving (4.3)

for ℓ = 1 using one of the standard solvers. If the obtained maximum is δ0 = 0, then we

increase ℓ and solve another SDP. We repeat this until we obtain a maximum δ0 > 0. In

fact, in our numerical experiments this always happened with ℓ = 1 already.

Any δ0 > 0 for that (4.3) holds gives an example of a positive biquadratic biform that

is not a sum of squares. Together with Proposition 3.1 this yields instances of positive

but not completely positive maps.

4.5.1. Rationalization. Step 1 and Step 2 can be performed over Q, leading to rational

forms hj, f . But in Step 3 of the algorithm we are using SDPs, so the output δ0 will

be floating point. Pick a positive rational δ < δ0. We now explain how tools from

polynomial optimization ([PP08, CKP15]) can be used to provide an exact, symbolic

certificate of positivity for the produced form δf +
∑d

i=0 h
2
i by computing a positive

semidefinite rational Gram matrix G for σ#
n,m

(
δ0f +

∑d
i=0 h

2
i

)(∑
j,k

(
xjyk

)2)ℓ
. That is,

letting p = σ#
n,m

(
δ0f +

∑d
i=0 h

2
i

)
,

(4.4) p
(∑

j,k

(
xjyk

)2)ℓ
= W ∗GW

where W = W (x, y) is the bihomogeneous vector (xIyJ)|I|=|J |=ℓ+1. Since p(x(i), y(i)) = 0

for i ≤ e, each positive semidefinite G satisfying (4.4) will have at least an e-dimensional

nullspace. Let P be a change of basis matrix containing the vectors W (x(i), y(i)), i ≤ e, as

the first e columns and a (rational) basis for the orthogonal complement as its remaining

columns. With respect to this decomposition, write

P ∗GP =

[
Ǧ11 Ǧ12

Ǧ∗
12 Ǧ22

]
.

By construction, we want Ǧ11 and Ǧ12 to be equal to 0. Solve these linear equations and

use them in Ǧ22 to produce Ǧ. Then run a SDP to solve Ǧ ⪰ 0. Use the trivial objective

function, since under a strict feasibility assumption the interior point methods (which

all state-of-the-art SDP solvers use) yield solutions in the relative interior of the optimal

face, leading to solutions of maximal rank [LSZ98]. If the output of the SDP is a full

rank floating point Ǧ, simply use a rationalization that is fine enough to yield a positive

semidefinite matrix (cf. [PP08]).

4.6. Example. In this subsection we give an explicit example of a positive map that is

not completely positive built off Algorithm 4.1. Let

pΦ(x, y) = 104x21y
2
1 + 283x21y

2
2 + 18x21y

2
3 − 310x21y1y2 + 18x21y1y3 + 4x21y2y3 + 310x1x2y

2
1

− 18x1x3y
2
1 − 16x1x2y

2
2 + 52x1x3y

2
2 + 4x1x2y

2
3 − 26x1x3y

2
3 − 610x1x2y1y2 − 44x1x3y1y2

+ 36x1x2y1y3 − 200x1x3y1y3 − 44x1x2y2y3 + 322x1x3y2y3 + 285x22y
2
1 + 16x23y

2
1 + 4x2x3y

2
1

+63x22y
2
2+9x23y

2
2+20x2x3y

2
2+7x22y

2
3+125x23y

2
3−20x2x3y

2
3+16x22y1y2+4x23y1y2−60x2x3y1y2

+ 52x22y1y3 + 26x23y1y3 − 330x2x3y1y3 − 20x22y2y3 + 20x23y2y3 − 100x2x3y2y3.
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The corresponding linear map Φ : S3 → S3 is as follows:

Φ(E11) =

 104 −155 9

−155 283 2

9 2 18

 , Φ(E22) =

285 8 26

8 63 −10

26 −10 7

 ,

Φ(E33) =

16 2 13

2 9 10

13 10 125

 , Φ(E12 + E21) =

 310 −305 18

−305 −16 −22

18 −22 4

 ,

Φ(E13 + E31) =

 −18 −22 −100

−22 52 161

−100 161 −26

 , Φ(E23 + E32) =

 4 −30 −165

−30 20 −50

−165 −50 −20

 .
We claim that pΦ is nonnegative but not a sum of squares. Equivalently, Φ is positive

but not cp. We will establish this by explaining how this example was produced using

Algorithm 4.1.

