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Abstract. This article studies algebraic certificates of positivity for noncom-
mutative (nc) operator-valued polynomials on matrix convex sets, such as the

solution set DL, called a free Hilbert spectrahedron, of the linear operator in-

equality (LOI) L(X) = A0⊗ I +
∑g

j=1 Aj ⊗Xj � 0, where Aj are self-adjoint

linear operators on a separable Hilbert space, Xj matrices and I is an identity
matrix. If Aj are matrices, then L(X) � 0 is called a linear matrix inequal-

ity (LMI) and DL a free spectrahedron. For monic LMIs, i.e., A0 = I, and

nc matrix-valued polynomials the certificates of positivity were established by
Helton, Klep and McCullough in a series of articles with the use of the theory of

complete positivity from operator algebras and classical separation arguments

from real algebraic geometry. Since the full strength of the theory of com-
plete positivity is not restricted to finite dimensions, but works well also in the

infinite-dimensional setting, we use it to tackle our problems. First we extend
the characterization of the inclusion DL1

⊆ DL2
from monic LMIs to monic

LOIs L1 and L2. As a corollary one immediately obtains the description of a

polar dual of a free Hilbert spectrahedron DL and its projection, called a free
Hilbert spectrahedrop. Further on, using this characterization in a separation

argument, we obtain a certificate for multivariate matrix-valued nc polynomi-

als F positive semidefinite on a free Hilbert spectrahedron defined by a monic
LOI. Replacing the separation argument by an operator Fejér-Riesz theorem

enables us to extend this certificate, in the univariate case, to operator-valued

polynomials F . Finally, focusing on the algebraic description of the equality
DL1

= DL2
, we remove the assumption of boundedness from the description

in the LMIs case by an extended analysis. However, the description does not

extend to LOIs case by counterexamples.

1. Introduction

In this section we state the main concepts and results of this paper. Subsection
1.1 places the content of the paper in a general context. In Subsections 1.2-1.6
definitions intertwine with the main results. Subsection 1.7 is a guide to the orga-
nization of the rest of the paper.

Throughout the paper H , H1, H2, K , G stand for separable real Hilbert spaces
unless stated otherwise.
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1.1. Context. The name Positivstellensatz refers to an algebraic certificate for a
given polynomial p to have a positivity property on a given closed semialgebraic
set. Finding a certificate for an operator-valued polynomial p positive semidefinite
on an arbitrary closed semialgebraic set is a hard problem. Even if p is a matrix-
valued polynomial, the optimal certificates are only known to exist for very special
sets, namely matrix convex sets defined as matrix solution sets of linear matrix
inequalities (LMIs). The aim of this paper is to generalize characterizations of
noncommutative (nc) matrix-valued polynomials which are positive semidefinite on
a LMI set to characterizations of nc operator-valued polynomials which are positive
semidefinite on arbitrary matrix convex sets. By [21], every closed matrix convex
set is a matrix solution set of a linear operator inequality (LOI).

Our problem belongs to the field of free real algebraic geometry (free RAG);
see [27] and references therein. Free RAG has two branches - free positivity and
free convexity. Both branches present exciting mathematical challenges, and lend
themselves to many applications.

Free positivity is an analog of classical real algebraic geometry [9, 38, 39, 40,
45, 48, 50], a theory of polynomial inequalities embodied in Positivstellensätze.
It makes contact with noncommutative real algebraic geometry [12, 25, 28, 26,
31, 41, 51]. Free Positivstellensätze have applications to quantum physics [46],
operator algebras [35], quantum statistical mechanics [36, 11], the quantum moment
problems and multiprover games [20].

Matrix convex sets and free convexity arise naturally in a number of contexts,
including engineering systems theory, operator spaces, systems and algebras and is
closely linked to unital completely positive maps [4, 44, 22, 33]. The simplest exam-
ples of matrix convex sets are matrix solution sets of LMIs. A large class of linear
systems engineering problems transforms to LMIs [27, §1.1], which led to a major
advance in those problems during the past two decades [52]. Furthermore, LMIs
underlie the theory of semidefinite programming, an important recent innovation
in convex optimization [43]. As mentioned above every closed matrix convex set is
a matrix solution sets of a LOI by [21].

1.2. Free sets, matrix convex sets, linear pencils and LOI sets. This work
fits into the wider context of free analysis [53, 54, 34, 42, 47, 1, 8, 18, 28, 46], so we
start by recalling some of the standard notions used throughout this article.

1.2.1. Free sets - matrix level. Fix a positive integer g ∈ N. We use Sn to denote
real symmetric n× n matrices and Sg for the sequence (Sgn)n. A subset Γ of Sg is
a sequence Γ = (Γ(n))n, where Γ(n) ⊆ Sgn for each n. The subset Γ is closed with
respect to direct sums if A = (A1, . . . , Ag) ∈ Γ(n) and B = (B1, . . . , Bg) ∈ Γ(m)
implies

A⊕B =

([
A1 0
0 B2

]
, . . . ,

[
Ag 0
0 Bg

])
∈ Γ(n+m).

It is closed with respect to (simultaneous) unitary conjugation if for each n,
each A ∈ Γ(n) and each n× n unitary matrix U ,

U∗AU = (U∗A1U, . . . , U
∗AgU) ∈ Γ(n).

The set Γ is a free set if it is closed with respect to direct sums and simultaneous
unitary conjugation. If in addition it is closed with respect to (simultaneous)
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isometric conjugation, i.e., if for each m ≤ n, each A = (A1, . . . , Ag) ∈ Γ(n),
and each isometry V : Rm → Rn,

V ∗AV = (V ∗A1V, . . . , V
∗AgV ) ∈ Γ(m),

then Γ is matrix convex [30].

1.2.2. Free sets - operator level. Fix a separable Hilbert space K . Let Lat(K )
denote the lattice of closed subspaces of K . For a K ∈ Lat(K ), we use
SK to denote the set of all self-adjoint operators on K. Let SK stand for the
set (SK)K . A collection Γ = (Γ(K))K where Γ(K) ⊆ SgK for each K a closed
subspace of K , is a free operator set [30] if it is closed under direct sums and
with respect simultaneous conjugation by unitary operators. If in addition it is
closed with respect to simultaneous conjugation by isometries V : H → K, where
H,K ∈ Lat(K ), then Γ is operator convex.

1.2.3. Linear pencils and LOI sets. Let H be separable real Hilbert space and IH
the identity operator on H . For self-adjoint operators A0, A1, . . . , Ag ∈ SH , the
expression

L(x) = A0 +

g∑
j=1

Ajxj

is a linear (operator) pencil. If H is finite-dimensional, then L(x) is a linear
matrix pencil. If A0 = IH , then L is monic. If A0 = 0, then L is homogeneous.
To every tuple A = (A1, . . . , Ag) ∈ SgH we associate a homogeneous linear pencil
ΛA and a monic linear pencil LA by

ΛA(x) :=

g∑
j=1

Ajxj , LA(x) := IH + ΛA(x).

The operator Hilbert convex hull oper-convK {A} of A is the set

oper-convK {A} :=
⋃

(G ,π,V )∈Π

V ∗π(A)V =
⋃

(G ,π,V )∈Π

(V ∗π(A1)V, . . . , V ∗π(Ag)V ),

where Π is the set of all triples (G , π, V ) of a separable real Hilbert space G , a
contraction V : K → G and a unital ∗-homomorphism π : B(H )→ B(G ).

Given a tuple of self-adjoint operators X = (X1, . . . , Xg) ∈ SgK on a closed
subspace K of a Hilbert space K , the evaluation L(X) is defined as

L(X) = A0 ⊗ IK +

g∑
j=1

Aj ⊗Xj ,

where IK stands for an identity operator on K.
We call the set

DL(1) = {x ∈ Rg : L(x) � 0}
a Hilbert spectrahedron or a LOI domain, the set

DL = (DL(n))n where DL(n) = {X ∈ Sgn : L(X) � 0},
a free Hilbert spectrahedron or a free LOI set, the set

∂DL = (∂DL(n))n where ∂DL(n) = {X ∈ Sgn : L(X) � 0, L(X) 6� 0}
the boundary of a free Hilbert spectrahedron and the set

DK
L = (DL(K))K∈Lat(K ) where DL(K) = {X ∈ SgK : L(X) � 0}.
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an operator free Hilbert spectrahedron or an operator free LOI set, where
K is a separable real Hilbert space. Note that DL(1) ⊆ Rg is a closed convex set
and by the classical Hahn-Banach theorem every convex closed subset of Rg is of
this form. If L is a linear matrix pencil, then we omit the word Hilbert from the
definitions.

1.3. Inclusion of free Hilbert spectrahedra. Our first main result is an al-
gebraic characterization of the inclusion DL1

⊆ DL2
where L1 and L2 are monic

linear operator pencils.

Theorem 1.1 (Operator linear Positivstellensatz). Let Lj, j = 1, 2, be monic
linear operator pencils with coefficients from B(Hj), j = 1, 2. Then DL1

⊆ DL2
if

and only if there exist a separable real Hilbert space K , a contraction V : H2 → K ,
a positive semidefinite operator S ∈ B(H2) and a ∗-homomorphism π : B(H1) →
B(K ) such that

L2 = S + V ∗π(L1)V.

Moreover, if DL1
(1) is bounded, then V can be chosen to be isometric and π a

unital ∗-homomorphism, i.e.,

L2 = V ∗π(L1)V.

For the proof see Corollary 2.9. The main techniques used are complete positivity
and the theory of operator algebras. Namely, we define a unital ∗-linear map τ
between the linear spans of the coefficients of both pencils, connect DL1

⊆ DL2

with τ ’s complete positivity, invoke the Arveson extension theorem to extend it to
a completely positive map on B(H1) and finally use the Stinespring representation
theorem to obtain the result.

We demonstrate by Examples 2.12 and 5.1, that the assumption of monicity of
Lj , j = 1, 2, is in general needed in Theorem 1.1.

Inclusion of free spectrahedra for matrix pencils was considered in [28] and [26].
Our approach is the same as the one from [28], where the problem was solved in
the finite-dimensional case for a bounded set DL1(1) (see [28, Corollary 3.7]). We
were able to modify it to work independently of the finite-dimensionality and the
boundedness of DL1

(1). Namely, Theorem 1.1 extends [28, Corollary 3.7] from
matrix to operator pencils L1, L2 and removes the assumption of boundedness of
the set DL1

(1). [26, Corollary 4.1] solves the problem in the finite-dimensional
case also for an unbounded set DL1(1) but uses completely different techniques,
including a Putinar-type separation argument, which does not seem to extend to
the infinite-dimensional case.

1.4. Equality of free spectrahedra. Our second main result is a characterization
of different linear pencils which give the same free spectrahedron, see Theorem 1.2
below. Before stating the result we introduce some definitions. Let A0, A1, . . . , Ag ∈
SH be self-adjoint operators and L(x) = A0 +

∑g
j=1Ajxj a linear pencil. Let

H ⊆H be a closed subspace of H which is invariant under each Aj , i.e., AjH ⊆
H. Since each Aj is self-adjoint, it also follows that AjH

⊥ ⊆ H⊥, i.e., H is
automatically reducing for each Aj . Hence, with respect to the decomposition
H = H ⊕H⊥, L can be written as the direct sum,

L = L̃⊕ L̃⊥ =

[
L̃ 0

0 L̃⊥

]
, where L̃ = IH +

g∑
j=1

Ãjxj ,
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and Ãj is the restriction of Aj to H. We say that L̃ is a subpencil of L. If H is

a proper closed subspace of H , then L̃ is a proper subpencil of L. If DL = DL̃,

then L̃ is a whole subpencil of L. If L has no proper whole subpencil, then L is
σ-minimal.

Theorem 1.2 (Linear Gleichstellensatz). Let Lk = Idk +
∑g
j=1Ak,jxj, k = 1, 2,

dj ∈ N, Ak,j ∈ Sdk , be monic linear matrix pencils. Then DL1
= DL2

if and only if

every σ-minimal whole subpencil L̃1 of L1 is unitarily equivalent to any σ-minimal
whole subpencil L̃2 of L2, i.e., there is a unitary matrix U such that

L̃2 = U∗L̃1U.

First we remark that even though DL1 = DL2 if and only if DL1 ⊆ DL2 and
DL2

⊆ DL1
, it is not clear how to prove Theorem 1.2 only by using the matrix ver-

sion of Theorem 1.1. The proof is more involved (see Theorem 3.1). Our approach
uses the idea from [28], where it is shown how DL is governed by the multiplicative
structure C∗(S), i.e., the C∗-algebra generated by the set S of the coefficients of
L. Using this and the theory of real C∗-algebras, Theorem 1.2 is proved under the
assumption DL1(1) = DL2(1) is bounded in [28, §3.3]. Analyzing the proof one can

notice that it works for σ-minimal pencils L̃1, L̃2 that satisfy the implication

DL̃1
= DL̃2

⇒ DhL̃1
= DhL̃2

,

where
hL̃j(x0, . . . , xg) = x0L̃j(x

−1
0 x1, . . . , x

−1
0 xg), j = 1, 2,

are the homogenizations of L̃j , j = 1, 2. Note that the evaluation of a ho-
mogeneous linear pencil L(x) =

∑g
j=0Ajxj on a tuple of symmetric matrices

X = (X0, X1, . . . , Xg) ∈ Sg+1
n is defined as

L(X) =

g∑
j=0

Aj ⊗Xj

and
DL = (DL(n))n where DL(n) = {X ∈ Sg+1

n : L(X) � 0}
is its free Hilbert spectrahedron. By this observation and a lengthy case analysis we
establish Theorem 1.2 irrespective of the boundedness of the set DL1

(1) = DL2
(1)

in Section 3.
However, Theorem 1.2 does not extend to linear operator pencils. Example 3.11

shows, that not every operator pencil has a whole subpencil which is σ-minimal,
while Example 3.12 gives two σ-minimal operator pencils which have the same free
Hilbert spectrahedron but are not unitarily equivalent.

1.5. Free Hilbert spectrahedrops and polar duals.

1.5.1. Free Hilbert spectrahedrops. Let H , K be separable real Hilbert spaces. Let
D, Ωj , Λk ∈ SH be self-adjoint operators and

L(x, y) = D +

g∑
j=1

Ωjxj +

h∑
k=1

Γkyk ∈ SH 〈x, y〉

a linear pencil in the variables (x1, . . . , xg; y1, . . . , yh). We call the set

projxDL(1) := {x ∈ Rg : ∃ y ∈ Rh such that L(x, y) � 0}
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a Hilbert spectrahedral shadow [10], the set

projxDL = (projxDL(n))n,

where
projxDL(n) := {X ∈ Sgn : ∃ Y ∈ Shn such that L(X,Y ) � 0},

a free Hilbert spectrahedrop, and the set

projxD
K
L = (projxDL(K))K∈Lat(K ),

where
projxDL(K) = {X ∈ SK : ∃ Y ∈ SK such that L(X,Y ) � 0},

an operator free Hilbert spectrahedrop. If L is a linear matrix pencil, then
we omit the word Hilbert from the definitions.

1.5.2. Polar duals. Let K be a real separable Hilbert space. The free polar dual
(resp. the free Hilbert polar dual) K◦ = (K◦(n))n of a free set K ⊆ Sg (resp. a
free operator set K ⊆ SgK ) is

K◦(n) = {A ∈ Sgn : LA(X) = In ⊗ I +

g∑
j=1

Aj ⊗Xj � 0 for all X ∈ K}.

The operator free polar dual (resp. the operator free Hilbert polar dual)
KK ,◦ = (K◦(K))K∈Lat(K ) of a free set K ⊆ Sg (resp. a free operator set K ⊆ SgK )
is

K◦(K) = {A ∈ SgK : LA(X) = IK ⊗ I +

g∑
j=1

Aj ⊗Xj � 0 for all X ∈ K}.

1.5.3. Polar duals of free Hilbert spectrahedra and free Hilbert spectrahedrops. In
this subsection we state our main results on polar duals of free spectrahedra and
free spectrahedrops. Let H , K be separable real Hilbert spaces.

