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Abstract. The truncated moment problem supported on a given closed set K in R2

(K–TMP) asks to characterize conditions for a given linear functional on bivariate poly-

nomials of bounded degree to have an integral representation with respect to a Borel

measure µ with suppµ ⊆ K. The solutions to the K–TMP are known for K, which is

a line, a quadratic curve, and for some cases of cubic curves. In this paper, we solve

the C–TMP for every cubic curve C. Our first result states that the extreme rays of

the cone of polynomials of bounded degree, nonnegative on C, have only real zeroes.

This result allows us to establish certificates for the positivity of polynomials on C with

degree bounds. To obtain concrete forms of these certificates, a case-by-case analysis is

required. Up to affine linear change of variables, we divide cubics into 29 cases, 13 irre-

ducible and 16 reducible ones. Using the certificates, we concretely solve the nonsingular

C–TMP in terms of positive semidefiniteness of two or three localizing moment matrices.

In most irreducible cases, we also provide constructive solutions to the nonsingular and

singular C–TMPs, which can be used to compute a representing measure concretely.

Upper bounds for the Carathéodory number are also obtained, which in some cases are

sharp or differ by at most 1 from the sharp bound.

1. Introduction

Let k ∈ N0 be a non-negative integer. We denote by R[x, y]≤k the vector space of

polynomials of (total) degree at most k. Let

L : R[x, y]≤2k → R

be a linear functional and K ⊆ R2 a closed set. The truncated moment problem on

K (K–TMP) asks to characterize conditions for the existence of the Borel measure µ,

supported on K, such that

L(f) =

∫
K

fdµ for every f ∈ R[x, y]≤2k.

A measure µ is called a K–representing measure (K–rm) for L. If L has some K–rm,

then it is called a K–moment functional (K–mf).

The moment problem (MP) is a classical question in analysis that has been studied

since the end of the 19th century, appearing first in the memoir of the famous Dutch

mathematician Stieltjes in 1894. The fact being especially fascinating about the MP is its

interplay with many different areas of mathematics and a broad range of applications, such
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as operator theory, probability and statistics, numerical analysis and, more recently, real

algebraic geometry, polynomial optimization, control theory, partial differential equations,

machine learning, data analysis and others [13, 14,30,39,42,43].

The TMP is a variant of the MP that occurs even more frequently in applications,

since only finitely many data is given. Apart from the applications, the TMP is also

more general than the full version, which is a remarkable result of Stochel [61]. A lot

of work on univariate TMPs was done in the early second half of the 20th century by

Akhiezer, Krein and Nudelman [1,2,41], while in the last three decades renown interest in

TMPs started with a series of papers by Curto and Fialkow [15–19,21,22], leaning on the

interplay of TMPs with real algebraic geometry (RAG). RAG studies certificates, called

Positivstellensätze, for positivity of polynomials on positivity sets of other polynomials

[12, 46, 51, 52, 57]. One of the roots of RAG is Hilbert’s 17th problem from 1900, which

asked whether every positive polynomial is a sum of squares of rational functions, and

was answered in the affirmative by Artin (1926). The connection between the MP and

RAG is Haviland’s theorem from 1935 [38], which states that the MP with a distribu-

tion µ supported on a closed set K in Rd has a solution if and only if the corresponding

functional, defined on the vector space of all polynomials, maps polynomials, positive on

K, to [0,∞). This interplay received new attention with Schmüdgen’s solution of the

multidimensional MP in 1991 [58], which combines the Positivstellensatz with ideas from

functional analysis. However, in order to apply this interplay to the truncated case, one

needs Positivstellensätze for positive polynomials with degree bounds. Such certificates

are difficult to obtain and this is the reason why concrete solutions are only known in very

special cases, such as when K is a quadratic plane curve. Besides some easily derived

properties of the moment matrices, i.e., matrices with a special arrangement of moments

βij = L(xiyj), concrete solutions contain other conditions that are difficult to obtain in

general. The TMPs on plane curves of degree more than two and also on the whole plane

R2 are widely open.

A concrete solution to the TMP is a set of necessary and sufficient conditions for the

existence of a K–rm µ, that can be tested in numerical examples. Let Z(P ) stand for the

vanishing set of a polynomial P ∈ R[x, y]≤k. The bivariate K–TMP is concretely solved

in the following cases:

(A) K = Z(P ) for a polynomial P with 1 ≤ deg p ≤ 2.

For degP = 1 the solution is [21, Proposition 3.11] and uses the far-reaching flat

extension theorem (FET) [16, Theorem 7.10] (see also [20, Theorem 2.19] and [44] for

an alternative proof). Alternatively, it can be also obtained by reducing the problem to

the univariate setting (see [69, Remark 3.3.(4)])

Assume that degP = 2. By applying an affine linear transformation it suffices to

consider one of the canonical cases: x2+y2 = 1, y = x2, xy = 1, xy = 0, y2 = y. The case

x2 + y2 = 1 is equivalent to the univariate trigonometric moment problem, solved in [17].

The other four cases were settled in [17–19, 33] by applying the FET. For an alternative

approach by reducing the problem to the univariate setting see [47, Theorem 4.4] (for

x2 + y2 = 1), [6, Section 6] (for xy = 0), [68] (for y2 = y), [67] (for xy = 1) and [69] (for

y = x2).

(B) K = R2, k = 2 and the moment matrix is positive definite.
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This case was first solved nonconstructively using convex geometry techniques in [35]

and later on constructively in [27] by a novel rank reduction technique.

(C) K is one of Z(y − x3) [32, 36, 66], Z(y2 − x3) [66], Z(y(y − a)(y − b)), a, b ∈ R \ {0},
a ̸= b [62, 68], Z(xy2 − 1) [67], Z(y(ay + x2 + y2)), a ∈ R \ {0} [65], Z(y(x − y2)) [65],

Z(xy−y4−q(x)), q ∈ R[x]≤3 [64] or Z(y−x4) [36]. The main technique in [32] is the FET,

in [64–68] the reduction to the univariate TMP is applied, while in [36] the core variety

approach (see (b) below) and the results on positive semidefinite matrix completions are

used.

(D) The moment matrix has a special feature called recursive determinateness [22] or ex-

tremality [23].

(E) k = 3 on a special cubic curve K [25].

The solutions to the K–TMP, which are not concrete in the sense of the definition

above, but are partly algorithmic, are known in the following cases:

(a) K = Z(P ) ⊂ R2 with P (x, y) = y − q(x) or P (x, y) = yq(x)− 1, where q ∈ R[x].
[32, Section 6] gives a solution in terms of the bound on the degreem, quadratic in k and

deg p, for which the existence of a positive semidefinite (psd) extension of the moment

matrix is equivalent to the existence of a K–rm. In [69] the bound on m is improved

to degP for P (x, y) = y − q(x) and P (x, y) = yxℓ by working with the corresponding

univariate TMPs.

(b) K = R2, k = 3 and the moment matrix is positive definite.

In [34] this case is approached via a new notion, called the core variety V . It is shown
that for the sextic nonsingular case a rm exists if and only if V is nonempty, the result

extended to the general case in [9]. In contrast to the nonsingular quartic case (see

(B) above), positive definiteness of the moment matrix does not guarantee a rm exists.

Moreover, if V is nonempty, then either V = R2 or |V| = 10, with the latter case having a

unique rm. However, the solution based on the core variety does not belong to the class

of concrete solutions, since V might be very difficult to compute in general.

(c) The moment matrix satisfies special cubic relations [25].

(d) Special cases of the sextic two–dimensional TMP [26,62,63], i.e., 2k = 6.

(e) For an arbitrary closed set K ⊆ Rd, a solution in terms of positive extensions of the linear

functional is the truncated Riesz–Haviland theorem [21].

(f) K = Z(xy − ym − q(x)), m ∈ N, m > 4, q ∈ R[x]≤m−1 [64].

Some other special cases of the TMP have also been studied in [8, 9, 29, 34, 40], while

[49] considers subspaces of the polynomial algebra and [24] the TMP for commutative

R–algebras. For an excellent monograph with a recent development in the area we refer

a reader to [59].

A constructive solution to the K–TMP is a solution, where not only the existence

of a K–rm is characterized, but a concrete K–rm is explicitly constructed.

The psd=sos question for a given plane curve C asks whether every positive polynomial

on C is a sum of squares of polynomials. The complete answer to this question was given
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by Scheiderer for irreducible curves [55, 56] and Plaumann for reducible curves [50]. The

psd=sos question has an affirmative answer if and only if C is one of the following:

(i) A smooth affine rational curve [55, Proposition 2.17].

(ii) A non-rational, irreducible, virtually compact (see [56, Definition 4.8]) curve that

is either smooth or has only singularities, which are ordinary multiple points with

independent tangents [56, Theorem 4.18].

(iii) A reducible curve such that: a) all singularities are ordinary multiple points with

independent tangents, b) there are no non-real intersection points, c) all irreducible

components of C ′, which is the union of all irreducible components of C that are

not virtually compact, are smooth and rational, and d) the configuration of the

irreducible components of C ′ contains no loops [50].

Let us mention here that the psd=sos question for homogenuous polynomials on projec-

tive varieties is solved in [10], while the question of degree bounds in positivity certificates

is studied in [11].

The Carathéodory number Car2k(K) of the moment cone

M2k(K) := {L : R[x, y]≤2k → R : L is a K–mf},

is the smallest natural number such that every L ∈ M2k(K) can be represented as a

conic combination of at most Car2k(K) point evaluations. By Richter’s result [53] (see

also [59, Theorem 1.24]) Car2k(K) is finite. Estimates of Car2k(C) for arbitrary affine

curves C were recently obtained in [54], while for compact curves sharper asymptotic

estimates appear in [28, Theorem 4.8]. Recently, Baldi, Blekherman and Sinn showed

that Car2k(C) is the smallest possible (i.e., 3k) for any connected plane cubic C with

smooth projective closure and only one point at infinity, while for every disconnected

plane cubic with a smooth projectivization it is 1 more than the smallest possible (i.e.,

3k+1). This gives an abstract solution to the C–TMP in terms of the existence of positive

rank–preserving extensions of the moment matrix, i.e., in the connected case the solution

to the C–TMP is equivalent to the existence of a flat extension of the moment matrix

[4, Theorem 6.2.2], while in the second case the moment matrix must have a positive

semidefinite extension which in turn admits a flat extension of rank at most 1 greater

than the rank of the original matrix [4, Theorem 6.2.4]. See also [5, Example 5.15] for

a concrete numerical example demonstrating that the existence of a flat extension is not

sufficient in the disconnected case.

The motivation for this paper is the following problem:

Problem. Let C be a plane cubic curve.

(1) Obtain algebraic certificates for positivity of polynomials on plane cubics with de-

gree bounds.

(2) Solve the C–TMP concretely.

(3) Solve the C–TMP constructively.

Let Φ(x, y) = (ax+ by+ c, dx+ ey+ f), a, b, c, d, e, f ∈ R, ae− bd ̸= 0, be an invertible

affine linear transformation (alt). Since the solution to the C–TMP implies the solution
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to the Φ(C)–TMP, it suffices to solve Problem for chosen representatives of equivalence

classes of plane cubic curves with respect to the relation

C1 ∼ C2 ⇔ C2 = Φ(C1) where Φ is some invertible alt.

Up to ∼ every irreducible cubic has one of the forms (e.g., [48])

(1.1) (I) y = p(x), (II) xy = p(x), (III) y2 = p(x), (IV ) xy2 + ay = p(x),

where p(x) = bx3 + cx2 + dx+ e. Form (I) can be further transformed into y = x3, being

one of the solved cases (see (C) above).

Up to ∼ every reducible cubic is of the form yc(x, y) for some c ∈ R[x, y] of degree
2. Namely, it is a union of the x–axis and a conic, where the conic is either a circle, a

parabola, a hyperbola or two lines. Depending on the position of the line and a conic

there are 16 cases to consider:

• A line and a circle intersect at a double real point or intersect at two non-real points

or intersect at two real points.

• A line and a parabola intersect at a double real point or intersect at a real point and

a point at infinity or intersect at two non-real points or intersect at two real points.

• A line and a hyperbola intersect at a point at infinity with multiplicity 2 or intersect

at a real point and a point at infinity or intersect at a double real point or intersect at

two non-real points or intersect at two real points.

• Three parallel lines.

• Three lines that intersect at a real point.

• Two parallel lines and one line intersecting both in different points.

• Three lines that intersect at 3 real points.

In this paper we settle (1) and (2) of Problem completely, while (3) of Problem for most

irreducible cases.

1.1. Reader’s guide. Let C be a plane cubic.

In Section 2 we first introduce the notation and definitions. Then we state our first two

main results, which are positivity certificates for polynomials on C with degree bounds,

i.e., Theorems 2.3 and 2.4 for cubics without (resp. with) non-real intersections points. In

Tables 1–4 the abstract elements appearing in both theorems are specified for all different

choices of C up to affine linear equivalence. As a consequence of positivity certificates,

we obtain solution to the nonsingular C–TMP, e.g., Corollaries 2.6 and 2.7.

Section 3 is devoted to the properties of the extreme rays of the cone of positive poly-

nomials on C. The main result, Theorem 3.1, states that each extreme ray consists only

of real points. From this it follows as a corollary that for irreducible C with a smooth

projective closure there are exactly two types of extreme rays, i.e., Corollary 3.5.

Sections 4–8 are devoted to proving explicit versions of Theorems 2.3 and 2.4 and

solving the C–TMP for all possible C up to affine linear equivalence. Namely:

• In Section 4 we study C defined by an irreducible cubic polynomial P (x, y) in the Weier-

straß form. There are five such cases to be considered depending on the smoothness

and the number of connected components. We solve both singular and nonsingular C–

TMPs, constructively for all singular cases and concretely in all nonsingular cases. In
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the case of a nodal curve y2 = x(x−1)2 and a cubic with an isolated point y2 = x2(x−1)

we also solve the nonsingular case constructively.

• In Section 5 we study C defined by an irreducible cubic polynomial P (x, y) of the form

xy2 + ay − bx3 − cx2 − dx− e, a, b, c, d, e ∈ R. We distinguish six such cases according

to the signs of a and b. In each case, explicit descriptions of the pair (f, V (k)) from

Theorem 2.3 are given, while a constructive solution to the C–TMP for the curve

xy2 + ay − dx− e = 0 is established.

• In Section 6 we study C defined by an irreducible cubic polynomial P (x, y) of the form

xy − c(x), with deg c = 3. An explicit description of the pair (f, V (k)) from Theorem

2.3 is given and also a constructive solution to the C–TMP is derived.

• In Section 7 the pair (f, V (k)) from Theorem 2.3 is explicitly described for the curve

y = x3.

• Finally, in Section 8 we study reducible cubic curves. In Proposition 8.1 we divide them

into 16 equivalence classes up to affine linear equivalence. Then explicit descriptions

of the pair (f, V (k)) from Theorem 2.3 are established for each of these classes.

Acknowledgements. The second-named author is grateful to Lorenzo Baldi, Grigoriy

Blekherman and Seonguk Yoo for very helpful discussions. He is also thankful for the

hospitality of the TU Dresden during the research stay in summer 2024, where most of

the work was done.

2. Notation and main results

In this paper closed sets K ⊆ R2 in K–TMP will be cubic curves and we will denote

them with C. Namely, C ⊆ R2 stands for an algebraic subset whose vanishing ideal

(2.1) I = {f ∈ R[x, y] : f(x) = 0 for all x ∈ C}

is generated by a polynomial P ∈ R[x, y] of degree three. Note also that C = Z(P ).

We denote by R[C] the ring of polynomial functions C → R. We have R[C] = R[x, y]/I
because I is the kernel of the restriction map

R[x, y] → R[C], f 7→ f |C .

We write Q(R[C]) for the total ring of fractions of R[C]. If C is irreducible, then Q(R[C])

is the usual quotient field R(C) of R[C]. Let m ∈ N0 be a non-negative integer and let

R[C]≤m be the image of R[x, y]≤m under the restriction map R[x, y] → R[C] and

I≤m := R[x, y]≤m ∩ I.

Let C̃ ⊆ C and k ∈ N0. We write

Pos2k(C̃) = {f ∈ R[C]≤2k | f(x) ≥ 0 for all x ∈ C̃}.

Let L : R[x, y]≤2k → R be a linear functional and

L : R[x, y]≤k × R[x, y]≤k → R, L(f, g) := L(fg)

the corresponding bilinear form. A necessary condition for L to be a C–mf is that it

vanishes on all polynomials p ∈ I≤2k. The induced functional

LC : R[C]≤2k → R, LC(f + I) := L(f).
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is then well–defined.

Assume from now on that LC is well–defined. We call LC :

(1) positive if LC(f) ≥ 0 for every 0 ̸= f ∈ Pos≤2k(C).

(2) strictly positive if LC(f) > 0 for every 0 ̸= f ∈ Pos≤2k(C).

(3) square positive if LC(f
2) ≥ 0 for every 0 ̸= f ∈ R[C]≤k.

(4) strictly square positive LC(f
2) > 0 for every 0 ̸= f ∈ R[C]≤k.

Remark 2.1. (1) Note that the square positivity of LC is generally a weaker condition

than the positivity of LC , but the positivity of LC is a necessary condition for LC to

be a C–mf.

(2) The verification of the positivity of LC is generally a hard problem, since Positivstel-

lensätze (see §1), which are “simple enough”, are hard to establish. Simple enough

means that they contain only finitely many summands whose degree is bounded as a

function of the degree of the given polynomial, a property called stability.

(3) In contrast to the verification of positivity, checking square positivity is easy. Let LC

be a bilinear form

LC : R[C]≤k × R[C]≤k → R, LC(f, g) := LC(fg)

induced by LC . Choose a basis Bk for R[C]≤k and let M be a matrix representing LC

in this basis. The square positivity (resp. strict square positivity) of LC is equivalent

to M being psd (resp. pd).

Let B : V × V → R be a bilinear form on a vector space V . We write kerB to denote

the kernel of B, i.e.,

kerB := {v ∈ V : B(u, v) = 0 for every u ∈ V }.

Note that if B is a semi-inner product, then by the Cauchy-Schwartz inequality we have

kerB = {v ∈ V : B(v, v) = 0}. The rank of a bilinear form B, denoted by rankB ∈
Z+ ∪ {∞}, is equal to the rank of a matrix, representing B in some basis. We denote by

B|U : U × U → R the restriction of B to a vector subspace U ⊆ V .

Let Ṽ be a finite dimensional vector space in Q(R[C]) and denote by Ũ the vector space

Ũ := Span{gh : g, h ∈ Ṽ } ⊆ Q(R[C]).

Let f ∈ R[C] and assume that

Ũf :=
{
fgh : g, h ∈ Ṽ

}
⊆ R[C]≤2k.

Then the functional

LC,Ṽ ,f : Ũ → R, LC,Ṽ ,f (g) := LC(fg)

if well–defined. Let

LC,Ṽ ,f : Ṽ × Ṽ → R, LC,Ṽ ,f (g, h) := LC,Ṽ ,f (gh)

be the corresponding bilinear form. We call LC :

(1) (Ṽ , f)–locally square positive if LC,Ṽ ,f (g
2) ≥ 0 for every 0 ̸= g ∈ Ṽ or equiva-

lently, if LC,Ṽ ,f is a semi-inner product.

(2) (Ṽ , f)–locally strictly square positive if LC,Ṽ ,f (g
2) > 0 for every 0 ̸= g ∈ Ṽ

or equivalently, if LC,Ṽ ,f is an inner product.
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(3) singular if kerLC ̸= {0}.
(4) (Ṽ , f)–locally singular if kerLC,Ṽ ,f ̸= {0}.

Remark 2.2. As in Remark 2.1, checking the (Ṽ , f)–local square positivity of LC is easy

as one only needs to consider positive semidefiniteness of a matrix, representing LC,Ṽ ,f in

some basis for Ṽ .

The first two main results of the paper are certificates of belonging to Pos2k(C̃) where

C̃ is the set of non-isolated points of C (see Theorems 2.3 and 2.4). They imply solutions

to the corresponding nonsingular C–TMPs (see Corollaries 2.6 and 2.7). For C without

isolated points, C = C̃ and we will show that deciding positivity of the functional LC

translates to checking its square positivity and (Ṽ , f)–local square positivity for a certain

choices of the pair (Ṽ , f). The choice of (Ṽ , f) depends on the polynomial, defining the

curve.

Theorem 2.3. Let C be a cubic curve for which every non-real point lies on a unique

irreducible component and C̃ the set of non-isolated points of C. There exists f ∈ Q(R[C])

such that for every k ∈ N there is a vector subspace V (k) ⊆ Q(R[C]) of dimension 3k so

that the following are equivalent:

(1) p ∈ Pos2k(C̃).

(2) There exist finitely many gi ∈ R[C]≤k and hj ∈ V (k) satisfying

p =
∑

i
g2i + f

∑
j
h2
j .

In the paper we consider each possible C up to invertible affine linear change of variables

and establish appropriate choices of f and V (k). See Tables 1–4 below.

Theorem 2.4. Let C be a cubic curve defined by a polynomial P = P1P2 ∈ R[x, y] with
degP = 3, degP1 = 1 and degP2 = 2, such that the zero sets of P1 and P2 intersect in a

pair of non-real points. Then the following are equivalent:

(1) p ∈ Pos2k(C).

(2) Then there exist finitely many fi ∈ R[C]≤k, hj ∈ R[C]≤k−1 and gℓ ∈ R[C]≤k−1

such that

p =
∑

i
f 2
i + χ1P1

∑
j
h2
j + χ2P2

∑
ℓ
g2ℓ ,

where

χ1 =


1, if P1 is nonnegative on Z(P2),

−1, if P1 is nonpositive on Z(P2),

0, if P1 changes sign on Z(P2),

χ2 =

{
1, if P2 is nonnegative on Z(P1),

−1, if P2 is nonpositive on Z(P1).

Remark 2.5. Note that Z(P2) in Theorem 2.4 is always an irreducible conic. Applying

an affine linear change of variables, it is either a circle, a parabola or a hyperbola. In the

case of a circle or a parabola, χ1 ∈ {−1, 1}, while in the case of a hyperbola χ1 = 0, as

P1 then changes sign on Z(P2).

A functional L : R[x, y]≤2k → R is C–nonsingular, if kerL = I≤k and:



POSITIVE POLYNOMIALS AND THE TMP ON PLANE CUBICS 9

(1) If C is without non-real intersection points and f , V (k) are as in Theorem 2.3

above, then kerLC,V (k),f = {0}.
(2) If C has a pair of non-real intersection points and P1, P2 are as in Theorem 2.4

above, then kerLC,R[C]≤k−1,P1 = {0} and kerLC,R[C]≤k−1,P2 = {0}.
A nonsingular C–TMP refers to the C–TMP for C–nonsingular functionals.

