THE TRACIAL MOMENT PROBLEM ON QUADRATIC VARIETIES

ABHISHEK BHARDWAIJ' AND ALJAZ ZALAR?

ABSTRACT. The truncated moment problem asks to characterize finite sequences of real numbers that are the moments of
a positive Borel measure on R™. Its tracial analog is obtained by integrating traces of symmetric matrices and is the main
topic of this article. The solution of the bivariate quartic tracial moment problem with a nonsingular 7 X 7 moment matrix
Mo whose columns are indexed by words of degree 2 was established by Burgdorf and Klep, while in our previos work
we completely solved all cases with My of rank at most 5, split M of rank 6 into four possible cases according to the
column relation satisfied and solved two of them. Our first main result in this article is the solution for Mo satisfying the
third possible column relation, i.e., Y2 = 1 4+ X2. Namely, the existence of a representing measure is equivalent to the
feasibility problem of certain linear matrix inequalities. The second main result is a thorough analysis of the atoms in the
measure for M satisfying Y2 = 1, the most demanding column relation. We prove that size 3 atoms are not needed in the
representing measure, a fact proved to be true in all other cases. The third main result extends the solution for M2 of rank 5 to
general My, n > 2, with two quadratic column relations. The main technique is the reduction of the problem to the classical
univariate truncated moment problem, an approach which applies also in the classical truncated moment problem. Finally, our
last main result, which demonstrates this approach, is a simplification of the proof for the solution of the degenerate truncated
hyperbolic moment problem first obtained by Curto and Fialkow.

1. INTRODUCTION

The moment problem (MP) is a classical question in analysis which asks when a linear functional can be represented
as integration; equivalently, given a sequence of numbers /3, does there exist a positive measure . such that /3 represents
the moments of ? This problem is well studied in one dimension (on R; see [Akh65, KN77] for instance), while a
general solution on R™, Haviland’s theorem [Hav35], provides a duality with positive polynomials and relates the MP
to real algebraic geometry (RAG). Renewed interest into the MP in RAG came with Schmiidgen’s solution [Sch91]
to the MP over compact semi-algebraic sets; for further results we refer the reader to [Put93, PV99, DPO1, PSO1,
PS06, PS08, Mar08, Lau09]. This duality of the MP with positive polynomials has been efficiently used by several
authors for approximating global optimization problems, most notably Lasserre [Las01, Las09] and Parrilo [Par03],
while recently it has also been useful in understanding solutions of differential equations [MLH11]. There are also
many noncommutative generalizations of the MP; the MP for matrix and operator polynomials are considered in
[AV03, Vas03, BW11, CZ12, KW13], the quantum MP in [DLTWO08], free versions of the MP [McCO01, Hel02, HM04,
HKM12] are the domain of free RAG, while in this paper we are interested in the tracial MP [BK12, BK10].

The multi-dimensional truncated moment problem (TMP), which is more general than the full MP [StoO1], has been
intensively studied in the seminal works of Curto and Fialkow [CF91, CF96, CF98a, CF98b, CF08], with the functional
calculus they developed for MP becoming an essential tool for studying moment problems. The bivariate quartic
MP is completely solved [CF02, CF04, CF05, CF08, FN10, CS16], while the sextic has been closely investigated
[CFMOS, Yool 1, CS15, Fial7]. Recently, the introduction of the core variety provided new results toward the solution
of the sextic MP [Fial7, BF+, Sch17, DS18]. Using convex geometry techniques new sufficient condition for the
solvability of the TMP are established also in [Ble15].

The truncated tracial moment problem (TTMP), which is the topic of this paper, is the study of linear functionals
on the space of non-commutative polynomials that can be represented as traces of evaluations on convex combinations
of tuples of real symmetric matrices. It was introduced by Burgdorf and Klep in [BK12, BK10], where the authors
demonstrated its duality with trace-positive polynomials. This duality connects the TTMP to many interesting and
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important problems such as Connes’ embedding conjecture in operator algebras [Con76, KS08a], or the now proved
BMYV conjecture [BMV75, KSO08b, Stal3, Burl1]. Furthermore, [BK12] established tracial analogues of the results of
Curto and Fialkow, relating the solution of the TTMP to flat extension of the associated moment matrix (see Subsection
1.1 for terminology and definitions). For bivariate quartic tracial sequences, an affirmative answer to the TTMP was
given in [BK10] when the tracial moment matrix is positive definite and nonsingular.

Just like the classic TMP, the TTMP is deeply intertwined with optimization of noncommutative polynomials. In
[BCKP13] it is shown how minimizing the trace of a noncommutative polynomial evaluated on matrices of some size
gives rise to the TTMP. In fact, [BCKP13, BKP16] illustrates how the solution of the TTMP can be used to extract
optimizers in this setting.

Inspired by the work of Burgdorf and Klep and Curto and Fialkow, we studied the bivariate quartic TTMP having
a positive semidefinite (psd), singular (7 X 7) tracial moment matrix My in [BZ18]. Following the approach of Curto
and Fialkow, we analyzed the moment matrix based on its rank, giving a complete classification when the rank is at
most five. When the rank is six, we reduced the problem to four canonical cases, gave a characterization of when
a flat extension exists and in two cases also proved the existence of a representing measure to be equivalent to the
solvability of some linear matrix inequalities (LMI’s). Moreover we gave explicit examples showing that, unlike in
the commutative setting, the existence of a representing measure is mostly not equivalent to the existence of a flat
extension of the moment matrix.

This article presents new results in the remaining cases of our analysis of the singular quartic bivariate TMP and
expands many of the results from degree four to arbitrary degree. We next present the Bivariate TTMP and some basic
concepts and definitions. We then give an organization of the paper and a summary of our main results.

1.1. Bivariate truncated tracial moment problem. In this subsection, we make our problem of study precise and
introduce basic definitions used throughout this article.

1.1.1. Noncommutative bivariate polynomials. We denote by (X, Y’) the free monoid generated by the noncommuting
letters X, Y and call its elements words in X, Y. Forawordw € (X,Y), w* isits reverse, and v € (X, Y’) is cyclically
equivalent to w, which we denote by v X w, if and only if v is a cyclic permutation of w.

Consider the free algebra R(X,Y") of polynomials in X, Y with coefficients in R. Its elements are called noncom-
mutative (nc) polynomials. Endow R(X,Y") with the involution p — p* fixing R U {X, Y} pointwise. The length
of the longest word in a polynomial f € R(X,Y") is the degree of f and is denoted by deg(f) or |f|. We write
R(X,Y’) ., for all polynomials of degree at most k. For a nc polynomial f, its commutative collapse f is obtained
by replacing the ne variables X, Y, with commutative variables z, y, and similarly for words w € (X,Y).

1.1.2. Bivariate truncated real tracial moment problem. Given a sequence of real numbers 5 = g = (Buw)w|<2n»
indexed by words w of length at most 2n such that

(1.1 By = B wheneverv X w and S, = Bu- forall |w| < 2n,

the bivariate truncated real tracial moment problem (BTTMP) for 3 asks to find conditions for the existence of
N e N, t; e N, \; € Ry with Zf\; \; = 1 and pairs of real symmetric matrices (4;, B;) € (SR"***)2, such that

N
(1.2) Buw = Y NTr(w(A;, By)),
i=1

where w runs over the indices of the sequence 5 and Tr denotes the normalized trace, i.e.,
1
Tr(A) = gtr(A) for every A € R™™".

If such data exist, we say that S admits a representing measure. If 81 = 1, then we say [ is normalized. We may
always assume that 3 is normalized (otherwise we replace Tr with ﬁl—lTr). The vectors (A;, B;) are atoms of size ¢;

and the numbers )\; are densities. We say that ( is a representing measure of type (mi,ma, ..., m,) if it consists of
exactly m; € NU{0} atoms of size ¢ and m,. # 0. A representing measure of type (mgl), mél), e ,mg)) is minimal,
if there does not exist another representing measure of type (m§2), mg),. Ces mg)) such that

ro<ry or (r:=r;=ry and (mf?%m@h e ,mf)) =lex (mf.l),mfnl_)l, .. ,mgl)),

where <jex denotes the usual lexicographic order on (N U {0})". We say that 8 admits a noncommutative (nc)
measure, if it admits a minimal measure of type (m,ma,...,m,) withr > 1. If 5, = By forall w € (X,Y), we
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call 8 a commutative (cm) sequence and the MP reduces to the classical one studied by Curto and Fialkow. Otherwise
we call 5 an noncommutative (nc) sequence.