Start with the points
x(1) y(1)

x(2) y(2)

x(3) y(3)

x(4) y(4)

x(5) y(5)

 =


1 1 −1 1 1 −1

1 −1 1 1 −1 1

−1 1 1 −1 1 1

1 1 1 1 1 1

2 −3 3 −2 0 2

 ,

where each x(i), y(i) ∈ R3. Find some random linear forms hj from Step 1, e.g., using
v∗0
v∗1
v∗2
v∗3
v∗4

 =


−2 2 −1 −2 0 0 1 0 2

0 2 3 −2 3 0 −3 0 −3

−3 7 0 −7 −3 1 0 −1 6

9 −14 0 14 −3 2 0 −2 −6

0 6 0 −6 −6 0 0 0 6

 .
Finally, a random quadratic form (in z) f satisfying the conditions described in Step 2 is

σ#
3,3(f) = 5x21y

2
1−3x21y

2
2+4x21y

2
3−4x21y1y2+7x21y1y3−2x21y2y3+4x1x2y

2
1−7x1x3y

2
1+x1x2y

2
2

+5x1x3y
2
2+2x1x2y

2
3−2x1x3y

2
3+2x1x2y1y2−3x1x3y1y2+7x1x2y1y3−14x1x3y1y3−10x1x2y2y3

+x1x3y2y3− 2x22y
2
1 +3x23y

2
1 − 2x2x3y

2
1 +2x23y

2
2 +x2x3y

2
2 +x22y

2
3 +2x23y

2
3 − 4x2x3y

2
3 −x22y1y2

+ 2x23y1y2 + 5x22y1y3 + 2x23y1y3 − 5x2x3y1y3 − x22y2y3 + 4x23y2y3.

Next run the SDP maximizing δ0 subject to “σ#
3,3(
∑4

i=0 h
2
i + δ0f)

∑
j,k(xjyk)

2 is a sum of

squares”. The optimal objective value is δ0 ≈ 3.41628. Choosing δ = 2, let

p = σ#
3,3

( 4∑
i=0

h2i + 2f
)
.

Then p = pΦ. As explained above, p is not a sum of squares, whence Φ is not completely

positive. Alternately, a SDP can be used to compute an explicit example of a linear

functional positive on sum of squares and negative on p.
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Finally, we used the rationalization procedure described in Subsection 4.5.1 above to

prove p is nonnegative (with ℓ = 1). We provide a Mathematica notebook1 where the

interested reader can verify the calculations.

Appendix A. Sums of products of even powers of linear forms

In [Ble06] Blekherman also estimated the volume of the section of the cone of sums of

even powers of linear forms. The tools developed in this article can be used to extend his

result to the cone of sums of products of even powers of linear forms in different sets of

variables. The main result of this appendix, Theorem A.1 below, provides bounds for the

volume of the section of this cone.

Let Lf
(n,m)
(2k1,2k2)

stand for the cone generated by the products of the form ℓ(x)2k1ℓ′(y)2k2

where ℓ(x) and ℓ′(y) are linear forms in x := (x1, . . . , xn) and y := (y1, . . . , ym), respec-

tively, i.e.,

Lf
(n,m)
(2k1,2k2)

:=

{
f ∈ R[x, y]2k1,2k2 : f =

∑
i

ℓ2k1i ℓ′i
2k2 with ℓi ∈ R[x]1, ℓ′i ∈ R[y]1

}
,

where R[x]1 and R[y]1 stand for the vector spaces of linear forms in x and y, respectively.

Recall the definitions of the product measure σ from Subsection 1.1 and the vector

space M := M(n,m)
(2,2) from (1.3). Equip M with the L2(σ) inner product and let BM be

the unit ball in M. Write DM for the dimension of M and let µ be the (unique w.r.t.

unitary isomorphism) pushforward of the Lebesgue measure on RDM to M (see Lemma

1.4). Let L̃f
(n,m)

(2k1,2k2)
be the set

L̃f
(n,m)

(2k1,2k2)
:=

{
f ∈ M : f + (

n∑
i=1

x2i )
k1(

m∑
j=1

y2j )
k2 ∈ Lf

(n,m)
(2k1,2k2)

}
.

The bounds for the volume of the set L̃f
(n,m)

(2k1,2k2)
are as follows.