A functional L : R[x, y]≤2k → R is C–singular, if LC is well-defined, but L is not

C–nonsingular. A singular C–TMP refers to the C–TMP for C–singular functionals.

Theorems 2.3 and 2.4 imply the following solutions to the nonsingular C–TMP.

Corollary 2.6. Let C, C̃, f and V (k) be as in Theorem 2.3. Let L : R[x, y]≤2k → R be a

C–nonsingular linear functional. Then the following are equivalent:

(1) L is a C̃–moment functional.

(2) LC is strictly square positive and (V (k), f)–locally strictly square positive.

Proof. The equivalence (1) ⇔ (2) follows using Theorem 2.3 above and [29, Proposition

2 and Corollary 6] (or [59, Theorem 1.30]). □

Corollary 2.7. Let C, P1, P2, χ1 and χ2 be as in Theorem 2.4. Let L : R[x, y]≤2k → R
be a C–nonsingular linear functional. Then the following are equivalent:

(1) L is a C–moment functional.

(2) LC is strictly square positive, (R[C]≤k−1, χ1P1)–locally strictly square positive and

(R[C]≤k−1, χ2P2)–locally strictly square positive.

Proof. The equivalence (1) ⇔ (2) follows using Theorem 2.4 above and [29, Proposition

2 and Corollary 6] (or [59, Theorem 1.30]). □

In some cases of Table 1 we need the definition of Riemann–Roch spaces, which we

now recall. Let Y be a smooth projective and irreducible curve defined over R. Then

by Div(Y ) we denote the divisor group of Y , i.e., the free abelian group generated by

the (real and complex) points of Y . This means that Div(Y ) consists of all formal sums

D :=
∑

Q∈Y nQQ with nQ ∈ Z and nQ = 0 for all but finitely many Q ∈ Y . We call a

divisor D effective if nQ ≥ 0 for every Q ∈ Y . For D1, D2 ∈ Div(Y ), we write D1 ≥ D2 if

and only if D1 −D2 is effective. Each rational function 0 ̸= f ∈ R(Y ) on Y determines a

divisor div(f) =
∑

Q∈Y ordQ(f)Q of Div(Y ), where ordQ(f) is the order of f at Q, called

the principal divisor. One assigns a real vector space of functions to D ∈ Div(Y ), defined

by

L(D) := {f ∈ R(Y ) \ {0} : div(f) ≥ −D} ∪ {0},
called the Riemann–Roch space of D.
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Table 1. Irreducible polynomial P defining a smooth C, f a polynomial

from Theorem 2.3, Bk and BV (k) bases of R[C]≤k and V (k), respectively.

P f Bk BV (k)

Smooth cubic in

the Weierstraß form:

y2 − x(x2 + c) or

y2 − x(x− a)(x− b),

a, b ∈ R, 0 < a < b,

c ∈ [0,∞)

x

{1, x, y, x2, xy, y2, . . . ,
x2yi−2, xyi−1, yi, . . . ,

x2yk−2, xyk−1, yk}
Bk \ {yk} ∪ { y

x}

Smooth cubic in the

non-Weierstraß form

type 1:

xy2 + ay − x2 − dx− e

a, d, e ∈ R,

x− α1
a

{1, x, y, x2, xy, y2,
x3, x2y, y3, . . . ,

xi, xi−1y, yi, . . . ,

xk, xk−1y, yk}

Bk \ {yk}∪
{2xy+a

x−α1
}

Smooth cubic in the

non-Weierstraß form

type 2:

xy2 − x3 − cx2 − dx− e

c, d, e ∈ R,

e
|e|
(
1
x − α2

)
b

{1, x, y, x2, xy, y2,
x3, x2y, y3, . . . ,

xi, xi−1y, yi, . . . ,

xk, xk−1y, yk}

Bk \ {yk}∪
{ xy
1−α2x

}

Smooth cubic in the

non-Weierstraß form

type 3:

xy2 + x3 − cx2 − dx− e

c, d, e ∈ R,

e
|e|
(
1
x − α3

)
c

{1, x, y, x2, xy, y2,
x3, x2y, y3, . . . ,

xi, xi−1y, yi, . . . ,

xk, xk−1y, yk}

Bk \ {yk}∪
{ xy
1−α3x

}

Smooth cubic in the

non-Weierstraß form

type 2:

xy2 + ay − x3 − cx2 − dx− e

a, c, d, e ∈ R,

y2 − x2 + cx− α4
d

{1, x, y, x2, xy, y2,
x3, x2y, y3, . . . ,

xi, xi−1y, yi, . . . ,

xk, xk−1y, yk}

Bk \ {yk}∪
{r}e

Smooth cubic in the

non-Weierstraß form

type 3:

xy2 + ay + x3 − cx2 − dx− e

a, c, d, e ∈ R,

y2 + x2 + cx− α5
f

{1, x, y, x2, xy, y2,
x3, x2y, y3, . . . ,

xi, xi−1y, yi, . . . ,

xk, xk−1y, yk}

Bk \ {yk}∪
{s}g

aα1 is the smallest zero of q(t) = t3 + dt+ et+ a2

4 .
bα2 is the smallest (resp. largest) zero of q(t) = et3 + dt2 + ct+ 1 if e > 0 (resp. e < 0).
cα3 is the smallest (resp. largest) zero of q(t) = et3 + dt2 + ct− 1 if e > 0 (resp. e < 0).
dα4 is the smallest zero of q(t) = t3 − 2dt2 + (d2 − a2 + ce)t+ a2c2

4 − cde+ e2.
er ∈ L(D) with D := k[−1 : 1 : 0] + (k − 1)[0 : 1 : 0] + k[1 : 1 : 0] +Q, where Q is a zero of f on C.
fα5 is the smallest zero of q(t) = t3 − 2dt2 + (d2 + a2 + ce)t+ a2c2

4 − cde− e2.
gs ∈ L(D) with D := k[−1 : 1 : 0] + (k − 1)[0 : 1 : 0] + k[1 : 1 : 0] +Q, where Q is a zero of f on C.
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Table 2. Irreducible polynomial P defining a rational C, f a polynomial

from Theorem 2.3, Bk and BV (k) bases of R[C]≤k and V (k), respectively.

P f Bk BV (k)

Neile’s parabola:

y2 − x3
1

{1, x, y, x2, xy, y2, . . . ,
x2yi−2, xyi−1, yi, . . . ,

x2yk−2, xyk−1, yk}
Bk \ {1} ∪ { y

x}

Nodal cubic:

y2 − x(x− 1)2
1

Φ−1
1 ({1, t2 − 1, t3 − t,

t4 − t2, . . . , tk−1 − tk−3,

tk − tk−2})h
Bk \ {1} ∪ { y

x−1}

Cubic with an

isolated point:

y2 − x2(x− 1)

1

Φ−1
2 ({1, t2 + 1, t3 + t,

t4 + t2, . . . , tk−1 + tk−3,

tk + tk−2})i
Bk \ {1} ∪ { y

x}

Rational cubic

type 1:

xy2 + ax− by − c

a, b, c ∈ R,
c ̸= 0 or ab ̸= 0

1

{xk, xk−1, xk−1y,

xk−2, xk−2y, . . . ,

x, xy, 1, y, . . . , yk}
Bk \ {xk} ∪ {xky}

Rational cubic

type 2:

yx− c(x),

c of degree 3, c(0) ̸= 0

1

{1, x, y, x2, xy, y2, . . . ,
x2yi−2, xyi−1, yi, . . .

x2yk−2, xyk−1, yk}
Bk \ {yk} ∪ {yk − 2g}j

Rational cubic

type 3:

y = x3
1

{1, x, y, x2, xy, y2, . . . ,
x2yi−2, xyi−1, yi, . . . ,

x2yk−2, xyk−1, yk}
Bk \ {yk} ∪ {x2yk−1}

hΦ1 : R[C] → R1 := {p ∈ R[t] : p(1) = p(−1)}, Φ1(f(x, y)) = f(t2, t3 − t).
iΦ2 : R[C] → R2 := {p ∈ R[t] : p(i) = p(−i)}, Φ2(f(x, y)) = f(t2 + 1, t3 + t), i is an imaginary unit.
jg is a representative of x2k in R[C]≤k.
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Table 3. Reducible polynomial P with two irreducible factors defining C

without non-real intersection points, Bk and BV (k) bases of R[C]≤k and V (k).

A polynomial f from Theorem 2.3 is equal to 1 in all cases.

P Bk BV (k)

A line and a circle

with a double real

intersection point:

y(ay + x2 + y2),

a ∈ R \ {0}

{1, x, y, x2, xy, y2, . . . ,
xj , xj−1y, xj−2y2, . . . ,

xk, xk−1y, xk−2y2}

Bk \ {1} ∪
{ay+x2+y2

x }

A line and a circle

with two simple real

intersection points:

y(1 + ay − x2 − y2),

a ∈ R

{1, x+ 1, x2 − 1, x(x2 − 1), . . . ,

xk−2(x2 − 1), y, yx, . . . , yxk−1,

y2, y2x, . . . , y2xk−2}

Bk \ {1} ∪
{−1−2ay+x2+2y2

1+x }

A line and a parabola

with a double real

intersection point:

y(y − x2)

{1, x, x2, . . . , xk, y, y2, . . . , yk,
yx, y2x, . . . , yk−1x}

Bk \ {1} ∪ { y
x}

A line and a parabola

with one simple real

intersection point:

y(x− y2)

{1, x, . . . , xk,
y, y2, yx, y2x, . . . , yxj ,

y2xj , . . . , y2xk−2, yxk−1}

Bk \ {xk} ∪
{xk−1(x− 2y2)}

A line and a parabola

with two simple real

intersection points:

y(1 + y − x2)

{1, x+ 1, x2 − 1, x(x2 − 1), . . . ,

xk−2(x2 − 1), y, yx, y2, y2x, . . . ,

yk−1, yk−1x, yk}

Bk \ {1} ∪
{−1−2y+x2

1+x }

A line and a hyperbola

with a double

intersection point at ∞:

y(1− xy)

{1, x, y, x2, xy, y2, . . . ,
xj , xj−1y, yj , . . . ,

xk, xk−1y, yk}
Bk \ {xk} ∪ {yxk}

A line and a hyperbola

with a simple real

intersection point:

y(x+ y + axy),

a ∈ R \ {0}

{1, x, y, x2, xy, y2, . . . ,
xj , xj−1y, yj , . . . ,

xk, xk−1y, yk}

Bk \ {xk} ∪
{xk−1(x+ 2y(1 + ax))}

A line and a hyperbola

with a double real

intersection point:

y(ay + x2 − y2),

a ∈ R \ {0}

{1, x, y, x2, xy, y2, . . . ,
xj , xj−1y, xj−2y2, . . . ,

xk, xk−1y, xk−2y2}

Bk \ {1} ∪
{ay+x2−y2

x }

A line and a hyperbola

with two simple real

intersection points:

y(1 + ay − x2 + y2),

a ∈ R

{1, x+ 1, x2 − 1, x(x2 − 1), . . . ,

xk−2(x2 − 1), y, yx, . . . , yxk−1,

y2, y2x, . . . , y2xk−2}

Bk \ {1} ∪
{−1−2ay+x2−2y2

1+x }
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Table 4. Reducible polynomial P with three irreducible factors defining

C, Bk and BV (k) bases of R[C]≤k and V (k). A polynomial f from Theorem

2.3 is equal to 1 in all cases.

P Bk BV (k)

3 parallel lines:

y(a+ y)(b+ y),

a, b ∈ R \ {0},
a ̸= b

{1, x, y, x2, xy, y2, . . . ,

xj, xj−1y, xj−2y2, . . . ,

xk, xk−1y, xk−2y2}

Bk \ {xk} ∪
{y(y + a)xk−1}

3 lines with

one real intersection

point:

y(x− y)(x+ y)

{1, x, y, x2, xy, y2, . . . ,

xj, xj−1y, yj, . . . ,

xk, xk−1y, yk}

Bk \ {1} ∪
{x2−y2

x
}

3 lines with

two real intersection

points:

yx(y + 1)

{1, x, y, x2, xy, y2, . . . ,

xj, xj−1y, yj, . . . ,

xk, xk−1y, yk}

Bk \ {xk} ∪
{xk(1 + 2y)}

3 lines with

three real intersection

points:

y(1− x+ y)(1 + x+ y)

{1, x, y, x2, xy, y2, . . . ,

xj, xj−1y, xj−2y2, . . . ,

xk, xk−1y, xk−2y2}

Bk \ {1} ∪
{−x+x3+y+xy−y2

x
}
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3. Extreme Rays of Pos2k(C)

Assume the notation from §2. In particular, C = Z(P ) for some P ∈ R[x, y] of degree
3 and C̃ is the set of non-isolated points of C. We denote by X the Zariski closure of C

in C2 and by X̄ ⊆ P2 the projective closure of X. Let

P =
r∏

i=1

Pi

be the decomposition of P into irreducible factors and denote by Ci, Xi and X̄i the zero

set of Pi in R2, C2 and its projective closure, respectively. Let d ∈ N0 be a non-negative

integer. The sets Pos2d(C) and Pos2d(C̃) are closed convex cones and the goal of this

section is to understand their extreme rays. We will first prove the following theorem.

Theorem 3.1. Assume that the restriction of Q ∈ R[x, y]≤2d, d ≥ 1, to C or C̃ generates

an extreme ray of Pos2d(C) or Pos2d(C̃), respectively, and let S be the set of indices

i ∈ {1, . . . , r} for which Q is divisible by Pi. Then, for every j ∈ {1, . . . , r}∖ S, the set

{x ∈ P2 | Qh(x) = P h
j (x) = 0 and P h

i (x) ̸= 0 for all i ∈ S}

consists only of real points or of real non-isolated points, respectively. Here we denote

Qh(x, y, z) = z2d ·Q(x
z
, y
z
) and for i = 1, . . . , r we let P h

i (x, y, z) = zdeg(Pi) · Pi(
x
z
, y
z
).

Remark 3.2. By [4, Example 3.3.3], Theorem 3.1 fails for curves of higher degree, i.e.,

there are extreme rays of Pos2d(C) not having only real zeroes. However, for d large

enough there exist extreme rays with only real zeros [28].

For the proof of Theorem 3.1 we need some preparation. We let π : X̃ → X̄ be the

normalization of the projective curve X̄. Hence X̃ is a smooth projective real curve with

irreducible components X̃1, . . . , X̃r. For every i = 1, . . . , r we denote by Hi the divisor on

X̃i defined by the line at infinity in P2. We obtain a natural embedding

ι : R[C]≤m ↪→ L(mH1)× · · · × L(mHr)

as follows: We consider the unique extension f̄ of f ∈ R[C]≤m to a rational function on

X̄ and define ι(f) = (f1, . . . , fr) where fi is the restriction of f̄ ◦ π to X̃i. Here L(mHi)

denotes the Riemann–Roch space associated to mHi (see §2).

Lemma 3.3. Let f ∈ R[C]≤m where m ≥ 2 and ι(f) = (f1, . . . , fr). Further, let j ∈
{1, . . . , r} such that fj ̸= 0 and p, q ∈ X̃j distinct points with fj(p) = fj(q) = 0 and

neither π(p) nor π(q) lie on a component of X̄ on which f vanishes identically. Finally,

we consider the vector space V of all g ∈ R[C]≤m that satisfy the following:

(1) For all i ̸= j there exists λi ∈ R such that gi = λi · fi.
(2) div(gj) ≥ div(fj)− p− q.

Here we denote ι(g) = (g1, . . . , gr). The vector space V has dimension at least two.

Proof. We first consider the case when X̄ is smooth. Then X̄ is an irreducible smooth

curve of genus one and the claim follows immediately from the Riemann–Roch theorem.

If X̄ is not smooth, then each X̃i is isomorphic to P1. For i = 1, . . . , r let di be the degree

of Pi. Note that di = deg(Hi). Further let S be the set of indices i ∈ {1, . . . , r} for which

fi vanishes identically on X̃i and d =
∑

i∈S di.
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Next we define V1 to be the linear subspace of R[C]≤m that consists of all g such that

gi = 0 for all i ∈ S. We clearly have V ⊆ V1 and a straight-forward calculation shows

that dim(V1) =
1
2
(3− d)(2m− d). Indeed, V1 is the image of the linear map

R[x, y]≤m−d → R[C]≤m, f 7→ (f ·
∏
i∈S

Pi)|C

whose kernel consists of all f ∈ R[x, y]≤m−d that are divisible by
∏

i ̸∈S Pi.

Now for i ̸∈ S we let Di be the pullback of the intersection divisor of X̄i with ∪k∈SX̄k on

X̃i. Note that deg(Di) = d·di. By construction, for every g ∈ V1 we have gi ∈ L(mHi−Di)

for all i ̸∈ S. We let V2 =
∏

i∈S{0} ×
∏

i ̸∈S L(mHi −Di). Because each X̃i is isomorphic

to P1, we find that

dim(V2) =
∑
i ̸∈S

(mdi + 1− d · di).

Finally, we consider the linear space V3 ⊆
∏r

i=1 L(mHi) of all (h1, . . . , hr) such that for

i ̸= j there exists λi ∈ R with hi = λi · fi and div(hj) ≥ div(fj)− p− q. We have that

dim(V3) =
∑
i∈S

0 +
∑

i ̸∈S∪{j}

1 + 3 = 2 + r − |S|

because X̃j is isomorphic to P1. As neither π(p) nor π(q) lie on a component of X̄ on

which f vanishes identically, we moreover have that V3 ⊆ V2.

Since V is the preimage of V3 under ι : V1 → V2 we have:

dim(V ) ≥ dim(V1)− (dim(V2)− dim(V3))

=
1

2
(3− d)(2m− d)−

∑
i ̸∈S

(mdi + 1− d · di) + (2 + r − |S|)

=
1

2
(3− d)(2m− d)−

∑
i ̸∈S

(mdi − d · di) + 2

=
1

2
(3− d)(2m− d)− (m− d) ·

∑
i ̸∈S

di + 2

=
1

2
(3− d)(2m− d)− (m− d) · (3− d) + 2

= (3− d) · (1
2
(2m− d)− (m− d)) + 2

=
1

2
d(3− d) + 2

≥ 2.

This proves the claim. □

Proof of Theorem 3.1. Let Q ∈ R[x, y]≤2d be non-negative on C (resp. on C̃) and let S

be the set of indices i ∈ {1, . . . , r} for which Q is divisible by Pi. Assume that there

exists j ∈ {1, . . . , r}∖ S and a non-real (resp. isolated real or non-real) x ∈ P2 such that

Qh(x) = P h
j (x) = 0 and P h

i (x) ̸= 0 for all i ∈ S. We have to show that the restriction

f ∈ R[C]≤2d of Q to C does not generate an extreme ray of Pos2d(C).

There exists p ∈ π−1(x) ∩ X̃j and we let be q = p̄ its complex conjugate. Because x is

either not real or isolated real, these are two distinct points on X̃j. Now f , p and q satisfy

the assumptions of Lemma 3.3. Thus by Lemma 3.3 there exists g ∈ R[C]≤2d which is
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linearly independent of f such that g ◦ π has at every real zero and real pole of f ◦ π on

X̃, that is mapped by π to a real point (resp. to a non-isolated real point), a zero of at

least the same multiplicity and a pole of at most the same multiplicity, respectively. In

particular, in both cases, this applies to all real zeros and poles. Therefore, there exists

ϵ > 0 such that (f ± ϵg) ◦ π is non-negative on the real part of X̃. This shows that f ± ϵg

is non-negative on C̃ and thus f is not an extreme ray of Pos2d(C̃).

To treat the other case, we note that if f vanishes at an isolated real point, then g

vanishes by construction at this point as well. At isolated real points where f is positive,

we can ensure that f ± ϵg is positive as well by replacing ϵ by a smaller positive number.

Since there are at most finitely many isolated points, there exists ϵ > 0 such that f ± ϵg

is non-negative on C. This shows that f is not an extreme ray of Pos2d(C). □

Corollary 3.4. Assume that f ∈ Pos2d(C̃), d ≥ 1, generates an extreme ray and denote

ι(f) = (f1, . . . , fr). Let S be the set of indices i ∈ {1, . . . , r} for which fi vanishes

identically. For every j ∈ {1, . . . , r} ∖ S and every p ∈ X̃j, such that either p is real or

π(p) ̸∈ ∪i∈SX̄i, the rational function fj has a pole or a zero of even order at p.

Proof. If fj has a zero at p, then π(p) is non-isolated real by Theorem 3.1 and hence p is

real. Therefore, the multiplicity has to be even because f is non-negative. Assume that fj
has a pole of odd order at p. Let Q ∈ R[x, y]≤2d be such that its restriction to C is equal

to f . Then Qh (defined as in Theorem 3.1) vanishes at p because Qh is homogeneous of

even degree. Thus, as above, Theorem 3.1 shows that p is real. But then, because fj is

non-negative, the order of the pole at p must be even. □

Corollary 3.5. Let r = 1 and X̄ be smooth. Let g be a non-negative rational function

on X̄ such that div(g) = 2D for some divisor D whose equivalence class is non-trivial. If

f ∈ Pos2d(C), d ≥ 1, generates an extreme ray, then either f or g · f is the square of a

rational function.

Proof. If X̄ is smooth, then C = C̃. By Corollary 3.4 we have div(f) = 2E for some

divisor E on X̄. It follows for example from [37, §5] that either E has trivial equivalence

class or is linearly equivalent to D. In the first case f is a square and in the second case

g · f is a square. □

4. The Z(P )–TMP for irreducible P (x, y) = y2 − xq(x), q ∈ R[x]≤2, deg q = 2

Assume the notation as in §2, §3. Throughout the section P will be as in the title of

the section.

Proposition 4.1 ([7, §III.8]). Up to invertible affine linear change of variables P has one

of the following forms:

(i) Disconnected Weierstraß form: P1(x, y) = y2−x(x−a)(x− b), a, b ∈ R>0, a < b.

(ii) Connected Weierstraß form: P2(x, y) = y2 − x(x2 + c2), c ∈ R, c ̸= 0.

(iii) Neile’s parabola: P3(x, y) = y2 − x3.

(iv) Nodal curve: P4(x, y) = y2 − x(x− 1)2.