Remark 1.1. (1) Note that replacing a vector (A;, B;) with any vector
(UiAz'Uf, U,-BZU;) c (SRtiXti)Q

where U; € R X% is an orthogonal matrix, preserves (1.2).

(2) By the tracial version [BCKP13, Theorem 3.8] of Bayer-Teichmann theorem [BTO06], the problem (1.2) is
equivalent to the more general problem of finding a probability measure x on (SR***)? such that 8, =
f(SRfX‘)Z Tr(w(A4, B)) du(A4, B).

We associate to the sequence 3(>*) the truncated moment matrix of order 7, defined by

Muy = M (B®™) = (Busws) jun | < fwa]<n»

where the rows and columns are indexed by words in R(X,Y")<,, in graded lexicographic order with X being smaller
than Y, e.g., for n = 2 we have

1 ~lex X ~lex Y ~lex X2 ~lex XY ~lex YX <lex Yg'

Observe that the matrix M,, is symmetric. The following is a well-known necessary condition for the existence of a
measure in the classical commutative moment problem and easily extends to the tracial case.

Proposition 1.2. If 3™ admits a measure, then M,, is positive semidefinite.

Let (X,Y) € (SR***)? where t € N. We denote by MESY) the moment matrix generated by (X,Y), ie.,
Buwx,y) = Tr(w(X,Y)) for every |w(X,Y)| < 2n.

1.2. Results and Readers Guide. We present the four major contributions in this article.

1.2.1. TTMP to LMI. Firstly, in [BZ18, Corollaries 7.6 and 7.9] we proved that the existence of a nc measure for My
of rank 6 satisfying one of the relations Y? = 1 — X2 or XY + YX = 0 is equivalent to the feasibility problem of three
linear matrix inequalities and a rank-to-cardinality condition (a necessity arising from a cm moment problem). A core
component of the proof was to show that when Sx = By = Bxs = Bx2y = Bys = 0 we have the following result
(see [BZ18, Theorems 7.5 (1), 7.8 (1)]):

For the smallest o > 0 such that rank (Mo — aW) < rank (Ms), the matrix Ms —aW admits a measure,
where W = (Mél’o) + Mé_l’o)) forY? =1 — X2 (resp. W = Mgo’o)for XY +YX=0)

Applying the same method of subtracting « (Mg)’l) + Mg]’fl)) in the case of the relation Y2 = 1 + X? does not
always work.

Nevertheless, in Section 3 we show that there does in fact exist a matrix W such that the result above always holds
also for the relation Y2 = 1 + X2. The matrix W is constructed as a sum of moment matrices generated by carefully
chosen commutative atoms (see (3.9)). Consequently, we are able to reformulate the existence of a nc measure for a
rank 6 M, satisfying the relation Y2 = 1 + X2, into feasibility problems of LMI’s and a rank-to-cardinality condition.
By the rank-to-cardinality condition we mean the inequality between the rank of the cm moment matrix M 2 and the
cardinality of the corresponding algebraic variety, defined as an intersection of vanishing sets of all polynomials p(z, y)
of degree at most 2 which represent one of the column relations of M 2.

1.2.2. Size of Atoms. Secondly, in [BZ18, Proposition 4.1 (2)] we proved that the moment sequence 34 with a
moment matrix M, of rank 6 can always be transformed by using appropriate affine linear transformation to a moment
sequence 3(*), with M, satisfying one of the four canonical relations

(1.3) Y2=1-X% or XY+YX=0, or Y’=1+X?% or Y?’=1.

’ N\ 2
In the first three cases we showed that we may assume that the nc atoms (X, Y;) € (SRti Xti) ,t; > 1, have an elegant
form, i.e.,

o il B; (il 0
(14 XZ( B} =iy, )’ Y ( 0 —wily, )’
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where v; > 0, u; > 0, B; is a matrix of size ¢; (see [BZ18, Proposition 5.1]). Since Yf = /J?It;, M(2XY) is of rank
at most 5 and hence admits a measure if type (m, 1), m € {1,2,3}, by [BZ18, §6]. In the fourth relation of (1.3) the
nc atoms need not be of the form (1.4), making this case particularly difficult. In Section 4 we thoroughly analyze the
possible atoms in representing measure, and prove that atoms of size 3 are not needed.

1.2.3. Extensions to order n. Thirdly, in Section 5 we extend our results from M5 of rank 5 to M,, with n € N. The
main idea is as follows. By first applying an affine linear transformation to M, we may assume that it satisfies the
relation

(1.5) XY +YX =0,
and one of the relations
(1.6) Y2=1-X2% or Y?=1, or Y?=1+X% or Y?=X2

Due to (1.5), all the moments Byiy; with one of the exponents ¢, j odd and the other nonzero, are equal to zero (see
Lemma 5.5). Additionally, the nc atoms (see Lemma 5.4) do not contribute anything to the moments Sx and By, those
two must be represented by size 1 atoms in the measure. There are at most 4 size 1 atoms satisfying (1.5) and (1.6),
thus there is (under the Léwner partial ordering) a smallest cm matrix M satisfying 8% = Bx, 8 = By. Subtracting
this matrix from M,, we end up with two classical univariate truncated moment problems, one on rows/columns
{1,X,X2 ..., X"} and the other on {1,Y, XY, X?Y,...,X"~1Y}. It turns out that solving the first one also solves
the second one due to their connection comming from (1.6).

1.2.4. Reduction of the TMP on degenerate hyperbolas. Finally, in Section 6 we give a simplied proof for the solution
of the TMP on degenerate hyperbolas which was discovered by Curto and Fialkow [CF05, Theorem 3.1]. The idea for
the proof, inspired by the extension results from Section 5, is to reduce the bivariate TMP down to the univariate one.

Remark 1.3. The reduction of the bivariate TMP to the univariate one can also by used in some other cases of the
quartic TMP and is also very efficient beyond quadratic column relations. We will present this approach in our future
work [BZ+] where we study the TMP with column relations of higher degrees.

Acknowledgement. The authors would like to thank Igor Klep for insightful discussions and comments on the pre-
liminary versions of this article.

2. PRELIMINARIES

In this section we present elementary results for the tracial moment problem and establish some additional notations.
Many of these are direct analogues of the corresponding results in the commutative setting.

2.1. Support of a measure and RG relations. Let A be a matrix with its rows and columns indexed by words in
R(X,Y)<y. For a word w in R(X,Y’)<,, we denote by w(X,Y) the column of A indexed by w. We write [A]{r,
for the compression of A to the rows and columns indexed by elements of R and C resp., with R,C C R(X,Y )<,
subsets of words. When we have R = C, we simply write [A] . Similarly, for a vector v, [v]g is the compression of
v to rows indexed by elements of R. Oy, xk, stands for the k; X kg matrix with zero entries. Usually we will omit the
subindex k1 X ko, where the size will be clear from the context.

Let C4,, denote the span of the column space of M,,, i.e.,

Car, = span {w(X,Y) :w e R(X, Y><n} = span {1,X, Y, X2, XY, YX, Y2,...,X" ..., Y"}.
For a polynomial p € R(X,Y )<, of the formp = )" a,w(X,Y’), we define
p(X,Y) =) a,u(X,Y)

w

and notice that p(X,Y) € Caq,, . We express linear dependencies among the columns of M., as
(X Y)=0,...,p(XY) =0,
for some p1,...,pm € R(X,Y)<,, m € NU {0}. We define the free zero set Z(p) of p € R(X,Y") by
Z(p) :== {(A,B) € (SR”")? : t €N, p(A,B) = 0451 } .
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Theorem 2.1. [BZ18, Theorem 2.2] Suppose ™) admits a representing measure consisting of finitely many atoms
(X;,Y;) € (SR"**)2 ¢, € N, with the corresponding densities \; € (0,1),i=1,...,r,7 € N. Letp € R(X,Y)
be a polynomial. Then the following are true: B

(1) We have

U (X, Y;)) CZ(p) < pX)Y)=0 inM,.
i=1

(2) Suppose the sequence 32" 12) = (Buw)|w|<n+1 IS the extension of 3 generated by

Bw = Z )\iTr(w(Xiv er))
=1

Let M, 11 be the corresponding moment matrix. Then:
pX,Y)=0 inM, = pXY)=0 inM,4.
(3) (Recursive generation) For q € R(X, Y>§n such that pq € R(X, Y>§n’ we have
pX,Y)=0 in M, = (pg)X)Y)=(¢p)(X,Y)=0 in M,

Column relations rising in M,, through an application of Theorem 2.1 (3) are called RG relations. If M,, satisfies
RG relations, we say M,, is recursively generated. The first consequence of the RG relations is the following
important observation about a nc moment matrix M,,.