Theorem A.1. For n,m ∈ N we have:

h2k1,2k2 ≤

Vol L̃f
(n,m)

(2k1,2k2)

VolBM

 1
DM

≤ j2k1,2k2 ,

where

h2k1,2k2 =
1

2
max

(
2k21 + n

2k21
,
2k22 +m

2k22

) 1
2 k1!k2!

(n
2
+ 2k1)k1(

m
2
+ 2k2)k2

,

j2k1,2k2 =
1

c2k1,2k2

(
k1!k2!

(n
2
+ 2k1)k1(

m
2
+ 2k2)k2

)α2k1,2k2

,

and

c2k1,2k2 =

{
33 · 10− 20

9 max(n,m)−
1
2 , if k1 = k2 = 1,

exp(−3) (2⌈max(n,m) ln(2max(k1, k2) + 1)⌉)−
1
2 , otherwise,

α2k1,2k2 = 1−
(

2k1 − 1

n+ 2k1 − 1

)2

−
(

2k2 − 1

m+ 2k2 − 1

)2

+

(
2k1

n+ 2k1 − 2

2k2
m+ 2k2 − 2

)2

.

1see https://www.math.auckland.ac.nz/~igorklep/ or the arXiv source of this manuscript

https://www.math.auckland.ac.nz/~igorklep/
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The proof of Theorem A.1 closely follows the proof of [Ble06, Theorem 7.1] which gives

volume bounds for the cone generated by 2k-th powers of linear forms in x. We will need

the following lemma.

Lemma A.2. The sets Lf
(n,m)
(2k1,2k2)

and Pos
(n,m)
(2k1,2k2)

are closed in the apolar inner product

on R[x, y]2k1,2k2.

Let Sn−1 be the unit sphere in Rn. For a point v := (v1, . . . , vn) ∈ Sn−1, we denote by

v2k the form v2k := (v1x1 + . . .+ vnxn)
2k.

Proof of Lemma A.2. First we will prove that the set Pos := Pos
(n,m)
(2k1,2k2)

is closed. Let

{pi}i∈N be a sequence from Pos := Pos
(n,m)
(2k1,2k2)

converging to some element p ∈ R[x, y]2k1,2k2 .
We have to prove that p ∈ Pos. For every u ∈ Sn−1, v ∈ Sm−1 we have that

1

(2k1)!(2k2)!
⟨p− pi, u

2k1 ⊗ v2k2⟩d = (p− pi)(u, v).

Therefore p(u, v) = lim
i→∞

pi(u, v) and hence p(u, v) ≥ 0 for every u ∈ Sn−1, v ∈ Sm−1. This

proves that p ∈ Pos and Pos is closed.

It remains to prove that the set Lf := Lf
(n,m)
(2k1,2k2)

is closed. Let {ℓi}i∈N be a sequence

from Lf converging to some element ℓ ∈ R[x, y]2k1,2k2 . We have to prove that ℓ ∈ Lf. By

Caratheodory’s theorem [Rez92, Proposition 2.3] we may assume that each ℓi is of the

form

ℓi =
r∑

p=1

(
(

n∑
j=1

aipjxj)
2k1(

m∑
k=1

bipkyk)
2k2

)
,

where r := dimR[x, y]2k1,2k2 , aipj ∈ R, bipk ∈ R for all i, p, j, k and
∑n

j=1 |aipj|2 ̸= 0,∑m
k=1 |bipk|2 ̸= 0 for all i, p. For all i, p we define

Mip := max(|bip1|, . . . , |bipm|).

Note that Mip > 0. For each p there exists k(p) ∈ {1, . . . ,m} such that |bipk(p)| = Mip for

infinitely many i ∈ N. Passing to subsequences we may assume that |bipk(p) | =Mip for all

p and i ∈ N. We have

ℓi =
r∑

p=1

(
(

n∑
j=1

M
2k2
2k1
ip aipjxj)

2k1(
m∑
k=1

bipk
Mip

yk)
2k2

)
=:

r∑
p=1

(
(

n∑
j=1

ãipjxj)
2k1(

m∑
k=1

b̃ipkyk)
2k2

)
.