(v) Cubic with an isolated point: P5(x, y) = y2 − x2(x− 1).

Let Pi be as in Proposition 4.1. The main results of this section are the following:
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(1) Explicit descriptions of the pair (f, V (k)) in Theorem 2.3 for each C = Z(Pi).

(2) Constructive solutions to each singular Z(Pi)–TMP.

(3) Constructive solutions to the nonsingular Z(P4)–TMP and Z(P5)–TMP.

Remark 4.2. A constructive solution to the Z(P3)–TMP can be found in [66].

4.1. Smooth Weierstraß form Z(P )–TMP. Let C = Z(P1) or C = Z(P2) for P1,

P2 as in Proposition 4.1. Throughout the whole subsection assume that V (k) is a vector

space with a basis BV (k) as stated in Table 1. Theorem 2.3 has the following concrete

form.

Theorem 4.3. The following statements are equivalent:

(1) p ∈ Pos2k(C).

(2) There exist finitely many gi ∈ R[C]≤k and hj ∈ V (k) such that p =
∑

i g
2
i +x

∑
j h

2
j .

Proof. The nontrivial implication is (1) ⇒ (2). It suffices to prove the statement for every

extreme ray p of Pos2k(C). The rational function g = 1
x
clearly satisfies the assumption

of . It follows that p is of the form h2 or xh2 = x
(
h1

x

)2
for some rational functions h, h1.

Let Q = (0, 0) and O the point on C at infinity. Then div(x) = 2 · (Q − O). Because

p ∈ L(6k ·O), we have that h ∈ L(3k ·O) in the first case and h ∈ L(3k ·O+ (Q−O)) in

the second case. We clearly have that R[C]≤k = L(3k ·O) and that L(3k ·O + (Q−O))

has the desired basis. □

Let B := Bk ∪ BV (k) , where Bk, BV (k) are as in Table 1. Let us define a C–degree

function degC on B by degC(x
iyj) := 2i + 3j. We say an expression p :=

∑
xiyj∈B aijx

iyj

has C–degree d, if ai0j0 ̸= 0 for degC(x
i0yj0) = d and degC(x

iyj) < d for all other xiyj

with aij ̸= 0. We denote the C–degree of p by degC p.

Assume that LC is singular and let 0 ̸= pgen be a polynomial with the smallest C–degree

among all nonzero polynomials from kerLC . We call pgen the generating polynomial

of LC .

Lemma 4.4. Let LC : R[C]≤2k → R be a singular and square positive linear functional.

If L : R[x, y]≤2k → R is a C–moment functional, then LC has a unique square positive

extension L
(2k+2)
C : R[C]≤2k+2 → R, determined by

(4.1) L
(2k+2)
C (xiyjpgen) = 0

for i ∈ {0, 1, 2}, j ∈ Z0 such that

6k + 1− degC(pgen) ≤ 2i+ 3j ≤ 6k + 6− degC(pgen).

Proof. Since L has a C–rm, it clearly has an extension L(2k+2) : R[x, y]≤2k+2 → R, which
is a C–mf. In particular, L

(2k+2)
C : R[C]≤2k+2 → R is square positive. By the Cauchy-

Schwartz inequality, we have that∣∣L(2k+2)
C (xiyjpgen)

∣∣2 ≤ L
(2k+2)
C (x2iy2j)L

(2k+2)
C (p2gen)︸ ︷︷ ︸

0

= 0,

for each i, j. This proves the lemma. □
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Assume that LC is (V (k), x)–locally singular and let pℓgen be an element with the smallest

C–degree among all nonzero elements from kerLC,V (k),x. We call pℓgen a (V (k), x)–locally

generating element of LC .

Lemma 4.5. Let LC : R[C]≤2k → R be a (V (k), x)–locally singular and (V (k), x)–locally

square positive linear functional. If L : R[x, y]≤2k → R is a moment functional, then LC

has a unique square positive extension L
(2k+2)
C : R[C]≤2k+2 → R, determined by

(4.2) L
(2k+2)

C,V (k),x

(y
x
pℓgen

)
= L

(2k+2)

C,V (k),x

(
xiyjpℓgen

)
= 0

for i ∈ {0, 1, 2}, j ∈ Z0 such that

6k − 1− degC(pℓgen) ≤ 2i+ 3j ≤ 6k + 4− degC(pℓgen).

Proof. The proof is analogous to the proof of Lemma 4.4. □

The following theorem solves the singular C–TMP.

Theorem 4.6 (Singular C–TMP). Let L : R[x, y]≤2k → R be a C–singular linear func-

tional. Then the following are equivalent:

(1) L is a C–moment functional.

(2) LC is square positive and (V (k), x)–locally square positive, and the extension L
(2k+2)
C :

R[C]≤2k+2 → R, obtained by either (4.1) if LC is singular or (4.2) if LC is

(V (k), x)–locally singular, is square positive and (V (k+1), x)–locally square positive.

Proof. By [21, Theorem 1.2], L is a C–mf iff it admits a C–positive extension L(2k+2) :

R[x, y]≤2k+2 → R, i.e., L(2k+2)(p) ≥ 0 for every p ∈ R[x, y]≤2k+2 with p|C ≥ 0. By Lemmas

4.4 and 4.5, a candidate for L(2k+2) is uniquely determined. By Theorem 4.3 above, the C–

positivity of L(2k+2) is equivalent to the square positivity and the (V (k+1), x)–local square

positivity of L
(2k+2)
C . □

Example 4.7. Let k = 3 and βij = L(xiyj) for 0 ≤ i, j ≤ 6 such that i + j ≤ 6. Then

the square positivity and the (V (3), x)–local square positivity of LC are equivalent to the

positive semidefiniteness of the following matrices:



1 X Y X2 XY Y 2 X2Y XY 2 Y 3

1 β00 β10 β01 β20 β11 β02 β21 β12 β03

X β10 β20 β11 β30 β21 β12 β31 β22 β13

Y β01 β11 β02 β21 β12 β03 β22 β13 β04

X2 β20 β30 β21 β40 β31 β22 β41 β32 β23

XY β11 β21 β12 β31 β22 β13 β32 β23 β14

Y 2 β02 β12 β03 β22 β13 β04 β23 β14 β05

X2Y β21 β31 β22 β41 β32 β23 β42 β33 β24

XY 2 β12 β22 β13 β32 β23 β14 β33 β24 β15

Y 3 β03 β13 β04 β23 β14 β05 β24 β15 β06


,
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and 

X Y X2 XY X3 X2Y XY 2 X3Y X2Y 2

1 β10 β01 β20 β11 β30 β21 β12 β31 β22

Y/X β01 L(q(x)) β11 β02 β21 β12 β03 β22 β13

X β20 β11 β30 β21 β40 β31 β22 β41 β32

Y β11 β02 β21 β12 β31 β22 β13 β32 β23

X2 β30 β21 β40 β31 β50 β41 β32 β51 β42

XY β21 β12 β31 β22 β41 β32 β23 β42 β33

Y 2 β12 β03 β22 β13 β32 β23 β14 β33 β24

X2Y β31 β22 β41 β32 β51 β42 β33 β52 β43

XY 2 β22 β13 β32 β23 β42 β33 β24 β43 β34


.

Note that β52, β43, β34 are equal to

β52 =

{
β24 + (a+ b)β42 − abβ32, if q(x) = (x− a)(x− b),

β24 − c2β32, if q(x) = x2 + c2,

β43 =

{
β15 + (a+ b)β33 − abβ23, if q(x) = (x− a)(x− b),

β15 − c2β23, if q(x) = x2 + c2,

β34 =

{
β06 + (a+ b)β24 − abβ13, if q(x) = (x− a)(x− b),

β06 − c2β13, if q(x) = x2 + c2.

4.2. TMP on Neile’s parabola. Let P3 be as in Proposition 4.1 above. Recall that

(x(t), y(t)) = (t2, t3), t ∈ R

is a parametrization of Z(P3). Let

Neile := {s ∈ R[t] : s′(0) = 0}, Neile≤i = {s ∈ Neile : deg s ≤ i},
Pos(Neile≤i) := {f ∈ Neile≤i : f(t) ≥ 0 for every t ∈ R},

Ñeile≤i := {s ∈ R[t]≤i : s(0) = 0}.

Theorem 4.8. The following statements are equivalent:

(1) p ∈ Pos(Neile≤6k).

(2) There exist finitely many fi ∈ Neile≤3k, gj ∈ Ñeile≤3k such that p =
∑

i f
2
i +

∑
j g

2
j .

Moreover, for C = Z(P3) the appropriate choices of f and V (k) in Theorem 2.3 are as

stated in Table 2.

Proof. The nontrivial implication is (1) ⇒ (2). Let Φ : R[Z(P3)] → Neile be a map

defined by Φ(p(x, y)) := p(t2, t3). Clearly Φ is a well–defined ring homomorphism, be-

cause p(t2, t3) = 0 for every p ∈ I and (Φ(p))′(0) = 0 for every p ∈ R[Z(P3)]. From

Φ(R[Z(P3)]≤i) ⊆ Neile≤3i and dimΦ(R[Z(P3)]≤i) = dimNeile≤3i = 3i, it follows that Φ

is a ring isomorphism. Using Corollary 3.4, every extreme ray p of the cone Pos(Neile≤6k)

is of the form u2 for some u ∈ R[t]≤3k satisfying 0 = (u2)′(0) = 2u(0)u′(0). If u′(0) = 0,

then u ∈ Neile≤3k. Else u(0) = 0 and u ∈ Ñeile≤3k.

It remains to prove the moreover part. Let B
Ñeile≤i

:= {t, t2, . . . , ti} be the basis for

Ñeile≤i. Extending the ring isomorphism Φ to the isomorphism between quotient fields
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R(Z(P3)) and Quot(Neile) of R[Z(P3)] and Neile, respectively, note that Φ−1(B
Ñeile≤3k

) is

equal to BV (k) from Table 2. □

Example 4.9. Let k = 3 and βij = L(xiyj) for i, j ≥ 0, i + j ≤ 6. Then the square

positivity and the (V (3), 1)–local square positivity of LZ(P3) are equivalent to the partial

positive semidefiniteness of the following Hankel matrix (i.e., all fully determined principal

submatrices are psd):



1 T T 2 T 3 · · · T 9

1 γ0 ? γ2 γ3 · · · γ9
T ? γ2 γ3 γ4 γ10
T 2 γ2 γ3 γ4 γ5 γ11
T 3 γ3 γ4 γ5 γ6 γ12
...

...
. . .

...

T 9 γ9 γ10 γ11 γ12 · · · γ18


,

where γi := β2i mod 3,⌊ i
3
⌋ for each i. Note that the missing entries are at the positions

(1, 2) and (2, 1), since the value LZ(P3)(
y
x
) is unknown. The matrix representation of

LZ(P3) (resp., LZ(P3),V (k),1) is the restriction of this matrix to a submatrix an all rows and

columns but the one indexed with T (resp., but the one indexed with 1).

Remark 4.10. A constructive approach to solve the Z(P3)–TMP (nonsingular and sin-

gular) by solving the equivalent R–TMP from Example 4.9 is presented in [66, Section

4].

4.3. TMP on the nodal curve. Let P4 be as in Proposition 4.1 above. Recall that

(x(t), y(t)) = (t2, t3 − t), t ∈ R,

is a parametrization of Z(P4). Let

Nodal :=
{
s ∈ R[t] : s(1) = s(−1)}, Nodal≤i := {s ∈ Nodal : deg s ≤ i},

Pos(Nodal≤i) := {f ∈ Nodal≤i : f(t) ≥ 0 for every t ∈ R},

Ñodal≤i := {s ∈ R[t]≤i : s(1) = −s(−1)}.

Theorem 4.11. The following statements are equivalent:

(1) p ∈ Pos(Nodal≤6k).

(2) Then there exist finitely many fi ∈ Nodal≤3k and gj ∈ Ñodal≤3k such that p =∑
i f

2
i +

∑
j g

2
j .

Moreover, for C = Z(P4) the appropriate choices of f and V (k) in Theorem 2.3 are as

stated in Table 2.

Proof. The nontrivial implication is (1) ⇒ (2). Let Φ : R[Z(P4)] → Nodal be a map

defined by Φ(p(x, y)) = p(t2, t3 − t). Analogously as in the proof of Theorem 4.8 we see

that Φ is a ring isomorphism and that the vector subspace R[Z(P4)]≤i is in one-to-one

correspondence with the set Nodal≤3i under Φ. Using Corollary 3.4, every extreme ray

p of the cone Pos(Nodal≤6k) is of the form u2 for some u ∈ R[t]≤3t satisfying (u2)(1) =
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(u2)(−1). It follows that u(1) = u(−1) or u(1) = −u(−1) and so u ∈ Nodal≤3k or

u ∈ Ñodal≤3k.

It remains to prove the moreover part. Let B
Ñodal≤i

:= ∪i
j=2{tj − tj−2} ∪ {1} be the

basis for Ñodal≤i. Extending the ring isomorphism Φ to the isomorphism between quo-

tient fields R(Z(P4)) and Quot(Nodal) of R[Z(P4)] and Nodal, respectively, note that

Φ−1(B
Ñodal≤3k

) is equal to BV (k) from Table 2. □

Below we present a constructive solution to the nonsingular Z(P4)–TMP via the solu-

tion to the corresponding R–TMP.

Constructive proof of Corollary 2.6 for C = Z(P4). Using the correspondence as in the

proof of Theorem 4.11, the Z(P4)–TMP for L is equivalent to the R–TMP for LNodal≤6k
:

Nodal≤6k → R, LNodal≤6k
(p) := LZ(P4)(Φ

−1(p)). If LNodal≤6k
is a R–mf, then it extends to

the R–mf L̂ ≡ LR[t]≤6k
: R[t]≤6k → R. In the ordered basis {1, T, T 2− 1, T 3−T, . . . , T 3k −

T 3k−2} of rows and columns, the strict square positivity and the (V (k), 1)–local strict

square positivity of LZ(P4) are equivalent to the partial positive definiteness of the matrix



1 T T 2 − 1 T 3 − T · · · T 3k − T 3k−2

L̂(1) ? L̂(t2 − 1) L̂(t3 − t) · · · L̂(t3k − t3k−2)

? L̂(t2) L̂(t3 − t) L̂(t4 − t2) L̂(t3k+1 − t3k−1)

L̂(t2 − 1) L̂(t3 − t) L̂((t2 − 1)2) L̂(t(t2 − 1)2) L̂(t3k−2(t2 − 1)2)

L̂(t3 − t) L̂(t(t3 − t)) L̂(t(t2 − 1)2) L̂((t3 − t)2) · · · L̂(t3k−1(t2 − 1)2)

...
. . .

...

L̂(t3k − t3k−2) · · · · · · L̂((t3k − t3k−2)2)


.

The missing entries are at the positions (1, 2) and (2, 1), since the value L̂(t) is unknown.

Then there exists an interval (a, b) ⊂ R, such that for every L̂(t) ∈ (a, b), the completion is

positive definite (see e.g., [65, Lemma 2.4]) and L̂ : R[t]≤6k → R admits a (3k+1)–atomic

R–rm by [15, Theorem 3.9]. □

Remark 4.12. It is not clear if in the case that LNodal≤6k
is a R–mf, there exists a (3k)–

atomic R–rm. This is equivalent to the fact that for one of the choices L̂(t) = a or L̂(t) = b

in the proof above, L̂ is a R–mf. Since the rank of the completed moment matrix is 3k

for L̂(t) = a or L̂(t) = b, a (3k)–atomic R–rm would exist by [15, Theorem 3.9].

The following theorem solves the singular Z(P4)–TMP.

Theorem 4.13 (Singular Z(P4)–TMP). Let L : R[x, y]≤2k → R be a Z(P4)–singular

linear functional. Let V (k) be as in Table 2. Then the following are equivalent:

(1) L is a Z(P4)–moment functional.

(2) LZ(P4) is square positive, (V (k), 1)–locally square positive and one of the following

holds:

(a) For U := Span(Φ−1(BNodal≤3k−1
)) it holds that

rankLZ(P4) = rank
(
(LZ(P4))|U

)
.

(b) For W := Span(Φ−1(B
Ñodal≤3k−1

)) it holds that

rankLZ(P4),V (k),1 = rank
(
(LZ(P4),V (k),1)|W

)
.
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Proof. Following the constructive proof of Corollary 2.6 for Z(P4) via the solution to the

R–TMP above and replacing positive definiteness with positive semidefiniteness, the only

addition is that a psd extension LR[t]≤6t
: R[t]≤6t → R is not necessarily a R–mf. Since L

is Z(P4)–singular and using [15, Theorem 3.9], (1) is equivalent to:

There is a square positive extension LR[t]≤6t
of LNodal≤6k

such that

rankLR[t]≤6k
= rankLR[t]≤6k−2

holds.
(4.3)

Let us denote by M the matrix, which represents LR[t]≤6k
in the basis BNodal≤3k

∪ {t} (see

the proof of Corollary 2.6 above). The rank condition in (4.3) means that there are some

αi ∈ R, not all equal to 0, such that

(4.4) T 3k − T 3k−2 = α01+ α1T +
3k−1∑
i=2

αi(T
i − T i−2)

Let us prove the implication (4.3) ⇒ (2). The square positivity and the (V (k), 1)–local

square positivity of LZ(P4) are clear. If α1 = 0 in (4.4), then (2a) holds, while α0 = 0

implies (2b). It remains to study the case: α0 ̸= 0 and α1 ̸= 0. We separate two cases

according to the Z(P4)–singularity of L:

Case 1: LZ(P4) is singular. There are some βi ∈ R such that in the matrix representation

of LNodal≤6k
with respect to the basis BNodal≤3k

, the relation

(4.5) T 3j − T 3j−2 = β01+

3j−1∑
i=2

βi(T
i − T i−2)

holds. If j = k, then (2a) holds. Otherwise j < k. By the extension principle [31, Propo-

sition 2.4], (4.5) also holds in the matrix M . We separate two subcases according to the

value of β0.

Case 1.1: β0 = 0. Since LR[t]≤6t
is a R–mf, multiplying the relation (4.5) with T 3(k−j)

gives a column relation of M :

(4.6) T 3k − T 3k−2 =

3j−1∑
i=2

βi

(
T i+3(k−j) − T i−2+(3k−j)

)
.

Since the matrix, representing LC,V (k),1 in the basis B
Ñodal≤3k

, is a submatrix of M , it

follows that (2b) holds.

Case 1.2: β0 ̸= 0. In this case we can express 1 out of (4.5) and plug it into (4.4), whence

we end up with a relation of the form (4.4) with α0 = 0 and hence (2b) holds.

Case 2: LZ(P4) is not singular, but LZ(P4) is (V (k), 1)–locally singular. The proof is

analogous to the proof of Case 1, only that one starts with the relation

(4.7) T 3j − T 3j−2 = β1T +

j∑
i=2

βi(T
i − T i−2)
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in the matrix, representing LZ(P4),V (k),1 in the basis B
Ñodal≤3k

Then three cases need to be

considered: (i) j = k; (ii) j < k, β1 = 0; and (iii) j < k, β1 ̸= 0.

It remains to prove the implication (2) ⇒ (4.3). The existence of a square positive

extension is clear from the positivity assumptions on LZ(P4) (see the first paragraph of

the proof). The rank condition in (4.3) follows from either (4.5) used for j = k under the

assumption (2a), or (4.7) used for j = k under the assumption (2b). □

4.4. TMP on the cubic curve with an isolated point. Let P5 be as in Proposition

4.1 above. Note that

(x(t), y(t)) = (t2 + 1, t3 + t), t ∈ R,

is a parametrization of Z(P5) \ {(0, 0)}. Let i stand for the imaginary unit and

Isol := {s ∈ R[t] : s(i) = s(−i)}, Isol≤i := {s ∈ Isol : deg s ≤ i},
Pos(Isol≤i) := {f ∈ Isol≤i : f(t) ≥ 0 for every t ∈ R},

Ĩsol≤i := {s ∈ R[t]≤i : s(i) = −s(−i)}.

Theorem 4.14. The following statements are equivalent:

(1) p ∈ Pos(Isol≤6k).

(2) There exist finitely many fi ∈ Isol≤3k and gj ∈ Ĩsol≤3k such that p =
∑

i f
2
i +

∑
j g

2
j .

Moreover, for C = Z(P5) the appropriate choices of f and V (k) in Theorem 2.3 are as

stated in Table 2.

Proof. The nontrivial implication is (1) ⇒ (2). Let Φ : R[Z(P5)] → Isol be a map defined

by Φ(p(x, y)) = p(t2 + 1, t3 + t). Analogously as in the proof of Theorem 4.8 we see

that Φ is a ring isomorphism and that the vector subspace R[Z(P5)]≤i is in one-to-one

correspondence with the set Isol≤3i under Φ. Using Corollary 3.4, every extreme ray p of

the cone Pos(Isol≤6k) is of the form u2 for some u ∈ R[t]≤3t satisfying (u2)(i) = (u2)(−i).

It follows that u(i) = u(−i) or u(i) = −u(−i) and so u ∈ Isol≤3k or u ∈ Ĩsol≤3k.

It remains to prove the moreover part. Let BĨsol≤i
:= ∪i

j=2{tj + tj−2} ∪ {1}. be the

base for Ĩsol≤i. Extending the ring isomorphism Φ to the isomorphism between quotient

fields R(Z(P5)) and Quot(Isol) of R[Z(P5)] and Isol, respectively, note that Φ−1(BĨsol≤3k
)

is equal to BV (k) from Table 2. □

Remark 4.15. Note that in our definition of nonsingularity, Z(P5)–nonsingular L admits

a Z(P5)–rm if and only if L admits a (Z(P5) \ {0})–rm. Namely, there always exists a

Z(P5)–rm without (0, 0) in the support.

Below we present a constructive solution to the nonsingular Z(P5)–TMP via the solu-

tion to the corresponding R–TMP.

Constructive proof of Corollary 2.6 for C = Z(P5). The proof is verbatim the same to

the constructive proof of Corollary 2.6 for C = Z(P4) above, only that the corresponding
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univariate moment matrix is



1 T T 2 + 1 T 3 + T · · · T 3k + T 3k−2

L̂(1) ? L̂(t2 + 1) L̂(t3 + t) L̂(t3k + t3k−2)

? L̂(t2) L̂(t3 + t) L̂(t4 + t2) L̂(t3k+1 + t3k−1)

L̂(t2 + 1) L̂(t3 + t) L̂((t2 + 1)2) L̂(t(t2 + 1)2) L̂(t3k−2(t2 + 1)2)

L̂(t3 + t) L̂(t(t3 + t)) L̂(t(t2 + 1)2) L̂((t3 + t)2) · · · L̂(t3k−1(t2 + 1)2)
...