Theorem 1.3. Suppose L := IH +
∑g
j=1Ajxj is a monic linear operator pencil.

The operator free Hilbert polar dual (DK
L )K ,◦ of the set DK

L is the set

oper-convK {(A1, . . . , Ag)}.

Theorem 1.4. Suppose L := IH +
∑g
j=1 Ωjxj +

∑h
k=1 Γkyk is a monic linear

operator pencil, where Ωj ,Γk ∈ SH . The operator free Hilbert polar dual of K :=
projxD

K
L is the set

KK ,◦ = {A ∈ SgK : (A, 0) ∈ (DK
L )K ,◦}

=
{
A ∈ SgK : ∃ a separable Hilbert space G , an isometry V : K → G ,

and ∗-homomorphism π : B(H ⊕ R)→ B(G ) s.t.

A = V ∗π(

[
Ω 0
0 0

]
)V, 0 = V ∗π(

[
Γ 0
0 0

]
)V

}
,

For the proof of Theorems 1.3 and 1.4 see Theorems 2.13 and 2.15, respectively.
They follow from Theorem 1.1. Theorem 1.3 states that an operator free convex
set is generated by a finite set if and only if it is the polar dual of an operator free
Hilbert spectrahedron, while Theorem 1.4 states a similar result for corresponding
projections. The polar dual problems for finite-dimensional Hilbert spaces H and
K were considered in [29, §4.3, §4.4].
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1.6. Nc polynomials and operator Positivstellensätze.

1.6.1. Words and nc polynomials. We write 〈x〉 for the monoid freely generated
by x = (x1, . . . , xg), i.e., 〈x〉 consists of words in the g noncommuting letters
x1, . . . , xg. Let R〈x〉 denote the associative R-algebra freely generated by x, i.e.,
the elements of R〈x〉 are polynomials in the noncommuting variables x with co-
efficients in R. The elements are called noncommutative (nc) polynomials.
Endow R〈x〉 with the natural involution ∗ which fixes R∪{x} pointwise, reverses
the order of words, and acts linearly on polynomials. Polynomials invariant under
this involution are symmetric. The length of the longest word in a noncommuta-
tive polynomial f ∈ R〈x〉 is denoted by deg(f). The set of all words of degree at
most k is 〈x〉k and R〈x〉k is the vector space of all noncommutative polynomials of
degree at most k.

Fix separable Hilbert spaces H1, H2. Operator-valued nc polynomials are
the elements of B(H1,H2)⊗ R〈x〉. We write

P =
∑
w∈〈x〉

Aw ⊗ w ∈ B(H1,H2)⊗ R〈x〉

for an element P ∈ B(H1,H2) ⊗ R〈x〉, where the sum is finite. The involution ∗

extends to operator-valued polynomials by

P ∗ =
∑
w∈〈x〉

A∗w ⊗ w∗ ∈ B(H2,H1)⊗ R〈x〉 .

If H1 = H2 and P = P ∗, then we say P is symmetric.

1.6.2. Polynomial evaluations. If P ∈ B(H1,H2) ⊗ R〈x〉 is a nc operator-valued
polynomial and X ∈ B(K )g, where K is a separable Hilbert space, then

P (X) ∈ B(H1,H2)⊗B(K )

is defined in the natural way by replacing xi by Xi and sending the empty word
to the identity operator on K . Note that if P ∈ R`1×`2〈x〉 is a matrix-valued
polynomial, where `1, `2 ∈ N are natural numbers, then P (X) : K `2 → K `1 is an
operator mapping form K `2 to K `1 and has a matrix representation (pij(X))ij ,
where P = (pij(x))ij .

1.6.3. Free Hilbert semialgebraic sets. A symmetric operator-valued nc polynomial
P determines the free Hilbert semialgebraic set by

DP = (DP (n))n where DP (n) = {X ∈ Sgn : P (X) � 0},

and the operator free Hilbert semialgebraic set by

DK
P = (DP (K))K∈Lat(K ) where DP (K) = {X ∈ SgK : P (X) � 0}.

Clearly, the sets DP and DK
P are a free set and a free operator set, respectively. If

P is a symmetric matrix-valued nc polynomial, then we omit the word Hilbert in
the definitions of DP and DK

P .
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1.6.4. Operator Positivstellensätze. Now we turn our attention to nc polynomials
positive semidefinite on free Hilbert spectrahedra.

Theorem 1.5 (Operator convex Positivstellensatz). Let L ∈ SH 〈x〉 be a monic
linear operator pencil. Then for every symmetric matrix-valued noncommutative
polynomial F ∈ Rν×ν〈x〉 with F |DL � 0, there is a separable real Hilbert space
K , a ∗-homomorphism π : B(H ) → B(K ), finitely many matrix polynomials
Rj ∈ Rν×ν〈x〉 and operator polynomials Qk ∈ B(Rν ,K ) ⊗ R〈x〉 all of degree at

most deg(F )+2
2 such that

F =
∑
j

R∗jRj +
∑
k

Q∗kπ(L)Qk.

For the proof see Theorem 4.2. The problem for finite-dimensional Hilbert spaces
H and K was considered in [26, 28]. In [26], Theorem 1.5 was obtained for
linear matrix pencils L by modifying a Putinar-type argument. In our approach
we essentially use Theorem 1.1 and a version of the Hahn-Banach theorem [29,
Theorem 2.2] to apply the separation argument from [26] and extend the result to
operator pencils L.

Theorem 1.5 extends to matrix-valued nc polynomials positive semidefinite on a
free Hilbert spectrahedrop.

In the univariate case we are able to extend Theorem 1.5 to operator-valued nc
polynomials F by reducing the problem to the inclusion of free Hilbert spectrahedra.
For the reduction we use variants of the operator Fejér-Riesz theorem [49].

Theorem 1.6. Suppose L = IH + A1y ∈ SH 〈y〉 is a univariate monic linear
operator pencil. Then for every symmetric operator-valued noncommutative poly-
nomial F ∈ B(K )⊗R〈y〉 with F |DL � 0, there exists a separable real Hilbert space
G , a ∗-homomorphism π : B(H ) → B(G ) and finitely many operator polynomials

Rj ∈ B(K )⊗R〈x〉 and Qk ∈ B(K ,G )⊗R〈x〉 all of degree at most deg(F )+2
2 such

that
F =

∑
j

R∗jRj +
∑
k

Q∗kπ(L)Qk.

By Examples 2.12 and 5.1 below the assumption of monicity of L is in general
needed in Theorem 1.6. It remains an open question if Theorem 1.5 extends to
operator-valued nc polynomials F .

1.7. Reader’s guide. The paper is organized as follows. In Section 2 we study
the inclusion of free Hilbert spectrahedra (see Subsection 2.1) and polar duals of
free Hilbert sprectrahedra and free Hilbert spectrahedrops (see Subsection 2.2).
The main results are proved with the use of completely positive maps and operator
algebras. In Section 3 we consider equality of free spectrahedra. In Subsection 3.1
we extend the characterization of matrix pencils with the same free spectrahedron
from bounded spectrahedra to unbounded ones, while in Subsections 3.2 and 3.3
we show that the characterization does not generalize to operator pencils. Section
4 studies the existence of a Positivstellensatz for multivariate nc operator-valued
polynomials positive semidefinite on a free Hilbert spectrahedron. The main result,
Theorem 4.2 is the solution for matrix-valued polynomials. This result is then ex-
tended to projections of free Hilbert spectrahedra in Theorem 4.7. Finally, Section
5 focuses on a Positivstellensatz for univariate operator-valued polynomials and
presents the proof of Theorem 1.6.
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Recently Davidson, Dor-On, Moshe Shalit and Solel posted an arxiv preprint
[16] which also considers inclusion of free Hilbert spectrahedra but in a complex
setting. Since they mostly focus on bounded spectrahedra, the overlap with our
results (in Sections 2 and 3) is minimal.

2. Inclusion of free Hilbert spectrahedra and polar duals of free
Hilbert spectrahedra and free Hilbert spectrahedrops

In this section we characterize the inclusion of free Hilbert spectrahedra (see
Corollary 2.9) and describe operator free Hilbert polar duals of a free Hilbert spec-
trahedron (see Theorem 2.13) and a free Hilbert spectrahedrop (see Theorem 2.15).
The main techniques used are complete positivity and the theory of operator alge-
bras. We define the unital ∗-linear map τ between the linear spans of the coefficients
of the given linear pencils. There are two crucial observations. The first is the con-
nection between the inclusion DL1 ⊆ DL2 and the complete positivity of τ given
by Theorem 2.5, while the second is an an algebraic trick of extending the pencil
to the direct sum with the monic scalar pencil 1, which makes the extended map
τ̃ completely positive if and only if DL1

⊆ DL2
. The proof of Theorem 1.1 then

follows by invoking the real version of Arveson extension theorem and finally using
the Stinespring representation theorem. Theorems 1.3 and 1.4 are consequences of
Theorem 1.1.

2.1. Domination of free Hilbert spectrahedra. Let H1,H2,K be separable
real Hilbert spaces. Given L1 and L2 monic linear operator pencils

L1(x) := IH1 +

g∑
j=1

Ajxj ∈ SH1〈x〉 , L2(x) := IH2 +

g∑
j=1

Bjxj ∈ SH2〈x〉 ,

we are interested in the algebraic characterization of the inclusion of the free LOI
sets (resp. operator free LOI sets)

DL1
⊆ DL2

(resp. DK
L1
⊆ DK

L2
).

In this subsection we first prove the equivalence between both inclusions, then in-
troduce the unital ∗-linear maps τ̃ and τ between the linear spans of the (extended)
coefficients of both pencils, study the well-definedeness and complete positivity of
both maps and finally prove the main result; see Corollary 2.9. We also show by
an example that the monicity of pencils is necessary (Example 2.12).

2.1.1. Equivalence of the inclusions DL1 ⊆ DL2 and DK
L1
⊆ DK

L2
.

Proposition 2.1. We have the following equivalence:

DK
L1
⊆ DK

L2
⇔ DL1

⊆ DL2
.

To prove proposition we need a lemma.

Lemma 2.2. Let L(x) = A0 +
∑
j Ajxj ∈ SH 〈x〉 be a linear operator pencil and

X ∈ SgK be a tuple self-adjoint operators on a Hilbert space K . Then X ∈ DK
L if

and only if V ∗XV ∈ DL(m) for every m ∈ N and every isometry V ∈ B(Rm,K ).
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Proof. Let X ∈ DK
L . We have

L(V ∗XV ) = A0 ⊗ IRm +
∑
j

Aj ⊗ V ∗XjV

= (IH ⊗ V )∗(A0 ⊗ IRm +
∑
j

Aj ⊗Xj)(IH ⊗ V )

= (IH ⊗ V )∗L(X)(IH ⊗ V ) � 0.

Hence V ∗XV ∈ DL(m).

Let us now assume V ∗XV ∈ DL(m) for every isometry V ∈ B(Rm,K ), m ∈ N.
Suppose X /∈ DK

L . Then there is a vector v :=
∑m
k=1 hk ⊗ uk ∈ H ⊗ K such

that 〈L(X)v, v〉 < 0. Without loss of generality we may assume u1, . . . , um are
orthonormal. Hence

〈L(X)v, v〉 =

〈
(
∑
j

Aj ⊗Xj)(
∑
k

hk ⊗ uk),
∑
k

hk ⊗ uk

〉
H ⊗K

=
∑
j

∑
k

∑
l

〈(Aj ⊗Xj)(hk ⊗ uk), hl ⊗ ul〉H ⊗K

=
∑
j

∑
k

∑
l

〈Ajhk, hl〉H 〈Xjuk, ul〉K < 0.

Let ek be the standard basis vectors for Rm. Let us define a linear map V : Rm →
H by ek 7→ uk. Since {e1, . . . , em} and {u1, . . . , um} are orthonormal, V is an
isometry. Therefore, L(V ∗XV ) � 0. We have

0 ≤ 〈L(V ∗XV )ṽ, ṽ〉H ⊗Rm

=

〈
(
∑
j

Aj ⊗ V ∗XjV )(
∑
k

hk ⊗ ek),
∑
k

hk ⊗ ek

〉
H ⊗Rm

=
∑
j

∑
k

∑
l

〈(Aj ⊗ V ∗XjV )(hk ⊗ ek), hl ⊗ el〉H ⊗Rm

=
∑
j

∑
k

∑
l

〈Ajhk, hl〉H 〈V
∗XjV ek, el〉Rm

=
∑
j

∑
k

∑
l

〈Ajhk, hl〉H 〈XjV ek, V el〉K

=
∑
j

∑
k

∑
l

〈Ajhk, hl〉H 〈Xjuk, ul〉K = 〈L(X)v, v〉 .

This is a contradiction. Hence X ∈ DK
L . �

Proof of Proposition 2.1. The non-trivial direction is DL1
⊆ DL2

implies DK
L1
⊆

DK
L2

. Let us take X ∈ DK
L1

. By Lemma 2.2,

X ∈ DK
L2
⇔ V ∗XV ∈ DL2

(m) for every isometry V ∈ B(Rm,K ), m ∈ N.

By Lemma 2.2, X ∈ DK
L1

implies

V ∗XV ∈ DL1
(m) for every isometry V ∈ B(Rm,K ), m ∈ N.
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But DL1
⊆ DL2

implies

V ∗XV ∈ DL2
(m) for every isometry V ∈ B(Rm,K ), m ∈ N.

This concludes the proof. �

2.1.2. Connection with complete positivity. The following operator systems will
play an important role in the sequel:

S1 := span{IH1 , A1, . . . , Ag},
S̃1 := span{IH1

⊕ 1, A1 ⊕ 0, . . . , Ag ⊕ 0} ⊆ B(H1 ⊕ R),

S2 := span{IH2
, B1, . . . , Bg} ⊆ B(H2).

Recall from §1.4 that the homogenization hLj of Lj is

hLj(x0, . . . , xg) = x0Lj(x
−1
0 x1, . . . , x

−1
0 xg).

By Lemma 2.3 below, the inclusion DL1
(1) ⊆ DL2

(1) implies that the unital linear
map

τ̃ : S̃1 → S2, Aj ⊕ 1 7→ Bj ,

is well-defined, while the stronger inclusion DhL1
(1) ⊆ DhL2

(1) implies the well-
definedness of the unital linear map

τ : S1 → S2, Aj 7→ Bj .

In particular, τ is well-defined if DL1(1) is bounded.

Lemma 2.3. Assume the notation as above.

(1) If DL1(1) ⊆ DL2(1), then the map τ̃ is well-defined.
(2) If DhL1

(1) ⊆ DhL2
(1) or DL1(1) is a bounded set, then the map τ is well-

defined.

Proof. First we prove (1). It suffices to prove that

µ0(IH1
⊕ 1) +

g∑
i=1

µi(Ai ⊕ 0) = 0 implies µ0IH2
+

g∑
i=1

µiBi = 0,

where µ0, . . . , µg ∈ R. First we notice that µ0 = 0. From
∑g
i=1 µi(Ai ⊕ 0) = 0

it follows that
∑g
i=1 tµi(Ai ⊕ 0) = 0 for every t ∈ R. Hence, (tµ1, . . . , tµg) ∈

DL1(1) ⊆ DL2(1) for every t ∈ R. Suppose to the contrary that
∑g
i=1 µiBi 6=

0. Since
∑g
i=1 µiBi is self-adjoint, it follows that there is h ∈ H2 such that

〈(
∑g
i=1 µiBi)h, h〉 6= 0. But then t(µ1, . . . , µg) /∈ DL2

for t → ∞ or t → −∞,
which is a contradiction. Hence

∑g
i=1 µiBi = 0 and the map τ̃ is well-defined.

For the proof of (2) let us first consider the inclusion DhL1
(1) ⊆ DhL2

(1). We
have to prove that

µ0In +
∑
j

µjAj = 0 implies µ0Im +
∑
j

µjBj = 0.