Corollary 2.2. [BZ18, Colloralies 2.3, 2.4] Suppose n > 2 and ﬁ(Q") be a sequence such that Bxz2y2 # Bxy xy. Then
the columns 1,X,Y, XY of M,, are linearly independent. Hence, if M,, is of rank at most 3 with Bx2y2 # Bxyxy,
then [3 does not admit a representing measure.

2.2. Flat extensions. For a matrix A € SR***, an extension A € SR(TWX(s+4) of the form

~ A B
A= o)
for some B € R*** and C' € R***, is called flat if rank(A) = rank(A). By a result of [Smu59], this is equivalent to

saying that there is a matrix W € R**% such that B = AW and C = W!AW. Flat extension provide an approach to
solving the BTTMP via the following.

Theorem 2.3. [BK12, Theorem 3.19] Let 3 = 3™ be a sequence satisfying (1.1). If M.,(B) is psd and is a flat
extension of My,_1(f3), then 3 admits a representing measure.

2.3. Riesz functional and affine linear transformations. Any sequence 3(>") which satisfies (1.1) defines the Riesz
functional Ljen) : R(X,Y)_,, — Rby

Lgen (p) := Z awfPw, Wherep = Z Ay W.

|w|<2n |lw|<2n
Notice that
Buw = Lgen (w) forevery |w| < 2n.
An important result for converting a given moment problem into a simpler, equivalent one is the application of affine

linear transformations to a sequence 3. For non-commuting letters X,Y and a,b,c,d, e, f € R with bf — ce # 0, let
us define

2.1 H(X,Y) = (61(X,Y),92(X,Y)) :=(a+ bX + Y, d+eX + fY).

Let 5 (27) be the sequence obtained by the rule

(2.2) Buw = Lgen (wo ¢(X,Y)) forevery [w| < n.

Notice that
L (p) = Lyen (0o (X, Y)) forevery p € RIX,Y )<,

For a polynomial p € R(X,Y) <2, let p = (ay )., be its coefficient vector with respect to the lexicographically-ordered
words in R(X,Y") <2y, The following proposition allows us to make affine linear changes of variables.
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Proposition 2.4. [BZ18, Proposition 2.6] Suppose 3% and 5(2") are as above with the corresponding moment
matrices M,, and M., respectively. Let J, : R(X,Y) ., — R(X,Y)_, . be the linear map given by

JgD :=po .
Then the following hold:
(1) My = (Jo) My Jy.
(2) Jg is invertible.
(3) My =0 M, = 0.
(4) rank(M,,) = rank(M,,).
(5) The formula p = fi o ¢ establishes a one-to-one correspondence between the sets of representing measures of
B and 3, and ¢ maps supp(u) bijectively onto supp(fi).
(6) M, admits a flat extension if and only if M, admits a flat extension.

3. My OF RANK 6 WITH THE RELATION Y2 = 1 + X2

We show in this section that for M of rank 6 which satisfies the relation Y2 = 1 + X2, the existence of a
representing measure is equivalent to the feasibility of three LMI’s, and a rank to cardinality condition.

Theorem 3.1. Suppose 3 = ™) is a normalized nc sequence with a moment matrix My of rank 6 satisfying the
relation Y? = 1 + X2, Let L(a, b, ¢, d, e) be the following linear matrix polynomial

1 X Y X2 XY YX Y2
1 a Bx By b c c a+b
X | Bx b c Bxs Bxzy Bxzy Bx + Bxs
Y [ By c a+b Bx2y Bx +Bxs Bx+PBxs By + Bxey
Xz b BX3 BXZY d e € b+d
XY c Bxzy Bx + Bxs3 e b+d b+d cte
YX c Bx2y Bx + Bxs e b+d b+d cte
Y2 \a+b Bx+Bxs By +PBxey b+d c+e c+e a+2b+d

where a,b,c,d, e € R. Then 3 admits a nc measure if and only if there exist a, b, c,d, e € R such that

(1) L(a,b,c,d,e) = 0,

(2) My — L(a,b,c,d,e) = 0,

(3) (Mz — L(a,b,c,d,e)) 1 x,vxvy = 0,

(4) L(a,b,c,d,e) is recursively generated and rank(L(a, b, c,d, e)) < card Vy,, where

V= ﬂ {(z,y) € R?: g(z,y) = 0}.

9ER[X,Y] <2,
g(X,Y)=0 in L(a,b,c,d,e)

If B admits a measure, then there exists a measure of type (m, 1), m € {2,3,4,5}.
In particular, a, b, c, d, e satisfying (1)-(4) exist if

(3.1 Bx = Py = Bxs = Bx2y = Pys =0.
Before proving Theorem 3.1 we need some auxiliary results.
Lemma 3.2. Suppose 3 = ™) is a normalized nc sequence with a positive semidefinite and recursively generated
moment matrix Mo of rank 5 satisfying the relations
(3.2) Y2 =1+4+X?%,  al 4+ dX? 4 ¢(XY + YX) =0,
for some a,d,e € R which are not all zero. Then there is a linear transformation of the form
(3.3) O(X,Y) = (61(X,Y), 6o(X,Y)) = (bX + ¥, eX + JY),
@ere b,c,e, f € Rsatisfy bf — ce # 0, such that the sequence E (4 obtained by the rule (2.2) has a a moment matrix
My satisfying the relation
(34 XY+YX=0
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and one of the relations
(3.5) Y2=1 or X24+Y?*=1 or Y -X*=1.

Proof. We separate two cases according to e in (3.2).
Casel: e=0.

First note that d # 0 in (3.2), otherwise al = 0 for a # 0 which is a contradiction since 1 # 0 (8; = 1). Hence
we can rewrite (3.2) as X? = a1 where a # 0. Therefore Y? = (1 + @)1. Since My is psd with a nonzero column X
(otherwise rank Mo < 5), it follows that 0 < [Mg]{x} = Bx2. Thus also the column X2 is nonzero (since it contains
Bx=2), which implies by M being psd that 0 < [Ma]sx2} = Bxs. Hence from 0 < Bxa = afx=, it follows that
a > 0. Now applying the transformation

o) = (

X . Y Y X )
2a 2V1+a 2V1+a 2Va
to the moment sequence [3,,, we get a moment sequence Ew with a moment matrix M o of rank 5 satisfying the relations

(3.6) XY+¥YX=0 X’+4+Y?’=1

Case 2: ¢ # 0.

Given the starting relations (3.2) we are in Case 2.4 in the proof of [BZ18, Proposition 4.1 (1)]. Following the proof
we see that after using only transformations of the form (2.1) we end up with a moment sequence 3 B@ such that ./\/lg
satisfies the relations (3.4) and (3.5). Precise transformations can be found in Appendix A.1. O

Lemma 3.3. Suppose 5 = ™) is a nc sequence satisfying
Bx =By = Bxs = Px2y = Pys = 0.
Let ¢ be a linear transformation defined by
(3.7 O(X,Y) = (61(X,Y), 62(X, V) = (bX + c¥,eX + fY),
where b, c,e, f € R satisfy bf — ce # 0. The sequence 5(4) obtained by the rule (2.2) also satisfies
Bx = By = Bxs = Bx2y = fys =0.
Proof. This is an easy direct calculation. The details can be found in Appendix A.2. O

The following theorem characterizes normalized nc sequences § with a moment matrix Mo of rank 6 satisfying the
relation Y2 = 1 4+ X2, which admit a nc measure.

Theorem 3.4. Suppose 3 = W is a normalized nc sequence with a moment matrix Mo of rank 6 satisfying the
relation Y? = 1 + X2. Then 3 admits a nc measure if and only if My is positive semidefinite and one of the following
is true:

(1) Bx = By = Bxs = Bxzy = Pys = 0. In this case there exists a nc measure of type (m, 1), m € N.
(2) There exist

a € (0,1), ax€ (~2v/m(l+a),2y/a(l+a))
such that
M := My — MG
is a positive semidefinite, recursively generated cm moment matrix satisfying

rank M < card Vy; := m {(a:,y) eR?: g(z,y) = 0},

9ER[X,Y] <o,
g(X,Y)=0 in M

where

_ (v 0 - 2
(3.8) X( 0 _\/a), Y = (1+a1)<é\/42_7a2 2 .

5]
-
iy
|
IS}
[\e]
S~
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as

witha = ———
a1(1 + al)

,and & > 0 is the smallest positive number such that

rank (Mg — §MéX’Y)) < rank M.
Moreover; if B admits a measure, then there exists a measure of type (m, 1), m € {2,3,4,5}.