. . .
...

L̂(t3k + t3k−2) · · · · · · L̂((t3k + t3k−2)2)


.

All the other arguments remain the same. □

Remark 4.16. Similarly as in Remark 4.12 it is not clear whether a (3k)–atomic Z(P5)–

rm for L exists.

Let us denote by O := (0, 0) the isolated point of Z(P5). The following theorem solves

the singular Z(P5)–TMP where O is not in the support of the measure.

Theorem 4.17 (Singular Z(P5)–TMP avoiding O). Let L : R[x, y]≤2k → R be a Z(P5)–

singular linear functional. Let V (k) be as in Table 2. Then the following are equivalent:

(1) L is a (Z(P5) \O)–moment functional.

(2) LZ(P5) is square positive and (V (k), 1)–locally square positive and one of the follow-

ing holds:

(a) For U := Span(Φ−1(BIsol≤3k−1
)) it holds that

rankLZ(P5) = rank
(
(LZ(P5))|U

)
.

(b) For W := Span(Φ−1(BĨsol≤3k−1
)) it holds that

rankLZ(P5),V (k),1 = rank
(
(LZ(P5),V (k),1)|W

)
.

Proof. The proof is verbatim the same to the proof of Theorem 4.13 above after replacing

Nodal≤i, Ñodal≤i, T
i − T i−2 with Isol≤i, Ĩsol≤i and T i + T i−2, respectively. □

It remains to characterize the cases when L is a Z(P5)–mf but not a (Z(P5) \ O)–mf.

Namely, O necessarily lies in the support of any rm. Let

LevO : R[x, y]≤2k → R, LevO(p) := p(0, 0) for p ∈ R[x, y]≤2k

be a functional, which evaluates a polynomial in the point O. The functional LevO is

clearly a mf having a Dirac measure δO as its rm. If L is a Z(P5)–mf, which is not a

(Z(P5) \O)–mf, then there exists λ > 0 such that

(4.8) L(λ) := L− λLevO

is a (Z(P5) \O)–mf. Let us denote by

(4.9) L̂ := LR[t]≤6t
: R[t]≤6t → R and L̂(λ) := L

(λ)
R[t]≤6t

: R[t]≤6t → R

the univariate linear functionals, corresponding to LZ(P5) and LZ(P5)−λLevO , respectively.

In the ordered basis {1, T, T 2+1, T 3+T, . . . , T 3k+T 3k−2} of rows and columns, the matrix
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M representing the bilinear form L
(λ)

R[t]≤6t
is the following:



1 T T 2 + 1 T 3 + T · · · T 3k + T 3k−2

L̂(1)− λ ? L̂(t2 + 1) L̂(t3 + t) · · · L̂(t3k + t3k−2)

? L̂(t2) + λ L̂(t3 + t) L̂(t4 + t2) L̂(t3k+1 + t3k−1)

L̂(t2 + 1) L̂(t3 + t) L̂((t2 + 1)2) L̂(t(t2 + 1)2) L̂(t3k−2(t2 + 1)2)

L̂(t3 + t) L̂(t(t3 + t)) L̂(t(t2 + 1)2) L̂((t3 + t)2) · · · L̂(t3k−1(t2 + 1)2)
...

. . .
...

L̂(t3k + t3k−2) · · · · · · L̂((t3k + t3k−2)2)


.

We write

(4.10) L̂
(λ)
1 :=

(
L̂(1)− λ a

a A

)
and L̂

(λ)
2 :=

(
L̂(t2) + λ b

b B

)
for the restrictions of M to all rows and columns except T in case of L̂

(λ)
1 , and except 1

in case of L̂
(λ)
2 . Namely, the rows and columns of L̂

(λ)
1 are all elements of BIsol≤3k

, while

the rows and columns of L̂
(λ)
2 are all elements of BĨsol≤3k

.

Let

M =

(
A B

BT D

)
∈ R(n+m)×(n+m),

where A ∈ Rn×n, B ∈ Rn×m and D ∈ Rm×m. The generalized Schur complement

M/D [70] of D in M is defined by

M/D = A−BD†BT ,

where D† stands for the Moore–Penrose inverse of D.

For a matrix X ∈ Rn×m we call the linear span of its columns a column space and

denote it by C(X).

A complete solution to the nonsingular Z(P5)–TMP where also atom O is allowed, is

the following.

Theorem 4.18 (Nonsingular Z(P5)–TMP). Let L : R[x, y]≤2k → R be a Z(P5)–nonsingu-

lar linear functional. Assume the notation from (4.8), (4.9) and (4.10). Then the follow-

ing are equivalent:

(1) L is a Z(P5)–moment functional.

(2) LZ(P5) is strictly square positive, B is positive semidefinite, b ∈ C(B) and one of

the following holds:

(a) L̂
(0)
2 /B > 0.

(b) L̂
(0)
1 /A > −(L̂

(0)
2 /B) ≥ 0.

(c) L(λ0) is a (Z(P5) \O)–moment functional for λ0 = L̂
(0)
1 /A.

Proof. First we prove the implication (1) ⇒ (2). As explained above there exists λ̃ ≥ 0

such that L(λ̃) is a (Z(P5) \ O)–mf. In particular, L̂
(λ̃)
1 and L̂

(λ̃)
2 must satisfy conditions
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coming from Corollary 2.6 for C = Z(P5) or Theorem 4.17. In particular, L̂
(λ̃)
1 and L̂

(λ̃)
2

are psd and hence by [3], B is psd, b ∈ C(B) and

0 ≤ L̂
(λ̃)
1 /A = L̂

(0)
1 /A− λ̃ and 0 ≤ L̂

(λ̃)
2 /B = L̂

(0)
2 /B + λ̃.

Hence,

(4.11) −(L̂
(0)
2 /B) ≤ λ̃ ≤ L̂

(0)
1 /A.

Note that L̂
(λ̃)
1 ⪯ L̂

(0)
1 and hence LZ(P5) is psd. Since by assumption kerLZ(P5) = {0}, it

follows that LZ(P5) is positive definite. If none of (2a), (2b) above holds, then there must

be equalities in (4.11) and L(λ̃) is a (Z(P5) \O)–mf. This is precisely (2c).

It remains to prove the implication (2) ⇒ (1). If (2a) holds, the L is a (Z(P5) \O)–mf

by Corollary 2.6. If (2b) holds, then for λ̃ := 1
2
(L̂

(0)
1 /A + L̂

(0)
2 /B) both L̂

(λ̃)
1 /A, L̂

(λ̃)
2 /B

are positive definite and hence they satisfy Corollary 2.6 for C = Z(P5), whence L is a

(Z(P5) \O)–mf. Assume now that (2c) holds. Then L is clearly a Z(P5)–mf. □

The following theorem solves the singular Z(P5)–TMP, where also atom O is allowed.

Theorem 4.19 (Singular Z(P5)–TMP). Let L : R[x, y]≤2k → R be a Z(P5)–singular

linear functional. Let V (k) be as in Table 2. Assume the notation in (4.8), (4.9) and

(4.10). Then the following are equivalent:

(1) L is a Z(P5)–moment functional.

(2) One of the following holds:

(a) LZ(P5) is singular and for λ0 := L̂
(0)
1 /A we have that λ0 ≥ 0 and L(λ0) is a

(Z(P5) \O)–moment functional.

(b) LZ(P5) is positive definite.

Proof. First we prove the implication (1) ⇒ (2). As explained in the paragraph after the

proof of Theorem 4.17 above, there exists λ̃ ≥ 0 such that L(λ̃) is a (Z(P5)\O)–mf. Since

L is Z(P5)–singular, it follows that at least one of L̂
(0)
1 , L̂

(0)
2 has a nontrivial kernel. Note

that L̂
(0)
1 has a nontrivial kernel if and only if LZ(P5) is singular. If LZ(P5) is nonsingular,

then it is positive definite and we are in the case (2b). Otherwise L̂
(0)
1 is singular. If

λ0 := L̂
(0)
1 /A = 0, then L̂

(λ)
1 has a negative eigenvalue for every λ > 0. Hence, the only

option for λ̃ is 0 and (2a) holds. If L̂
(0)
1 /A > 0, then there is a nontrivial relation in L̂

(λ̃)
1

of the form

(4.12) T 3j + T 3j−2 =

3j−1∑
i=2

βi(T
i + T i−2)

Multiplying (4.12) with T 3(k−j),

(4.13) T 3k + T 3k−2 =

3j−1∑
i=2

βi(T
i+3(k−j) + T i−2+(3k−j))

is also a relation in L̂
(λ̃)
1 . But this is then a relation in L̂

(λ)
1 for every λ. Since λ̃ ≤ λ0, it

follows that L(λ0) is also a (Z(P5) \O)–mf by Theorem 4.17. Hence, (2a) holds.

It remains to prove the implication (2) ⇒ (1). If (2a) holds, the L is clearly a Z(P5)–mf.

If (2b) holds, then L̂
(0)
1 is invertible and L̂

(0)
2 is singular. Since L̂

(0)
1 is positive definite, B
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is also positive definite. Hence, L̂
(0)
2 /B = 0. It follows that for every λ > 0, L̂

(λ)
2 is positive

definite. For λ0 > 0 small enough both L̂
(λ0)
1 and L̂

(λ0)
2 are positive definite and L(λ0) is

Z(P5)–nonsingular. By Corollary 2.6 used for C = Z(P5), L
(λ0) is a (Z(P5) \ O)–mf,

whence L is Z(P5)–mf and (1) holds. □

5. The Z(P )–TMP for irreducible P (x, y) = xy2 + ay − bx3 − cx2 − dx− e

Assume the notation as in §2, §3. Let P be as in the title of the section.

Proposition 5.1. Up to invertible affine linear change of variables P has one of the

following forms:

(i) Rational cubic type 1: P6(x, y) = xy2 + ay − dx− e, a, d, e ∈ R.
(ii) Non-Weierstraß type 1: P7(x, y) = xy2 + ay − x2 − dx− e, a, d, e ∈ R.
(iii) Non-Weierstraß type 2: P8(x, y) = xy2 − x3 − cx2 − dx− e, c, d ∈ R, e ∈ R∗.

(iv) Non-Weierstraß type 3: P9(x, y) = xy2 + x3 − cx2 − dx− e, c, d ∈ R, e ∈ R∗.

(v) Non-Weierstraß type 4: P10(x, y) = xy2+ay−x3− cx2−dx− e, c, d ∈ R, a, e ∈ R∗.

(vi) Non-Weierstraß type 5: P11(x, y) = xy2+ay+x3− cx2−dx− e, c, d ∈ R, a, e ∈ R∗.

Proof. Let P be as in the title of the section. If b = c = 0, then P is as in (i). If b = 0

and c > 0, then after applying the alt (x, y) 7→ (x, y√
c
), P gets the form (ii). If b = 0 and

c < 0, then applying the alt (x, y) 7→ (−x, y), we can assume that b = 0 and c > 0, which

transforms to (ii) as just described. If b > 0, then after applying the alt (x, y) 7→ (x, y√
b
),

P gets the form (iii) or (v). Finally, if b < 0, then after applying the alt (x, y) 7→ (x, y√
−b
),

P gets the form (iv) or (vi). □

The main results of this section are the following:

(1) Explicit descriptions of the pair (f, V (k)) in Theorem 2.3 for each C = Z(Pi) from

Proposition 5.1.

(2) A constructive solution to the Z(P6)–TMP.

5.1. The Z(P6)–TMP. Let P6 be as in Proposition 5.1 above. Note that a rational

parametrization of Z(P6) is given by

(x(t), y(t)) =
(−at+ e

t2 − d
, t
)
, t ∈

{
R, if d < 0,

R \ {
√
d,−

√
d}, if d ≥ 0.

Remark 5.2. Note that every point ofZ(P6) is indeed parametrized with the parametriza-

tion above. If d ≥ 0 and y0 ∈ {
√
d,−

√
d}, then P6(x, y0) = ay0 − e = 0 would imply that

y − y0 divides P6, which is a contradiction with the irreducibility of P6.

Let us write h1(t) := −at + e, h2(t) := t2 − d and h3(t) :=
h1(t)
h2(t)

. Let S≤3i and T≤3i be

vector spaces in R(t) with the bases

BS≤3i
:=

{
hi
3, h

i−1
3 , hi−1

3 t, hi−2
3 , hi−2

3 t, . . . , h3, h3t, 1, t, . . . , t
i
}

and

BT≤3i
:=

{
hi
3t, h

i−1
3 , hi−1

3 t, hi−2
3 , hi−2

3 t, . . . , h3, h3t, 1, t, . . . , t
i
}
.

(5.1)
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Let

Pos(S≤3i) := {f ∈ S≤3i : f(t) ≥ 0 for every t ∈ R} and S :=
∞⋃
i=0

S≤3i.

Theorem 5.3. Let p ∈ Pos(S≤6k). Then there exist finitely many fi ∈ S≤3k and gj ∈ T≤3k

such that p =
∑

i f
2
i +

∑
j g

2
j .

Moreover, for C = Z(P6) the appropriate choices of f and V (k) in Theorem 2.3 are as

stated in Table 2.

Proof. Let Φ : R[Z(P6)] → S be a map defined by Φ(p(x, y)) = p(h3(t), t). Analogously

as in the proof of Theorem 4.8 we see that Φ is a ring isomorphism and that the vector

subspace R[Z(P6)]≤i is in one-to-one correspondence with the set S≤3i under Φ. We sep-

arate three cases according to the sign of a.

Case 1: d < 0. In this case note that

S≤3i =

{
q(t)

hi
2

: q ∈ R[t]≤3i, (e+ ia
√
−d)iq(i

√
−d) = (e− ia

√
−d)iq(−i

√
−d)

}
,

T≤3i :=

{
q(t)

hi
2

: q ∈ R[t]≤3i, (e+ ia
√
−d)iq(i

√
−d) = −(e− ia

√
−d)iq(−i

√
−d)

}
,

where both equalities follow by a short computation. From here on the proof is anal-

ogous to the proof of Theorem 4.11, only that the condition (u2)(1) = (u2)(−1) is re-

placed by the condition (e+ ia
√
−d)2k(u2)(i

√
−d) = (e− ia

√
−d)2k(u2)(−i

√
−d), whence

(e+ ia
√
−d)ku(i

√
−d) = ±(e− ia

√
−d)ku(−i

√
−d). So u ∈ S≤3k or u ∈ T≤3k.

Case 2: d = 0. In this case first note that e ̸= 0, otherwise P6 was reducible. Then it

turns out by a short computation that

S≤3i =

{
q(t)

hi
2

: q ∈ R[t]≤3i, q
′(0) = −ia

e
q(0)

}
,

T≤3i :=

{
q(t)

hi
2

: q ∈ R[t]≤3i, q(0) = 0

}
.

From here on the proof is again analogous to the proof of Theorem 4.11, only that

the condition (u2)(1) = (u2)(−1), is replaced by the condition (u2)′(0) = 2u′(0)u(0) =

−2ka
e
(u2)(0), and hence u′(0) = −ka

e
u(0) or u(0) = 0. So u ∈ S≤3k or u ∈ T≤3k.

Case 3: d > 0. In this case note that

S≤3i =

{
q(t)

hi
2

: q ∈ R[t]≤3i, (e+ a
√
d)iq(

√
d) = (e− a

√
d)iq(−

√
d)

}
,

T≤3i :=

{
q(t)

hi
2

: q ∈ R[t]≤3i, (e+ a
√
d)iq(

√
d) = −(e− a

√
d)iq(−

√
d)

}
.

From here on the proof is analogous to the proof of Theorem 4.11, only that the condition

(u2)(1) = (u2)(−1), is replaced by the condition

(e+ a
√
d)2k(u2)(

√
d) = (e− a

√
d)2k(u2)(−

√
d),

whence (c− b
√
−a)ku(

√
−a) = ±(c+ b

√
−a)ku(−

√
−a). So u ∈ S≤3k or u ∈ T≤3k.

The moreover part follows by noting that Φ−1(BT≤3k
) is equal to BV (k) from Table 1. □
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For x ∈ C, we write Qx for the divisor [x : 1] on P1. We also write Q∞ for the divisor

[1 : 0].

Below we present a constructive solution to the nonsingular Z(P6)–TMP via the cor-

responding univariate moment problem.

Constructive proof of Corollary 2.6 for C = Z(P6). Using the correspondence as in the

proof of Theorem 5.3, the Z(P6)–TMP for L is equivalent to the rational R–TMP for

LS≤6k
: S≤6k → R. Let

D =


Q−i

√
−d +Qi

√
−d +Q∞, if d < 0,

2Q0 +Q∞, if d = 0,

Q−
√
d +Q√

d +Q∞, if d > 0.

If LS≤6k
is a mf, then it extends to the R–mf L̂ : L(2kD) → R. In the ordered basis

{(h3(T ))
k, (h3(T ))

kT, (h3(T ))
k−1, . . . , 1, T, . . . , T k}

of rows and columns, the strict square positivity and the (V (k), 1)–local strict square

positivity of LZ(P6) are equivalent to the partial positive definiteness of the matrix



(h3(T ))
k (h3(T ))

kT (h3(T ))
k−1 · · · 1 T · · · T k

L̂(h2k
3 ) ? L̂(h2k−1

3 ) · · · L̂(hk
3) · · · · · · L̂(hk

3t
k)

? L̂(h2k
3 t2) L̂(h2k−1

3 t) · · · L̂(hk
3t) L̂(hk

3t
k+1)

L̂(h2k−1
3 t) L̂(h2k−1

3 t2) L̂(h2k−2
3 t) · · · L̂(hk−1

3 t) · · · · · · L̂(hk−1
3 tk+1)

...
. . .

...

L̂(hk
3)

. . . L̂(tk)

...
...

L̂(hk
3t

k) · · · · · · L̂(tk) · · · · · · L̂(t2k)



.

The missing entries are at the positions (1, 2) and (2, 1), since the value L̂(h2k
3 t) is un-

known. Then there exists an interval (a, b) ⊂ R, such that for every L̂(h2k
3 t) ∈ (a, b), the

completion is positive definite (see e.g., [65, Lemma 2.4]) and for every such completion

the functional L̂ has a (3k + 1)–atomic R–rm by [47, Theorem 3.1]. □

Remark 5.4. Similarly as in Remark 4.12 it is not clear whether a (3k)–atomic Z(P6)–rm

for L exists.

Note that |BS≤3i
| = |BT≤3i

| = 3i and

Bi = Φ−1(BS≤3i
) = {xi, xi−1, xi−1y, xi−2, xi−2y, . . . , x, xy, 1, y, . . . , yi},

B̃i = Φ−1(BT≤3i
) = {xiy, xi−1, xi−1y, xi−2, xi−2y, . . . , x, xy, 1, y, . . . , yi}.

The following theorem solves the singular Z(P6)–TMP with d < 0.

Theorem 5.5 (Singular Z(P6)–TMP with d < 0). Let d < 0 and L : R[x, y]≤2k → R
be a Z(P6)–singular linear functional. Let V (k) is as in Table 2. Then the following are

equivalent:
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(1) L is a Z(P6)–moment functional.

(2) LZ(P6) is square positive and (V (k), 1)–locally square positive, and one of the fol-

lowing holds:

(a) For U := Span(Bk \ {yk}) it holds that

rankLZ(P6) = rank
(
(LZ(P6))|U

)
.

(b) For W := Span(B̃k \ {yk}) it holds that

rankLZ(P6),V (k),1 = rank
(
(LZ(P6),V (k),1)|W

)
.

Proof. Following the constructive proof of Corollary 2.6 for C = Z(P6) via the solution

to the rational R–TMP above and replacing positive definiteness with positive semidefi-

niteness, the only addition is that psd extension L̂ is not necessarily a R–mf. Since L is

Z(P6)–singular and using [47, Theorem 3.2], (1) is equivalent to:

There is a square positive extension LL(2kD) of LS≤6k

such that rankLL(2kD) = rankLL(2kD−2Q∞) holds.
(5.2)

Note that the rank condition in (5.2) means that in the matrix M , representing the

bilinear form LL(2kD) in the basis B = BS≤3k
∪ BT≤3k

, there is a relation

(5.3) T k = α0h3(T )
k + α1h3(T )

kT + α2h3(T )
k−1 + . . .+ α3k−1T

k−1

with αi ∈ R not all zero. Let (5.3) be a relation with the largest index i0 such that

α0 = α1 = . . . = αi0−1 = 0.

Let us now prove the implication (5.2) ⇒ (2). The square positivity and the (V (k), 1)–

local square positivity of LZ(P6) are clear. If α0 = 0 in (5.3), then (2b) holds. If α1 = 0

in (5.3), then (2a) holds. It remains to study the case: α0 ̸= 0 and α1 ̸= 0. We separate

two cases according to the Z(P6)–singularity of L:

Case 1: LZ(P6) is singular. There are some βi ∈ R, not all equal to 0, such that in the

matrix N , representing LZ(P6) with respect to the ordered basis BS≤3k
(see (5.1)), the

relation

(5.4) 0 = β1h3(T )
k + β2h3(T )

k−1 + . . .+ β3k−1T
k−1 + β3kT

k

holds. If β3k ̸= 0, then (2a) holds. Assume that β3k = 0. By the extension principle

[31, Proposition 2.4], (5.4) is also a relation in M . If β1 ̸= 0, then we can express the

column h3(T )
k out of (5.4) and plug it into (5.3). Then we end up with a relation of the

form (5.3) with α0 = 0 and α1 ̸= 0, whence (2b) holds. Assume now that β1 = 0. Let

Col1, Col2, . . ., Col3k be the columns of N enumerated from the left to the right side.

Claim. For 2 ≤ i ≤ 3k − 1 we have that

T · Coli =

{
Coli+1, if Coli ∈ {(h3(T ))

j, T j},
−aColi+2+eColi+1+dColi−1, if Coli = h3(T )

jT.
.

Proof of Claim. The case Coli ∈ {(h3(T ))
j, T j} is clear. Assume now that Coli = h3(T )

jT

for some j. Then

T · Coli = (h3(T ))
jT 2 = (h3(T ))

j(T 2 − d) + (h3(T ))
jd
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= −ah3(T )
j−1T + eh3(T )

j−1 + d(h3(T ))
j

= −aColi+2+eColi+1+dColi−1 .