Suppose to the contrary that µ0Im +
∑
j µjBj 6= 0. Since µ0Im +

∑
j µjBj is

self-adjoint, it follows that there is h ∈ H2 such that
〈

(µ0Im +
∑
j µjBj)h, h

〉
6=

0. Therefore t(µ0, µ1, . . . , µg) /∈ DhL2
for t → ∞ or t → −∞. But this is a

contradiction with t(µ0, µ1, . . . , µg) ∈ DhL1
⊆ DhL2

. Hence τ is well-defined.
Now we consider the case of a bounded set DL1

(1). In this case the set

{IH1
, A1, . . . , Ag}
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is linearly independent; the proof is the same as in the matrix case (see [28, Propo-
sition 2.6]). Thus τ is well-defined. �

The following example shows that for unbounded sets DL1
(1), the assumption

DL1(1) ⊆ DL2(1) does not suffice for the well-definedness of the map τ .

Example 2.4. Let `1 = 1 +x and `2 = 1 be monic linear scalar polynomials. Note
that D`1(1) = [−1,∞) ⊂ R = D`2(1) but by the definition of the map τ : R → R
we have that τ(1) = 1 and τ(1) = 0, which is a contradiction.

Now we define the n-positivity, n ∈ N, and the complete positivity of a map

φ : S1 → S2

mapping between operator systems Sj ⊆ B(Hj), j = 1, 2, invariant under the
transpose. For n ∈ N, φ induces the map

φn = In ⊗ φ : Rn×n ⊗ S1 = Sn×n1 → Sn×n2 , M ⊗A 7→M ⊗ φ(A),

called an ampliation of φ. Equivalently,

φ


 T11 · · · T1n

...
. . .

...
Tn1 · · · Tnn


 =

 φ(T11) · · · φ(T1n)
...

. . .
...

φ(Tn1) · · · φ(Tnn)

 .
We say that φ is n-positive if φn is a positive map. If φ is n-positive for every
n ∈ N, then φ is completely positive. If φn is an isometry for every n ∈ N, then
φ is completely isometric.

In the following theorem we prove that the n-positivity of τ is equivalent to
the inclusion DhL1

(n) ⊆ DhL2
(n). If DL1

(1) is bounded this is equivalent to the
inclusion DL1

(n) ⊆ DL2
(n). Since DhL̃1

(n) ⊆ DhL2
(n) if and only if DL1(n) ⊆

DL2
(n), τ̃ is n-positive if and only if DL1

(n) ⊆ DL2
(n).

Theorem 2.5. Let

L1 = IH1
+

g∑
j=1

Ajxj ∈ SH1
〈x〉 , L2 = IH2

+

g∑
j=1

Bjxj ∈ SH2
〈x〉

be monic linear operator pencils. Suppose DhL1
(1) ⊆ DhL2

(1). Let τ : S1 → S2 be
the unital linear map Aj 7→ Bj. Then:

(1) τ is n-positive if and only if DhL1
(n) ⊆ DhL2

(n).
(2) τ is completely positive if and only if DhL1

⊆ DhL2
.

(3) If dim(H2) = n, then τ is completely positive if and only if τ is n-positive.

In particular, if DL1
(1) is bounded, then

DL1
(n) ⊆ DL2

(n) ⇔ DhL1
(n) ⊆ DhL2

(n)

and hence

(4) τ is n-positive if and only if DL1
(n) ⊆ DL2

(n).
(5) τ is completely positive if and only if DL1

⊆ DL2
.

Let L̃1 be the monic linear pencil

L̃1 = IH1⊕R +

g∑
j=1

Ãjxj ∈ SH1⊕R〈x〉 ,
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where Ãj :=

[
Aj 0
0 0

]
∈ SH1 . Then

DL1
(n) ⊆ DL2

(n) ⇔ DhL̃1
(n) ⊆ DhL2

(n).

If DL1
(1) ⊆ DL2

(1), let τ̃ : S̃1 → S2 be the unital linear map Aj ⊕ 0 7→ B1. Then:

(7) τ̃ is n-positive if and only if DL1
(n) ⊆ DL2

(n).
(8) τ̃ is completely positive if and only if DL1

⊆ DL2
.

Remark 2.6. Notice that τ and τ̃ are well-defined; see Lemma 2.3.

To prove Theorem 2.5 we need an additional technical lemma.

Lemma 2.7. Let L = IH +
∑g
j=1Ajxj ∈ SH 〈x〉 be a monic linear pencil. Then

for a tuple X = (X1, . . . , Xg) ∈ Sn we have

L(X) = IH ⊗ In +

g∑
j=1

Aj ⊗Xj � 0 ⇔ In ⊗ IH +

g∑
j=1

Xj ⊗Aj � 0.

Proof. The lemma follows by observing that after applying a permutation called
the canonical shuffle [44] to L(X) we obtain In ⊗ IH +

∑g
j=1Xj ⊗Aj . �

Proof of Theorem 2.5. First we prove (1) and (2). Since (2) follows from (1), it

suffices to prove (1). The nontrivial direction is (⇐). Suppose T̃ ∈ S̃1

n×n
is

positive semidefinite. Then T̃ is of the form Y ⊗ IH1
+
∑
j Xj ⊗ Aj for some

Y,X1, . . . , Xg ∈ Rn×n. We have to prove that τ̃(T̃ ) = Y ⊗ IH2
+
∑
j Xj ⊗Bj � 0.

From T̃ = T̃ ∗, it follows that

Y ⊗ IH1
+
∑
j

Xj ⊗Aj =
1

2
((Y + Y ∗)⊗ IH1

+
∑
j

(Xj +X∗j )⊗Aj).

Thus we may assume that Y,X1, . . . , Xg ∈ Sn. But since

(Y,X1, . . . , Xg) ∈ DhL1
(n) ⊆ DhL2

(n),

it follows by Lemma 2.7 that τ(T ) is n-positive.
Second we prove that if DL1

(1) is bounded, then

DL1(n) ⊆ DL2(n) ⇔ DhL1
(n) ⊆ DhL2

(n).

The non-trivial direction is (⇒). Let us take X := (X0, X1, . . . , Xn) ∈ DhL1
(n).

We have to prove that X ∈ DhL2
(n). If X0 � 0, then this follows (possibly after

approximation argument X0 7→ X0 + εIn) from DL1
(n) ⊆ DL2

(n). Let us suppose
that X0 6� 0. Then there exists v ∈ Rn with 〈X0v, v〉 < 0. Define V : R → Rn by
r 7→ rv. The map V ∗ : Rn → R is given by u 7→ 〈u, v〉. We have

(IH1 ⊗ V )
∗ hL1(X)(IH1 ⊗ V ) = IH1 ⊗ V ∗X0V +

∑
j

Aj ⊗ V ∗XjV

= IH1 ⊗ 〈X0v, v〉+
∑
j

Aj ⊗ 〈Xjv, v〉 � 0.

Since IH1
⊗ 〈X0v, v〉 ≺ 0, it follows that

∑
j Aj ⊗ 〈Xjv, v〉 � 0. Thus

(t 〈X1v, v〉 , . . . , t 〈Xgv, v〉) ∈ DL1
(1)

for every t > 0, which contradicts the boundedness of DL1
(1).
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Finally, we prove that

DL1
(n) ⊆ DL2

(n) ⇔ DhL̃1
(n) ⊆ DhL2

(n).

The nontrivial direction is (⇒). Let us take (X0, X1, . . . , Xn) ∈ DhL̃1
(n). We have

to prove that (X0, X1, . . . , Xn) ∈ DhL̃2
(n). We know that

(IH1
⊕ 1)⊗X0 +

∑
j

(Aj ⊕ 0)⊗Xj � 0.

Clearly, this is equivalent to

IH1
⊗X0 +

∑
j

Aj ⊗Xj � 0 and X0 � 0.

We have to prove that

IH2
⊗X0 +

∑
j

Bj ⊗Xj � 0.

By the approximation argument we can replace X0 � 0 with X0 + εIn for ε > 0.

So without loss of generality we may assume that X0 � 0. Since X
− 1

2
0 is invertible,

it follows that Ran(Ij ⊗ Y
− 1

2
0 ) = Hj ⊗ Rn for j = 1, 2. Therefore

0 � IH1
⊗X0 +

∑
j

Aj ⊗Xj

⇔ 0 � (IH1
⊗X−

1
2

0 )∗(IH1
⊗X0 +

∑
j

Aj ⊗Xj)(IH1
⊗X−

1
2

0 )

= IH1 ⊗ In +
∑
j

Aj ⊗X
− 1

2
0 XjX

− 1
2

0 .

(and 0 � IH2 ⊗X0 +
∑
j Bj ⊗Xj ⇔ 0 � IH2 ⊗ In +

∑
j Bj ⊗X

− 1
2

0 XjX
− 1

2
0 .). By

the assumption DL1
(n) ⊆ DL2

(n), IH1
⊗ In +

∑
j Aj ⊗ X

− 1
2

0 XjX
− 1

2
0 � 0 implies

IH2
⊗ In +

∑
j Bj ⊗X

− 1
2

0 XjX
− 1

2
0 � 0, which concludes the proof. �

If L1 and L2 are monic linear matrix pencils such that DL1(1) is unbounded and
DL1 ⊆ DL2 , it is not necessary that DhL1

⊆ DhL2
by Example 2.8 below.

Example 2.8. For the following monic linear matrix pencils

L1(x1, x2) =

 1 + 2x1 + 2x2 0 0
0 1 + 2x1 0
0 0 1 + 2x2

 ,
L2(x1, x2) =

 1 + x1 + x2 0 0
0 1 + x1 0
0 0 1 + x2

 ,
we have

DL1
(n) = {(X1, X2) ∈ Sn : X1 +X2 � −

1

2
In, X1 � −

1

2
In, X2 � −

1

2
In},

DL2
(n) = {(X1, X2) ∈ Sn : X1 +X2 � −In, X1 � −In, X2 � −In}

for every n ∈ N. Hence, DL1(n) ⊆ DL2(n) for every n ∈ N, i.e., DL1 ⊆ DL2 . But

(−1,
1

2
,

1

2
) ∈ DhL1

(1) \DhL2
(1)
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and hence

DhL1
(1) 6⊆ DhL2

(1).

2.1.3. Characterization of the inclusion DL1 ⊆ DL2 . We characterize the domi-
nation DL1

⊆ DL2
by using the connection with complete positivity explained in

§2.1.2.

Corollary 2.9 (Operator linear Positivstellensatz). Let

L1 = IH1
+

g∑
j=1

Ajxj ∈ SH1
〈x〉 , L2 = IH2

+

g∑
j=1

Bjxj ∈ SH2
〈x〉

be monic linear operator pencils. If DL1
⊆ DL2

then:

(1) There exist a separable real Hilbert space K , an isometry V : H2 → K
and a unital ∗-homomorphism π : B(H1 ⊕ R)→ B(K ) such that

L2(x) = V ∗π(

[
0 0
0 1

]
)V + V ∗π(

[
L1 0
0 0

]
)V.

(2) There exist a separable real Hilbert space K0, a contraction V0 : H2 → K0,
a unital ∗-homomorphism π0 : B(H1)→ B(K0) and a positive semidefinite
operator S ∈ B(H2) such that

L2(x) = S + V ∗0 π0(L1(x))V0.

(3) If DL1
(1) is bounded, then V0 in (2) can be chosen to be isometric and

S = 0, i.e.,

L2(x) = V ∗0 π0(L1(x))V0.

Proof. First we will prove (1). By Theorem 2.5 (8) the map τ̃ is completely positive.
By the real version of Arveson’s extension theorem [13, Proposition 4] (take E =

B(H1), E0 = S̃1, Kn(E) = {A ∈ Mn(B(H1)) : A � 0}), there exists a completely

positive extension τ̃ : B(H1) → B(H2) for τ̃ : S̃1 → S2. By the Stinespring
theorem, there exist a separable real Hilbert space K , a ∗-homomorphism π and
an isometry V : H2 → `2 such that τ̃(C) = V ∗π(C)V for all C ∈ B(H1 ⊕ R).
Hence,

L2(x) = τ̃(

[
L1(x) 0

0 1

]
) = V ∗π(

[
L1(x) 0

0 1

]
)V

= V ∗π(

[
0 0
0 1

]
)V + V ∗π(

[
L1(x) 0

0 0

]
)V.

Now we will prove (2). Observe that π(

[
IH1

0
0 0

]
) is a hermitian idempotent,

hence a projection onto K0 := Ran(π(

[
IH1 0

0 0

]
)), by [14, 3.3 Proposition]. We

define a contraction

V0 := PK
K0
π(

[
IH1

0
0 0

]
)V : H1 → K0,

where PK
K0

is a projection from K to K0. We define a new representation

π0 : B(H1)→ B(K0), A 7→ PK
K0
π(

[
A 0
0 0

]
)|K0 .
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Since Ran(π(

[
A 0
0 0

]
) ⊆ K0, π0 is well-defined. Thus

L2(x) = S + V ∗0 π0(L1(x))V0,

where S := V ∗π(

[
0 0
0 1

]
)V � 0.

Finally, the proof of (3) is the same as the first part of the proof of (1) working
with τ instead of τ̃ . �

Remark 2.10. (1) If DL1
(1) is unbounded, then in (2) of Theorem 2.9, V0

cannot always be chosen to be isometric (and hence S = 0). See Example
2.8 above: if L2 = V ∗0 π(L1)V0 for an isometry V0, then DhL1

⊆ DhL2
which

is not true. If L1 and L2 are monic linear matrix pencils and we restrict
ourselves to ∗-homomorphisms π mapping into finite dimensional spaces,
then V0 can be chosen to be isometric if and only if span{A1, . . . , Ag} does
not contain a positive definite matrix by [26, Remark 4.4].

(2) If H1 is finite-dimensional, then every unital ∗-homomorphism π : B(H1)→
B(K ) is unitarily equivalent to the direct sum of the identity ∗-homomorphism.
Hence if H2 is infinite-dimensional, then we can replace in Corollary 2.9
above

π(

[
0 0
0 1

]
), π(

[
L1 0
0 0

]
) and π0(L1)

by

⊕∞i=1

[
0 0
0 1

]
, ⊕∞i=1

[
L1 0
0 0

]
and ⊕∞i=1 L1 respectively.

If H2 is finite-dimensional, then those sums are finite as in [28, Corollary
3.7] and [26, Corollary 4.1].

(3) The assumption of monicity of pencils can be replaced by the assumption of
nonempty DL1 and the existence of an invertible positive definite element
in the linear span of coefficients of L1. In the statement of Corollary 2.9, V
then becomes a bounded operator, which is not necesarrily a contraction.

If H2 is finite-dimensional of dimension n, then the inclusion DL1
(n) ⊆ DL2

(n)
is sufficient for the conclusion of Corollary 2.9 to hold.

Corollary 2.11 (Operator-to-matrix linear Postivstellensatz). Let

L1(x) = IH +

g∑
j=1

Ajxj ∈ SH 〈x〉 , L2(x) = In +

g∑
j=1

Bjxj ∈ Rn×n〈x〉

be a monic linear operator polynomial and a monic linear matrix polynomial, re-
spectively. If DL1(n) ⊆ DL2(n) then:

(1) There exist a Hilbert space K , an isometry V ∈ B(Rn,K ), and a unital
∗-homomorphism π : B(H ⊕ R)→ B(K ) such that

L2(x) = V ∗π(

[
0 0
0 1

]
)V + V ∗π(

[
L1 0
0 0

]
)V.

(2) There exist a Hilbert space K0, a contraction V0 ∈ B(Rn,K ), a unital
∗-homomorphism π0 : B(H ) → B(K ) and a positive semidefinite matrix
S ∈ Sn such that

L2(x) = S + V ∗0 π0(L1)V0.
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(3) If DL1
(1) is bounded, then V0 in (2) can be chosen to be an isometry and

S = 0, that is
L2(x) = V ∗0 π0(L)V0.

Proof. By Theorem 2.5, DL1(n) ⊆ DL2(n) implies DL1 ⊆ DL2 . Now everything
follows by Corollary 2.9. �

2.1.4. Counterexample for non-monic pencils. We present an example which shows
that the assumption of monicity of pencils in Corollary 2.9 is necessary. The ex-
ample is a generalization of [57, Example 2].