Proof. First we will prove (1). In this case My is of the form

1 0 0 Bx2 Bxy Bxy 1+ Bxe
0 Bx2 Bxy 0 0 0 0
0 Bxy 1+ By 0 0 0 0
Bxz2 0 0 Bxa Bxsy Bxsy Bx2 + Bxa
Bxy 0 0 Bxsy Bx2 + Bxa Bxyxy Bxy + Bxsy
Bxy 0 0 Bxsy Bxyxy Bxz2 + Bxa Bxy + Bxsy
1+B8x2 O 0 Bxz2 +Bxa Bxy +PBxsy Bxy +Bxsy 1+2Bx2+Bxa

We define the matrix function

(3.9) Blany) = My — a(MOVIFD 4 pErVERD 0V L oIy

which is equal to

1—da 0 0 Bxz—4day? Bxy Bxy D
0 Bxz —4ay? Bxy 0 0 0 0
0 Bxy D 0 0 0 0
B(a,v) = | Bx2 — 4av? 0 0 PBxa—day* Bxsy Bxsy c
Bxy 0 0 Bxsy c E Bxy + Bxsy
Bxy 0 0 Bxsy E c Bxy + Bxsy
D 0 0 c Bxy — Bxsy Bxy —Bxsy D+cC

where

C = Bx2 + Bxs —4ar* (1 ++%), D=1+fFx> —4a(l++?), E=Bxyxy —4ay*(1++?).

Claim. There exist g > 0 and 7o > 0 such that B(«g, 7o) is psd and satisfies the column relations

(3.10) al +dX% +e(XY +YX) =0, Y>=1+X2

for some a, d, e € R which are not all zero. Let ﬂff”’%) be the moments of B(«yg, o). Then:

(3.11) ﬁg}oﬁo) _ §/040»’Yo) _ ﬁg?soﬂo) _ ﬁ;go}iyo) _ 55?5’2%) _ 550;0770) —0.
Since

det ([B(a, )]xvy) = 16a*(1 +7*)a? + (—47% — (4 +27%)Bx2)a + (B%2 + Bx2 — Bxy)

is quadratic in v, we have that the equation det ([B(c,7)]x,v}) = 0 has solutions

2+ Bxz +29%Bxz £ /(72 — Bx2)2 + 4928%y (1 +42)
87v2(1+~2)

Q12 =

Since
det ([B(o, V)] xvvxy) = (Bxyxy — Bxs — Bx2) (872 (1 + 7% — Bxyxy + Bxs + Bx2)
is linear in a and [Mo](xy,vxy is positive definite, this implies that
0 < det ([Ma]gxvvxy) = —(Bxyxy + Bxs + Bx2)(Bxyxy — Bxs — Bxz)
and in particular Sxy xy — Bx+ — Bx2 # 0, the equation det ([B(Oz7 7)]{XY7YX}) = 0 has a solution

e — Bxyxy + Bxz + Bxs
° 872(1+12)

Subclaim. For 7 big enough it is true that a3 < min (a1, az, 1).

We separate two cases: Sxy = 0 and Sxy # 0.
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Case 1: fxy = 0.

For v > 0 such that v2 > Bx2, a; and « are equal to

o — 2v° + 2v°Bx> _ 14 Bxe o — 2(1 +%)Bx> _ Bx»
P81+ AT+ 7T #2149 4

Since a3 has v* in the denominator, it is smaller than o, a; and % for y big enough.

Case 2: fxy # 0.

Calculating the limits of «; and ay where v goes to oo we get

“1+2 2/ +45%y) 1+2 VA +45%y)
lim o = lim Y1+ 26x) + 77V (L 4B5y) lim (1+20x2) + V(1 + BXY%
770 tadss 8v2(1+17?) Y00 8(1+12)

(142 —7*/ (1 + 453 1+2 — /(1 +45%y)
lim o = lim Y ( + BXz) Y ( + ﬁxy) — lim ( + Bx2) ( + BXY).
Vo0 7o 8v2(1+~7) o0 8(1+12)

Since [Mo]x vy is positive definite, it follows that det([Moz](x vy) > 0, i.e.,
Bxy < (1+ Bx2)Bx>-

Hence,

1+4B%y <1+4(1+ Bx2)Bx2 = (14 2Bx2)>
Therefore, the numerators in «, g are strictly positive. Therefore for v big enough, o is smaller than 4, as and %,
since it has * in the denominator. This proves the subclaim.

Let us now fix 7 big enough such that a3 is smaller than oy, as. Let cg > 0 be the smallest positive number
such that the rank of B(ag, o) is smaller than 6. Since B(0,~o) is psd of rank 6, B(ag, o) is also psd of rank at
most 5. Since in particular, [B(ao,v0)]{xv,vx} is psd, it follows that ag < ar3. From the subclaim we conclude that
ap < min(aq, ag, %) Using this and the form of B(ay, o) we conclude that B(ag, 7o) satisfies (3.10) and (3.11)
which proves Claim.

The rank of B(«g, ) is at least 4 since the columns 1, X, Y, XY are linearly independent. Indeed, the submatrix
[B(a0,70)]11,x.v} = [B(ao,7)]11y @ [Blao, v0)l{x,v}

is block diagonal. By the above det ([B(a,0)]{x,v}) # 0. Since ag < a3 < %, [B(,70)]1} # 0 and the column
1 is nonzero. Hence the columns 1,X,Y are linearly independent. Note also that in the full matrix B(«ag,70), XY
cannot be a linear combination of 1, X, Y since it is not symmetric in rows XY and YX.

Now we separate two cases according to the rank of B(ay, o).
Case 1: rank B(ag,v9) = 4. By the form of B(«, 7o) the relations are

X2=a11, YX=0a1-XY, Y?’=(1+a))l

for some a1, as € R\{0}. By [BZ18, Theorem 3.1 (3)] the measure for the sequence Be00) exists and is of type (0,1).

Case 2: rank B(ag,70) = 5. By Lemma 3.2 there is a transformation of the form (3.3) which we apply to get a
moment sequence B&ao,w) such that the corresponding moment matrix My satisfes the relations (3.4) and (3.5). By

Lemma 3.3 in both cases we have that

'ng(aoﬂo) _ E;aov"/o) _ nglsuﬁo) _ 'nggo{/’m) _ Eg);ov"/o) = 0.
Furthermore, since the rank of B(«ag, o) is 5, a measure also exists and is of type (mi, 1) where m; € {1,2,3} by
[BZ18, Theorems 6.5, 6.8, 6.11, 6.14]. Hence 3 admits a measure of type (m, 1), m € N. This proves (1).
It remains to prove (2). Suppose that 5 admits a nc measure. Using Theorem 3.4 (1) together with [BZ18, Proposi-
tion 7.3] (note that the result and proof hold in the case of Y? = 1 + X2 as well), we obtain

i=1
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where (z;,;) € RZ,m €N, (X,Y) € (SR**?)2,\; > 0,£ > 0and 31", \; + & = 1. Therefore
M= My — M),
is a cm moment matrix of rank at most 5 satisfying the relations
Y?=1+X* and XY =YX

By [Fial4] and references therein, M admits a measure if and only if M is psd, RG and satisfies rank M < card V.

To conclude the proof it only remains to prove that X, Y are of the form (3.8). Note that ./\/léX’Y) is a nc moment
matrix of rank 4. Therefore the columns {1, X, Y, XY} are linearly independent [BZ18, Corollary 2.3] and hence

X2 =a 1+ X+ Y+diXY, and Y? = agl + bsX + ¢3Y + dsXY,

where a;,b;,¢c;,d; € R for j = 1,3. By [BZ18, Theorem 3.1 (1)], di = d3 = 0. By [BZ18, Theorem 3.1 (3)],
c1 = bz = 0. Since Y2 = 1 + X2 it follows that b; = c3 = 0 and a3 = 1+ a1. By [BZ18, Theorem 3.1 (4)], X and Y’
are of the form (3.8).