This proves the Claim. ■

Let Colj0 be the first column in N , counted from the left side, which is linearly depen-

dent from columns to the left of this column, i.e.,

(5.5) Colj0 = β2Col2+ . . .+ βj0−1Colj0−1

for some βj ∈ R not all equal to 0. Recall from above that we assumed β1 = 0 in every

such relation. We separate three cases:

Case 1.1: Colj0 is on the right side of the column corresponding to the basis element

1. Multiplying (5.5) by T and using Claim we get a relation of the form (5.5) with j0
replaced by j0 + 1. Note also that Col2 = h3(T )

k−1 so T Col2 = Col3 and Col1 does not

appear in (5.5). We continue until j0 = 3k. But this then gives (2a).

Case 1.2: Colj0 is equal to the column corresponding to the basis element 1. Multiplying

(5.5) by T and using Claim we get a relation of the form

T = β̃2Col2+ . . .+ βj0−2h3(T )T + βj0−1(−aT + e1+ dh3(T )).

If −βj0−1a ̸= 1, then we are in Case 1.1 and continue as above. If −βj0−1a = 1, then we

get a relation of the form

(5.6) −βj0−1e1 = β̃2Col2+ . . .+ βj0−2h3(T )T + βj0−1dh3(T ).

We know that βj0−1 ̸= 0 (by −βj0−1a = 1). If also e ̸= 0, then we can express 1 from

(5.6) and plug it into (5.5). Then we get a relation of the form (5.5) with smaller j0,

which is a contradiction. Here note that the relation we would get cannot be a trivial one.

Indeed, let p(X, Y ) = 0 be a representation of the column relation (5.5) of LZ(P6). Then

Y p(X, Y ) = 0 is a representation of the column relation (5.6) of LZ(P6). If yp(x, y)−p(x, y)

is in the ideal I generated by P6(x, y), then one of y − 1 or p must be divisible by P6,

which is not true due to the irreducibility of P6. It remains to study the case e = 0 in

(5.6). However, this case cannot appear since then (5.6) would be a relation of the form

(5.5) with smaller j0. As above note that the relation (5.6) cannot be a trivial one in

this case, since it was obtained (after using the identification with R[Z(P6)]) from some

nonzero polynomial in R[Z(P6)] after multiplying with y. Since P6 is irreducible, this

polynomial cannot be divisible by P6.

Case 1.3: Colj0 is on the left side of the column corresponding to the basis element 1.

We multiply the relation (5.5) by T until we come into one of the Cases 1.1, 1.2 above.

By the same reasoning as in Case 1.2 above, after multiplying with T the leading term

must have larger index than j0.

Case 2: LZ(P6) is not singular, but LZ(P6) is (V (k), 1)–locally singular. This case is

analogous to Case 1 only that the relation (5.4) is replaced by

(5.7) 0 = β1h3(T )
k−1T + β2h3(T )

k−1 + . . .+ β3k−1T
k−1 + β3kT

k.
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Namely, the term β1h3(T )
k is replaced by the term β1h3(T )

k−1T .

It remains to prove the implication (2) ⇒ (5.2). The existence of a square positive

extension is clear from the positivity assumptions on LZ(P6). The rank condition in (5.2)

follows from either (5.4), where β3k ̸= 0, under the assumption (2a), or from (5.7), where

β3k ̸= 0, under the assumption (2b). □

The following is the solution to the singular Z(P6)–TMP with d = 0.

Theorem 5.6 (Singular case Z(P6)–TMP with d = 0). Let d = 0 and L : R[x, y]≤2k → R
be a Z(P6)–singular linear functional. Let V (k) is as in Table 2 and

U := Span(Bk \ {xk}), W := Span(Bk \ {yk}) and Z := Span(B̃k \ {yk}).

Then the following are equivalent:

(1) L is a Z(P6)–moment functional.

(2) LZ(P6) is square positive and (V (k), 1)–locally square positive, and

(5.8) rankLZ(P6) = rank
(
(LZ(P6))|U

)
and one of the following holds:

(a) rankLZ(P6) = rank
(
(LZ(P6))|W

)
.

(b) rankLZ(P6),V (k),1 = rank
(
(LZ(P6),V (k),1)|Z

)
.

Proof. Following the constructive proof of Corollary 2.6 for Z(P6) via the solution to the

rational R–TMP above and replacing positive definiteness with positive semidefiniteness,

the only addition is that the psd extension L̂ is not necessarily a (R \ {0})–mf. Since L

is Z(P6)–singular and using [67, Theorem 3.1], (1) is equivalent to:

There is a square positive extension LL(2kD) of LS≤6k
with

rankLL(2kD) = rankLL(2kD−2Q0) = rankLL(2kD−2Q∞).
(5.9)

Let Col1, Col2, . . ., Col3k be the columns of the matrix N , representing the bilinear

form LC with respect to the basis BS≤3k
, ordered as in (5.1).

Claim 1. For 2 ≤ i ≤ 3k + 1 we have that

T−1 · Coli =

{
Coli−1, if Coli ∈ {(h3(T ))

jT, T j : j ∈ N},
1
e
Coli−1+

a
e
Coli, if Coli = {h3(T )

j : j ∈ N ∪ {0}}.
.

Proof of Claim 1. The case Coli ∈ {(h3(T ))
jT, T j : j ∈ N} is clear. Assume now that

Coli = h3(T )
j for some j ∈ N ∪ {0}. Then

T−1 · Coli = (h3(T ))
jT−1 = (h3(T ))

j (−aT + e)T + aT 2

eT 2

=
1

e
h3(T )

j+1T +
a

e
(h3(T ))

j

=
1

e
Coli−1+

a

e
Coli .
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This proves Claim 1. ■

Claim 2. Assume that L is a Z(P6)–singular and Z(P6)–mf. Then (5.8) holds.

Proof of Claim 2. Assume first that LZ(P6) is singular. There are some βi ∈ R, not all

equal to 0, such that in the matrix representation of LZ(P6) with respect to the basis BS≤3k
,

the following relation

(5.10) 0 = β1h3(T )
k + β2h3(T )

k−1 + . . .+ β3k−1T
k−1 + β3kT

k

holds. If β1 ̸= 0, this implies Claim 2. Otherwise assume that β1 = 0. By the extension

principle [31, Proposition 2.4], (5.10) is also a relation in the matrix M representing L̂.

Multiplying with T−1 successively and using Claim 1 we conclude that there is a relation

of the form (5.10) with β1 ̸= 0 in M , and hence also in LZ(P6). Note that first we get a

relation containing h3(T )
kT instead of h3(T )

k. After another step of the procedure we get

h3(T )
k and express h3(T )

kT using the previous step of the procedure. This gives (5.8).

It remains to prove Claim 2 in the case LZ(P6) is (V
(k), 1)–locally singular. This case is

analogous to the case in the first paragraph above only that the relation (5.10) is replaced

by the relation

0 = β1h3(T )
k−1T + β2h3(T )

k−1 + . . .+ β3k−1T
k−1 + β3kT

k.

Namely, the term β1h3(T )
k is replaced by the term β1h3(T )

k−1T . ■

Let us now prove the implication (5.9) ⇒ (2). The square positivity and the (V (k), 1)–

local square positivity of LZ(P6) are clear. The equality (5.8) follows from Claim 2. The

statements (2a) or (2b) follow as in the proof of Theorem 5.5 above.

It remains to prove the implication (2) ⇒ (5.9). The existence of a square positive ex-

tension L̂ is clear from the positivity assumptions on LC as explained in the first paragraph

of the proof. The rank condition in (5.9) follows from rank conditions in (2). □

Let d > 0. A functional L̂ := LL(2kD) induces a functional

(5.11) LR[t]≤6k
: R[t]≤6k → R by LR[t]≤6k

(f) := L̂
( f

(t2 − d)2k

)
.

Let p be a nonzero polynomial of the lowest degree in kerLR[t]≤6k
. The polynomial p is

called a generating polynomial of LR[t]≤6k
.

The following is the solution to the singular Z(P6)–TMP with d > 0.

Theorem 5.7 (Singular Z(P6)–TMP with d > 0). Let d > 0 and L : R[x, y]≤2k → R be

a Z(P6)–singular linear functional. Let V (k) is as in Table 2. Let LR[t]≤6k
be the induced

functional as in (5.11). Then the following are equivalent:

(1) L is a Z(P6)–moment functional.

(2) LZ(P6) is square positive and (V (k), 1)–locally square positive,
√
d and −

√
d are not

zeroes of the generating polynomial of LR[t]≤6k
and one of the following holds:
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(a) For U := Span(Bk \ {yk}) it holds that

rankLZ(P6) = rank
(
(LZ(P6))|U

)
.

(b) For W := Span(B̃k \ {yk}) it holds that

rankLZ(P6),V (k),1 = rank
(
(LZ(P6),V (k),1)|W

)
.

Proof. This follows by [47, Theorem 3.2], where note that by the Z(P6)–singularity of L,

the condition LR[t]≤6k
(t6k−deg pp) = 0 is equivalent to one of (2a) or (2b). □

5.2. Positivstellensatz on C = Z(Pi), i = 7, . . . , 11. Let Pi be as in Proposition 5.1.

We denote by Hi the divisor on X̄ at infinity, i.e., writing Q1 = [1 : 0 : 0], Q2 = [0 : 1 : 0],

Q3 = [−1 : 1 : 0], Q4 = [1 : 1 : 0], Q5 = [i : 1 : 0] and Q6 = [−i : 1 : 0], we have

(5.12) Hi =


2Q1 +Q2, if i = 7,

Q2 +Q3 +Q4, if i ∈ {8, 10},
Q2 +Q5 +Q6, if i ∈ {9, 11}.

Theorem 5.8. For i = 7, . . . , 11, let C = Z(Pi) and Hi be as in (5.12). Assume that the

projective closure X̄ of C is smooth. Let fi ∈ R[Z(Pi)] be equal to

(i) f7 = x− α7, where α7 is the smallest zero of

q7(t) := t3 + dt2 + et+
a2

4
.

(ii)

f8 =
e

|e|

(1
x
− α8

)
=

1

|e|
(xy2 − x3 − cx2 − dx)

1− α8x

x

=
1

|e|
(y2 − x2 − cx− d)(1− α8x),

where α8 is the smallest (resp. largest) zero of

q8(t) := et3 + dt2 + ct+ 1

if e > 0 (resp. e < 0).

(iii)

f9 =
e

|e|

(1
x
− α9

)
=

1

|e|
(xy2 + x3 − cx2 − dx)

1− α9x

x

=
1

|e|
(y2 + x2 − cx− d)(1− α9x),

where α9 is the smallest (resp. largest) zero of

q9(t) := et3 + dt2 + ct− 1

if e > 0 (resp. e < 0).

(iv) f10 = y2 − x2 − cx− α10, where α10 is the smallest zero of

q10(t) := t3 − 2dt2 + (d2 − a2 + ce)t+
(a2c2

4
− cde+ e2

)
.
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(v) f11 = y2 + x2 − cx− α11, where α11 is the smallest zero of

q11(t) = t3 − 2dt2 + (d2 + a2 + ce)t+
(a2c2

4
− cde− e2

)
.

Let

Ri =

{
Q1, if i = 7,

Q2, if i ∈ {8, 9, 10, 11},

be the unique pole of fi and Si its unique zero on X̄. The following statements are

equivalent:

(1) p ∈ Pos2k(Z(Pi)).

(2) There exist finitely many gj ∈ R[C]≤k and hl ∈ L(kHi −Ri + Si) satisfying

p =
∑

j
g2j + fi

∑
l
h2
l .

Moreover, choosing the basis

Bk := {1, x, y, x2, xy, y2, x3, x2y, y3, . . . , xi, xi−1y, yi, . . . , xk, xk−1y, yk}

for R[C]≤k, the elements ri, such that B := Bk \{yk}∪{ri} is a basis for L(kHi−Ri+Si),

are equal to:

r7 =
xy + a

2

x− α7

, r8 =
xy

1− α8x
, r9 =

xy

1− α9x
,

r10 = γ1 + γ2(y
2 − x2 − cx) + γ3

(
y2 − x2 − cx− e2

a2

)x− 1

x

r11 = γ̃1 + γ̃2(y
2 + x2 − cx) + γ̃3

(
y2 + x2 − cx− e2

a2

)x− 1

x

for γi, γ̃i such that ri ∈ L(Hi −Q2 + Si) with Si = Z(fi) ∩ Z(Pi), i = 10, 11.

Proof. In each case we bring the equation to Weierstraß form so that the point Ri gets

mapped to the point at infinity as in [60, Proposition III.3.1]. Then the proof follows

analogously to the proof of Theorem 4.3.

Namely, following [60, Proposition III.3.1], let u, v ∈ R(Z(Pi)) such that {1, u}, {1, u, v}
are bases for L(2Ri), L(3Ri), respectively. Then the map Φ : Z(Pi) → P2, (x, y) 7→
[u(x, y) : v(x, y) : 1] is an isomorphism onto a curve in the Weierstraß form W (u, v) =

a1 + a2u + a3v + a4u
2 + a5uv + a6v

2 + a7u
3 of some ai ∈ R with a6a7 ̸= 0. Moreover, Φ

maps Ri to Q2.

For C = Z(P7) a proper choices of u and v are x and xy. Indeed, if a = 0, then

div(x) = 2Q2 − 2Q1 and div(y) = −Q1 −Q2 + [x1 : 0 : 1] + [x2, 0, 1], where x1 and x2 are

zeroes of x2 + dx + e. In the case a ̸= 0, we have that div(x) = [0 : e
a
: 1] + Q2 − 2Q1,

while div(y) is the same as in the a = 0 case. Hence, x ∈ L(2Q1) and xy ∈ L(3Q1). The

Weierstraß form of C is (xy + a
2
)2 = x3 + dx2 + ex + a2

4
, whence α7 is as stated in the

theorem.

For C = Z(P8) a proper choices of u and v are 1
x
and y

x
. Indeed, div(x) = 2Q2−Q3−Q4

and div(y) = −Q2 −Q3 −Q4 + [x1 : 0 : 0] + [x2 : 0 : 1] + [x3 : 0 : 1], where x1, x2, x3 are

zeroes of x3 + cx2 + dx+ e. Hence, 1
x
∈ L(2Q2) and

y
x
∈ L(3Q2). The Weierstraß form of

C is y2 = ex3 + dx2 + cx+ 1, whence α8 is as stated in the theorem.

For C = Z(P9) the proof is analogous to the proof for C = Z(P8).
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Let C = Z(P10). Note that the only pole of y2 − x2 − cx is Q2 and {1, y2 − x2 − cx}
is a basis for L(2Q2). Further on, div(x) = [0 : e

a
: 1] + Q2 − Q3 − Q4 and for x0 ̸= 0,

div(x − x0) = [x0 : y1 : 1] + [x0 : y2 : 1] − Q3 − Q4, where y1 and y2 are zeroes of

x0y
2−ay−x3

0−x2
0c−x0d−e. Hence, {1, u, v} := {1, y2−x2−cx−γ, (y2−x2−cx− e2

a2
)x−x0

x
}

is a basis for L(3Q2) for any γ ∈ R. Let t ∈ R such that the line u− t has a double zero

with the curve W (u, v) = 0. Namely, y2 − x2 − cx − t = 0 and ay−dx−e
x

+ t = 0 have a

double intersection point. Expressing y out of the second equation, plugging into the first

and solving the quadratic equation in x we get that the discriminant multiplied with a2

4

is precisely q10(t) in the statement of the theorem.

For C = Z(P11) the proof is analogous to the proof for C = Z(P10). □

Example 5.9. Let P10 = xy2+100y−x3+5x2+x−3. Then q10 = t3+2t2−10014t+62494

with zeroes t1 ≈ −104.033, t2 ≈ 6.273, t3 ≈ 95.76. By Theorem 5.8 above, f10 =

y2 − x2 + 5x + 104.033. Indeed, the right choice for α10 is t1 as presented on the fol-

lowing figures:

Curve

y^2-x^2+5x-t1=0

-40 -20 0 20 40

-40

-20

0

20

40

Curve

y^2-x^2+5x-t2=0

-40 -20 0 20 40

-40

-20

0

20

40

Curve

y^2-x^2+5x-t3=0

-40 -20 0 20 40

-40

-20

0

20

40

Example 5.10. Let P11 = xy2+ y+x3+7x2−x− 3. Then q11 = t3− 2t2− 19t+ 97
4
with

zeroes t1 ≈ −4.091, t2 ≈ 1.22, t3 ≈ 4.88. By Theorem 5.8 above, f11 = y2+x2+7x+4.091.

Indeed, the right choice for α11 is t1 as presented on the following figures:

Curve

y^2+x^2+7x-t1=0

-10 -8 -6 -4 -2 0 2 4

-10

-5

0

5

10
Curve

y^2+x^2+7x-t2=0

-10 -8 -6 -4 -2 0 2 4

-10

-5

0

5

10
Curve

y^2+x^2+7x-t3=0

-10 -8 -6 -4 -2 0 2 4

-10

-5

0

5

10

Remark 5.11. Every irreducible plane cubic curve with a singularity as a projective

curve has a rational parametrization. (See e.g., [45, Section 15.2] for explicit formulas.)

In case the projective closure of Z(Pi), i = 7, . . . , 11, is not smooth, we can rationally
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parametrize the curve and then appy the extreme ray machinery to describe a pair (f, V (k))

in Theorem 2.3 for this curve.

6. The Z(P12)–TMP for irreducible P12(x, y) = xy − c(x), c ∈ R[x]≤3, deg c = 3

Assume the notation as in Sections 2, 3. Let P12 be as in the title of the section.

The main results of this section are the following:

(1) Explicit description of the pair (f, V (k)) in Theorem 2.3 for C = Z(P12).

(2) A constructive solution to the Z(P12)–TMP.

After applying an affine linear transformation we can assume that c3 = 1 in c(x) =∑3
i=0 cix

i. The rational parametrization of Z(P12) is given by

(x(t), y(t) =
(
t,
c(t)

t

)
, t ∈ R \ {0}.

Let

Q≤3i :=

{∑3i
j=0 pjt

j

ti
: p0 = p3ic

i
0, pj ∈ R

}
, Q :=

∞⋃
i=0

Q≤3i,

Pos(Q≤3i) := {f ∈ Q≤3i : f(t) ≥ 0 for every t ∈ R},

R≤3i :=

{∑3i
j=0 pjt

j

ti
: p0 = −p3ic

i
0, pj ∈ R

}
.

Theorem 6.1. Let p ∈ Pos(Q≤6k). Then there exist finitely many fi ∈ Q≤3k and gj ∈
R≤3k such that p =

∑
i f

2
i +

∑
j g

2
j .

Moreover, for C = Z(P12) the appropriate choices of f and V (k) in Theorem 2.3 are as

stated in Table 2.

Proof. Let Φ : R[Z(P12)] → Q be a map defined by Φ(p(x, y)) = p
(
t, c(t)

t

)
. Analogously

as in the proof of Theorem 4.8 we see that Φ is a ring isomorphism and that the vector

subspace R[Z(P12)]≤i is in one-to-one correspondence with the set Q≤3i under Φ. Using

Corollary 3.4, every extreme ray p of the cone Pos(Q≤6k) is of the form u2

t2k
for some

u =
∑3k

j=0 ujt
j ∈ R[t]≤3k such that u2

0 = u2
3kc

2k
0 . It follows that we either have u0 = u3kc

k
0

and u
tk

∈ Q≤3k or u0 = −u3kc
k
0 and u

tk
∈ R≤3k.

It remains to prove the moreover part. Let di(t) := ci − 2t3i and

BR≤3i
:=

{di(t)

ti
,
c(t)i−1

ti−1
, . . . ,

c(t)

t
, 1, t, . . . , t2i−1

}
be the basis for R≤3i. Extending the ring isomorphism Φ to the isomorphism between

quotient fields R(Z(P12)) and Quot(Q) of R[Z(P12)] and Q, respectively, note that

Φ−1(BR≤3k
) is equal to BV (k) from Table 2. □

For x ∈ C, we write Qx for the divisor [x : 1] on P1. We also write Q∞ for the divisor

[1 : 0].

Below we present a constructive solution to the nonsingular Z(P12)–TMP via the so-

lution to the corresponding (R \ {0})–TMP.
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Constructive proof of Corollary 2.6 for C = Z(P12). Using the correspondence as in the

proof of Theorem 6.1, the Z(P12)–TMP for L is equivalent to the (R \ {0})–TMP for

LQ≤6k
: Q≤6k → R, LQ≤6k

(p) := LZ(P12)(Φ
−1(p)). If LQ≤6k

is a (R \ {0})–mf, then it

extends to the (R \ {0})–mf

L̂ : L(2kQ0 + 4kQ∞) → R.

In the ordered basis{c(T )k

T k
,
dk(T )

T k
,
c(T )k−1

T k−1
,
c(T )k−2

T k−2
, . . . ,

c(T )

T
, 1, T, . . . , T 2k−1

}
of rows and columns, the strict square positivity and zhe (V (k), 1)–local strict square

positivity of LZ(P12) are equivalent to the partial positive definiteness of the matrix



c(T )k

Tk

dk(T )

Tk

c(T )k−1

Tk−1
· · ·

c(T )

T
1 T · · · T 2k−1

L̂( c
2k

t2k
) ? L̂( c

2k−1

t2k−1 ) · · · L̂( c
k+1

tk+1 ) L̂( c
k

tk
) L̂( ck

tk−1 ) · · · L̂(tk−1ck)

? L̂(
d2k
t2k

) L̂( c
k−1dk
t2k−1 ) · · · L̂( dk

tk
) L̂(tk−1dk)

L̂( c
2k−1

t2k−1 ) L̂( c
k−1dk
t2k−1 ) L̂( c

2k−2

t2k−2 ) · · · L̂( c
k

tk
) · · · · · · L̂(tk−1ck−1)

...
. . .

...

L̂( c
k

tk
) L̂(t2k−1)

...
. . .

...

L̂(tk−1ck) · · · · · · L̂(t2k−1) · · · · · · L̂(t2k−2)



.

The missing entries are at the positions (1, 2) and (2, 1), since the value L̂( c
kdk
t2k

) is un-

known. Then there exists an interval (a, b) ⊂ R, such that for every L̂( c
kdk
t2k

) ∈ (a, b), the

completion is positive definite (see e.g., [65, Lemma 2.4]) and for every such completion

the functional L̂ has a (3k + 1)–atomic (R \ {0})–rm by [67, Theorem 3.1]. □

Remark 6.2. By [64, Theorem 3.1], it follows that for one of the two positive semidefinite

completions of the partial matrix above, the (R\{0})–rm is (3k)–atomic. The proof is by

analysing the completion of the matrix of LZ(P12) in the usual ordered basis {T i : − k ≤
i ≤ 2k} of rows and columns. Then the variable is the moment of t4k and it also occurs

linearly in the left-upper corner of the matrix. This makes the analysis of the existence

of a (R \ {0})–rm in the psd cases tractable.