Example 2.12. Let L(y) =

[
1 y
y 0

]
be a linear matrix polynomial with a spec-

trahedron DL = {0}. The polynomial `(y) = y is non-negative on DL(1), but there
do not exist a Hilbert space K , a unital ∗-homomorphism π : B(R2) → B(K ),
polynomials rj ∈ R〈y〉 and operator polynomials qk ∈ B(R,K )〈y〉 such that

y =
∑
j

r2
j +

∑
k

q∗kπ(L)qk.

Proof. For K = R2, the identity ∗-homomorphism π, i.e., π(x) = x, and polynomi-
als rj ∈ R〈y〉, qk ∈ R2×1〈y〉 the proof is already done in [57, Example 2].

Let us now prove a general case. If K , π, rj , qk existed, we would have

y =
∑
j

r∗j rj +
∑
k

q∗kπ(L)qk

=
∑
j

r∗j rj +
∑
k

q∗kπ(E11)qk +
∑
k

q∗kπ(E12 + E21)qky.

Let us write

rj(y) =

Nj∑
m=0

rj,my ∈ R〈y〉 , qk(y) =

Mk∑
m=0

qk,my ∈ B(R,K )〈y〉 ,

where Nj ∈ N0 is such that aj,Nj 6= 0 and Mk ∈ N0 is such that bk,Mk
6= 0.

Comparing the coefficients at 1 of both sides we get

0 =
∑
j

r2
j,0 +

∑
k

q∗k,0π(E11)qk,0.

Since

π(E11) = π(

[
1 0
0 0

]
) = π(

[
1 0
0 0

]2

) = π(

[
1 0
0 0

]
)2

and
π(E11) = π(E∗11) = π(E11)∗,

π(E11) is a hermitian idempotent, hence a projection. Therefore∑
k

q∗k,0π(E11)qk,0 =
∑
k

q∗k,0(π(E11))∗π(E11)qk,0 ≥ 0.

Thus,

r2
j,0 =

∑
k

q∗k,0(π(E11))∗π(E11)qk,0 = 0.

It follows that

rj,0 = 0 and 0 = π(E11)qk,0 = q∗k,0π(E11)∗ ∈ B(K ,R).
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Indeed,

0 = 〈((π(E11)qk,0)∗π(E11)qk,0)1, 1〉
= 〈π(E11)qk,01, π(E11)qk,01〉
= ‖π(E11)qk,01‖ .

It follows that

Ran(qk,0) ∈ kerπ(E11)(K ).

Hence,

q∗k,0π(E12 + E21)qk,0 = q∗k,0π(E11E12 + E21E11)qk,0

= q∗k,0π(E11E12)qk,0 + q∗k,0π(E21E11)qk,0

= q∗k,0π(E11)︸ ︷︷ ︸
=q∗k,0π(E11)∗=0

π(E12)qk,0 + q∗k,0π(E21)π(E11)qk,0︸ ︷︷ ︸
0

= 0.

The coefficient at y on the RHS is∑
j

r∗j,1 rj,0︸︷︷︸
0

+
∑
j

r∗j,0︸︷︷︸
0

rj,1 +
∑
k

q∗k,1 π(E11)qk,0︸ ︷︷ ︸
0

+
∑
k

q∗k,0π(E11)︸ ︷︷ ︸
0

qk,1 +

+
∑
k

q∗k,0π(E12 + E21)qk,0︸ ︷︷ ︸
0

.

This is a contradiction, which finishes the proof. �

2.2. Polar duals of free Hilbert spectrahedra and free Hilbert spectra-
hedrops. In this subsection we describe operator free polar duals of free Hilbert
spectrahedra and free Hilbert spectrahedrops (see Theorems 2.13 and 2.15 below).

Theorem 2.13. Let A ∈ SgH be a tuple of self-adjoint operators from SH . Then

the operator free Hilbert polar dual (DK
LA

)K ,◦ is given by

oper-convK (A) = (DK
LA)K ,◦.

Proof. It is easy to see that oper-convK {A} ⊆ (DK
LA

)K ,◦. Indeed, let us take
X := V ∗π(A)V ∈ oper-convK {A}, where G is a separable real Hilbert space,
V : K → G a contraction and π : B(H ) → B(G ) a unital ∗-homomorphism. We
have to prove that LX |DK

LA

� 0. For every Y ∈ DK
LA

we have

LX(Y ) = LV ∗π(A)V (Y )

= I ⊗ I +
∑
j

V ∗π(Aj)V ⊗ Yj

� (V ⊗ I)∗(I ⊗ I +
∑
j

π(Aj)⊗ Yj)(V ⊗ I).

Using that

I ⊗ I +
∑
j

π(Aj)⊗ Yj = (π ⊗ I)(I ⊗ I +
∑
j

Aj ⊗ Yj)

= (π ⊗ I)(LA(Y )) � 0,

where the last inequality follows by π⊗ I being a ∗-homomorphism, it follows that
X ∈ (DK

LA
)K ,◦.
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Let us now prove the opposite direction, i.e., (DK
LA

)K ,◦ ⊆ oper-convK {A}. Sup-

pose thatX ∈ SgK belongs to (DK
LA

)K ,◦. We have to prove thatX ∈ oper-convK (A).
By assumption LX |DK

LA

� 0. Using Corollary 2.9 (2) there exist a separable

real Hilbert space G , a contraction V : K → G , a unital ∗-homomorphism
π : B(H ) → B(G ) and a positive semidefinite operator S ∈ B(K ) such that
LX = S + V ∗π(LA)V . In particular, X = V ∗π(A)V ∈ oper-convK (A). �

The set oper-convK (A) is closed in the weak operator topology.

Corollary 2.14. For a tuple A ∈ SgH the set oper-convK (A) is closed in the weak
operator topology. In particular, it is closed in the norm topology.

Proof. Let oper-convwK (A) denote the closure of oper-convK (A) in the weak oper-
ator topology. We have

(DK
A )K ,◦ =︸︷︷︸

Theorem 2.13

oper-convK (A) ⊆ oper-convK (A)

⊆ oper-convwK (A) ⊆︸︷︷︸
easy

(DK
A )K ,◦.

�

Theorem 2.15. Let (Ω,Γ) ∈ Sg+hH be a tuple of operators from Sg+hH and

K = projxD
K
L(Ω,Γ)

.

The operator free Hilbert polar dual KK ,◦ is the set

KK ,◦ = {A ∈ SgK : (A, 0) ∈ DK ,◦
L }

= {A ∈ SgK : ∃ a separable real Hilbert space G , an isometry V : K → G

and ∗-homomorphism π : B(H ⊕ R)→ B(G ) s.t.

A = V ∗π(

[
Ω 0
0 0

]
)V, 0 = V ∗π(

[
Γ 0
0 0

]
)V },

where Ω′ = Ω⊕ 0 and Γ′ = Γ⊕ 0.
If K(1) is bounded, then KK ,◦ is the set

KK ,◦ = {A ∈ SgK : (A, 0) ∈ DK ,◦
L }

= {A ∈ SgK : ∃ a separable real Hilbert space G , an isometry V : K → G

and ∗-homomorphism π : B(H )→ B(G ) s.t.

A = V ∗π(Ω)V, 0 = V ∗π(Γ)V }.

Proof. By definition, KK ,◦ = {A ∈ SgK : LA|K � 0}. It is easily seen that

{A ∈ SgK : LA|K � 0} = {A ∈ SgK : L(A,0)|DK
L
� 0}.

To get the second equality in the first statement of the theorem use Corollary 2.9.
If not only K(1) but also DL(Ω,Γ)

(1) is bounded, then the second equality in the
second statement of the theorem also follows by Corollary 2.9. From now on we

assume that only K(1) is bounded. Let (A, 0) ∈ DK ,◦
L .

Claim: DhL(Ω,Γ)
⊆ DhL(A,0)

.
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By assumption DL(Ω,Γ)
⊆ DL(A,0)

. Let

(X0, . . . , Xg, Y1, . . . , Yk) ∈ DhL(Ω,Γ)
(n) for some n ∈ N.

First we prove that X0 � 0. It suffices to prove this fact for n = 1 (by the same
reduction as in the proof of Theorem 2.5). Let as assume on contrary that X0 < 0.
From

IH ⊗X0 +
∑
j

Ωj ⊗Xj +
∑
k

Γk ⊗ Yk � 0,

it follows that

IH ⊗ tX0 +
∑
j

Ωj ⊗ tXj +
∑
k

Γk ⊗ tYk � 0 for every t > 0.

Since tX0 < 0 for t > 0, it follows that

IH ⊗ 1 +
∑
j

Ωj ⊗ tXj +
∑
k

Γk ⊗ tYk � 0 for every t > 0.

Therefore

(tX1, . . . , tXg) ∈ K(1) for every t > 0.

If (X1, . . . , Xg) 6= 0g, this contradicts the boundedness of K(1). Else (X1, . . . , Xg) =
0g. But then ∑

k

Γk ⊗ Yk � −IH ⊗X0 = IH ⊗ |X0| ,

and hence for every (X1, . . . , Xg) ∈ Rg there exists t > 0 such that

IH ⊗ 1 +
∑
j

Ωj ⊗Xj +
∑
k

Γk ⊗ tYk � 0.

This again contradicts the boundedness of K(1).
Now for (X0, . . . , Xg, Y1, . . . , Yk) ∈ DhL(Ω,Γ)

(n) with X0 � 0, as in the proof of

Theorem 2.5, it follows that (X0, . . . , Xg, Y1, . . . , Yk) ∈ DhL(A,0)
. This concludes the

proof of Claim.

By Theorem 2.5.(2), the unital linear map

τ : span{IH ,Ω1, . . . ,Ωg,Γ1, . . . ,Γh} → span{IK , A1, . . . , Ag},

Ωj 7→ Aj , Γk 7→ 0K ,

is completely positive. Now the same proof as for (3) of Corollary 2.9 applies to
get the second equality in the second statement of the theorem. �

3. Equality of free spectrahedra

In this section we consider the equality of free spectrahedra. Our main result,
which extends [28, Theorem 1.2] from bounded to unbounded spectrahedra, states
that up to obvious redundancies, two linear matrix pencils define the same free
spectrahedron if and only if they are unitarily equivalent. We refer the reader to
§1.4 for basic definitions, context and the precise statement of the main result, i.e.,
Theorem 1.2. In Subsection 3.1 we present the proof of Theorem 1.2 (see Theorem
3.1 below), in Subsections 3.2 and 3.3 we show that Theorem 1.2 does not extend
to linear operator pencils. More precisely, in Subsection 3.2 we present an operator
pencil that does not have a whole subpencil which is σ-minimal, while in Subsection
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3.3 we give two σ-minimal operator pencils with the same free spectrahedron but
are not unitarily equivalent.

3.1. Characterization of the equality DL1
= DL2

. The main result of this
subsection is Theorem 3.1. We use the approach from [28, §3.3], where the result is
proved for a bounded spectrahedron DL1(1) = DL2(1). The crucial observation is
that boundedness of DL1(1) = DL2(1) is not essential for the approach to work, as
it works for a σ-minimal pencils DL1

= DL2
that satisfy DhL1

= DhL2
. We prove

this holds also in the unbounded case.

Theorem 3.1 (Linear Gleichstellensatz). Let

L1 = Id +

g∑
j=1

Ajxj ∈ Sd〈x〉 , L2 = Ie +

g∑
j=1

Bjxj ∈ Se〈x〉

be monic linear matrix pencils. If DL1
= DL2

and L1, L2 are σ-minimal, then
d = e and there is a unitary matrix n× n matrix U such that

U∗L1U = L2.

To prove the theorem we will need some preliminary results. Even though The-
orem 3.1 does not extend from matrix to operator pencils, most of the preliminary
results do in fact work for operator pencils.

Let H , K be separable real Hilbert spaces and let us define the unital linear
spaces

S1 := span{IH , Aj : j = 1, . . . , g} ⊆ SH ,

S2 := span{IK , Bj : j = 1, . . . , g} ⊆ SK .

The following proposition translates the equality DhL1
= DhL2

into properties of
the unital map τ mapping from S1 to S2. Recall from Section 2 that a map τ is
completely isometric if and only if every ampliation τn, n ∈ N, is an isometry.

Proposition 3.2. Let L1 = IH +
∑g
j=1Ajxj ∈ SH 〈x〉 and L2 = IK +

∑g
j=1Bjxj ∈

SK 〈x〉 be monic linear operator pencils. Then DhL1
= DhL2

if and only if the unital
linear map τ : S1 → S2, Aj 7→ Bj , is well-defined and completely isometric.

For the proof of the implication (⇒) we will need two observations. The first is
an observation on convex sets (see Lemma 3.3) and the second connects the equality
of free spectrahedra of homogenizations of monic pencils with the equality of their
boundaries (see Lemma 3.4).

For a set C ⊆ Rn we write bC for its boundary (in the topology of Rn).

Lemma 3.3. Let C1, C2 ⊆ Rn be closed convex sets, 0 ∈ intC1 ∩ intC2. If bC1 ⊆
bC2 then C2 ⊆ C1.

Proof. By the way of contradiction, assume C2 6⊆ C1 and let a ∈ C2 \ C1. The
interval [0, a] intersects bC1 in µa for some 0 < µ < 1. Then µa ∈ bC1. By
assumption µa ∈ bC2. Since 0 ∈ intC2, C2 contains a small disk D(0, ε). Then the
convex hull K of the set D(0, ε) ∪ {a} is contained in C2 and µa ∈ intK ⊆ intC2

contradicting µa ∈ bC2. �

Lemma 3.4. Let L1 ∈ SH 〈x〉 and L2 ∈ SK 〈x〉 be monic linear operator pencils.
Then DhL1

= DhL2
if and only if ∂DhL1

= ∂DhL2
.
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Remark 3.5. Note that for a homogeneous linear pencil L ∈ Sd〈x〉 it is always
true that bDL(n) ⊆ ∂DL(n), but not necessarily bDL(n) = ∂DL(n). Taking

L(x0) =

[
1 0
0 0

]
x0

we see that

bDL(1) = {0} ⊂ {x0 ∈ R : x0 ≥ 0} = ∂DL(1).

However, if L is monic, then we have bDL(n) = ∂DL(n) for every n ∈ N by Lemma
3.6 below.

Lemma 3.6. Let L = IH x0 +
∑g
j=1Ajxj ∈ SH 〈x〉 be a monic homogeneous linear

operator pencil. Then bDL(n) = ∂DL(n) for every n ∈ N.

Proof. The nontrivial inclusion is ∂DL(n) ⊆ bDL(n). Since

DL(n) = intDL(n) ∪ bDL(n),

it suffices to prove that if X ∈ ∂DL(n) then X /∈ intDL(n). Let

Y = (In, 0, . . . , 0) ∈ Sg+1
n .

If X ∈ ∂DL(n), then L(X) 6� 0 and hence

L(X − εY ) = L(X)− εId ⊗ In 6� 0

for every ε > 0. Thus X /∈ intDL(n), which concludes the proof. �

Proof of Lemma 3.4. Since L1 and L2 are monic, the equality ∂DhL1
= ∂DhL2

is
equivalent to the equality bDhL1

(n) = bDhL2
(n) for every n ∈ N, by Lemma 3.6.

Now the implication (⇒) is obvious, while the implication (⇐) follows by Lemma
3.3. �

Proof of Proposition 3.2. First we will prove the direction (⇒). By Lemma 2.3, the
inclusion DhL1

(1) ⊆ DhL2
(1) implies that τ is well-defined. By Theorem 2.5.(1),

the inclusion DhL1
⊆ DhL2

implies that τ is completely positive.

Finally we prove that the map τ is completely isometric. Suppose T ∈ Sn×n1 has
norm one. Then

W :=

[
I T
T ∗ I

]
� 0 and W 6� 0.

By complete positivity of τ , we have that

τ(W ) :=

[
I τ(T )

τ(T ∗) I

]
� 0.

By Lemma 3.4, ∂DhL1
= ∂DhL2

and thus τ(W ) 6� 0. Hence, τ(T ) has norm one.
Thus τ is completely isometric.