To prove the result about the type of the measure note that if a cm moment matrix which admits a measure satisfies
Y? = 1 + X2, then it admits a measure with at most 5 atoms by the results of Curto and Fialkow [CF98a], [CF02],
[Fial4] (see also [BZ18, Theorem 2.7]). On the other hand there must be at least 2 cm atoms in every measure of type
(m, 1), m € N, for M5, otherwise My would be of rank at most 5. O

Proof of Theorem 3.1. Notice that as M, satisfies Y? = 1 + X2, we have that M is of the form

B1 Bx By Bx2 Bxy Bxy B1 + Bx=
ﬁX BX2 ﬁXY ﬁxiﬂ ﬂx2y ﬁx2y BX +:8X3
By Bxy b1+ Bxz Bxzy Bx + Bxs Bx + Bxs By + Bxzy
Bx2 Bxs Bxzy Bx4 Bx3y Bxay Bx2 + Bxa
Bxy Bx2y Bx + Bxs Bxsy Bxz + Bxa Bxyxy Bxy + Bxsy
Bxy Bxzy Bx + Bxs Bx3y Bxyxy Bx2 + Bxa Bxy + Bxsy

B1+Bx2 Bx +Bx3s By +Bx2y Bx2+Bxe Bxy +Bxsy Bxy +Bxsy B1+2Bx2+ Bxa
Let us first prove the implication (=). Suppose that 8 admits a measure. By Theorem 3.4, M is of the form

(3.13) My =S NME) 4 em§EY)

i=1
where m € N, (2;,7;) € R%, (X,Y) € (SR**?)2, \; > 0,€ > 0and 31", \; + & = 1. By the form (3.8) of (X,Y")
it is easy to check that

(3.14) ) = g = g5 = gAY = 85 = 8 =,

where B&X’Y) are the moments of MéX’Y). Using (3.13) and (3.14), we conclude that Z;ll )\Z—ng“y") and fMéX’Y)
are of the forms

a Bx By b c c a+b
Bx b c Bxs Bxzy Bxzy Bx + Bxs
By c a+b Bx2y Bx +Bxs Bx+Bxs By +Bxzy
(3.15) b Bxs Bx2y d e e b+d ,
c Bx2y Bx + Bxs e b+d b+d c+e
c Bx2y Bx + Bxs e b+d b+d c+e
a+b Bx +Bxs By +Bx2y b+d ct+e c+e a+2b+d
l1—a 0 0 Bx2 —b Ai(c) Ai(e) Aaz(a,b)
0 Bx2—b A0 0 0 0 0
0 Ai(c)  Az(a,bd) 0 0 0 0
(3.16) Bxz —b 0 0 Bxa—d As(e) As(e) As(b,d) |,
A1(c) 0 0 As(e) Aa(b,d) Bxyxy —(b—d) As(ce)
Ai(c) 0 0 Asz(e)  Bxyxy —(b—d) A4 (b, d) As(c,e)
Az (a,b) 0 0 Aa(b,d) As(c,e) As(c,e) Ag(a,b,d)
where
Ai(c) = Bxy — ¢, As(a,b) =14 Bx2 — (a+b),
As(e) = Bxsy — e, Ay(b,d) = Bx2 + Bxa — (b+d),

A5(C, 6) = Bxy + Bxsy — (C+ 6), Ag(a,b,d) =1+208x2 + PBxa — (a—l— 2b + d),
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for some a, b, ¢, d, e € R, and observe that the matrix (3.15) is L(a, b, ¢, d, €) and (3.16) is Mo — L(a, b, ¢, d, €). Since
L(a,b,c,d,e) is a cm moment matrix which admits a measure, conditions (1) and (4) of Theorem 3.1 follow from
[Fial4] and references therein. Since My — L(a, b, ¢, d, e) is a nc moment matrix which admits a measure, (2) and (3)
of Theorem 3.1 are true by Proposition 1.2 and Corollary 2.2 above. This proves the implication (=).

It remains to prove the implication (<). We have to prove that conditions (1)-(4) imply that there is a measure
for M. Since L(a,b,c,d,e) is a cm moment matrix that satisfies (1) and (4), it admits a measure by [Fial4] and
references therein. Now note that M := My — L(a, b, ¢, d, €) is a nc moment matrix of the form (3.16) satisfying

(3.17) BY = pY = Y. = By = BNy = B2 =0,

where 32 denote the moments of M. It remains to prove that M admits a measure. By (2), M is psd, and from (3),
M is of rank at least 4 with linearly independent columns 1, X, Y, XY. Since M satisfies the relation Y? = 1 + X2, it
can be of rank at most 6. We separate three possibilities.

Case 1: rank M = 4. From the form of M, we see that it must additionally satisfy
X?=a;1, and XY+ YX =asl,
for some a1, as € R. Since M is also psd, there exist a measure for 5 by [BZ18, Theorem 3.1 (3)].

Case 2: rank M = 5. By the form of M and (2), we have the additional relation
(3.18) al +dX* 4+ e(XY 4+ YX) =0

for some a, d, e € R. Since M is psd and RG (since there are only quadratic column relations), Lemma 3.2 states that
there is a transformation of the form (3.3) which we may apply to get a moment sequence (3, with a moment matrix
M satisfying the relations (3.4) and (3.5). By Lemma 3.3 we have that

Bx = By = Bxs = Bxzy = Pys = 0.
Hence the measure for Ew exists by [BZ18, Theorems 6.5, 6.8, 6.11, 6.14].

Case 3: rank M = 6. Since M is psd, RG (since the only relation is Y? = 1 + X?) and satisfies (3.17), it ad-
mits a measure by Theorem 3.4 (1).

The type of representing measure, as well as the sufficiency of (3.1) can be inferred from Theorem 3.4. 0

Theorem 3.1 (along with the others from [BZ18]) provides with a new computational method for testing the exis-
tence of a measure. While searching for a flat extension from M to M is reasonable, this approach quickly becomes
intractable if My admits positive extensions M, for a large k, which then admits a flat extension to M. Compar-
atively, checking the LMI’s from Theorem 3.1 always maintains the same level of computational complexity. In the
following example we present two psd moment matrices M satisfying Y2 = 1 + X2, one which admits a representing
measure and the other which does not. The proof is by the use of Theorem 3.1, with the computations easily checked
in Mathematica.

Example 3.5. For the moment matrix

1 00300 3
0 £ 00 0 0 0
00 2 00 00
My=|[4 0 0 1 0 0 3
0000 32 00
00000 2 0
500 2 0 0 3

we proved in [BZ18, Example 8.16] that it admits a representing measure (but not a flat extension). We will check this
fact also by the use of Theorem 3.1. Using Mathematica we get a = 0.75, b = ¢ = d = e = 0 as a feasible solution
of both LMI’s from (1) and (2). We check that the condition (3) of Theorem 3.1 is also met, i.e., the eigenvalues are
1.5,0.75,0.5,0.25. The moment matrix L(0.75,0,0,0,0) satisfies X = X? = XY = YX = 0 and Y? = 1, hence it
is of rank 2. The corresponding variety is {(0, 1), (0, —1)}, so also the condition (4) of Theorem 3.1 is satisfied. Thus
M indeed admits a measure by Theorem 3.1.
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For the moment matrix

2 32 32 5
1 0 15 3 —3% —3% 3
0 2 .32 4 _8 _8 4
3 33 15 27 27 15
4 32 5 _8 4 4 _ 4
15 33 3 27 15 15 135
_ 2 4 8 2 8 8 4
My = 3 5 ~w 3  —9 9 3
32 _8 4 _s 4 10 _1s4
33 27 15 9 3 9 99
32 _8 4  _s 10 4 1
33 27 15 9 9 3 99
5 4 _4 4 _1 _1: g
3 15 135 3 99 99

we check with Mathematica that the eigenvalues are nonnegative, i.e., 6.92,2.35,0.22,0.11,0.039, 0.014, 0. Clearly
we have that Y? = 1 + X2. Using Mathematica we check that the LMI’s from Theorem 3.1 (1), (2) are not simultane-
ously feasible. Hence M5 does not admit a representing measure.

4. M5 OF RANK 6 WITH RELATION Y? = 1

The main result of this section, see Theorem 4.1 below, is that moment matrices My generated by the atoms (X, Y)
of size 3 satisfying Y2 = I3 can always be represented with atoms of size at most 2. Moreover, if we consider a single
atom of size 3, then a single atom of size 2 suffices.

Theorem 4.1. Let 3 be a moment sequence with a nc moment matrix My satisfying the column relation Y2 = 1. Then
the following are equivalent:

(1) My admits a measure of type (my,ma, ms), my, ma, mg € NU{0}.
(2) My admits a measure of type (my,m2), m1, mg € NU{0}.

Moreover, if ms = 1in (1) the mgy = 1in (2).
The proof is constructive and can be seen as the first step toward proving the following claim:
Claim. Let 8 be a moment sequence with a moment matrix My satisfying the column relation Y?> = 1. Then the

following are equivalent:

(1) My admits a measure.
(2) My admits a measure of type (mq1,ms), my, ma € N.
(3) Mo admits a measure of type (m, 1), m € N.