Let

BQ≤3i
:=

{c(t)i

ti
,
c(t)i−1

ti−1
, . . . ,

c(t)

t
, 1, t, . . . , t2i−1

}
be a basis for Q≤3i.

The following theorem solves the singular Z(P12)–TMP.

Theorem 6.3 (Singular Z(P12)–TMP). Let L : R[x, y]≤2k → R be a Z(P12)–singular

linear functional. Let V (k) is as in Table 2 above. Then the following are equivalent:

(1) L is a Z(P12)–moment functional.

(2) LZ(P12) is square positive and (V (k), 1)–locally square positive, and one of the fol-

lowing holds:
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(a) For U := Span
(
Φ−1

(
BQ≤3k

\ { ck

tk
}
))

it holds that

rankLZ(P12) = rank
(
(LZ(P12))|U

)
.

(b) For W := Span
(
Φ−1

(
BR≤3k

\ {dk
tk
}
))

it holds that

rankLZ(P12),V (k),1 = rank
(
(LZ(P12),V (k),1)|W

)
.

Proof. Following the constructive proof of Corollary 2.6 for C = Z(P12) via the solution to

the (R\{0})–TMP above and replacing positive definiteness with positive semidefiniteness,

the only addition is that a psd extension L̂ is not necessarily a (R \ {0})–mf. Let D :=

Q0 + 2Q∞. Since L is Z(P12)–singular and using [67, Theorem 3.1], (1) is equivalent to:

There is a square positive extension LL(2kD) : L(2kD) → R of LQ≤6k
with

rankLL(2kD) = rankLL(2kD−2Q0) = rankLL(2kD−2Q∞).
(6.1)

Let

(6.2) B :=
{c(t)k

tk
,
dk(t)

tk
,
c(t)k−1

tk−1
, . . . ,

c(t)

t
, 1, t, . . . , t2k−1

}
be a basis of L(kD). Let D̃ := kD −Q0 −Q∞. We have that

L(D̃) = Span

{
B \

{c(t)k

tk
,
dk(t)

tk

}}
.

[67, Theorem 3.1] also implies the following:

Fact. If (LL(2kD))|L(2D̃) : L(2D̃) → R is singular and admits some representing measure,

then its extension to L(2kD), generated by any measure, does not increase the rank of

the corresponding bilinear form.

Note that the rank conditions in (6.1) mean that in the matrix M , representing the

bilinear form of the extension LL(2kD) in the basis B, there is a relation

(6.3) γ
c(T )k

T k
+ δ

dk(T )

T k
= α01+

2k−1∑
j=1

αjT
j +

k−1∑
ℓ=1

βk
c(T )ℓ

T ℓ

with γ, δ not both equal to 0.

Let us now prove the implication (6.1) ⇒ (2). The square positivity and the (V (k), 1)–

local square positivity of LZ(P12) are clear. If δ = 0 in (6.3), then (2a) holds. If γ = 0,

then (2b) holds. It remains to study the case: γ ̸= 0 and δ ̸= 0. We separate two cases

according to the Z(P12)–singularity of L:

Case 1: LZ(P12) is singular. There are some α̃j, β̃k, γ̃ ∈ R, not all equal to 0, such that in

the matrix representation of LZ(P12) with respect to the basis BQ≤3k
, the relation

(6.4) γ̃
c(T )k

T k
=

2k−1∑
j=0

α̃jT
j +

k−1∑
ℓ=1

β̃k
c(T )ℓ

T ℓ
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holds. If γ̃ ̸= 0, then (2a) holds. Otherwise, γ̃ = 0. By the extension principle [31, Propo-

sition 2.4], M |L(D̃) is singular. By Fact above, (2a) and (2b) hold.

Case 2: LZ(P12) is not singular, but LZ(P12) is (V (k), 1)–locally singular. The proof is

analogous to Case 1, only that one starts with the relation

(6.5) δ̃
c(T )k

T k
=

2k−1∑
j=0

α̃jT
j +

k−1∑
ℓ=1

β̃k
c(T )ℓ

T ℓ

in the matrix, representing LZ(P12),V (k),1, in the basis BR≤3k
.

It remains to prove the implication (2) ⇒ (6.1). The existence of a square positive

extension is clear from the positivity assumptions on LC . The rank condition in (6.1)

follows from either (6.4), where γ̃ ̸= 0 under the assumption (2a), or (6.5), where δ̃ ̸= 0

under the assumption (2b). □

7. Z(P13)–TMP for P13(x, y) = y − x3

Note that (x(t), y(t)) = (t, t3), t ∈ R is a parametrization of Z(P ). Let

P≤3i :=

{
3i∑
j=0

pjt
j : p3i−1 = 0, pj ∈ R

}
, P :=

∞⋃
i=0

P≤3i,

Pos(P≤3i) := {f ∈ P≤3i : f(t) ≥ 0 for every t ∈ R}.

Theorem 7.1. The following statements are equivalent:

(1) p ∈ Pos(P≤6k).

(2) There exist finitely many fi ∈ P≤3k, gj ∈ R[t]≤3k−1 such that p =
∑

i f
2
i +

∑
j g

2
j .

Moreover, for C = Z(P13) the appropriate choices of f and V (k) in Theorem 2.3 are as

stated in Table 2.

Proof. The nontrivial implication is (1) ⇒ (2). Let Φ : R[Z(P13)] → P be a map defined

by Φ(p(x, y)) = p
(
t, t3

)
. Analogously as in the proof of Theorem 4.8 we see that Φ is a ring

isomorphism and that the vector subspace R[Z(P13)]≤i is in one-to-one correspondence

with the set P≤3i under Φ. Using Corollary 3.4, every extreme ray p of the cone Pos(P≤6k)

is of the form u2 for some u =
∑3k

j=0 ujt
j ∈ R[t]≤3k such that 0 = (u2)6k−1 = 2u3k−1u3k. If

u3k−1 = 0, then u ∈ Q≤3k. Else u3k = 0 and u ∈ R[x]≤3k−1.

It remains to prove the moreover part. Notice that Φ−1(R[x]≤3k−1) = V (k) is equal to

BV (k) from Table 2. □

Example 7.2. Let k = 3 and βij = L(xiyj) for i, j ≥ 0, i + j ≤ 6. Then the square

positivity and the (V (3), 1)–local square positivity of LZ(P13) are equivalent to the partial
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positive semidefiniteness of the following Hankel matrix:



1 T · · · T 7 T 8 T 9

1 γ0 γ1 · · · γ7 γ8 γ9
T γ1 γ2 · · · γ8 γ9 γ10
...

...
. . .

...
...

T 7 γ7 γ8 · · · γ14 γ16

T 8 ...
. . . ?

T 9 γ9 γ10 · · · γ16 ? γ18


,

where γi := βi mod 3,⌊ i
3
⌋ for each i. Note that the missing entries are at the positions (9, 10)

and (10, 9), since the value LZ(P13)(y
5x2) is unknown. The matrix representation of LZ(P13)

(resp., LZ(P13),V (k),1) is the restriction of this matrix to a submatrix an all rows and columns

but the one indexed with T 8 (resp., but the one indexed with T 9).

Remark 7.3. The first solution to the Z(P )–TMP is [32] and is based on the flat ex-

tension theorem. Another approach by solving the equivalent R–TMP from Example 7.2

is presented in [66, Section 3]. The third approach using the result on the core variety is

[36].

8. Z(P )–TMP for reducible cubic polynomial P (x, y) ∈ R[x, y], degP = 3

Assume the notation as in §2, §3. Let P be as in the title of the section.

Proposition 8.1. Up to invertible affine linear change of variables every reducible cubic

polynomial P such that Z(P ) ̸⊆ Z(Q) for any Q ∈ R[x, y]≤2, has one of the following

forms:

(i) Circular type 1: P14(x, y) = y(ay + x2 + y2), a ∈ R \ {0}.
(ii) Circular type 2: P15(x, y) = y(1 + ay + x2 + y2), |a| > 2.

(iii) Circular type 3: P16(x, y) = y(1 + ay − x2 − y2), a ∈ R.
(iv) Parabolic type 1: P17(x, y) = y(x2 − y).

(v) Parabolic type 2: P18(x, y) = y(x− y2).

(vi) Parabolic type 3: P19(x, y) = y(1 + y + x2).

(vii) Parabolic type 4: P20(x, y) = y(1 + y − x2).

(viii) Hyperbolic type 1: P21(x, y) = y(1− xy).

(ix) Hyperbolic type 2: P22(x, y) = y(x+ y + axy), a ∈ R \ {0}.
(x) Hyperbolic type 3: P23(x, y) = y(ay + x2 − y2), a ∈ R \ {0}.
(xi) Hyperbolic type 4: P24(x, y) = y(1 + ay + x2 − y2), |a| ≠ 2.

(xii) Hyperbolic type 5: P25(x, y) = y(1 + ay − x2 + y2).

(xiii) Parallel lines type: P26(x, y) = y(a+ y)(b+ y), a, b ∈ R \ {0}, a ̸= b.

(xiv) Intersecting lines type 1: P27(x, y) = y(x− y)(x+ y),

(xv) Intersecting lines type 2: P28(x, y) = yx(y + 1),

(xvi) Intersecting lines type 3: P29(x, y) = y(1 + x− y)(1− x− y).
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Proof. If we combine types (ii), (iii), (vi), (vii), (xi), (xii) and (xvi) into a common type

y(1 + ay + bx2 + cy2), b ̸= 0, called mixed type, then this is [65, Proposition 3.1]. (Note

that in the statement of the latter type (iv) is missing, but in the proof it is Case 2.1.1.1.

Also the types (x) and (xiv) are combined under Hyperbolic type 3. Here we separate the

case a ̸= 0, which is the type (x), from a = 0, which is the type (xiv).

We will show that the above mixed type actually decomposes into the types men-

tioned in the first sentence of the proof. Applying an alt (x, y) 7→ (
√
bx, y) if b > 0

and (x, y) 7→ (
√
−bx, y) if b < 0, we can first split the mixed type into two types, i.e.,

M1 : y(1+ ay+x2+ cy2) and M2 : y(1+ ay−x2+ cy2). Further on, according to the sign

of c we separate three cases: c = 0, c > 0 and c < 0.

Case 1: c = 0. We have M1.1 : y(1 + ay + x2) or M2.1 : y(1 + ay − x2). Further, if

a = 0, then we have M1.1.1 : y(1 + x2) or M2.1.1 : y(1− x2). The case M1.1.1 does not fulfil

the assumption Z(P ) ̸⊆ Z(Q), Q ∈ R[x, y]≤2, while in the case M2.1.1, after applying

an alt (x, y) 7→ (x − y, y), we get the type (xvi) in the statement of the proposition. If

a ̸= 0, then we can apply an alt (x, y) 7→ (x, ay) and get one of M1.1.2 : y(1 + y + x2) and

M2.1.2 : y(1 + y − x2), which are the types (vi) and (vii).

Case 2: c ̸= 0. We can apply an alt (x, y) 7→ (x,
√
cy) if c > 0 and (x, y) 7→ (x,

√
−cy) if

c < 0, and get one of the types M1.2.1 : y(1 + ay + x2 + y2), M1.2.2 : y(1 + ay + x2 − y2),

M2.2.1 : y(1 + ay − x2 + y2) or M2.2.2 : y(1 + ay − x2 − y2). Type M1.2.1 with |a| > 2

give the type (ii) in the statement of the proposition. The type M1.2.1 with |a| ≤ 2 does

not fulfil the assumption Z(P ) ̸⊆ Z(Q), Q ∈ R[x, y]≤2, since Z(y(1 + ay + x2 + y2)) =

Z(y((y + a
2
)2 + x2 + 1− a2

4
)) is a union of a line and at most one point in R2. The type

M1.2.2 gives the type (xi) in the statement of the proposition, type M2.2.1 gives type (xii)

if |a| ≠ −2 and type (xv) if |a| = 2 (after possibly applying an alt (x, y) 7→ (x,−y)), while

type M2.2.2 gives type (iii). □

The main results of this section are explicit descriptions of the pair (f, V (k)) in Theorem

2.3 for each C = Z(Pi) from Proposition 8.1 above.

Throughout the whole section, for x ∈ C we write Qx for the divisor [x : 1] on P1. We

also write Q∞ for the divisor [1 : 0].

8.1. Circular type 1. Let P14 be as in Proposition 8.1 above. A circle ay+ x2 + y2 = 0,

centered in (0,−a
2
) and having radius −a

2
, has a rational parametrization

(x(t), y(t)) =
(
− a

2

t2 − 1

t2 + 1
,−a

2

(t+ 1)2

t2 + 1

)
, t ∈ R.

Let D := Qi +Q−i and

Circ1 :=

{
(f, g) ∈ R[s]× R

[ 1

t2 + 1
,

t

t2 + 1

]
: f(0) = g(−1), f ′(0) =

2g′(−1)

a

}
,

(Circ1)≤i :=

{
(f, g) ∈ R[s]≤i × L(iD) : f(0) = g(−1), f ′(0) =

2g′(−1)

a

}
,

Pos((Circ1)≤i) := {(f, g) ∈ (Circ1)≤i : f(s) ≥ 0, g(t) ≥ 0 for every (s, t) ∈ R2},
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(C̃irc1)≤i := {(f, g) ∈ R[s]≤i × L(iD) : f(0) = g(−1) = 0}.

Theorem 8.2. Let (p1, p2) ∈ Pos((Circ1)≤2k). Then there exist finitely many (f1;i, f2,i) ∈
(Circ1)≤k and (g1;j, g2;j) ∈ (C̃irc1)≤k such that

(p1, p2) =
∑

i
(f 2

1;i, f
2
2;i) +

∑
j
(g21;j, g

2
2;j).

Moreover, for C = Z(P14) the appropriate choices of f and V (k) in Theorem 2.3 are as

stated in Table 3.

Proof. Let Φ : R[Z(P14)] → Circ1 be a map defined by

Φ(p(x, y)) :=
(
p(s, 0)︸ ︷︷ ︸
Φ1(p)

, p
(
− a

2

t2 − 1

t2 + 1
,−a

2

(t+ 1)2

t2 + 1︸ ︷︷ ︸
Φ2(p)

))
.

Clearly Φ is a well–defined ring homomorphism, because Φ(p) = 0 for every p ∈ I and

(Φ1(p))(0) = (Φ2(p))(−1) = p(0, 0),

(Φ1(p))
′(0) = (p(s, 0))′(0) = the coefficient of p at x,

(Φ2(p))
′(−1) =

(
p
(
− a

2

t2 − 1

t2 + 1
,−a

2

(t+ 1)2

t2 + 1

))′
(−1) =

a

2
· (Φ1(p))

′(0)

for every p ∈ R[C]. The inclusion Φ(R[C]≤i) ⊆ (Circ1)≤i is clear. Since

dimΦ(R[C]≤i) = dim(Circ1)≤i = 3i,

we have equality for every i and Φ is also one-to-one.

Let p = (p1, p2) be an extreme ray the cone Pos((Circ1)≤2k). Using Corollary 3.4,

(p1, p2) = (u2
1, u

2
2) for some u1 ∈ R[s]≤k, u2 ∈ L(kD), such that u2

1(0) = u2
2(−1) and

(u2
1)

′(0) =
2(u2

2)
′(−1)

a
. So u1(0) = ±u2(−1) and 2u1(0)u

′
1(0) = 2

a
u2(−1)u′

2(−1). Upon

multiplying u2 with −1 if necessary we may assume u1(0) = u2(−1). If u1(0) = u2(−1) ̸=
0, then u′

1(0) =
2u′

2(−1)

a
, in which case (u1, u2) ∈ (Circ1)≤k. Otherwise u1(0) = u2(−1) = 0

in which case (u1, u2) ∈ (C̃irc1)≤k.

It remains to prove the moreover part. Let

B≤i = {1, x, y, x2, xy, y2, . . . , xj, xj−1y, xj−2y2, . . . xi, xi−1y, xi−2y2}

be a basis for R[C]≤i. Let h(x, y) = ay+x2+y2

x
and extend Φ to h(x, y) by the same rule.

Note that: Φ(h) = (s, 0) ∈ (C̃irc1)≤i. Replace 1 by h to obtain B̃≤i = B≤i \ {1} ∪ {h}.
Note that Φ(B̃≤i) is a basis for (C̃irc1)≤i. □

8.2. Circular type 2. Let P15 be as in Proposition 8.1 above. Upon applying and alt

(x, y) 7→ (x,−y) we may assume that a < 0. A circle 1 + ay + x2 + y2 = 0, centered in

(0,−a
2
) and having radius r :=

√
−1 + a2

4
, has a rational parametrization

(x(t), y(t)) =
(
r

2t

t2 + 1
, r

t2 − 1

t2 + 1
− a

2

)
, t ∈ R.

A short computation shows that

(x(t0), y(t0)) = (i, 0) for t0 = − i

2
(a+

√
−4 + a2).
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Let D := Qi +Q−i and

Circ2 :=
{
(f, g) ∈ R[s]× R

[ 1

t2 + 1
,

t

t2 + 1

]
: f(i) = g(t0)

}
,

(Circ2)≤i := {(f, g) ∈ R[s]≤i × L(iD) : f(i) = g(t0)},
Pos((Circ2)≤i) := {(f, g) ∈ (Circ2)≤i : f(s) ≥ 0, g(t) ≥ 0 for every (s, t) ∈ R2}.

Theorem 8.3. Let (p1, p2) ∈ Pos((Circ2)≤2k). Then there exist finitely many (f1;i, f2,i) ∈
(Circ2)≤k, g1;j ∈ R[s]≤k−1, h2;ℓ ∈ L((k − 1)D) such that

(p1, p2) =
∑

i
(f 2

1;i, f
2
2;i) +

∑
j
((1 + s2)g21;j, 0) +

∑
ℓ
(0, y(t)h2

2;ℓ).

Moreover, for C = Z(P15) the appropriate choices of P1 and P2 in Theorem 2.4 are y

and 1 + ay + x2 + y2.

Proof. Let Φ : R[Z(P15)] → Circ2 be a map defined by

Φ(p(x, y)) =

(
p(s, 0), p

(
r

2t

t2 + 1
, r

t2 − 1

t2 + 1
− a

2

))
Analogously as in the proof of Theorem 8.2 we see that Φ is a ring isomorphism and that

the vector subspace R[Z(P15)]≤i is in one-to-one correspondence with the set (Circ2)≤3i

under Φ.

Let p = (p1, p2) be an extreme ray of the cone Pos((Circ2)≤2k). Using Corollary 3.4,

one of the following cases occurs:

Case 1: p1 ̸= 0, p2 ̸= 0 and each component p1, p2 has all zeroes and poles of even order.

This implies that (p1, p2) = (u2
1, u

2
2) for some u1 ∈ R[s]≤k, u2 ∈ L(kD) such that

u2
1(i) = u2

2(t0). Further on, u1(i) = ±u2(t0). Upon multiplying with −1 we may assume

that u1(i) = u2(t0), whence (u1, u2) ∈ (Circ2)≤k.

Case 2: p1 = 0 or p2 = 0.

Case 2.1: p1 = 0. In this case p2 vanishes in t0 and −t0, since these two points corre-

spond to (i, 0) and (−i, 0) in the ambient curve. Since y(t) vanishes in t0,−t0 and has a

quadratic numerator, if follows that p2(t) = y(t)mr2(t) for some m and r2 does not vanish

in ±t0. Since y(t) is positive on the circle, it follows that r2(t) ≥ 0 for every t ∈ R.
Moreover, r2 has only real zeroes and poles of even order. So it is of the form r2 = u2

2 for

some u2 ∈ L
(
(k−m)D

)
. Hence, p2 = (y(t)m/2u2)

2 if m is even and p2 = y(t)(y(t)⌊m/2⌋u2)
2

if m is odd, whence (0, p2) is of the desired form.

Case 2.2: p2 = 0. In this case p1 vanishes in i, −i. It follows that p1(s) = (1+ s2)mq1(s),

q2(s) ≥ 0 for every s ∈ R and q has only real zeroes. Hence, there is u1 ∈ R[t] such that

p1(s) = ((1 + s2)m/2u1)
2 if m is even and p1(s) = (1 + s2)((1 + s2)⌊m/2⌋u1)

2 if m is odd,

whence (p1, 0) is of the desired form.

The moreover part is clear. □
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8.3. Circular type 3. Let P16 be as in Proposition 8.1 above. A circle 1+ay−x2−y2 = 0,

centered in (0, a
2
) and having radius r :=

√
1 + a2

4
, has a rational parametrization

(x(t), y(t) =
(
r

2t

t2 + 1
, r

t2 − 1

t2 + 1
+

a

2

)
, t ∈ R.

A short computation shows that for

t− =
1

2

(
a−

√
4 + a2

)
, t+ =

1

2

(
− a+

√
4 + a2

)
we have that

(x(t−), y(t−)) = (−1, 0), (x(t+), y(t+)) = (1, 0).

Let D := Qi +Q−i and

Circ3 :=
{
(f, g) ∈ R[s]× R

[ 1

t2 + 1
,

t

t2 + 1

]
: f(−1) = g(t−), f(1) = g(t+)

}
,

(Circ3)≤i := {(f, g) ∈ R[s]≤i × L(iD) : f(−1) = g(t−), f(1) = g(t+)},
Pos((Circ3)≤i) := {(f, g) ∈ (Circ3)≤i : f(s) ≥ 0, g(t) ≥ 0 for every (s, t) ∈ R2},

(C̃irc3)≤i := {(f, g) ∈ R[s]≤i × L(iD) : f(−1) = −g(t−), f(1) = g(t+)}.

Theorem 8.4. Let (p1, p2) ∈ Pos((Circ3)≤2k). Then there exist finitely many (f1;i, f2,i) ∈
(Circ3)≤k and (g1;j, g2;j) ∈ (C̃irc3)≤k such that

(p1, p2) =
∑

i
(f 2

1;i, f
2
2;i) +

∑
j
(g21;j, g

2
2;j).

Moreover, for C = Z(P16) the appropriate choices of f and V (k) in Theorem 2.3 are as

stated in Table 3.