Now we prove the implication (⇐), i.e., DhL1
= DhL2

. Since the map τ is unital
completely isometric, the map τ−1 is also unital completely isometric. By [44,
Corollary 7.6], τ and τ−1 are completely positive. Thus, by Theorem 2.5.(2), the
equality DhL1

= DhL2
follows. �

Remark 3.7. The equality DhL1
= DhL2

clearly implies DL1 = DL2 . If DL1(1) is
bounded, then DL1 = DL2 implies DhL1

= DhL2
. Hence, for a bounded set DL1(1)

we can replace DhL1
= DhL2

by DL1
= DL2

. Moreover, since closed bounded
convex sets are the convex hulls of their boundaries [7, (3.3) Theorem], we can



OPERATOR POSITIVSTELLENSÄTZE ON MATRIX CONVEX SETS 23

replace DL1
= DL2

by ∂DL1
⊆ ∂DL2

(This implies DL1
⊆ DL2

and Lemma 3.3
implies DL2 ⊆ DL1).

For unbounded sets this cannot be done in general. Take L̃2 = L1 ⊕ L2 and
L̃1 = L1 where L1 and L2 are as in Example 2.8. Then we have DL̃2

= DL1
= DL̃1

but (−1, 1
2 ,

1
2 ) ∈ DhL̃1

(1) \DhL̃2
(1).

Proposition 3.8 below states the properties of the C∗-algebra generated by a σ-
minimal matrix pencil. This is the direction (⇒) of [28, Proposition 3.17] without
the assumption of boundedness of DL1

(1) which is not needed in the proof. (Note
also that truly linear pencil in the assumptions of [28, Proposition 3.17] should
be replaced by monic linear pencil.) The result uses Arveson’s noncommutative
Choquet theory [3, 5, 6] and to a lesser extent [17].

The following definitions are needed in the statement of Proposition 3.8. Let

S := span{Id, Aj : j = 1, . . . , g} ⊆ Sd

be the unital linear subspace in Sd and let C∗(S) be the real C∗-algebra generated
by S in Md(R). Let K be the biggest two sided ideal of C∗(S) such that the natural
map

C∗(S)→ C∗(S)/K, a 7→ ã := a+K

is completely isometric on S. K is called the Šilov ideal for S in C∗(S). A
central projection P in C∗(S) is a projection P ∈ C∗(S) such that PA = AP for
all A ∈ C∗(S). A projection Q is a reducing projection for C∗(S) if QA = AQ
for all A ∈ C∗(S).

Proposition 3.8. Let L ∈ Sd〈x〉 be a monic linear matrix pencil. If L is σ-
minimal, then

(1) Every minimal reducing projection Q is in C∗(S).
(2) The Šilov ideal of C∗(S) is (0).

Proof. The proof is the same to the proof of the implication (⇒) of [28, Proposition
3.17] which assumes DL(1) is bounded. (Note also that truly linear pencil in the
assumptions should be replaced by monic linear pencil.) We only emphasize that
the complete isometry of the mapping C∗(S)P 3 A 7→ A(I −Q) at the end of the
second paragraph and Proposition 3.2 implies that hL is not σ-minimal. Now by
Lemma 3.10.(1) below, L is not σ-minimal. The same arguments are used also for
the contradiction with σ-minimality of L in the third and fourth paragraphs. �

Remark 3.9. (1) For the implication (⇐) of [28, Proposition 3.17] one needs
the fact that the equality DL = DL̃ implies the complete isometry of the

map S 7→ SQ where the coefficients of L and L̃ are I, A1, . . . , Ag and
Q,QA1Q, . . . , QAgQ respectively. By Remark 3.7 this is not always true
for unbounded sets DL(1). Therefore the proof of the implication (⇐) of
[28, Proposition 3.17] does not extend to unbounded sets DL(1). However,
this implication is not needed for our purposes.

(2) It is not known if Proposition 3.8 extends to operator pencils. However,
extending Proposition 3.8 to operator pencils does not extend Theorem 3.2
to operator pencils (see §3.2 and §3.3). The proof of Theorem 3.2 also uses
the classification of finite dimensional real C∗-algebras.
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The following lemma states the equivalence between the σ-minimality of a monic
linear operator pencil L and its homogenization hL and the connection with the σ-
minimality of the extended linear pencil L⊕ 1.

Lemma 3.10. Let L(x) = IH +
∑g
j=1Ajxj ∈ SH 〈x〉 be a monic linear operator

pencil and L̃ = L⊕ 1 ∈ SH ⊕R〈x〉 its extended linear pencil. Then:

(1) If L is σ-minimal, then hL is σ-minimal.

(2) If L is σ-minimal and DhL 6= DhL̃, then hL̃ is σ-minimal.

Proof. First we prove (1). Assume that L is σ-minimal and prove that hL is σ-
minimal. By the way of contradiction, let hL have a proper whole subpencil

V ∗1
hLV1 = IH1x0 + Âjxj with DV ∗1

hLV1
= DhL,

where V1 : H1 → H is the inclusion of a proper closed subspace H1 into H . The
equality DV ∗1

hLV1
= DhL implies that DV ∗1 LV1

= DL. Hence V ∗1 LV1 is a proper
whole subpencil of L, which contradicts the σ-minimality of L.

It remains to prove (2). If hL̃ is not σ-minimal, then it has a proper whole
subpencil

V ∗2
hL̃V2 = IH2

x0 + Âjxj with DV ∗2
hL̃V2

= DhL̃

where V2 : H2 →H ⊕R is the inclusion of a closed subspace H2 into H ⊕R. The
equality DV ∗2

hL̃V2
= DhL̃ implies that

(3.1) DV ∗2 L̃V2
= DL̃ = DL.

Let PH : H ⊕ R→H be the projection onto H , i.e., PH (v, α) = v.

Claim: PH (H2) = H .

For every tuple X ∈ Sgn we have

(V ∗2 L̃V2)(X) = (V2 ⊗ In)∗L̃(X)(V2 ⊗ In)

= (V2 ⊗ In)∗(L(X)⊕ In)(V2 ⊗ In)

= (V2 ⊗ In)∗(L(X)⊕ 0)(V2 ⊗ In) + (V2 ⊗ In)∗(0⊕ In)(V2 ⊗ In)

� (V2 ⊗ In)∗(L(X)⊕ 0)(V2 ⊗ In).(3.2)

Let V3 : PH (H2) → H be the inclusion of a closed subspace PH (H2) into H .
Notice that

V2(v ⊕ α) = V3(v)⊕ α where v ⊕ α ∈ H2 and v ∈ PH (H2), α ∈ R.

Every vector f ∈ H2 ⊗ Rn is of the form

f =
∑
j

(vj ⊕ αj)⊗ uj
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where vj ∈ PH (H2), αj ∈ R and uj ∈ Rn for each j. We have

〈(V2 ⊗ In)∗(L(X)⊕ 0)(V2 ⊗ In)f, f〉H2⊗Rn =

=

〈
(L(X)⊕ 0)

k∑
j=1

(vj ⊕ αj)⊗ uj ,
k∑
j=1

(vj ⊕ αj)⊗ uj

〉
H2⊗Rn

=

〈
L(X)

k∑
j=1

vj ⊗ uj ,
k∑
j=1

vj ⊗ uj

〉
PH (H2)⊗Rn

=

〈
(V3 ⊗ In)∗L(X)(V3 ⊗ In)

k∑
j=1

vj ⊗ uj ,
k∑
j=1

vj ⊗ uj

〉
PH (H2)⊗Rn

.

By this calculation and (3.2) we conclude that

(3.3) DV ∗3 LV3 ⊆ DV ∗2 L̃V2
.

If PH (H2) ( H , then by σ-minimality of L we have

(3.4) DL ( DV ∗3 LV3 .

Now (3.1), (3.3) and (3.4) give us a contradiction

DL ( DV ∗3 LV3
⊆ DV ∗2 L̃V2

= DL.

Thus PH (H2) = H which proves the claim.

Since by assumption DhL 6= DhL̃, there is n ∈ N and a tuple (X0, . . . , Xg) ∈ Sg+1
n

such that
hL(X) � 0 and hL̃(X) =hL(X)⊕X0 6� 0.

Therefore X0 6� 0. So there exists a vector u ∈ Rn such that 〈X0u, u〉 = −1. Let
V : H ⊕ Ru→H ⊕ Rn be the inclusion of H ⊕ Ru into H ⊕ Rn. Then

V ∗hL(X)V = hL(−1, 〈X1u, u〉 , . . . , 〈Xgu, u〉) � 0,
hL̃(−1, 〈X1u, u〉 , . . . , 〈Xgu, u〉) = V ∗hL(X)V ⊕−1 6� 0.

Thus

(−1, µ1, . . . , µg) := (−1, 〈X1u, u〉 , . . . , 〈Xgu, u〉) ∈ DhL(1) \DhL̃(1).

Hence
∑
j Ajµj � IH and

∑
j Ajµj is invertible. Therefore

(3.5) (
∑
j

Ajµj)H = H .

Using this and the fact that H2 is reducing for every Ãj we conclude that

H ⊕ 0 =︸︷︷︸
(3.5)

(
∑
j

Ajµj)H ⊕ 0 =︸︷︷︸
Claim

(
∑
j

Ajµj)PH (H2)⊕ 0 = (
∑
j

Ãjµj)H2 ⊆ H2.

Since H2 is a proper closed subspace of H ⊕ R, it follows that H2 = H ⊕ 0.
Therefore

V ∗2
hL̃V2 = hL

is proper whole subpencil of hL̃. In particular DhL = DhL̃, which contradicts the
assumption in the statement of the lemma. �
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Proof of Theorem 3.1. We will separate two cases. In Case 1 we will establish the
theorem under the assumption DhL1

= DhL2
. In Case 2 we will show that assum-

ming DhL1
6= DhL2

leads to a contradiction.

Case 1: DhL1
= DhL2

.

By Lemma 3.10.(1) the linear pencils hL1 and hL2 are σ-minimal. By Lemma 3.2
the unital linear map τ : S1 → S2, Aj 7→ Bj is well-defined, completely isometric

∗-isomorphism. By Proposition 3.8, the Šilov ideals for S1 in C∗(S1) and S2 in
C∗(S2) are trivial. Now the remaining part of the proof is the same as for the proof
of [28, Theorem 3.12].

Case 2: DhL1
6= DhL2

.

Let L̃j , j = 1, 2, be the extended linear pencils of Lj , j = 1, 2, defined by

L̃1 := L1 ⊕ 1, L̃2 := L2 ⊕ 1.

We have the equalities

DL̃1
= DL1 = DL2 = DL̃2

.

Claim 1: DhL̃1
= DhL̃2

.

By Theorem 2.5, the inclusion DL1
⊆ DL2

= DL̃2
implies DhL̃1

⊆ DhL̃2
and by

analogy the inclusion DL2
⊆ DL1

= DL̃1
implies DhL̃2

⊆ DhL̃1
. Hence DhL̃1

= DhL̃2
.

Claim 2. DhL̃`
6= DhL` for ` = 1, 2.

Since we are in Case 2, DhL1
6= DhL2

. It follows that

DhL̃1
6= DhL1

or DhL̃2
6= DhL2

.

By symmetry let us suppose DhL̃2
6= DhL2

and prove that DhL̃1
6= DhL1

. Assume
that DhL̃1

= DhL1
. Since DhL̃2

( DhL2
, there exists a tuple

(X0, X1, . . . , Xg) ∈ DhL2
\DhL̃2

where X0, X1, . . . , Xg ∈ Sn. Note that X0 6� 0. Let v ∈ Rn be a vector such that
〈X0v, v〉 = −1. Hence

(−1, 〈X1v, v〉 , . . . , 〈Xgv, v〉) ∈ DhL2
(1) \DhL̃2

(1).

Thus
∑
j Bj 〈Xjv, v〉 � 0. Since DL1

= DL2
it follows that∑

j

Aj 〈Xjv, v〉 � 0.

(Otherwise limt→∞ Im+t
∑
j Aj 〈Xjv, v〉 6� 0 but limt→∞ Im+t

∑
j Bj 〈Xjv, v〉 � 0,

which is a contradiction.) But since DhL1
= DhL̃1

, it follows that∑
j

Aj 〈Xjv, v〉 6� 0.

Let

H = Ran(
∑
j

Aj 〈Xjv, v〉).
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We will prove that
V ∗L1V,

where V : H → Rd is the inclusion of H into Rd, is a proper whole subpencil of
L1, which contradicts to the fact that L1 is σ-minimal. We have to prove that H is
reducing for every Aj and that DV ∗L1V = DL1 . It suffices to prove that Aj |H⊥ = 0.
Since

I ⊗ 0 +
∑
j

Bj 〈Xjv, v〉 ± εBj � 0

for every j and every ε > 0 small enough, it follows from DL1
= DL2

and an
approximation argument that

(3.6)
∑
j

Aj 〈Xjv, v〉 ± εAj � 0

for every j and every ε > 0 small enough. Let us take u ∈ H⊥. By (3.6) we first
conclude that

〈Aju, u〉 = 0.

and second that
(
∑
j

Aj 〈Xjv, v〉 ± εAj)u = 0.

Finally, since u ∈ H⊥ it follows that

Aju = 0.

Therefore Aj |H ⊥ = 0 for every j = 1, . . . , g. This proves the claim.

Claim 3. Linear pencils hL̃` are minimal for ` = 1, 2.

This follows by Claim 2 and Lemma 3.10.(2).

Now we define new pencils L̂`(x0, x1, . . . , xg) for ` = 1, 2 by

L̂`(x0, x1, . . . , xg) := In ⊕ 1 + (In ⊕ 1)x0 +
∑
j

Ãjxj .

Claim 4. The following observations are true:

(1) For X := (X0, X1, . . . , Xg) ∈ (Rn×n)g+1 we have

L̂`(X0, X1, . . . , Xg) =h L̃`(X0 + Id, X1, . . . , Xg).

(2) DL̂1
= DL̂2

.

(3) For X := (X−1, X0, X1, . . . , Xg) ∈ (Rn×n)g+2 we have

hL̂`(X−1, X0, X1, . . . , Xg) =h L̃`(X−1 +X0 + Id, X1, . . . , Xg).

(4) DhL̂1
= DhL̂2

.

(5) Let

S̃1 := span{In ⊕ 1, Ãj : j = 1, . . . , g}
S̃2 := span{In ⊕ 1, B̃j : j = 1, . . . , g}

and let τ̃ : S̃1 → S̃2 be the unital linear map defined by Ãj 7→ B̃j . Then τ
is well-defined and completely isometric.
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(6) L̂` is σ-minimal for ` = 1, 2.

The statements (1) and (3) are clear. By Claim 1, (1) implies (2) and (3) implies

(4). (5) follows by Lemma 3.2. Let us prove (6). Let us say L̂` is not σ-minimal.
Hence, DL̂`

= DV ∗L̂`V
where V : H → Rd+1 is the inclusion of a proper reducing

subspace H of every Ãj into Rd+1. But then since

V ∗L̂`(x0 − 1, x1, . . . , xg)V = V ∗hL̃`(x0, x1, . . . , xg)V,

we get
DhL̃`

= DV ∗hL̃`V
,

which is a contradiction with hL̃` being σ-minimal.

Now, by the same proof as in the Case 1, we conclude that d + 1 = e + 1 and
there is a unitary operator Ũ : Rd+1 → Rd+1 such that

L̂2 = Ũ∗L̂1Ũ , and whence L̂1 = Ũ L̂2Ũ
∗.

By (1) of Claim 4, this implies

(3.7) L̃2 = Ũ∗L̃1Ũ and whence L̃1 = Ũ L̃2Ũ
∗.

Write U : Rd+1 → Rd+1 in the form[
U11 u12

u21 u22

]
,

where U11 : Rd → Rd, u12, u21 are vectors in Rd and u22 is a real number. Plugging
this in the equations above we get

L2 = U∗11L1U11 + ut21u21

L1 = U11L2U
∗
11 + u12u

t
12.