Let 34 be a truncated moment sequence and M its moment matrix. The notations A(*)) and A(My) will both
denote the difference

A(BW) = A(M2) = Bxay2 — Bxyxy,
which will be important in the analysis below.

To prove Theorem 4.1 we first have to understand the form of moment matrices /\/léx’y) with (X,Y) € (SR?*?)?
and Y2 = I,. We illustrate this in the next lemma.

Lemma 4.2. Let (X,Y) € (SR?*2)2 be a pair of symmetric matrices of size 2 with Y? = I5 and A(MéX’Y)) # 0.

Then there is X := (Z ﬁ) € SR?*2, such that

@.1) MG = pm§E),

where Y = ((1) _01) Moreover, MéX’Y) is equal to

1 %(a—‘rc) 0 %(a2+2b2+c2) %(a—c) %(a—c) 1
%(a—i—c) Cy(a,b,c) %(a—c) C3(a,b,c) %(a—c)(a—o—c) %(a—c)(a—l—c) %(a—l—c)

0 %(afc) 1 %(afc)(aJrc) %(aJrc) %(aJrc) 0
Cy(a,b,c) Cs(a,b,c) %(a —c)(a+c) Ci(a,b,c) Ca(a,b,c) Ca(a,b,c) Cy(a,b,c) |,
%(a —c) %(a —c)(a+c) %(a +c) Ca(a,b,c) Cu(a,b,c) Cs(a, b, c) %(a —c)
s(a—c) 3(a—c)la+e) s(a+c) Ca(a,b,c) Cs(a,b,c) Cy(a,b,c) 5(a—c)

1 %(a—‘rc) 0 Cy(a,b,c) %(a—c) %(a—c) 1
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where

In particular, we have that A(MgX’Y)) = 2b2.

Proof. To prove (4.1) note that since Y2 = I, the eigenvalues of Y are 1 or —1. Since A(MéX’Y)) #0,Xand Y
do not commute. Hence there is an orthogonal matrix U € R?*?2 such that UYU! = ((1) _01) Taking X = UXU!

proves (4.1). The remaining part of the lemma can be easily checked.
We will prove that for every pair (X,Y) € (SR**?)2 satisfying Y2 = 1 we can write
4.2) M5X7Y) = Z )\iMéﬂi,yi) + tMgX7Y),
i=1
where (z;,%;) € R, m € N, (X,Y) € (SR**?)? as in Lemma 4.2, \; > 0,¢ > Oand >/, \; + ¢ = 1. Since
A(Méw’y)) = 0 for every (z,y) € R? we must have
A =AMy =t AMES)) =t 22,

A

where we used Lemma 4.2 for the second equality. Hence a decomposition of the form (4.2) requires that b = /5

(We may WLOG assume b is positive, since only even powers of b appear in M(QX’Y)). Notice that if A = 0, then we
are in the commutative setting. So we may assume that A > 0.

Lemma 4.3. Let (X,Y) € (SR**?)2 as in Lemma 4.2, with b = |/ £ for some t > 0. We have that

X.Y 1
t~/\/léX’Y) =B1+Bz't+33'?
where
0 0 0 ia 0 0 0
o ia o Hate) A 0 0 0
0 0 0 0 0 0 0
By =|ia 2N 0 (a2 fac+)a oA 9N LAY
0 0o 0 ez A iAo a0
0 0o 0 —(“%C)A -ia Ia o
0 0 0 i 0 0 0
1 %(a +¢) 0 Cy,2(a,c) %(a —c) %(a —c) 1
la+e)  Casla,o) a0 Cynlee)  la—oa+e) a-clate a+e
0 %(a—c) 1 %(a—c)(a—&—c) %(a—l—c) %(a—&—c) 0
By = | C4,2(a,c) C32(a,c) %(a —c)(a+c) C1,2(a,c) Ca2(a,c) C2.2(a,c) Cy,2(a,c) |,
La—o¢) %(a —c)(a+c) %(a +¢) Cs,2(a,c) Ca2(a,c) Cy4,2(a,c) %(a —c)
s(a—c) sla—c)(a+c) s(a+c) C2.2(a,c) Cy2(a,c) Cy,2(a,c) s(a—c)
1 %(a +¢) 0 Cy,2(a,c) %(a —c) %(a —c) 1
A2
B3 = T - Eua,
with
1 4 4 1 2 2
01,2(aac):§(a +ct), 03,2(a70):§(a+0) (a® —ac+c?),

1 1
Cro(a,c) = 5(@ —¢) (a2 +ac+ (32) , Caala,c) = 5((12 + 02),
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and Ey4 is the standard 7 x 7 coordinate matrix with the only non-trivial entry in position (4,4) being 1. Moreover,
Bs and Bs are positive semidefinite.

Proof. The statements about the form of ¢ - ./\/ng’Y) can be easily checked by direct computation. It is obvious that Bs
is psd. It remains to prove the fact that Bs is psd. We know that ¢ - MgX’Y) is psd for every ¢ > 0. If By has a negative
eigenvalue, then ¢ - MéX’Y) also has a negative eigenvalue for £ > 0 big enough. (Note that tlim Bg; =0.) U
—00
The next lemma describes the moments generated by a pait (X,Y) € (SR™*")? with Y2 = I,, where the multi-
plicities of the eigenvalues 1, —1 are n — 1, 1, respectively.

Lemma 4.4. Let (X,Y) € (SR™*™)2, t > 2, be a pair of symmetric matrices of size n such that Y? = I,, and the
multiplicities of the eigenvalues 1, —1 are n — 1, 1, respectively. Then:

(1) M) = mESY) with

s (D = s (Ih1 O
where D € SR("=Dx(=1) i g diagonal matrix, z € R™~* a vector, « € R a real number, and
X =WXW'! Y =WYW!

for some orthogonal matrix W € R"*",

(2) M(QX’Y) admits a measure of type t ifMéX’Y) admits a measure of type t where
s [ Do®0 =z . a+d, ~ a—dy,\ ~
(P00 D) (5 er e (550

)?, Y are as in (1), dy, is the (n — 1)-th diagonal entry of D from (4.3) and Dy a diagonal matrix of size n — 2.
(3) M(QX’Y) with X and Y as in (2) is equal to

1 Bx =2 Bxe Bx Bx 1
Bx  Bxz Bx Bxs  Bxzy Bxzy  Bx
n=2 By 1 Bx2y  Bx Bx a2
Bx2 Bxs Bxz2y Bxa  Bxsy Bxsy  Bx2 |,
Bx Bx2y Bx Bxsy Bxz Bxvxy Bx
Bx Bx2y Bx Bxsy Bxvyxy  Bxe Bx
1 Bx =2 Bxe Bx Bx 1
where
1
= — 1 ~
fx ntr(DO)’ Bxsy = E(tr(DS) + tr(Dzz')),
_1 > ¢ 1
ﬂxz = E(tr(Do) + 233 .73)7 ﬂXYXY —_ E(tr(Dg) - 2!17t15),
1 3 Aot .
Bxs = ﬁ(tr(DO) + 3tr(Daa’)), Bxa = %(tr(Dé) + 4tr(D?xat) 4 2(2'2)?),
1
ﬂxﬂy = ﬁtr(DS),

with D = Dy & 0. In particular, we have that

1
“4.4) Bx2y = B} (Bx2 + Bxyxy),
2 .
(45) BX?’Y = ﬁxs - ;aﬁtDS(}.