Proof. Let Φ : R[Z(P16)] → Circ2 be a map defined by

Φ(p(x, y)) =

(
p(s, 0), p

(
r

2t

t2 + 1
, r

t2 − 1

t2 + 1
+

a

2

))
Analogously as in the proof of Theorem 8.2 we see that Φ is a ring isomorphism and that

the vector subspace R[Z(P16)]≤i is in one-to-one correspondence with the set (Circ3)≤3i

under Φ.

Let p = (p1, p2) be an extreme ray of the cone Pos((Circ3)≤2k). Using Corollary 3.4,

(p1, p2) = (u2
1, u

2
2) for some u1 ∈ R[s]≤k, u2 ∈ L(iD) with u2

1(−1) = u2
2(t−) and u2

1(1) =

u2
2(t+). Hence, u1(−1) = ±u2(t−) and u1(1) = ±u2(t+). Upon multiplying with −1 we

may assume that u1(1) = u2(t+). If u1(−1) = u2(t−), then (u1, u2) ∈ (Circ3)≤k. Otherwise

u1(−1) = −u2(t−) and (u1, u2) ∈ (C̃irc3)≤k.

It remains to prove the moreover part. Let

B≤i = {1, x+ 1, x2 − 1, x(x2 − 1), . . . , xk−2(x2 − 1), y, yx, . . . , yxk−1, y2, y2x, . . . , y2xk−2}

be a basis for R[Z(P16)]≤i. Let h(x, y) := 1− x− 21+ay−x2−y2

1+x
and extend Φ to h(x, y) by

the same rule. Note that: Φ(h) = (−(1− x), 1− x) ∈ (C̃irc3)≤i. Replace 1 by h to obtain

B̃≤i = B≤i \ {1} ∪ {h}. Note that Φ(B̃≤i) is a basis for (C̃irc3)≤i. □
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8.4. Parabolic type 1. Let P17 be as in Proposition 8.1 above. Let

Par1 := {(f, g) ∈ R[s]× R[t] : f(0) = g(0), f ′(0) = g′(0)},
(Par1)≤i := {(f, g) ∈ R[s]≤i × R[t]≤2i : f(0) = g(0), f ′(0) = g′(0)},

Pos((Par1)≤i) := {(f, g) ∈ (Par1)≤i : f(s) ≥ 0, g(t) ≥ 0 for every (s, t) ∈ R2},

(P̃ar1)≤i := {(f, g) ∈ R[s]≤i × R[t]≤2i : f(0) = g(0) = 0}.

Theorem 8.5. Let (p1, p2) ∈ Pos((Par1)≤2k). Then there exist finitely many (f1;i, f2,i) ∈
(Par1)≤k and (g1;j, g2;j) ∈ (P̃ar1)≤k such that

(p1, p2) =
∑

i
(f 2

1;i, f
2
2;i) +

∑
j
(g21;j, g

2
2;j).

Moreover, for C = Z(P17) the appropriate choices of f and V (k) in Theorem 2.3 are as

stated in Table 3.

Proof. Let Φ : R[Z(P17)] → Par1 be a map defined by Φ(p(x, y)) = (p(s, 0), p(t, t2)).

Analogously as in the proof of Theorem 8.2 we see that Φ is a ring isomorphism and that

the vector subspace R[Z(P17)]≤i is in one-to-one correspondence with the set (Par1)≤3i

under Φ.

Let p = (p1, p2) be an extreme ray the cone Pos((Par1)≤2k). Using Corollary 3.4,

(p1, p2) = (u2
1, u

2
2) for some u1 ∈ R[t]≤k, u2 ∈ R[s]≤2k such that u2

1(0) = u2
2(0) and

2u1(0)u
′
1(0) = (u2

1)
′(0) = (u2

2)
′(0) = 2u2(0)u

′
2(0). So u1(0) = ±u2(0). Multiplying u2

with −1 if necesarry we may assume that u1(0) = u2(0). If u1(0) = u2(0) = 0, then

(u1, u2) ∈ (P̃ar1)≤k. Else u′
1(0) = u′

2(0), and (u1, u2) ∈ (Par1)≤k.

It remains to prove the moreover part. Let

B≤i = {1, x, x2, . . . , xk, y, y2, . . . , yk, yx, y2, y2x, . . . , yk−1x}

be a basis for R[Z(P17)]≤i. Let h(x, y) := y
x
and extend Φ to h(x, y) by the same rule.

Note that: Φ(h) = (0, t) ∈ (P̃ar2)≤i. Replace 1 by h to obtain B̃≤i = B≤i \{1}∪{h}. Note
that Φ(B̃≤i) is a basis for (P̃ar2)≤i. □

8.5. Parabolic type 2. Let P18 be as in Proposition 8.1 above. Let

Par2 := {(f, g) ∈ R[s]× R[t] : f(0) = g(0)},
(Par2)≤i := {(f, g) ∈ R[s]≤i × R[t]≤2i : f(0) = g(0), fi = g2i},

Pos((Par2)≤i) := {(f, g) ∈ Par≤i : f(s) ≥ 0, g(t) ≥ 0 for every (s, t) ∈ R2},

(P̃ar2)≤i := {(f, g) ∈ R[s]≤i × R[t]≤2i : f(0) = g(0), fi = −g2i}.

Theorem 8.6. Let (p1, p2) ∈ Pos((Par2)≤2k). Then there exist finitely many (f1;i, f2,i) ∈
(Par2)≤k and (g1;j, g2;j) ∈ (P̃ar2)≤k such that

(p1, p2) =
∑

i
(f 2

1;i, f
2
2;i) +

∑
j
(g21;j, g

2
2;j).

Moreover, for C = Z(P18) the appropriate choices of f and V (k) in Theorem 2.3 are as

stated in Table 3.
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Proof. Let Φ : R[Z(P18)] → Par2 be a map defined by Φ(p(x, y)) = (p(s, 0), p(t2, t)).

Analogously as in the proof of Theorem 8.2 we see that Φ is a ring isomorphism and that

the vector subspace R[Z(P18)]≤i is in one-to-one correspondence with the set (Par2)≤3i

under Φ.

Let p = (p1, p2) be an extreme ray the cone Pos((Par2)≤2k). Using Corollary 3.4,

(p1, p2) = (u2
1, u

2
2) for some u1 ∈ R[t]≤k, u2 ∈ R[s]≤2k such that u2

1(0) = u2
2(0) and

(u1)
2
2k = (u2)

2
4k. So u1(0) = ±u2(0) and (u1)k = ±(u2)2k. Multiplying u2 with −1 if

necesarry we may assume that u1(0) = u2(0). Then (u1, u2) ∈ (Par2)≤k if (u1)k = (u2)2k
and (u1, u2) ∈ (P̃ar2)≤k if (u1)k = −(u2)2k.

It remains to prove the moreover part. Let

B(Par2)≤i
:= {(1, 1), (s, t), (s2, t2), . . . , (si, t2i), (0, t), (0, t2), . . . , (0, t2i−1)}.

be a basis for R[Z(P18)]≤i. Replacing (si, t2i) by (si,−t2i) we get a basis B(P̃ar2)≤i
for

(P̃ar2)≤i. Note that B̃i = Φ−1(B(P̃ar2)≤i
) = Bi \ {xi} ∪ {xi − 2y2xi−1}, which concludes the

proof of the theorem. □

8.6. Parabolic type 3. Let P19 be as in Proposition 8.1 above. A parametrization of

the parabola 1 + y + x2 = 0 is

(x(t), y(t)) = (t,−t2 − 1), t ∈ R.

Notice that (x(i), y(i)) = (i, 0). Let

Par3 := {(f, g) ∈ R[s]× R[t] : f(i) = g(i)},
(Par3)≤i := {(f, g) ∈ R[s]≤i × R[t]≤2i : f(i) = g(i)},

Pos((Par3)≤i) := {(f, g) ∈ (Par3)≤i : f(s) ≥ 0, g(t) ≥ 0 for every (s, t) ∈ R2}.

Theorem 8.7. Let (p1, p2) ∈ Pos((Par3)≤2k). Then there exist finitely many (f1;i, f2,i) ∈
(Par3)≤k, g1;j ∈ R[s]≤k−1 and h2;ℓ ∈ R[t]≤2k−1 such that

(p1, p2) =
∑

i
(f 2

1;i, f
2
2;i) +

∑
j
((1 + s2)g21;j, 0) +

∑
ℓ
(0, (1 + t2)h2

2;ℓ).

Moreover, for C = Z(P19) the appropriate choices of P1 and P2 in Theorem 2.4 are y

and 1 + y + x2.

Proof. Let Φ : R[Z(P19)] → Par3 be a map defined by

Φ(p(x, y)) = (p(s, 0), p(t,−t2 − 1))

Analogously as in the proof of Theorem 8.2 we see that Φ is a ring isomorphism and that

the vector subspace R[Z(P19)]≤i is in one-to-one correspondence with the set (Par3)≤3i

under Φ.

Let p = (p1, p2) be an extreme ray of the cone Pos((Par3)≤2k). Using Corollary 3.4, one

of the following cases occurs:

Case 1: p1 ̸= 0, p2 ̸= 0 and each component p1, p2 has all zeroes and poles of even order.

This implies that (p1, p2) = (u2
1, u

2
2) for some u1 ∈ R[s]≤k, u2 ∈ R[t]≤2k. such that

u2
1(i) = u2

2(i). So u1(i) = ±u2(i). Upon multiplying with −1 we may assume that
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u1(i) = u2(i). Hence, (u1, u2) ∈ (Par3)≤k.

Case 2: p1 = 0 or p2 = 0.

Case 2.1: p1 = 0. In this case p2 vanishes in i and −i. It follows that p2(t) =

(1+ t2)mq2(t), m ∈ N, q2(t) ≥ 0 for every t ∈ R and q has only real zeroes. Hence, there is

u2 ∈ R[t] such that p2(t) = ((1+t2)m/2u2)
2 ifm is even and p2(t) = (1+t2)((1+t2)⌊m/2⌋u2)

2

if m is odd, whence (0, p2) is of the desired form.

Case 2.2: p2 = 0. In this case p1 vanishes in i, −i. If follows that p1(s) = (1+ s2)mq1(s),

m ∈ N, q1(s) ≥ 0 for every s ∈ R and q1 has only real zeroes. Hence, there is u1 ∈ R[s]
such that p1(s) = ((1 + s2)m/2u1)

2 if m is even and p1(s) = (1+ s2)((1 + s2)⌊m/2⌋u1)
2 if m

is odd, whence (p1, 0) is of the desired form.

The moreover part is clear. □

8.7. Parabolic type 4. Let P20 be as in Proposition 8.1 above. A parametrization of

the parabola 1 + y − x2 = 0 is

(x(t), y(t)) = (t, t2 − 1), t ∈ R.

Let

Par4 := {(f, g) ∈ R[s]× R[t] : f(−1) = g(−1), f(1) = g(1)},
(Par4)≤i := {(f, g) ∈ R[s]≤i × R[t]≤2i : f(−1) = g(−1), f(1) = g(1)},

Pos((Par4)≤i) := {(f, g) ∈ (Par4)≤i : f(s) ≥ 0, g(t) ≥ 0 ∀(s, t) ∈ R2},

(P̃ar4)≤i := {(f, g) ∈ R[s]≤i × R[s]≤2i : f(1) = g(1), f(−1) = −g(−1)}.

Theorem 8.8. Let (p1, p2) ∈ Pos((Par4)≤2k). Then there exist finitely many (f1;i, f2,i) ∈
(Par4)≤k and (g1;j, g2;j) ∈ (P̃ar4)≤k such that

(p1, p2) =
∑

i
(f 2

1;i, f
2
2;i) +

∑
j
(g21;j, g

2
2;j).

Moreover, for C = Z(P20) the appropriate choices of f and V (k) in Theorem 2.3 are as

stated in Table 3.

Proof. Let Φ : R[Z(P20)] → Par4 be a map defined by

Φ(p(x, y)) = Φ(p(x, y)) =
(
p(s, 0), p(t, t2 − 1)

)
Analogously as in the proof of Theorem 8.2 we see that Φ is a ring isomorphism and that

the vector subspace R[Z(P20)]≤i is in one-to-one correspondence with the set (Par4)≤3i

under Φ.

Let p = (p1, p2) be an extreme ray the cone Pos((Par4)≤2k). Using Corollary 3.4,

(p1, p2) = (u2
1, u

2
2) for some u1 ∈ R[s]≤k, u2 ∈ R[t]≤2k such that u2

1(±) = u2
2(±). So

u1(−1) = ±u2(−1) and u1(1) = ±u2(1). Upon multiplying with −1 we may assume

that u1(1) = u2(1). If u1(−1) = u2(−1), then (u1, u2) ∈ (Par4)≤k. Otherwise u1(−1) =

−u2(−1) and (u1, u2) ∈ (P̃ar4)≤k.
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It remains to prove the moreover part. Let

B≤i = {1, x+ 1, x2 − 1, x(x2 − 1), . . . , xk−2(x2 − 1), y, yx, y2, y2x, . . . , yk−1, yk−1x, yk}

be a basis for R[Z(P20)]≤i. Let h(x, y) := 1 − x − 21+y−x2

1+x
and extend Φ to h(x, y) by

the same rule. Note that: Φ(h) = (−(1− x), 1− x) ∈ (P̃ar4)≤i. Replace 1 by h to obtain

B̃≤i = B≤i \ {1} ∪ {h}. Note that Φ(B̃≤i) is a basis for (P̃ar4)≤i. □

8.8. Hyperbolic type 1. Let P21 be as in Proposition 8.1 above. A rational parametriza-

tion of the hyperbola 1 − xy = 0 is given by (x(t), y(t)) =
(
t, 1

t

)
, t ∈ R \ {0}. Let

D = Q0 +Q∞ and

Hyp1 := R[s]× R
[
t, t−1

]
,

(Hyp1)≤i :=
{
(f, g) ∈ R[s]≤i × L(iD) : fi−1 = gi−1, fi = gi,

where f(s) =
∑i

j=0
fjs

j, fj ∈ R and g(t) =
∑i

j=−i
gjt

j, gj ∈ R
}
,

Pos((Hyp1)≤i) := {(f, g) ∈ (Hyp1)≤i : f(s) ≥ 0, g(t) ≥ 0 for every (s, t) ∈ R× (R \ {0})},

(H̃yp1)≤i = R[s]≤i−1 × L(iD −Q∞).

Theorem 8.9. Let (p1, p2) ∈ Pos((Hyp1)≤2k). Then there exist finitely many (f1;i, f2,i) ∈
(Hyp1)≤k and (g1;j, g2;j) ∈ (H̃yp1)≤k such that

(p1, p2) =
∑

i
(f 2

1;i, f
2
2;i) +

∑
j
(g21;j, g

2
2;j).

Moreover, for C = Z(P21) the appropriate choices of f and V (k) in Theorem 2.3 are as

stated in Table 3.

Proof. Let Φ : R[Z(P21)] → Hyp1 be a map with Φ(p(x, y)) = (p(s, 0), p(t, t−1)). Analo-

gously as in the proof of Theorem 8.2 we see that Φ is a ring isomorphism and that the

vector subspace R[Z(P21)]≤i is in one-to-one correspondence with the set (Hyp1)≤3i under

Φ.

Let p = (p1, p2) be an extreme ray the cone Pos((Hyp1)≤2k). Using Corollary 3.4,

(p1, p2) = (u2
1, u

2
2) for some u1 ∈ R[s]≤k, u2 =

ũ2

ti
, ũ2 ∈ R[t]≤i, i ≤ k, such that (u2

1)2k−1 =

(ũ2
2)2k−1, (u

2
1)2k = (ũ2

2)2k. So (u1)k = ±(ũ2)k and

2(u1)k(u1)k−1 = 2(ũ2)k(ũ2)k−1.

Upon multiplying u2 with−1 if necessary we may assume (u1)k = (ũ2)k. If (u1)k = (ũ2)k ̸=
0, then (u1)k−1 = (ũ2)k−1, in which case (u1, u2) ∈ (Hyp1)≤k. Otherwise (u1)k = (ũ2)k = 0

in which case (u1, u2) ∈ (H̃yp1)≤k.

It remains to prove the moreover part. Let

B≤i = {1, x, y, x2, xy, y2, . . . , xj, xj−1y, yj, . . . xi, xi−1y, yi}

be a basis for R[Z(P21)]≤i. Replace xi by yxi to obtain B̃≤i = B≤i \ {xi} ∪ {yxi}. Note
that Φ(B̃≤i) is a basis for (H̃yp1)≤i. □
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8.9. Hyperbolic type 2. Let P22 be as in Proposition 8.1 above. Let D = Q− 1
a
+ Q∞

and

Hyp2 := {(f, g) ∈ R[s]× R
[
t,

1

1 + at

]
: f(0) = g(0)},

(Hyp2)≤i :=
{
(f, g) ∈ R[s]≤i × L(iD) : f(0) = g(0), fi =

g2i
ai

,

where g(t) =

∑2i
j=0 gjt

j

(1 + at)i

}
,

Pos((Hyp2)≤i) := {(f, g) ∈ (Hyp2)≤i : f(s) ≥ 0, g(t) ≥ 0 for every (s, t) ∈ R2},

(H̃yp2)≤i :=
{
(f, g) ∈ R[s]≤i × L(iD) : f(0) = g(0), fi = −g2i

ai
,

where g(t) =

∑2i
j=0 gjt

j

(1 + at)i

}
.

Theorem 8.10. Let (p1, p2) ∈ Pos((Hyp2)≤2k). Then there exist finitely many (f1;i, f2,i) ∈
(Hyp2)≤k and (g1;j, g2;j) ∈ (H̃yp2)≤k such that

(p1, p2) =
∑

i
(f 2

1;i, f
2
2;i) +

∑
j
(g21;j, g

2
2;j).

Moreover, for C = Z(P22) the appropriate choices of f and V (k) in Theorem 2.3 are as

stated in Table 3.

Proof. Let Φ : R[Z(P22)] → Hyp1 be a map with Φ(p(x, y)) =
(
p(s, 0), p

(
t,− t

1+at

))
.

Analogously as in the proof of Theorem 8.2 we see that Φ is a ring isomorphism and that

the vector subspace R[Z(P22)]≤i is in one-to-one correspondence with the set (Hyp2)≤3i

under Φ.

Let p = (p1, p2) be an extreme ray the cone Pos((Hyp2)≤2k). Using Corollary 3.4,

(p1, p2) = (u2
1, u

2
2) for some u1 ∈ R[s]≤k, u2 ∈ L(kD) such that u2

1(0) = u2
2(0) and (u2

1)2k =
(u2

2)4k
a2k

. So u1(0) = ±u2(0) and (u1)k = ± (u2)2k
ak

. Multiplying u2 by −1 if necessary, we may

assume that u1(0) = u2(0). Then u1 ∈ (Hyp2)≤k if (u1)k = (u2)2k
ak

and u1 ∈ (H̃yp2)≤k if

(u1)k = − (u2)2k
ak

.

It remains to prove the moreover part. Let

B≤i = {1, x, y, x2, xy, y2, . . . , xj, xj−1y, yj, . . . xi, xi−1y, yi}

be a basis for R[C]≤i. Let h(x, y) = xi + 2y(1 + ax)xi−1 and extend Φ to h(x, y) by

the same rule. Note that Φ(h) = (si,−ti) ∈ (H̃yp2)≤i. Replace xi by h to obtain B̃≤i =

B≤i \ {xi} ∪ {h}. Note that Φ(B̃≤i) is a basis for (H̃yp2)≤i. □

8.10. Hyperbolic type 3. Let P23 be as in Proposition 8.1 above. The rational parametriza-

tion of the hyperbola ay + x2 − y2 = 0 is given by

(x(t), y(t) =
(
a

t

t2 − 1
, a

t2

t2 − 1

)
t ∈ R \ {−1, 1}.

Let D := Q1 +Q−1 and

Hyp3 :=
{
(f, g) ∈ R[s]× R

[ 1

t2 − 1
,

t

t2 − 1

]
: f(0) = g(0), f ′(0) = −g′(0)

a

}
,
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(Hyp3)≤i :=
{
(f, g) ∈ R[s]≤i × L(iD) : f(0) = g(0), f ′(0) = −g′(0)

a

}
,

Pos((Hyp3)≤i) := {(f, g) ∈ (Hyp3)≤i : f(s) ≥ 0, g(t) ≥ 0

for every (s, t) ∈ R× (R \ {−1, 1})},

(H̃yp3)≤i := {(f, g) ∈ R[s]≤i × L(iD) : f(0) = g(0) = 0}.

Theorem 8.11. Let (p1, p2) ∈ Pos((Hyp3)≤2k). Then there exist finitely many (f1;i, f2,i) ∈
(Hyp3)≤k and (g1;j, g2;j) ∈ (H̃yp3)≤k such that

(p1, p2) =
∑

i
(f 2

1;i, f
2
2;i) +

∑
j
(g21;j, g

2
2;j).

Moreover, for C = Z(P23) the appropriate choices of f and V (k) in Theorem 2.3 are as

stated in Table 3.

Proof. Let Φ : R[Z(P23)] → Hyp1 be a map with

Φ(p(x, y)) =

(
p(s, 0), p

(
a

t

t2 − 1
, a

t2

t2 − 1

))
.

Analogously as in the proof of Theorem 8.2 we see that Φ is a ring isomorphism and that

the vector subspace R[Z(P23)]≤i is in one-to-one correspondence with the set (Hyp3)≤3i

under Φ.

Let p = (p1, p2) be an extreme ray the cone Pos((Hyp3)≤2k). Using Corollary 3.4,

(p1, p2) = (u2
1, u

2
2) for some u1 ∈ R[s]≤k, u2 ∈ L(kD) such that u2

1(0) = u2
2(0) and

(u2
1)

′(0) =
(u2

2)
′(0)

−a
. So u1(0) = ±u2(0) and 2u1(0)u

′
1(0) = − 2

a
u2(0)u

′
2(0). Upon multiplying

u2 with −1 if necessary we may assume u1(0) = u2(0). If u1(0) = u2(0) ̸= 0, then

u′
1(0) = −u′

2(0)

a
, in which case (u1, u2) ∈ (Hyp3)≤k. Otherwise u1(0) = u2(0) = 0 in which

case (u1, u2) ∈ (H̃yp3)≤k.