Hence
L1 = U11U

∗
11L1U11U

∗
11 + U11u

t
21u21U

∗
11 + u12u

t
12.

Thus for
W = U11U

∗
11, and S = U11u

t
21u21U

∗
11 + u12u

t
12 � 0

we get

(3.8) L1 = W ∗L1W + S.

Claim 5. The matrix W is an isometry, i.e., W ∗W = Id. In particular,

Id = U11U
∗
11 = U∗11U11, 0 = u21 = u12.

From (3.8) it follows that

Aj = W ∗AjW for every j = 1, . . . , g,

Id = W ∗W + S.

If W ∗W 6= Id, then if
1 ≥ λ1 ≥ . . . ≥ λd ≥ 0

are the eigenvalues of W ∗W , we have 1 > λd. Since 1 ≥ ‖W ∗W‖ = ‖W‖2, it
follows that 1 ≥ ‖W‖. Let µ1, . . . , µd be the eigenvalues of W . From 1 ≥ ‖W‖ it
follows that |µj | ≤ 1 for every j = 1, . . . , d. From

1 > λ1 · · ·λd = det(W ∗W ) = det(W )2 = |µ1| · · · |µd|
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it follows that there is an eigenvalue µ of W such that |µ| < 1. But then there is
an eigenvector v ∈ Cd such that Wv = µv. Since Aj = W ∗AjW , we have

Aj = (W k)∗AjW
k for every k ∈ N.

Therefore Ajv = (W k)∗AjW
kv for every k ∈ N. But

lim
k→∞

‖(W k)∗AjW
kv‖ ≤ lim

k→∞
‖W ∗‖k‖Aj‖‖W kv‖ ≤ ‖Aj‖ lim

k→∞
|µ|k‖v‖ = 0.

Hence

Ajv = 0 for every j.

Since L1 is σ-minimal, we conclude that ∩gj=1 kerAj = {0}. But this is in contra-

diction with v ∈ ∩gj=1 kerAj . Hence W ∗W = Id and the claim is proved.

By Claim 5, L2 = U∗11L1U11 for a unitary U11. Hence DhL1
= DhL2

, which
contradicts the assumption of Case 2. �

3.2. Non-existence of a σ-minimal whole subpencil. Example 3.11 below
shows that in contrast with a matrix pencil, an operator pencil does not necessarily
have a whole subpencil which is σ-minimal.

Example 3.11. Let

L(x) = I`2 + diag(
n

n+ 1
)n∈N x ∈ B(`2)

be a diagonal linear operator pencil on `2. We claim that

DL(m) = {X ∈ Sm : X � −I`2}
and there does not exist a σ-minimal whole subpencil of L.

Let {ei}i∈N be the standard basis of `2, ei has 1 in the i-th coordinate and 0
elsewhere.

First we will prove the claim about DL(m). Let X ∈ Sm. Since

〈L(X)(ei ⊗ v), ej ⊗ u〉 =

〈
ei ⊗ v +

i

i+ 1
ei ⊗Xv, ej ⊗ u

〉
= 〈ei, ej〉`2 〈v, u〉Rm +

〈
i

i+ 1
ei, ej

〉
`2
〈Xv, u〉Rm

= 0

for every i 6= j and every u, v ∈ Rm, X ∈ DL(m) if and only if

0 ≤ 〈L(X)(ei ⊗ u), ei ⊗ u〉 = 〈u, u〉Rm +
i

i+ 1
〈Xu, u〉Rm

=

〈
(Im +

i

i+ 1
X)u, u

〉
Rm

.

for every i ∈ N and every u ∈ Rm. This is equivalent to Im + i
i+1X � 0 for every

i ∈ N and further on to X � − i+1
i Im for every i ∈ N. Hence, X ∈ DL(m) if and

only if X � −Im.
To prove that L does not have a σ-minimal whole subpencil let us first argue

that the only reducing closed subspaces of the operator Ω1 := diag( n
n+1 ) are the

subspaces H with the orthonormal basis of the form

(3.9) {eij : ij ∈ N, j ∈ N}.
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For i ∈ N, let ei = h1 + h2 where h1 ∈ H and h2 ∈ H⊥. From

i

i+ 1
ei =

i

i+ 1
h1︸ ︷︷ ︸

H

+
i

i+ 1
h2︸ ︷︷ ︸

H⊥

= Ω1(ei) = Ω1(h1 + h2) = Ω1(h1)︸ ︷︷ ︸
H

+ Ω1(h2)︸ ︷︷ ︸
H⊥

,

it follows that

Ω1(hi) =
i

i+ 1
hi for i = 1, 2.

Since the eigenspace corresponding to the eigenvalue i
i+1 of Ω1 is span{ei} (one

dimensional), it follows that ei = h1 or ei = h2. Hence, ei ∈ H or ei ∈ H⊥. Thus
the orthonormal basis of H is of the form (3.9).

Therefore:

(1) Subpencils of L are of the form V ∗LV , where V is the inclusion of some
subspace H with the orthonormal basis {eij : ij ∈ N, j ∈ N} into `2.

(2) A subpencil V ∗LV is whole if and only if the sequence (ij)j diverges.
(3) The whole subpencil V ∗LV is not σ-minimal, since it has a whole subpencil

Ṽ ∗V ∗LV Ṽ , where Ṽ is the inclusion Ṽ : H1 ↪→ H of the subspace H1 with
the orthonormal basis {eij : ij ∈ N, j ∈ N} \ {ei1} into H.

3.3. Counterexample to the operator linear Gleichstellensatz. By Example
3.12 below σ-minimal operator pencils with the same free Hilbert spectrahedron
are not necessarily unitarily equivalent. Hence Theorem 3.1 does not extend from
matrix to operator pencils.

Example 3.12 is constructed by the use of an outer ∗-automorphism [2] of the
Cuntz C∗-algebra C∗(S1, S2) [15] generated by the isometries S1, S2 ∈ B(H ) on a
Hilbert space H such that S1S

∗
1 + S2S

∗
2 = IdH . Recall that a ∗-automorphism θ

is outer if there does not exist a unitary U ∈ C∗(S1, S2) such that θ(A) = U∗AU
for all A ∈ C∗(S1, S2).

Example 3.12. Let N = {1, 2, . . .} and let ei be a standard unit vector on a
complex Hilbert space `2 := `2(N), i.e., the only nonzero coordinate is the i-th one
which is 1. Let S1 and S2 be bounded operators on `2 defined by ei 7→ e2i−1 for
i ∈ N and ei 7→ e2i for i ∈ N respectively. The C∗-algebra C∗(S1, S2) was studied
by Cuntz [15]. He showed that there is a unique ∗-isomorphism

θ : C∗(S1, S2)→ C∗(S1, S2)

such that

θ(S1) = S2, θ(S2) = S1.

We claim that linear operator pencils

L1(x) = I`2 +A1x1 +A2x2 +A3x3 +A4x4,

L2(x) = I`2 +A2x1 +A1x2 +A4x3 +A3x4,

where

A1 := S1 + S∗1 ∈ B(`2), A2 := S2 + S∗2 ∈ B(`2),

A3 := i(S1 − S∗1 ) ∈ B(`2), A4 := i(S2 − S∗2 ) ∈ B(`2),
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are σ-minimal pencils with DL1
= DL2

, but there is no unitary operator U : `2 → `2

such that

(3.10) L2 = U∗L1U or L2 = U∗L1U.

Claim 1. DL1 = DL2 .

Clearly, the C∗-algebra

A := C∗(A1, A2, A3, A4)

generated by Aj , j = 1, 2, 3, 4, equals to C∗(S1, S2). Hence θ maps L1 to L2 and
L2 to L1. From θ(L1) = L2, it follows that DL1 ⊆ DL2 and similarly θ(L2) = L1

implies DL2 ⊆ DL1 . Thus DL1 = DL2 .

Claim 2. L1 and L2 are σ-minimal.

It is sufficient to prove that there is no common reducing subspace for the oper-
ators A1, A2, A3, A4. Let us say that H is their common reducing subspace. Then
it is also reducing for the operators

A1 − iA3

2
= S1, and

A2 − iA4

2
= S2.

By the proof of [2, Theorem 1], S1 and S2 have no common proper reducing sub-
spaces. Hence L1 and L2 are σ-minimal.

Claim 3. There does not exist a unitary operator U : `2 → `2 satisfying (3.10).

If there would exist a unitary operator U : `2 → `2 satisfying (3.10), then in
particular

(3.11) A4 = U∗A3U or A4 = U∗A3U.

We will prove that kerA3 = kerA3 6= {0} and kerA4 = {0} which contradicts to
(3.11). Note that S∗1 and S∗2 are bounded operators on `2 defined by

e2i−1 7→ ei, e2i 7→ 0 for i ∈ N and e2i−1 7→ 0, e2i 7→ ei for i ∈ N,

respectively. Hence,

A3e1 = i(S1 − S∗1 )e1 = 0 = −i(S1 − S∗1 )e1 = A3e1 ⇒ e1 ∈ kerA3 = ker(A3).

It remains to prove that kerA4 = {0}. Let us say

f :=

∞∑
j=1

αjej ∈ kerA4 where αj ∈ C for all j ∈ N.

We define e 2k−1
2

= 0 for every k ∈ N. We have

(3.12) A4f = i

∞∑
j=1

αje2j − i
∞∑
j=1

αje j
2

= 0.

If αj0 6= 0 for some j0 ∈ N, then it follows from (3.12) inductively that

αj0 = α4j0 = α16j0 = . . . = α4nj0 = . . . .

But then ‖f‖ =∞ and hence f /∈ `2. Therefore f = 0 and kerA4 = {0}.
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4. Operator Positivstellensatz for multivariate matrix polynomials

In this section we characterize multivariate matrix polynomials that are posi-
tive semidefinite on a free Hilbert spectrahedron (see Theorem 1.5 above and its
restatement Theorem 4.2 below) and a free Hilbert spectrahedrop (see Theorem
4.7). Under the assumption of finite-dimensional Hilbert spaces Theorem 1.5 was
proved in [26] by modifying the classical Putinar-type separation argument. By
essentially using Corollary 2.9 we are able to apply the separation argument also
for infinite dimensional Hilbert spaces H . Precisely, we use Corollary 2.9 to prove
that a certain set of nc matrix polynomials, i.e., the truncated quadratic module
generated by an operator pencil, is closed. If H is finite-dimensional, its closede-
ness follows by Caratheodory’s theorem and a compactness argument in Rν , while
for infinite-dimensional H the compactness argument only works after translating
the question to finite dimensions by Corollary 2.9.

4.1. Restatement of Theorem 1.5. To prove Theorem 1.5 we have to refine its
statement. For this sake we introduce some definitions.

For P ∈ R`×ν〈x〉, an element of the form P ∗P ∈ R`×ν〈x〉 is caled a hermitian
square. Let Σν denote the cone of sums of squares of ν × ν matrix-valued polyno-
mials, and, given a nonnegative integer N , let ΣνN ⊆ Σν denote sums of squares of
polynomials of degree at most N . Thus elements of ΣνN have degree at most 2N ,
i.e., ΣνN ⊆ Rν×ν〈x〉2N . Since the highest order terms in a sum of squares cannot
cancel, we have Rν×ν〈x〉2N ∩ Σν = ΣνN .

Fix ν ∈ N. Let Π̃H
ν be the set of all triples (K , π, V ), where K is a separable

real Hilbert space, V : Rν → K an isometry and π : B(H ) → B(K ) a ∗-
homomorphism.

Let L ∈ SH 〈x〉 be a monic linear operator pencil. Given ν1, ν2, α, β ∈ N, we
define the (ν1, ν2;α, β) truncated quadratic module generated by L,

Mν1,ν2

α,β (L) := Σν1
α +


finite∑

k,(Kk,πk,Vk)∈Π̃H⊕R
ν2

B∗kV
∗
k πk(

[
L 0
0 1

]
)VkBk : Bk ∈ Rν1×ν2〈x〉β

 .

In the case DL(1) is a bounded set, we can replace ∗-homomorphisms of the ex-
tended pencil L ⊕ 1 by ∗-homomorphisms of L in the definition of the truncated
quadratic module.

Proposition 4.1. If DL(1) is a bounded set, then:

Mν1,ν2

α,β (L) = Σν1
α +


finite∑

k,(Kk,πk,Vk)∈Π̃H
ν2

B∗kV
∗
k πk(L)VkBk : Bk ∈ Rν1×ν2〈x〉β

 .

Proof. It is sufficient to prove that for every isometry V ∈ B(Rν2 ,K ) and every

∗-homomorphism π : B(H ⊕R)→ B(K ) there exist an isometry Ṽ ∈ B(Rν2 , K̃ )

and a ∗-homomorphism π̃ : B(H )→ B(K̃ ) such that

V ∗π(

[
L 0
0 1

]
)V = Ṽ ∗π̃(L)Ṽ .

Since V ∗π(

[
L 0
0 1

]
)V is a monic linear pencil positive semidefinite on DL and

DL(1) is bounded, this is true by Corollary 2.9.(3). �
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The following is the restatement of Theorem 1.5.

Theorem 4.2 (Operator convex Positivstellensatz). Let L ∈ SH 〈x〉 be a monic
linear operator pencil and F ∈ Rν×ν 〈x〉 a matrix polynomial of degree at most
2d+ 1. If F |DL � 0, then

F ∈Mν,`
d+1,d(L),

where ` := ν · σ#(d) and σ#(d) := dim(R〈x〉d).

The proof of Theorem 4.2 is given in Subsection 4.4. In the next two subsec-
tions we prove the connection between positive linear functionals and operators and
show that the truncated quadratic module is closed. Both results are important
ingredients for the separation argument in the proof of Theorem 4.2.

4.2. Positive linear functionals and the GNS construction. Proposition 4.3
below (see [26, Proposition 2.5]), embodies the well known connection, through the
Gelfand-Naimark-Segal (GNS) construction, between operators and positive linear
functionals. The only difference between the statements of Proposition 4.3 and [26,
Proposition 2.5] is that the pencil L is operator-valued here but was matrix-valued
in [26, Proposition 2.5]. Therefore, the proof of Proposition 4.3 needs an additional
argument. Namely, in the notation of Proposition 4.3 the fact that a tuple of

operators X belongs to DL if λ is nonnegative on M
ν,νσ#(k)
k+1,k (L) follows immediately

by construction if L is matrix-valued but needs a proof if L is operator-valued.

Proposition 4.3. If λ : Rν×ν〈x〉2k+2 → R is a linear functional which is nonneg-
ative on Σνk+1 and positive on Σνk \ {0}, then there exists a tuple X = (X1, . . . , Xg)
of symmetric operators on a Hilbert space X of dimension at most νσ#(k) =
ν dimR〈x〉k and a vector γ ∈ X⊕ν , such that

λ(f) = 〈f(X)γ, γ〉
for all f ∈ Rν×ν〈x〉2k+1, where 〈·, ·〉 is the inner product on X . Further, if L ∈
SH 〈x〉 is a monic linear operator pencil and λ is nonnegative on M

ν,νσ#(k)
k+1,k (L),

then X ∈ DL.
Conversely, if X = (X1, . . . , Xg) is a tuple of symmetric operators on a Hilbert

space X of dimension N , the vector γ ∈ X⊕ν , and k a positive integer, then the
linear functional λ : Rν×ν〈x〉2k+2 → R, defined by

λ(f) = 〈f(X)γ, γ〉
is nonnegative on Σνk+1. Further, if L ∈ SH 〈x〉 is a monic linear operator pencil

and X ∈ DL, then λ is nonnegative also on Mν,`
k+1,k(L) for every ` ∈ N.

In the proof we will need the following special case (see [30, Theorem 3.1] and
[32, §6]) of a theorem due to Effros and Winkler [21].

Theorem 4.4. If Γ = (Γ(n))n∈N ⊆ Sg is a closed matrix convex set containing 0
and X ∈ Sgm is not in Γ(m), then there is a monic linear pencil L if size m such
that L(Y ) � 0 for all Y ∈ Γ, but L(X) 6� 0.