Proof. First we prove (1). There is an orthogonal matrix U € R™*" such that UYU! =: Y is of the form as in
(4.3). Further on, there is an orthogonal matrix V; € R("=1*("=1) gych that by defining V := (‘60 (1]) , the matrix

VUXU'V =: X is of the form (4.3). Since we also have VY V! =: Y, defining W = VU establishes (1).
Now we prove (2). By applying a linear transformation ¢(x,y) = (a + x + ¢y, y), where a = _dg_o‘, c= oz

and d,, is the (n — 1)-th diagonal entry of D from (4.3) to the sequence 3(*), we get a sequence 3(4) with MéX’Y)
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where X and Y are as stated in (2). Since the type of a measure remains unchanged when applying an invertible affine
linear transformation, this proves (2).
Part (3) of the lemma follows by direct calculation. See Appendix A.3 for the details. O

Lemma 4.5. Let (X,Y) € (SR"*")2, n > 2, be a pair of symmetric matrices of size n of the form

_ D x nxn _ In—l 0 nxn
(4.6) X_<:1:t 0>€SR , Y—( 0 _I)ESR ,
where D € SR"=D* (1) is 4 diagonal matrix, x € R"~ 1 is a vector. Let (X,Y) € (SR2*2)2 be a pair of symmetric
matrices of size 2 of the form

s_(a b ox2 o _ (1 0 2x2

X_<b C>ESR , Y_<0 ) esR¥,
with b = \/%, A = A(M(QX’Y)), t > 0 and By, Bo, B3 as in Lemma 4.3. IfMgX’Y) — tMéX’Y) is positive
semidefinite for some t > 0, then

4zt D
c=0 and a= xAx.
n
Proof. We begin by analyzing the kernel of [ng’y) — Bl] (LX,Y,XV}"
ClaimL.v:=(0 -1 0 1) eker [ME = B] oo
Using Lemmas 4.3 and 4.4
* Bx * Bxy
5 +Bxyxy) * Bxzy
M(X7Y) _B ) — * 2 (BX2
( 2 1 |{17X,Y,XY} " ﬁXY * BX
* Bxzy * % (Bx2 + Bxyxy)
Moreover, using (4.4) we see that the second and the forth column of the matrix MéX’Y) - B 1} . , are equal.
1,%,Y,XY

Hence the vector v is in the kernel of [ng’y) - Bl] .
{1,X,Y,XY}

Since Bs and Bs are psd by Lemma 4.3, Claim 1 implies that v must be in the kernel of both [BQ]{]LX,ny} and

[Bs]{1,x,vxvy if MéX’Y) — t/\/léX’Y) is psd for some ¢ > 0. We have that [Bs]y x,v,xy} = 04 so v is indeed in its
kernel, while [Bs]¢1 x v xv} v is equal to

1 %(a—f—c) 0 %(a—c) -1
%(a+c) %(a2+02) %(afc) %(afc)(aJrc) v=c.| €
0 %(a—c) 1 %(a—‘rc) 1
lla-c) L(a—c)(a+c) i(a+to 1%+ ) c

Hence we must have ¢ = 0.

Claim 2. 1t MSY) — M) ispsd, then:= (0 =1 0 0 1 )7 €ker [MY) - By]

{1,X,Y,X2 XY}
By Claim 1 it easily follows that
@7 VT IMEY) = B ) v sy = O
If MgX’Y) - t/\/lg)z’?) is psd, ./\/léX’Y) — By is psd and by (4.7) Claim 2 follows.
Using Claim 2 and ¢ = 0, MéX’Y) — t/\/lé)?y) being psd for some ¢ > 0, implies that
3A (X,Y) (X,Y) A
— 2= Y)_p } — Y)_p - ~ 2.
o = Tpa= M ey~ M2 gy ey ~ Y T 0

which further implies that
4x'Dx
nA -’

a= %(5}(3 — Bxsy) =
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where we used (4.5) for the second equality. This proves the lemma. d

Proof of Theorem 4.1. We have to prove that MéX’Y), where (X,Y) € (SR3*3)2 and Y? = I3, has a measure of type
(ml, mg), where mi, Mo € NU {0}
If Y has all eigenvalues equal to 1 or —1, then X and Y commute and there is an orthogonal transformation

U € R3*3 guch that UXU" is diagonal and UY U! = +1I3. Since M(X )~ MgUXUt’UYUt), there exists a measure
consisting of my < 3, atoms of size 1.

Else Y has two eigenvalues of the same sign and the third of the other. We may assume WLOG that two eigenvalues
are 1 and the third is —1 (otherwise we do an affine linear transformation (z,y) — (x, —y)). By Lemma 4.4 (2) it is

enough to prove that MgX’Y) has a measure of type (my, msa), where my, ms € NU {0}, for

r1 0 m2 1 0 O
X=|0 0 =3, Y=1[|01 0],
xo x3 O 0 0 -1

where z1, 22, x3 € R. We will separate two cases.
Casel.z; =0orzy, =0o0rax3 =0:

If 21 = 0, we have XY + Y X = 0 and M$* is of rank at most 5. By [BZ18, Theorems 3.1, 6.5, 6.8, 6.11, 6.14]

it follows that MéX’Y) admits a measure of type (mq, 1) where m; € N.
If 25 = 0, the subspace span{e; } is reducing for X and Y, and we can replace (X,Y) by (z1,1) of density % and

((9503 %3), (é _01>) of densitiy %
If 23 = 0, the subspace span{es} is reducing for X and Y, and we can replace (X,Y’) by (0,1) of density 5 and

((;; %2), ((1] PJ) of density 2. This proves the theorem in Case 1.

Case 2. x1 # 0 and z2 # 0 and z3 # O:

We will prove that MY admits a measure of type (m1,1), m1 € N. We denote by (X1,Y;) € (SR2*2)2 the

atom of size 2 and by ¢ its density. By Lemma 4.2 we may assume that X; = (Z Ié) ( 1) Furthermore,
by Lemma 4.2 we must have
1 2
(4.8) b=+ =AMy = £/ 2 (22 + 22).
2t 3t
Since By(./\/l(X Y)) %, By (/\/l(Xl’Y1 ) = 0 and ﬁy(./\/léry)) = +1 for every atom (z;,y;) of size 1, the sum

>, 1 of the densities ji; of atoms of size 1 must be at least % Hence, the density ¢ satisfies ¢ < % Since the atoms of
size 1 are not sufficient, we have that £ > 0. To prove the theorem in Case 2 it suffices to prove the following claim.

Claim. There exists ¢ € (0, 2] such that
F(t) == MEYY) — ¢ p 5
admits a measure consisting of m, € N atoms of size 1.
The necessarry condition for F(t), t > 0, to admit a measure is F'(¢) > 0. By Lemma 4.5 we must have ¢ = 0 and
2
a= % in X;. Let By, Bo, B3 be as in Lemma 4.3. We have that
2 3

1
F(t)=M™Y) — B —tB, — 7 Bs

3 x1 1 :v% x1 x1 3 2 a 0 a2 a a 2
T x% T xf z% x% T a a2 a d® a2 a2 «a
1 1 =z 3 x% x% x1 1 t 0 a 2 a? a a 0 1
=—|2? 2} 2? C(z1,z2,73) 2} 2} 22 —la?2 a3 a? at a® @ a2 | — —(:C% + x§)2E44,
3 1 z% T x‘;’ ac% x% T 2 a a® a d® a® @ «a 9t
1 :v% T :vzf :c% x% T a a2 a d® a® & «a 1R,
3 x1 1 LB% x1 x1 3 2 a 0 a2 a a 2 ¢

M;x,y)731 tBa
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where
2,2

r2x3ad

x3 + a3
(X,Y) (X,Y)

and the forms of M, , B1, Ba, B3 are from Lemmas 4.4 (3), 4.5. Clearly the kernels of M — By, By and Bg

contain the vectors

v1 = (-1,0,0,0,0,0,1)", vy =(0,-1,0,0,0,1,0)", w3 =(0,—1,0,0,1,0,0)".
Hence, to prove that F'(t) is psd for some ¢ > 0 it is enough to consider the submatrix

[F(t)]11,x,v,x2} -

C(xy, w0, 23) = 21 + 4

+2(x3 + 23),

Its principal minors are the following
det ([F(t)]{]l}) =1-t,
22 ((9t? — 18t + 8) 23 + 4(4 — 3t) w322 + 4(2 — 3t)x3
det ([F(t)]q1,x3) = ( )3 5 o2 = )
36 (23 + x3)
(2 —3t)z? ((2 — 3t)a] + (2 — 3t)a§ + 4a3a3)
27 (42 + 22)°

9

)

det ([F(O)]q1,x,v}) =

1

F ) =
det ([F(£)]q1,x,v,x2}) 243t((a2 +x§)4)$%f(t)7
where
f@t) = fo(w1,m2,23) +t - fi(z1, 20, 23) +* - fao(x1, 22, 73) + 1 - f3(w1, 72, 73),
and
fo(xl,l'g,l'g) = —16(%% + x%)ﬁ,

fi(@y, wa, w3) = 24(a3 + 23)* (325 + Taad + 325 + 23 (272} + Ta3)),

fo(21, 2, 23) = —18(6x3% + 2822023 + 6232 + izl (227 + 723) + 25 (82723 + 5823)+
+ zhaa(xf + 162222 + 58x3) + 825 (202xh + 929)),

fa(x1, 20, 23) = 272032 + 823023 + 223? + dadal (v? + 222) + daSas(2? + 423) + 225 (22223 + 7o)+
+ zhxa(x] + datad 4 14a3)).