It remains to prove the moreover part. Let

B≤i = {1, x, y, x2, xy, y2, . . . , xj, xj−1y, xj−2y2, . . . xi, xi−1y, xi−2y2}

be a basis for R[Z(P23)]≤i. Let h(x, y) = ay+x2−y2

x
and extend Φ to h(x, y) by the same

rule note that: Φ(h) = (s, 0) ∈ (H̃yp3)≤i. Replace 1 by h to obtain B̃≤i = B≤i \ {1}∪ {h}.
Note that Φ(B̃≤i) is a basis for (H̃yp3)≤i. □

8.11. Hyperbolic type 4. Let P24 be as in Proposition 8.1 above. Using an affine linear

transformation (x, y) 7→ (x,−y) we may assume that a < 0. A rational parametrization

of the hyperbola 1 + ay + x2 − y2 = 0, is

(x(t), y(t)) =
(
r

2t

t2 − 1
, r

t2 + 1

t2 − 1
+

a

2

)
, t ∈ R \ {−1, 1},

where r =
√
1 + a2

4
. A short computation shows that for

t0 = − i

2
(−a+

√
4 + a2)

we have that

(x(t0), y(t0)) = (i, 0).
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Let D := Q1 +Q−1 and

Hyp4 := {(f, g) ∈ R[s]× R
[ 1

t2 − 1
,

t

t2 − 1

]
: f(i) = g(t0)},

(Hyp4)≤i := {(f, g) ∈ R[s]≤i × L(iD) : f(i) = g(t0)},
Pos((Hyp4)≤i) := {(f, g ∈ (Hyp4)≤i : f(s) ≥ 0, g(t) ≥ 0 for every (s, t) ∈ R2}

Theorem 8.12. Let (p1, p2) ∈ Pos((Hyp4)≤2k). Then there exist finitely many (f1;i, f2,i) ∈
(Hyp4)≤k and g1;j ∈ R[s]k−1 such that

(p1, p2) =
∑

i
(f 2

1;i, f
2
2;i) +

∑
j
((1 + s2)g21;j, 0).

Moreover, for C = Z(P24) the appropriate choices of χ1, χ2 and P2 in Theorem 2.4 are

0, 1 and 1 + ay + x2 − xy2, respectively.

Proof. Let Φ : R[Z(P24)] → Hyp4 be a map defined by

Φ(p(x, y)) =

(
p(s, 0), p

(
r

2t

t2 − 1
, r

t2 + 1

t2 − 1
+

a

2

))
.

Analogously as in the proof of Theorem 8.2 we see that Φ is a ring isomorphism and that

the vector subspace R[Z(P24)]≤i is in one-to-one correspondence with the set (Hyp4)≤3i

under Φ. Let p = (p1, p2) be an extreme ray of the cone Pos((Hyp4)≤2k). Using Corollary

3.4, one of the following cases occurs:

Case 1: p1 ̸= 0, p2 ̸= 0 and each component p1, p2 has all zeroes and poles of even order.

This implies that (p1, p2) = (u2
1, u

2
2) for some u1 ∈ R[s]≤k, u2 ∈ L(kD) such that

u2
1(i) = u2

2(t0). So u1(i) = ±u2(t0). Upon multiplying with −1 we may assume that

u1(i) = u2(t0). Hence, (u1, u2) ∈ (Hyp4)≤k.

Type 2: p1 = 0 or p2 = 0.

Case 2.1: p1 = 0. In this case p2 vanishes in t0 and −t0, since these two points corre-

spond to (i, 0) and (−i, 0) in the ambient curve. Since y(t) vanishes in t0,−t0 and has a

quadratic numerator, it follows that p2(t) = y(t)mh2(t), m ∈ N, h(t) ∈ R[t] and h does

not vanish in t0, −t0. Since y(t) changes sign on the hyperbola, it follows that h2(t) must

change sign on the hyperbola as well. Moreover, h2 has only real zeroes and poles of even

order. As in the reasoning for Case 1 above, it is a square of an element from L((k−m)D).

It follows that the only option is h2 = 0.

Case 2.2: p2 = 0. In this case p1 vanishes in i, −i. If follows that p1(s) = (1 + s2)g1(s),

g1(s) ≥ 0 for every s ∈ R and g1 has only real zeroes. Hence p1(s) = (1 + s2)u2
1(s) and

(p1, 0) satisfies the statement in the first sentence of the proof.

The moreover part is clear. □
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8.12. Hyperbolic type 5. Let P25 be as in Proposition 8.1 above. A parametrization of

the hyperbola 1 + ay − x2 + y2 = 0 is

(x(t), y(t)) =
(
r

2t

t2 − 1
, r

t2 + 1

t2 − 1
− a

2

)
, t ∈ R \ {−1, 1},

where r =
√
−1 + a2

4
. A short computation shows that for

t− =
1

2
(−a−

√
−4 + a2), t+ =

1

2
(a+

√
−4 + a2)

we have that

(x(t−), y(t−)) = (−1, 0), (x(t+), y(t+)) = (1, 0).

Let D := Q1 +Q−1 and

Hyp5 := {(f, g) ∈ R[s]× R
[ 1

t2 − 1
,

t

t2 − 1

]
: f(−1) = g(t−), f(1) = g(t+)},

(Hyp5)≤i := {(f, g) ∈ R[s]≤i × L(iD) : f(−1) = g(t−), f(1) = g(t+)},
Pos((Hyp5)≤i) := {(f, g) ∈ (Hyp3)≤i : f(s) ≥ 0, g(t) ≥ 0

for every (s, t) ∈ R× (R \ {−1, 1})},

(H̃yp3)≤i := {(f, g) ∈ R[s]≤i × L(iD) : f(−1) = −g(t−), f(1) = g(t+)}.

Theorem 8.13. Let (p1, p2) ∈ Pos((Hyp5)≤2k). Then there exist finitely many (f1;i, f2,i) ∈
(Hyp5)≤k and (g1;j, g2;j) ∈ (H̃yp5)≤k such that

(p1, p2) =
∑

i
(f 2

1;i, f
2
2;i) +

∑
j
(g21;j, g

2
2;j).

Moreover, for C = Z(P25) the appropriate choices of f and V (k) in Theorem 2.3 are as

stated in Table 3.

Proof. Let Φ : R[Z(P25)] → Hyp1 be a map with

Φ(p(x, y)) =

(
p(s, 0), p

(
r

2t

t2 − 1
, r

t2 + 1

t2 − 1
− a

2

))
.

Analogously as in the proof of Theorem 8.2 we see that Φ is a ring isomorphism and that

the vector subspace R[Z(P25)]≤i is in one-to-one correspondence with the set (Hyp5)≤3i

under Φ. Let p = (p1, p2) be an extreme ray the cone Pos((Hyp5)≤2k). Using Corollary

3.4, (p1, p2) = (u2
1, u

2
2) for some u1 ∈ R[s]≤k, u2 ∈ L(kD) such that u2

1(−1) = u2
2(t−)

and u2
1(1) = u2

2(t+). So u1(−1) = ±u2(t−) and u1(1) = ±u2(t+). Upon multiplying with

−1 we may assume that u1(1) = u2(t+). If u1(−1) = u2(t−), then (u1, u2) ∈ (Hyp5)≤k.

Otherwise u1(−1) = −u2(t−) and (u1, u2) ∈ (H̃yp5)≤k.

It remains to prove the moreover part. Let

B≤i = {1, x+ 1, x2 − 1, x(x2 − 1), . . . , xk−2(x2 − 1), y, yx, . . . , yxk−1, y2, y2x, . . . , y2xk−2}

be a basis for R[Z(P25)]≤i. Let h(x, y) := 1− x− 21+ay−x2+y2

1+x
and extend Φ to h by the

same rule. Note that: Φ(h) = (−(1 − x), 1 − x) ∈ ((H̃yp)5)≤i. Replace 1 by h to obtain

B̃≤i = B≤i \ {1} ∪ {h}. Note that Φ(B̃≤i) is a basis for (H̃yp5)≤i. □
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8.13. Parallel lines type. Let P26 be as in Proposition 8.1 above.

Let

PLines := R[s]× R[t]× R[u],
PLines≤i := {(f, g, h) ∈ R[s]≤i × R[t]≤i × R[u]≤i : fi = gi = hi,

b(gi−1 − fi−1) = a(hi−1 − fi−1), where

f(s) =
∑i

j=0
fjs

j, g(t) =
∑i

j=0
gjt

j, h(u) =
∑i

j=0
hju

j},

Pos(PLines≤i) := {(f(s), g(t), h(u)) ∈ PLines≤i : f(s) ≥ 0, g(t) ≥ 0, h(u) ≥ 0

for every (s, t, u) ∈ R3},

P̃Lines≤i := {(f, g, h) ∈ R[s]≤i × R[t]≤i × R[u]≤i : fi = gi = hi = 0,

where f(s) =
∑i

j=0
fjs

j, g(t) =
∑i

j=0
gjt

j, h(u) =
∑i

j=0
hju

j}.

Theorem 8.14. Let (p1, p2, p3) ∈ Pos(PLines≤2k). Then there exist finitely many

(f1;i, f2;i, f3;i) ∈ PLines≤k and (g1;j, g2;j, g3;j) ∈ P̃Lines≤k

such that

(p1, p2, p3) =
∑

i
(f 2

1;i, f
2
2;i, f

2
3;i) +

∑
j
(g21;j, g

2
2;j, g

2
3;j).

Moreover, for C = Z(P26) the appropriate choices of f and V (k) in Theorem 2.3 are as

stated in Table 4.

Proof. Let Φ : R[Z(P26)] → PLines be a map with

Φ(p(x, y)) = (p(s, 0), p(t,−a), p(u,−b)) .

Let us write Φ = (Φ1,Φ2,Φ3). Clearly Φ is a well–defined ring homomorphism, because

Φ(p) = 0 for every p ∈ I and

Φ1

( ∑
i1,i2=0,...,i,
i1+i2≤i

ai1,i2x
i1yi2

)
=

i∑
i1=0

ai1,0s
i1 ,

Φ2

( ∑
i1,i2=0,...,i,
i1+i2≤i

ai1,i2x
i1yi2

)
=

∑
i1,i2=0,...,i,
i1+i2≤i

ai1,i2t
i1(−a)i2 ,

Φ3

( ∑
i1,i2=0,...,i,
i1+i2≤i

ai1,i2x
i1yi2

)
=

∑
i1,i2=0,...,i,
i1+i2≤i

ai1,i2t
i1(−b)i2

for every p ∈ R[C]. Thus

(Φ1(p))i = (Φ2(p))i = (Φ3(p))i = ai,0,

(Φ1(p))i−1 = ai1−1,0,

(Φ2(p))i−1 = ai1−1,0 − aai1−1,1,

(Φ3(p))i−1 = ai1−1,0 − bai1−1,1.

The inclusion Φ(R[C]≤i) ⊆ PLines≤i is clear. Since dimΦ(R[C]≤i) = dimPLines≤i = 3i,

we have equality for every i and Φ is also one-to-one.
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Let p = (p1, p2, p3) be an extreme ray the cone Pos(PLines≤2k). Using Corollary 3.4,

(p1, p2, p3) = (u2
1, u

2
2, u

2
3) for some u1 ∈ R[s]≤k, u2 ∈ R[t]≤k u3 ∈ R[u]≤k such that (u2

1)2k =

(u2
2)2k = (u2

3)2k and

b((u2
2)2k−1 − (u2

1)2k−1) = a((u2
3)2k−1 − (u2

1)2k−1).

Hence, (u1)k = ±(u2)k, (u1)k = ±(u3)k, and

2b((u2)k(u2)k−1 − (u1)k(u1)k−1) = 2a((u3)k(u3)k−1 − (u1)k(u1)k−1).

Upon multiplying by −1 if necessary, we may assume that (u1)k = (u2)k = (u3)k. If

(u1)k = (u2)k = (u3)k ̸= 0, then

b((u2)k−1 − (u1)k−1) = a((u3)k−1 − (u1)k−1)

and (u1, u2, u3) ∈ PLines≤k . Else (u1)k = (u2)k = (u3)k = 0 and (u1, u2, u3) ∈ P̃Lines≤k.

It remains to prove the moreover part. Let

B≤i = {1, x, y, x2, xy, y2, . . . , xj, xj−1y, xj−2y2, . . . xi, xi−1y, xi−2y2}

be a basis for R[C]≤i. Note that:

Φ(y(y + a)xi−1) = (0, 0,−b(−b+ a)ui−1) ∈ P̃Lines≤i.

Replace xi by y(y+ a)xi−1 to obtain B̃≤i = B≤i \ {xi} ∪ {y(y+ a)xi−1}. Note that Φ(B̃≤i)

is a basis for P̃Lines≤i. □

8.14. Intersecting lines type 1. Let P27 be as in Proposition 8.1 above. Let

ILines1 := {(f, g, h) ∈ R[s]× R[t]× R[u] : f(0) = g(0) = h(0)},
(ILines1)≤i := {(f, g, h) ∈ R[s]≤i × R[t]≤i × R[u]≤i : f(0) = g(0) = h(0),

g′(0)− f ′(0) = f ′(0)− h′(0)},
Pos((ILines1)≤i) := {(f, g, h) ∈ (ILines1)≤i : f(s) ≥ 0, g(t) ≥ 0, h(u) ≥ 0

for every (s, t, u) ∈ R3},

(ĨLines1)≤i := {(f, g, h) ∈ R[s]≤i × R[t]≤i × R[u]≤i : f(0) = h(0) = g(0) = 0}.

Theorem 8.15. Let (p1, p2, p3) ∈ Pos((ILines1)≤2k). Then there exist finitely many

(f1;i, f2;i, f3;i) ∈ (ILines1)≤k and (g1;j, g2;j, g3;j) ∈ (ĨLines1)≤k such that

(p1, p2, p3) =
∑

i
(f 2

1;i, f
2
2;i, f

2
3;i) +

∑
j
(g21;j, g

2
2;j, g

2
3;j).

Moreover, for C = Z(P27) the appropriate choices of f and V (k) in Theorem 2.3 are as

stated in Table 4.

Proof. Let Φ : R[Z(P27)] → ILines1 be a map with

Φ(p(x, y)) = (p(s, 0), p(t, t), p(u,−u)) .

Analogously as in the proof of Theorem 8.14 we see that Φ is a ring isomorphism and that

the vector subspace R[Z(P27)]≤i is in one-to-one correspondence with the set (ILines1)≤3i
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under Φ. Let p = (p1, p2, p3) be an extreme ray the cone Pos((ILines1)≤2k). Using Corol-

lary 3.4, (p1, p2, p3) = (u2
1, u

2
2, u

2
3) for some u1 ∈ R[s]≤k, u2 ∈ R[t]≤k u3 ∈ R[u]≤k such that

(u2
1)(0) = (u2

2)(0) = (u2
3)(0) and

(u2
2)

′(0)− (u2
1)

′(0) = (u2
1)

′(0)− (u2
3)

′(0).

The second equality is equivalent to

2u2(0)u
′
2(0)− 2u1(0)u

′
1(0) = 2u1(0)u

′
1(0)− 2u3(0)u

′
3(0).

From the first equality we conclude u1(0) = ±u2(0) and u1(0) = ±u3(0). Upon multiplying

u2, u3 by −1 if necessary, we may assume that u1(0) = u2(0) = u3(0). If u1(0) = u2(0) =

u3(0) ̸= 0, then we must also have u′
2(0)−u′

1(0) = u′
1(0)−u′

3(0), in which case (u1, u2, u3) ∈
(ILines1)≤k. Else u1(0) = u2(0) = u3(0) = 0 and (u1, u2, u3) ∈ (ĨLines1)≤k.

It remains to prove the moreover part. Let

B≤i = {1, x, y, x2, xy, y2, . . . , xj, xj−1y, yj, . . . xi, xi−1y, yi}

be a basis for R[Z(P27)]≤i. Let h(x, y) =
x2−y2

x
and extend Φ to h(x, y) by the same rule.

Note that: Φ(h) = (s, 0, 0) ∈ (ĨLines1)≤i. Replace 1 by h to obtain B̃≤i = B≤i \ {1}∪ {h}.
Note that Φ(B̃≤i) is a basis for (ĨLines1)≤i. □

8.15. Intersecting lines type 2. Let P28 be as in Proposition 8.1 above. Let

ILines2 := {(f, g, h) ∈ R[s]× R[t]× R[u] : f(0) = h(0), g(0) = h(−1)},
(ILines2)≤i := {(f, g, h) ∈ R[s]≤i × R[t]≤i × R[u]≤i : f(0) = h(0),

g(0) = h(−1), fi = gi},
Pos((ILines2)≤i) := {(f, g, h) ∈ (ILines2)≤i : f(s) ≥ 0, g(t) ≥ 0, h(u) ≥ 0

for every (s, t, u) ∈ R3},

(ĨLines2)≤i := {(f, g, h) ∈ R[s]≤i × R[t]≤i × R[u]≤i : f(0) = h(0),

g(0) = h(−1), fi = −gi}.

Theorem 8.16. Let (p1, p2, p3) ∈ Pos((ILines2)≤2k). Then there exist finitely many

(f1;i, f2;i, f3;i) ∈ (ILines2)≤k and (g1;j, g2;j, g3;j) ∈ (ĨLines2)≤k such that

(p1, p2, p3) =
∑
i

(f 2
1;i, f

2
2;i, f

2
3;i) +

∑
j

(g21;j, g
2
2;j, g

2
3;j).

Moreover, for C = Z(P28) the appropriate choices of f and V (k) in Theorem 2.3 are as

stated in Table 4.

Proof. Let Φ : R[Z(P28)] → ILines2 be a map with

Φ(p(x, y)) = (p(s, 0), p(t,−1), p(0, u)) .

Analogously as in the proof of Theorem 8.14 we see that Φ is a ring isomorphism and that

the vector subspace R[Z(P28)]≤i is in one-to-one correspondence with the set (ILines2)≤3i

under Φ.

Let p = (p1, p2, p3) be an extreme ray the cone Pos((ILines2)≤2k). Using Corollary

3.4, (p1, p2, p3) = (u2
1, u

2
2, u

2
3) for some u1 ∈ R[s]≤k, u2 ∈ R[t]≤k, u3 ∈ R[u]≤k such that

(u2
1)(0) = (u2

3)(0), (u2
2)(0) = (u2

3)(−1) and (u2
1)2k = (u2

2)2k. Hence, u1(0) = ±u3(0),
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u2(0) = ±u3(−1) and (u1)k = ±(u2)k. Upon multiplying u1, u2 by −1 if necessary, we

may assume that u1(0) = u3(0), u2(0) = u3(−1). If (u1)k = (u2)k, then (u1, u2, u3) ∈
(ILines2)≤k. Else (u1)k = −(u2)k and (u1, u2, u3) ∈ (ĨLines2)≤k.

It remains to prove the moreover part. Let

B≤i = {1, x, y, x2, xy, y2, . . . , xj, xj−1y, yj, . . . xi, xi−1y, yi}

be a basis for R[C]≤i. Note that Φ(xi + 2yxi) = (si,−ti, 0) ∈ (ĨLines2)≤i. Replace xk

by xi + 2yxi to obtain B̃≤i = B≤i \ {xi} ∪ {xi + 2yxi}. Note that Φ(B̃≤i) is a basis for

(ĨLines2)≤i. □

8.16. Intersecting lines type 3. Let P29 be as in Proposition 8.1 above. Let

ILines3 := {(f, g, h) ∈ R[s]× R[t]× R[u] : f(−1) = g(−1),

f(1) = h(1), g(0) = h(0)},
(ILines3)≤i := {(f, g, h) ∈ R[s]≤i × R[t]≤i × R[u]≤i : f(−1) = g(−1),

f(1) = h(1), g(0) = h(0)},
Pos((ILines3)≤i) := {(f, g, h) ∈ (ILines3)≤i : f(s) ≥ 0, g(t) ≥ 0, h(u) ≥ 0

for every (s, t, u) ∈ R3},

(ĨLines3)≤i := {(f, g, h) ∈ R[s]≤i × R[t]≤i × R[u]≤i : f(−1) = g(−1),

f(1) = h(1), g(0) = −h(0)}.

Theorem 8.17. Let (p1, p2, p3) ∈ Pos((ILines3)≤2k). Then there exist finitely many

(f1;i, f2;i, f3;i) ∈ (ILines3)≤k and (g1;j, g2;j, g3;j) ∈ (ĨLines3)≤k such that

(p1, p2, p3) =
∑

i
(f 2

1;i, f
2
2;i, f

2
3;i) +

∑
j
(g21;j, g

2
2;j, g

2
3;j).

Moreover, for C = Z(P29) the appropriate choices of f and V (k) in Theorem 2.3 are as

stated in Table 4.

Proof. Let Φ : R[Z(P29)] → ILines3 be a map with

Φ(p(x, y)) = (p(s, 0), p(t, 1 + t), p(u, 1− u)) .

Analogously as in the proof of Theorem 8.14 we see that Φ is a ring isomorphism and that

the vector subspace R[Z(P29)]≤i is in one-to-one correspondence with the set (ILines3)≤3i

under Φ.

Let p = (p1, p2, p3) be an extreme ray the cone Pos((ILines3)≤2k). Using Corollary

3.4, (p1, p2, p3) = (u2
1, u

2
2, u

2
3) for some u1 ∈ R[s]≤k, u2 ∈ R[t]≤k, u3 ∈ R[u]≤k such that

(u2
1)(−1) = (u2

2)(−1), (u2
1)(1) = (u2

3)(1) and (u2
2)(0) = (u2

3)(0). Hence, u1(−1) = ±u2(−1),

u1(1) = ±u3(1) and u2(0) = ±u3(0). Upon multiplying u2, u3 by −1 if necessary, we may

assume that u1(−1) = u2(−1) and u1(1) = u3(1). If u2(0) = u3(0), then (u1, u2, u3) ∈
(ILines3)≤k. Else u2(0) = −u3(0) and (u1, u2, u3) ∈ (ĨLines3)≤k.

It remains to prove the moreover part. Let

B≤i = {1, x, y, x2, xy, y2, . . . , xj, xj−1y, xj−2y2, . . . xi, xi−1y, xi−2y2}
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be a basis for R[C]≤i. Let h(x, y) = (x− 1)(x+ 1) + y(1+x−y)
x

. Note that:

Φ(h) = (s2 − 1, t2 − 1, (u− 1)2) ∈ (ĨLines3)≤i.

Replace 1 by h to obtain B̃≤i = B≤i\{1}∪{h}. Note that Φ(B̃≤i) is a basis for (ĨLines3)≤i.

□
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[29] P.J. di Dio and K. Schmüdgen, The multidimensional truncated moment problem: Atoms, determi-

nacy, and core variety, J. Funct. Anal. 274 (2018), 3124–3148.
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