Proof of Proposition 4.3. The nontrivial direction is (⇒). The proof is the same
as that of [26, Proposition 2.5], just that we need to show that in the case that λ

is nonnegative on M
ν,νσ#(k)
k+1,k (L), we have X ∈ DL. If L is matrix-valued, then this

follows by an elementary calculation. If L is operator-valued, we will additionally
need Corollary 2.9 and Theorem 4.4.
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Let us assume the notation from the proof of [26, Proposition 2.5]. Namely,
the positive semidefinite symmetric bilinear form defined on the vector space K =
R1×ν 〈x〉k+1 by

(4.1) 〈f, h〉 = λ(h∗f).

induces a positive definite bilinear form on the quotient X̃ := K/N , where N :=
{f ∈ K : 〈f, f〉 = 0}, making it a Hilbert space. By positive definiteness of the
form (4.1) on the subspace X = R1×ν 〈x〉k, X can be considered as a subspace of

X̃ with dimension νσ#(k). The symmetric operators Xj : X → X are defined by

Xjf = Pxjf, f ∈ X , 1 ≤ j ≤ g,

where P is the orthogonal projection from X̃ onto X .

Suppose λ is nonnegative on M
ν,νσ#(k)
k+1,k (L). Denote L = IH +

∑m
j=1Ajxj and

A := (A1, . . . , Ag) ∈ B(H )g. Let ` := νσ#(k). Take an arbitrary isometry V ∈
B(R`,K ). Given

p =

 p1

...
p`

 ∈ X⊕`,
note that 〈

(V ∗π(

[
L 0
0 1

]
)V )(X)p, p

〉
=
〈
(I` − ΛV ∗π(A⊕0)V (X)p, p

〉
=

〈
p−

∑
ΛV ∗π(Aj⊕0)V Pxjp, p

〉
=
〈
p−

∑
ΛV ∗π(Aj⊕0)V xjp, p

〉
=

〈
(I` −

∑
ΛV ∗π(Aj⊕0)V xj)p, p

〉
= λ(p∗(I` − ΛV ∗π(A⊕0)V (x))p)

= λ(p∗V ∗π(

[
L 0
0 1

]
)V p) ≥ 0

Claim. X ∈ DL(`).

If X /∈ DL(`), then by Theorem 4.4, there is a monic linear pencil L of size `
such that L(Y ) � 0 for all Y ∈ DL and L(X) 6� 0. But by Corollary 2.9.(1),

L = V ∗π(

[
L 0
0 1

]
)V

for some ∗-homomorphism π : B(H ⊕ R) → B(K ) where K is a separable real
Hilbert space, and some isometry V ∈ B(R`,K ). By the calculation above,

L(X) � 0,

which is a contradiction. Hence, X ∈ DL(`). �

4.3. The truncated quadratic module is closed. Fix α, β, ν1, ν2 ∈ N and let
κ = max{2α, 2β + 1}. Let L ∈ SH 〈x〉 be a monic linear operator pencil. The
truncated quadratic module Mν1,ν2

α,β (L) generated by a monic linear operator pencil

L is a convex cone in Rν×ν〈x〉k.
Given ε > 0, let

Bε(n) := {X ∈ Sgn : ‖X‖ ≤ ε}, and Bε =
⋃
n∈N
Bε(n).
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There is an ε > 0 such that for all n ∈ N, ifX ∈ Sgn and ‖X‖ ≤ ε, then L(X) � 1
2IH .

In particular, Bε ⊆ DL. Using this ε we norm Rν1×ν2 〈x〉k by

(4.2) ‖p‖ := max{‖p(X)‖ : X ∈ Bε}.

(On the right-hand side of (4.2) the maximum is attained. This follows from the
fact that the bounded nc semialgebraic set Bε is convex. See [31, Section 2.3] for
details.)

By the Proposition 4.5 below, Mν1,ν2

α,β (L) is closed. This is the same result as

[26, Proposition 3.1] but the proof is much longer and uses Corollary 2.9 essentially.
The latter is used to prove that a limit of a certain convergent sequence of linear

matrix pencils of the form Vkπk(

[
L 0
0 1

]
)Vk, where πk : B(H ⊕ R) → B(Kk) is

a ∗-homomorphism, Kk is a separable real Hilbert space and Vk ∈ B(Rν2 ,Kk) is

an isometry, is again of the form V π(

[
L 0
0 1

]
)V with π a ∗-homomorphism and

V ∈ B(Rν2 ,K ) an isometry.

Proposition 4.5. The truncated quadratic module Mν1,ν2

α,β (L) ⊆ Rν1×ν1〈x〉κ is
closed.

Proof. Suppose (Pn) is a sequence from Mν1,ν2

α,β (L) which converges to some P ∈
Rν1×ν1〈x〉 of degree at most κ. By Caratheodory’s theorem on convex hulls [7,
Theorem I.2.3], there is an M (at most the dimension of Rν1×ν1〈x〉k plus one)
such that for each n there exist matrix-valued polynomials Rn,i ∈ Rν1×ν1〈x〉α,
Tn,i ∈ Rν1×ν2〈x〉α, ∗-homomorphisms πn,i : B(H ⊕R)→ B(Kn,i) where Kn,i is a
separable real Hilbert space, and isometries Vn,i ∈ B(Rν2 ,Kn,i) such that

Pn =

M∑
i=1

R∗n,iRn,i +

M∑
i=1

T ∗n,iV
∗
n,iπn,i(

[
L 0
0 1

]
)Vn,iTn,i.

Claim 1. The sequences (Rn,i)n and (Tn,i)n are bounded in norm for each i.

The sequence (Pn)n is bounded in norm, i.e., ‖Pn‖ ≤ N2 for every n ∈ N and
some N ∈ N. Fix i ∈ N. For every X ∈ Bε and every n we have

R∗n,iRn,i(X) � 0 and T ∗n,iV
∗
n,iπn,i(

[
L 0
0 1

]
)Vn,iTn,i(X) � 0.

Thus for every X ∈ Bε and every n it follows that

Pn(X) � R∗n,iRn,i(X) and Pn(X) � T ∗n,iV ∗n,iπn,i(
[
L 0
0 1

]
)Vn,iTn,i(X).

Hence, for every n we have

N2 ≥ ‖Pn‖ ≥
∥∥R∗n,iRn,i∥∥ = ‖Rn,i‖2 ,

N2 ≥ ‖Pn‖ ≥
∥∥∥∥T ∗n,iV ∗n,iπn,i([ L 0

0 1

]
)Vn,iTn,i

∥∥∥∥ .
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So (Rn,i)n is bounded. Let us denote L(x) = IH +
∑
j Ajxj . For the boudedness

of (Tn,i)n observe that

∥∥T ∗n,iTn,i∥∥ =
1

2

∥∥∥∥T ∗n,iV ∗n,iπn,i(2

[
IH 0
0 1

])
Vn,iTn,i

∥∥∥∥
=

1

2

∥∥∥∥T ∗n,iV ∗n,iπn,i(2

[
IH 0
0 1

]
+

[ ∑
j Ajxj 0

0 0

]
−

[ ∑
j Ajxj 0

0 0

])
Vn,iTn,i

∥∥∥∥
≤ 1

2

∥∥∥∥T ∗n,iV ∗n,iπn,i([ IH +
∑
j Ajxj 0

0 1

])
Vn,iTn,i

∥∥∥∥
+

1

2

∥∥∥∥T ∗n,iV ∗n,iπn,i([ IH +
∑
j Aj(−xj) 0

0 1

])
Vn,iTn,i

∥∥∥∥
=

∥∥∥∥T ∗n,iV ∗n,iπn,i([ L 0
0 1

])
Vn,iTn,i

∥∥∥∥
≤ N2.

By Claim 1 and since we are in finite dimensional vector spaces, (Rn,i)n, (Tn,i)n
have convergent subsequences with limits Ri ∈ Rν1×ν1〈x〉, Ti ∈ Rν2×ν1〈x〉.

Claim 2. The sequences (V ∗n,iπn,i

([
L 0
0 1

])
Vn,i)n ⊆ Rν2×ν2 〈x〉 are bounded

in norm for each i.

The following estimate holds:∥∥∥∥V ∗n,iπn,i([ L 0
0 1

])
Vn,i

∥∥∥∥ = max
X∈Bε

∥∥∥∥(V ∗n,iπn,i([ L 0
0 1

])
Vn,i

)
(X)

∥∥∥∥
= max

X∈Bε

∥∥∥∥∥∥Iν2
⊗ I +

g∑
j=1

V ∗n,iπn,i(

[
Aj 0
0 0

]
)Vn,i ⊗Xj

∥∥∥∥∥∥
≤ 1 +

g∑
j=1

max
X∈Bε

∥∥∥∥V ∗n,iπn,i([ Aj 0
0 0

]
)Vn,i ⊗Xj

∥∥∥∥
≤ 1 +

g∑
j=1

max
X∈Bε

∥∥∥∥V ∗n,iπn,i([ Aj 0
0 0

]
)Vn,i

∥∥∥∥ ‖Xj‖

≤ 1 + ε

g∑
j=1

∥∥∥∥V ∗n,iπn,i([ Aj 0
0 0

]
)Vn,i

∥∥∥∥
≤ 1 + ε

g∑
j=1

∥∥V ∗n,i∥∥ ‖πn,i‖∥∥∥∥[ Aj 0
0 0

]∥∥∥∥ ‖Vn,i‖
≤ 1 + ε

g∑
j=1

‖Aj‖ .
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By Claim 2 and since we are in a finite dimensional vector space, the sequences
from Claim 2 converge for each i to a monic linear matrix pencil

L̂i = Iν2 +
∑
j

Âj,ixj ∈ Rν2×ν2〈x〉 .

Claim 3. DL ⊆ DL̂i
for each i.

Fix i ∈ N. Suppose there is X ∈ DL(m) \ DL̂i
(m). Then there is a vector

v ∈ Rν2 ⊗ Rm of norm 1 such that

(4.3)
〈
L̂i(X)v, v

〉
< 0

Since (V ∗n,iπn,i(

[
L 0
0 1

]
)Vn,i)n converges to L̂i in the norm, there is k0 ∈ N such

that

(4.4)

∥∥∥∥L̂i − V ∗k0,iπk0,i(

[
L 0
0 1

]
)Vk0,i

∥∥∥∥ ≤ ε

2 ‖X‖

∣∣∣〈L̂i(X)v, v
〉∣∣∣

2
.

Since L̂i and V ∗k0,i
πk0,i(

[
L 0
0 1

]
)Vk0,i are monic, the following estimate holds

∥∥∥∥(L̂i − V ∗k0,iπk0,i(

[
L 0
0 1

]
)Vk0,i

)
(X)

∥∥∥∥
=

2 ‖X‖
ε

∥∥∥∥∥∥∥∥∥(L̂i − V ∗k0,iπk0,i(

[
L 0
0 1

]
)Vk0,i)(

ε

2 ‖X‖
X︸ ︷︷ ︸

∈Bε

)

∥∥∥∥∥∥∥∥∥
≤ 2 ‖X‖

ε

∥∥∥∥L̂i − V ∗k0,iπk0,i(

[
L 0
0 1

]
)Vk0,i

∥∥∥∥ ≤︸︷︷︸
(4.4)

∣∣∣〈L̂i(X)v, v
〉∣∣∣

2
.

But then, since v is of norm one, we have

∣∣∣∣〈(L̂i − V ∗k0,iπk0,i(

[
L 0
0 1

])
Vk0,i)(X)v, v

〉∣∣∣∣ ≤ |
〈
L̂i(X)v, v

〉
|

2
,

and hence

(4.5)

〈(
V ∗k0,iπk0,i(

[
L 0
0 1

]
)Vk0,i

)
(X)v, v

〉
≤

〈
L̂i(X)v, v

〉
2

<︸︷︷︸
(4.3)

0.
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But since

(V ∗k0,iπk0,i(

[
L 0
0 1

]
)Vk0,i)(X) =

= (V ∗k0,i ⊗ Im)

(
πk0,i(

[
L 0
0 1

]
)(X)

)
(Vk0,i ⊗ I)

= (V ∗k0,i ⊗ Im)

(
(πk0,i ⊗ Im)(

[
L 0
0 1

]
(X))

)
(Vk0,i ⊗ Im)

= (V ∗k0,i ⊗ Im)

(
(πk0,i ⊗ Im)(

[
L(X) 0

0 1

]
)

)
(Vk0,i ⊗ Im)

�︸︷︷︸
X∈DL(m)

0,

where πk0,i⊗Im is a ∗-homomorphism A⊗B 7→ πk0,i(A)⊗B, this is a contradiction
with (4.5). Hence, DL ⊆ DL̂i

.

To conclude the proof we use Corollary 2.9.(1). There is a triple (Ki, πi, Vi) of
a separable real Hilbert space Ki, a ∗-homomorphism πi : H ⊕ R → Ki and an
isometry Vi such that

L̂i = V ∗i πi(

[
L 0
0 1

]
)Vi.

Therefore (Pn)n converges to

M∑
i=1

R∗iRi +

M∑
i=1

T ∗i V
∗
i πi(

[
L 0
0 1

]
)ViTi ∈Mν1,ν2

α,β (L).

�

4.4. Proof of Theorem 4.2. In this subsection we prove Theorem 4.2. The argu-
ment is a classical one going back to at least Putinar [48] and its noncommutative
version in [31], but with a consequential difference. Namely, the difference is in the
separating functional λ, which produces perfection, i.e., the Positivstellensatz holds
not only for positive definite polynomials but for semidefinite ones as well and we
also get degree bounds (like [26]).

Proof of Theorem 4.2. Suppose F /∈Mν,`
d+1,d(L). By Proposition 4.5 and the Hahn-

Banach separation theorem there exists a linear functional λ : Rν×ν〈x〉2d+1 → R
that is nonnegative on Mν,`

d+1,d(L) and negative on F . By [26, Lemma 3.2], we can

assume λ is positive. (Note that the functional λ̂ from the proof of [26, Lemma

3.2] is non-negative also on Mν,`
d+1,d(L).) By Proposition 4.3 with k = d, there is a

tuple of symmetric matrices X ∈ DL acting on the finite-dimensional Hilbert space
X and a vector γ such that

λ(P ) = 〈P (X)γ, γ〉

for all P ∈ Rν×ν〈x〉 . In particular,

〈F (X)γ, γ〉 = λ(F ) < 0,

so that F (X) is not positive semidefinite, contradicting DL ⊆ DF and the proof is
complete. �
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4.5. Convex Positivstellensatz for free Hilbert spectrahedrops. This sub-
section focuses on polynomials positive on a free Hilbert spectrahedrop. The main
result, Theorem 4.7, extends Theorem 4.2 from free Hilbert spectrahedra to free
Hilbert spectrahedrops.

Let L be a monic linear operator pencil of the form

L(x, y) = IH +

g∑
j=1

Ωjxj +

h∑
k=1

Γkyk ∈ SH 〈x〉

and let K = projxDL. Fix positive integers ν1, ν2, d ∈ N. We define the (ν1, ν2; d)
truncated quadratic module in Rν1×ν1〈x〉2d+1 associated to L andK = projxDL

by

Mν1,ν2
x (L)d := {σ +

finite∑
k,(Kk,πk,Vk)∈Π̃H⊕R

ν2

R∗kV
∗
k πk(

[
L 0
0 1

]
)VkRk : σ ∈ Σν1

d 〈x〉 ,

Rk ∈ Rν2×ν1〈x〉d ,
∑
k

R∗kV
∗
k πk(

[
Γ` 0
0 0

]
)VkRk = 0 for all `}.

In the case DL(1) is a bounded set, we can replace ∗-homomorphisms of the
extended pencil L⊕ 1 by ∗-homomorphisms of L in the definition of the truncated
quadratic module.

Proposition 4.6. If DL(1) is a bounded set, then:

Mν1,ν2
x (L)d := {σ +

finite∑
k,(Kk,πk,Vk)∈Π̃H

ν2

R∗kV
∗
k πk(L)VkRk : σ ∈ Σν1

d 〈x〉 ,

Rk ∈ Rν2×ν1〈x〉d ,
∑
k

R∗kV
∗
k πk(Γ`)VkRk = 0 for all `}.