Note that for all p, k the sequences {|b̃ipk|}i∈N are bounded by 1 and hence the sequences

{b̃ipk}i∈N have convergent subsequences. Passing to subsequences we may assume that

all the sequences {b̃ipk}i∈N are convergent; we write bpk for their limits. Let ei (resp. fj)

denote the i-th (resp. j-th) standard basis vector of Rn (resp. Rm), i.e., the vector with 1

on the i-th (resp. j-th) component and 0 elsewhere. Note that

1

(2k1)!(2k2)!
⟨ℓ− ℓi, e

2k1
j ⊗ f2k2k ⟩d = (ℓ− ℓi)(ej, fk) = ℓ(ej, fk)−

r∑
p=1

ã2k1ipj b̃
2k2
ipk .

Since ℓi converges to ℓ in the apolar inner product, it follows that

ℓ(ej, fk) = lim
i→∞

r∑
p=1

ã2k1ipj b̃
2k2
ipk .
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Therefore for all p, j, k the sequences {ã2k1ipj b̃
2k2
ipk}i∈N are bounded above and hence have

convergent subsequences. Passing to subsequences we may assume that all the sequences

{ã2k1ipj b̃
2k2
ipk}i∈N are convergent. Now since |b̃ipk(p) | = 1 for all i, p, it follows that for each p, j

the sequence {ã2k1ipj }i∈N = {ã2k1ipj b̃
2k2
ipk(p)

}i∈N is convergent, and hence the bounded sequence

{ãipj}i∈N can have at most two accumulation points. Passing to subsequences we may

assume that all the squences {ãipj}i∈N are convergent; we denote the limits by apj. Then

ℓ =
r∑

p=1

(
(

n∑
j=1

apjxj)
2k1(

m∑
k=1

bpkyk)
2k2

)
∈ Lf,

which concludes the proof of the lemma.

Proof of Theorem A.1. We write Lf := Lf
(n,m)
(2k1,2k2)

and Pos := Pos
(n,m)
(2k1,2k2)

. By Lemma A.2,

Lf and Pos are closed in the apolar inner product on R[x, y]2k1,2k2 . Since〈
f, u2k1 ⊗ v2k2

〉
d
= (2k1)!(2k2)!f(u, v) for all f ∈ R[x, y]2k1,2k2 , u ∈ Sn−1, v ∈ Sm−1,

we have that

Lf∗d = Pos and Lf = Pos∗d,

where Lf∗d (resp. Pos∗d) is the dual to the cone Lf (resp. Pos) in the apolar inner product.

In particular,

(A.1) L̃f = P̃os
∗
d.

Let Pos∗ ⊆ R[x, y]2k1,2k2 and P̃os
◦
⊆ M be the dual cone of Pos and the polar dual of P̃os

in the L2(σ) inner product, respectively. By an analogous reasoning as for the equality

(Sos′)◦ = −S̃os
∗
in the proof of the lower bound in Theorem 2.8, we conclude that

(A.2) P̃os
◦
= −P̃os

∗
.

By (A.1) and (A.2) we have that(
Vol L̃f

VolBM

) 1
DM

=

(
Vol P̃os

∗
d

VolBM

) 1
DM

=

(
Vol P̃os

∗
d

Vol P̃os
∗

) 1
DM
(
Vol P̃os

◦

VolBM

) 1
DM

.

Since Pos has (
∑n

i=1 x
2
i )

k1⊗(
∑m

j=1 y
2
j )

k2 as an interior point and
∫
T
fdσ > 0 for all non-zero

f ∈ Pos, we can estimate
(

Vol P̃os
∗
d

Vol P̃os
∗

) 1
DM by Lemma 2.6 and obtain

(A.3)
k1!k2!

(n
2
+ 2k1)k1(

m
2
+ 2k2)k2

≤

(
Vol P̃os

∗
d

Vol P̃os
∗

) 1
DM

≤
(

k1!k2!

(n
2
+ 2k1)k1(

m
2
+ 2k2)k2

)α2k1,2k2

,

where α2k1,2k2 is defined as in the statement of the theorem. Using the lower bound in

the estimate (A.3) together with the estimate (2.10) proves the lower bound in Theorem

A.1. By the estimate (2.9) and the equality (A.2) we have that(
Vol P̃os∗

VolBM

) 1
DM

≤
(

BM

Vol P̃os

) 1
DM

.

Using the lower bound in Theorem 1.5 and the upper bound in the estimate (A.3) proves

the upper bound in Theorem A.1.
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