Proof. The proof is the same as the proof of Proposition 4.5 using Theorem 2.15
instead of Corollary 2.9. �

The main result of this subsection is the following Positivstellensatz:

Theorem 4.7. A polynomial F ∈ Rν1×ν1〈x〉2d+1 is positive semidefinite on K if
and only if F ∈Mν1,ν2

x (L)d.

Remark 4.8. Several remarks are in order.

(1) In case there are no y-variables in L, Theorem 4.7 reduces to Theorem 4.2.
(2) If d = 0, i.e., F is linear, then Theorem 4.7 reduces to Theorem 2.15.
(3) If L is matrix-valued, then Theorem 4.7 reduces to [29, Theorem 5.1].
(4) If L is matrix-valued and variables commute, a Positivstellensatz for com-

mutative polynomials strictly positive on spectrahedrops was established
by Gouveia and Netzer in [24]. A major distinction is that the degrees of
the Rk and σ in the commutative theorem behave very badly.

4.6. Proof of Theorem 4.7. The proof uses the same idea as the proof of Theorem
4.2, i.e., construction of a positive separating functional and then the connection
with operators via the GNS construction. What has to be proved additionally is
that the truncated quadratic module Mν1,ν2

x (L)d is closed (see Proposition 4.9) and
that the tuple of operators X from the GNS construction belongs to the closure of
the free Hilbert spectrahedrop (see Proposition 4.10).
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Proposition 4.9. The truncated module Mν1,ν2
x (L)d is closed.

Proof. The proof is the same as the proof of Proposition 4.1 using Theorem 2.15
instead of Corollary 2.9. �

Proposition 4.10. If λ : Rν×ν〈x〉2k+2 → R is a linear functional which is nonneg-
ative on Σνk+1 and positive on Σνk \ {0}, then there exists a tuple X = (X1, . . . , Xg)
of symmetric operators on a Hilbert space X of dimension at most νσ#(k) =
ν dimR〈x〉k and a vector γ ∈ X⊕ν , such that

λ(f) = 〈f(X)γ, γ〉

for all f ∈ Rν×ν〈x〉2k+1, where 〈·, ·〉 is the inner product on X . Further, if L(x, y) ∈
SH 〈x〉 is a monic linear operator pencil and λ is nonnegative on M

ν,νσ#(k)
x (L)k,

then X is in the closure projxDL of the free spectrahedrop projxDL coming from
L.

Conversely, if X = (X1, . . . , Xg) is a tuple of symmetric operators on a Hilbert
space X of dimension N , the vector γ ∈ X⊕ν , and k a positive integer, then the
linear functional λ : Rν×ν〈x〉2k+2 → R, defined by

λ(f) = 〈f(X)γ, γ〉

is nonnegative on Σνk+1. Further, if L(x, y) ∈ SH 〈x〉 is a monic linear operator

pencil and X ∈ projxDL, then λ is nonnegative also on M
ν,`σ#(k)
x (L)k for every

` ∈ N.

Proof. The nontrivial direction is (⇒). The proof goes the same as the proof of [29,
Proposition 5.4], just that we need to add the explanation, why in the case that

λ is nonnegative on M
ν,νσ#(k)
x (L)k, we have X ∈ projxDL. If L is matrix-valued,

then this is [29, Proposition 5.4], while for operator-valued case there are minor
changes. To establish [29, Equality 5.5] use Theorem 2.15 with Γ and Ω replaced
by π(Γ) and π(Ω) for some ∗-homomorphism π : B(H ) → B(K ), where K is a
separable real Hilbert space. In the next statement replace

η∑
j=1

W ∗j ΓWj = 0,

η∑
j=1

W ∗j ΩWj = Λ

by

W ∗π(Γ⊕ 0)W = 0, W ∗π(Ω⊕ 0)W = Λ,W ∈ B(Rσ,K ) an isometry.

Now the [29, Equality 5.7] becomes

0 > u∗LΛ(X)u = (
∑
i

ei ⊗ vi)∗LΛ(X)(
∑
i

ei ⊗ vi)∑
i,j

(ei ⊗ vi)∗(W ⊗ I)∗π(L(X,Y )⊕ 1)(W ⊗ I)(ei ⊗ vi)

=
∑
i,j

(ei ⊗ pi(X)γ)∗(W ⊗ I)∗π(L(X,Y )⊕ 1)(W ⊗ I)(ei ⊗ pj(X)γ)

and [29, Equality 5.8] becomes

0 > (~p(X)γ)∗(W ⊗ I)∗π(L(X,Y )⊕ 1)(W ⊗ I)(~p(X)γ) = λ(q),
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where ~p(x) =
∑
j ej ⊗ pj(x) ∈ Rνσ#(k)×ν〈x〉k and

q = ~p(X)∗(W ⊗ I)∗π(L(X,Y )⊕ 1)(W ⊗ I)~p(X) ∈Mν,νσ#(k)
x (L)k.

This is in contradiction with the nonnegativity of λ on M
ν,νσ#(k)
x (L)k. �

Proof of Theorem 4.7. The proof is the same as the proof of [29, Theorem 5.1], just
that we use Proposition 4.9 instead of [29, Proposition 5.3] and Proposition 4.10
instead of [29, Proposition 5.4]. �

5. Operator Positivstellensatz for univariate operator polynomials

In this section we extend Theorem 4.2 in the univariate case from matrix-valued
polynomials to operator-valued ones. Namely, in the univariate case, F in Theorem
4.2 can be operator-valued but the conclusion still holds. For the precise statement
see Theorem 1.6 above. The main step is the reduction to the inclusion of free
Hilbert spectrahedra by the use of variants of the operator Fejér-Riesz theorem
[49]. In Subsection 5.2 we also study the case of a non-monic L. By Examples 2.12
and 5.1, Theorem 1.6 does not extend to the non-monic case.

5.1. Proof of Theorem 1.6. Since L is monic, the set DL(1) is an interval with
non-empty interior. We separate three cases.

Case 1: DL(1) = [a, b], a < b, a, b ∈ R.

By the linear change of variables we may assume that DL(1) = [−1, 1]. By [13,
Proposition 3],

F (y) =
∑
j

R∗jRj +
∑
k

Q̃∗k

[
(1 + y)IK 0

0 (1− y)IK

]
Q̃k,

where Rj ∈ B(K )〈y〉, Q̃k ∈ B(K ,K 2)〈y〉 and

deg(Rj) ≤
deg(F )

2
, deg(B̃k) ≤ deg(F )

2
.

(For the degree bounds see [19, Theorem 2.5] and use the identity x(1 − x) =
x2(1− x) + (1− x)2x.)

It remains to prove the statement of the theorem for the pairs (L(y), (1+y)IK ),
(L(y), (1 − y)IK ). Further on, it suffices to prove it for the pairs (L(y), 1 + y),
(L(y), 1− y). We use Corollary 2.11 and conclude the proof.

Case 2: DL(1) = [a,∞) or (−∞, a], a ∈ R.

By the linear change of variables we may assume that DL(1) = [−1,∞). By [13,
Proposition 3],

F =
∑
j

R∗jRj +
∑
k

Q̃∗k(1 + y)IK Q̃k,

where Rj ∈ B(K )〈y〉, Q̃k ∈ B(K )〈y〉 and

deg(Aj) ≤
deg(F )

2
, deg(B̃k) ≤ deg(F )

2
.

(The degree bounds are easy to see by comparing the leading coefficients.)
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It remains to prove the statement of the theorem for the pair (L(y), (1 + y)IK ).
As in Case 1 it suffices to prove it for the pair (L(y), 1 + y). By Corollary 2.11 the
statement follows.

Case 3: DL(1) = R.

By [13, Proposition 3], F =
∑
j R
∗
jRj where Rj ∈ B(H2)〈y〉 and deg(Rj) ≤

deg(F )
2 .

5.2. Non-monic case. If L is not monic in Theorem 1.6, then the conclusion
is not true in general (see Example 2.12 in Section 2 above). However, by [37,
Corollary 4.3.1], it extends to the matrix-valued pencil L with DL = ∅. (The case
F = −1 is the content of [37, Corollary 4.3.1], while for an arbitrary F one uses the

identity (F+1)∗(F+1)−(F−1)∗(F−1)
4 .) But the following counterexample shows that

[37, Corollary 4.3.1] does not extend to the operator-valued pencil L with DL = ∅.

Example 5.1. Let L(y) = A0 +A1y ∈ B(`2) be a linear operator pencil, where

A0 = ⊕n∈N(− 1

n
), A1 = ⊕n∈N(

1

n2
).

Then the spectrahedron DL(1) is ∅ and `(y) = −1 is non-negative on DL(1), but
there do not exist a Hilbert space K , a unital ∗-homomorphism π : B(`2)→ B(K ),
polynomials rj ∈ R〈y〉 and operator polynomials bk ∈ B(R,K )〈y〉 such that

(5.1) −1 =
∑
j

r2
j +

∑
k

q∗kπ(L)qk.

Proof. Let us say that K , π, rj , qk satisfying (5.1) exist. Observe that A1 = A∗0A0.
Therefore ∑

k

q∗kπ(L(y))qk =
∑
k

q∗kπ(A0)∗π(A0)qk · y +
∑
k

q∗kπ(A0)qk.

If
∑
k q
∗
kπ(A0)qk = 0, then

(5.2) −1 =
∑
j

r2
j +

∑
k

q∗kπ(A0)∗π(A0)qky.

This is a contradiction since the right-hand side of (5.2) is nonnegative for y ≥ 0,
while the left-hand side is always -1. Therefore

∑
k q
∗
kπ(A0)qk 6= 0. Let us write

rj(y) =

Nj∑
m=0

rj,my ∈ R〈y〉 , qk(y) =

Mk∑
m=0

qk,my ∈ B(R,K )〈y〉 ,

where Nj ∈ N0 is such that rNj 6= 0 and Mk ∈ N0 is such that π(A0)qk,Mk
6= 0.

We can indeed choose such Mk, since otherwise π(A0)qk,Mk
= q∗k,Mk

π(A0) = 0 and
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hence

q∗kπ(A0)qk =

Mk∑
`,j=0

q∗`π(A0)qjy
`+j

=

Mk∑
j=0

q∗Mk
π(A0)︸ ︷︷ ︸
0

qjy
Mk+j +

Mk−1∑
`=0

q∗` π(A0)qMk︸ ︷︷ ︸
0

yMk+j +

Mk−1∑
`,j=0

q∗`π(A0)qjy
`+j

=

Mk−1∑
`,j=0

q∗`π(A0)qjy
`+j = (

Mk−1∑
m=0

qk,my)∗π(A0)(

Mk−1∑
m=0

qk,my)

and ∑
k

q∗kπ(A1)qk =

Mk∑
`,j=0

q∗`π(A0)π(A0)qjy
`+j

=

Mk∑
j=0

q∗Mk
π(A0)︸ ︷︷ ︸
0

π(A0)qjy
Mk+j +

Mk−1∑
`=0

q∗`π(A0)π(A0)qMk︸ ︷︷ ︸
0

y`+Mk +

+

Mk−1∑
`,j=0

q∗`π(A1)qjy
`+j

=

Mk−1∑
`,j=0

q∗`π(A1)qjy
`+j = (

Mk−1∑
m=0

qk,my)∗π(A1)(

Mk−1∑
m=0

qk,my)

We are repeating this calculation until π(A0)qk,Mk−rk 6= 0 and take qk :=
∑Mk−rk
m=0 qk,my.

The highest monomial according to the ordering of R〈y〉

dym � cyn ⇔ m > n or m = n, d ≥ c

in:

(1) r2
j is r2

j,Nj︸ ︷︷ ︸
6=0

y2Nj ,

(2) q∗kπ(A1)qky is q∗k,Mk
π(A0)∗π(A0)qk,Mk︸ ︷︷ ︸

6=0

y2Mk+1,

(3) q∗kπ(A0)qk is ‘at most’ q∗k,Mk
π(A0)qk,Mk

y2Mk (or smaller).

Let M := max{Nj ,Mk : j, k}. Therefore, the highest monomial on the right-hand
side of (5.2) is

∑
j : Nj=M

r2
j,Nj︸ ︷︷ ︸
>0

y2M , if M 6= Mk for every k

∑
k : Mk=M

q∗k,Mk
π(A0)∗π(A0)qk,Mk︸ ︷︷ ︸

>0

y2M+1, if M = Mk for some k
.

Since the highest monomial on left-hand side of (5.2) is −1, we conclude that M = 0
and qk = 0 for every k. Thus −1 =

∑
j r

2
j which is a contradiction. �

Remark 5.2. Theorem 1.6 extends to non-monic L(y) = A0 + A1y ∈ SH 〈y〉 in
the following cases:
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(1) DL(1) 6= ∅ and span{A0, A1} contains an invertible positive definite ele-
ment.

(2) DL(1) = {a} and A0, A1 are linearly dependent.
(3) DL(1) = ∅ and DPLP (1) is compact for some finite-dimensional projection

P ∈ B(H ).

Proof. The proof of (1) is the same as the proof of Theorem 1.6 just that we use a
non-monic version of Corollary 2.11 (see Remark 2.10.(3)).

Now we prove (2). By a linear change of variables we may assume that DL(1) =
{0}. If A0 6= 0, then we have A0 + A1y = A0(1 + λy) for some λ ∈ R. Hence
A0 � 0. Thus limy→∞ L(y) � 0 or limy→−∞ L(y) � 0. This is a contradiction.
Hence A0 = 0 and L(y) = A1y. Since DL(1) = {0}, there are v1, v2 ∈H such that
〈A1v1, v1〉 > 0 and 〈A1v2, v2〉 < 0. So

y =
〈Lv1, v1〉
〈A1v1, v1〉

, −y =
〈Lv2, v2〉
| 〈A1v2, v2〉 |

.

By the identity −y2 = y(y−1)2−y(y+1)2

4 we conclude that −y2 is of the form

−y2 =
∑
j

r2
j +

∑
k

Q∗kPNLPNQk,

where rj ∈ R〈x〉 are scalar polynomials and Qk ∈M(R,RN )〈x〉 are matrix polyno-
mials. Thus also −y2`,−y2`+1 are of the above form for every ` ∈ N and so every
F ∈ B(K )〈y〉 satisfying F (0) � 0 is of the from∑

j

R∗jRj +
∑
k

Q∗kPNLPNQk,

where Rj ∈ B(K )〈x〉 and Qk ∈ B(K ,RN )〈x〉 are operator polynomials.
Finally we prove (3). Let (Pn)n be an increasing sequence of projections from

H to a n dimensional subspace of H such that P = P` for ` = dim Ran(P ). We
have the following decreasing sequence of compact sets:

DP`LP`(1) ⊇ DP`+1LP`+1
(1) ⊇ · · · ⊇ ∩∞k=`DPkLPk(1) = DL(1) = ∅.

Note that the equality ∩∞k=`DPkLPk(1) = DL(1) follows by the convergence of the
sequence PkLPk to L in the weak operator topology. Since DP`LP`(1) is compact
and DP`LP`(1) ⊂

⋃∞
k=`DPkLPk(1)c is a an open covering, it follows that

DP`LP`(1) ⊂
N⋃
k

DPkLPk(1)c = DPNLPN (1)c

for some N ∈ N. Hence DPNLPN (1)) = ∅. By [37, Corollary 4.3.1], −1 is of the
form

−1 =
∑
j

r2
j +

∑
k

Q∗kPNLPNQk,

where rj ∈ MN (R)〈x〉 are scalar polynomials and Qk ∈ M(R,RN )〈x〉 are matrix

polynomials. By the equality F = (F+1)∗(F+1)−(F−1)∗(F−1)
4 , arbitrary F is of the

form
F =

∑
j

R∗jRj +
∑
k

Q∗kPNLPNQk,

where Rj ∈ B(K )〈x〉 and Qk ∈ B(K ,RN )〈x〉 are operator polynomials. (For the
degree bounds see [37, Theorem 4.3.3].) �
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