Fort = % we get

2 1 2 2237223
det { [F'(35 == det | [F = _So1mems
e ([ (3)}{1@) 1 e ([ (3)]{1,X}) 0002 1 22)°

2 2
det ([F(3)]{1,X7Y}> =0, det ([F(S)]{n,x,y,xﬂ) = 0.
In addition we also calculate

2 airizd(x? — 8(a2 + x2
“ o (17 (e ) = - 5T

According to (4.9) there are two cases to consider.
Case 2.1. 27 — 8(z3 + 23%) < 0:

It is easy to check that the columns 1 and Y of F(2) are both equal to

t
1 1
3 3(a3+42) 3 3(adta2)’  3(a3+e2) 3(sita?) 3 ) '

Hence F(%) satisfies the relations Y = 1, XY = YX = X, Y2 = 1. Since

det ([F(g)]{ﬂ}) =0, det ([F(g)]{ﬂ,x}) =0 and det ([F(g)]{ﬂ,x,xz}> >0,

o2 2 200, 2, 2 R R
( 1 T1TE 1 1115(2%'4'955 T1TE z 2
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[F(2)]{1,x,x2} is psd matrix of rank 2 or 3. Hence F(2) is a psd commutative moment matrix of rank 2 or 3. If
z3 — 8(z3 + %) = 0 then the fifth relation is X* = a1 + a1 X for some ag, a; € R. Thus, it is recursively generated
and by the results of Curto and Fialkow [CF98a], [CF02], [Fial4] (see also [BZ18, Theorem 2.7]) it admits a measure
consisting of 2 or 3 commutative atoms.

Case 2.2. 22 — 8(z3 + 22) > 0:

It is easy to see that for 0 < ¢t < % we have that
det ([F(t)]{]l}) >0, det ([F(t)}{]lyx}) >0 and det ([F(t)]{]l’x’y}) > 0.

Since det ([F(2)]{1,x,vx2}) = 0, we have that f(2) = 0, and hence

76 = (5~ 1)g(t)

for some polynomial g(¢) which is quadratic in ¢. The polynomial g(t) has a negative leading coefficient which implies
that g(t) achieves its maximum at ¢ satisfying ¢'(ty) = 0. A calculation reveals ¢, to be
4 (22 +23)° (2323 (27 + 202) + 2§ + 22402 + 25)
3 (225 (22323 + Txd) + 4aSad (22 + 423) + 42328 (23 + 223) + 242d (x] + w323 + 142d) + 2232 + 821023 + 2212)°

Moreover, g(t) equals

24:1:%33% (:c% + x%)G (1"11 + 423 (9:% + x%) + 2 (1’% + 9:?,,)2)
228 (22323 4 Taf) + 4aSzd (23 + 42) + 4232l (23 + 223) + w32] (2] + 4232% + 14ad) + 2212 + 821%2% + 22127
which is strictly positive as the numerator and denominator of ¢(¢o) are sum of squares, and z; # 0. Now we only

need that 0 < tp < % The numerator and the denominator of ¢ are linear combinations of monomials

12 10,2 .84 6.6 4.8 .2.10 .12 2.8 2 2 6.4 2 4.6 .2 2 8 .4 4 4
To"y Lo T3z, Tak3, Tol3, Loz, Tz, Ty, T]Toxy, T1Tox3g, T1TyT3, T1ToT3, T1ToT3,

with the following coefficients:

; 12 | 10,2 | 8,4 | 6.6 | 4.8 | 2,10 | 12 | .28, 2 | 2,64 | ,2,4,6| .22 8| 4,4, 4
monomial | x3° | T3 T3 | T5T3 | TIXT3 | ToTF | T5Tzo | Ty~ | XITSTE | T{T9T3 | TITHTY | TITFT] | TTTTS

numerator 4 20 44 56 44 20 4 4 12 12 4 0
denominator | 6 24 42 48 42 24 6 12 12 12 12 3

Since we are in Case 2.2 we can use the inequality

x} > 83 + 8x3

to estimate

(4.10) rixSas > 8xix3 + 8x5a3,

(4.11) riz3ah > 8x5af + 8ax3xl’,

(4.12) x?x%zé > Sx%xga:g + 81:%&033:3

(4.13) riryrs > 64x5rs + 1282525 + 64wl

Summing up all the inequalities (4.10)-(4.13) we see that
x%zgxg + x%x%xg + 2x%x§x§ > 8:@013 + 72:8;1% + S:v%xéo + 72x§x§ + 8x§x§x§ + 81%@1:&2 + 128:ngg.
Using this inequality we estimate the denominator from below by the coefficients:
monomial | x1? | 21023 | afud | 28a§ | wdaf | 032l | 21? | a3afad | a3afad | adadal | adadaf | vladad
lowerbound‘fi‘32‘114‘176‘114‘32‘6‘ 11 ‘ 20 ‘ 20 ‘ 11 ‘ 1 '

Since all the coefficients of the lower bound on the denominator are at least % times the corresponding coefficients of
the numerator with strict inequalities at some coefficients, we conclude that the denominator is bigger that % of the
numerator and hence ¢y < % Hence F'(tp) is a cm moment matrix of rank 4, which is RG and psd with the cm variety
{(z,y): y = 1} U {(0,—1)} of infinite cardinality. Hence it admits a measure consisting of atoms of size 1 by the
results of Curto and Fialkow see [Fial4] and reference therein. This settles Case 2.2, and concludes the proof of the
Claim. Thus the theorem is proved. d
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Remark 4.6. (1) Note that Lemma 4.5 is true for any n not only n = 3. Hence if Y has only 1 eigenvalue of some
sign, then the atom of size 2 is uniquely determined up to density. Numerical experiments show that even in
this case Claim 2 from the proof of Theorem 4.1 is true, but we were not able to find a theoretical argument for
this observation as in the case n = 3. So in the future research we plan to find some argument for the existence
of such ¢ without using brute force methods.

(2) If Y has multiplicity of both eigenvalues at least 2, then possible atoms of size 2 in the measure are not unique
anymore (up to density), so some other construction of the measure is needed.

(3) The characterization of finite sequences of real numbers that are the moments of one-atomic tracial measures
is deeply connected with Horn’s problem (cf., [CW18]). One approach to solve Horn’s problem for n € N, is
to instead solve the one-atomic bivariate tracial moment problem of degree 2n — 2. In particular, solving the
bivariate quartic tracial moment problem with the restriction of representing measures having a single size 3

atom (X,Y) € (SR3*3)2, solves Horn’s problem for n = 3. The results of [BZ18] and the analysis of this

)

section do precisely this in the singular case, i.e., when the moment matrix MéX’Y is singular.

5. EXTENSION TO M,, WITH TWO RELATIONS IN M,

The main result of this subsection, Theorem 5.2 below, extends the results for the existence of the measure for M,,,
with two quadratic column relations, from n = 2 (see [BZ18, Theorems 6.5, 6.8, 6.11, 6.14]) to an arbitrary n € N.

Throughout this section, unless otherwise stated we assume that n > 2. We will also frequently be considering
[Ma]{1,x,v,x2 xv,v%,v2} the quadratic component of M,,. Thus we introduce the notation

Mg = [Mn}{n,xw,xaxv,vx,wy
We say that M, is in canonical form, if it satisfies the relation
XY+YX=0
and one of the following relations
(5.1) Y?=1-X* or Y?=1 or Y’=1+X* or Y?=X
We begin by showing that every M,,, with Mg of rank 5, can be transformed into a canonical form.

Lemma 5.1. Suppose § = B3 is a nc sequence with a moment matrix M.,,, such that Mg is of rank 5. If M,
is positive semidefinite and recursively generated, then there exists an affine linear transformation ¢ such that the

sequence B given by 3 = Lg(w o ¢) has a moment matrix M, in a canonical form.

Proof of Lemma 5.1. By [BZ18, Proposition 4.1 (1)] there exists a transformation ¢ such that ./T/l\Q is in a canonical
form (Note that the assumption of [BZ18, Proposition 4.1 (1)] that M2 admits a measure can be replaced by M is psd
and RG since only these two properties are used in the proof.) Since M,, (and hence also /T/l\n) is psd, we conclude by
[CF96, Proposition 3.9] that the relations from ./\//I\Q must also hold in /T/l\n This proves the lemma. O

Theorem 5.2. Suppose 8 = 3™ is a nc sequence with a moment matrix M, which is positive semidefinite, recur-
sively generated and M is of rank 5. Then (3 admits a nc measure if and only if in the canonical form, with M,, and
Bw we have

M, — ‘BX|M(Sign(Ex)170) _ |B\y|M(O’Sign(§Y)l)
n n
is positive semidefinite and recursively generated. Moreover, all the atoms in the measure are of size at most 2.

Given an M,, in canonical form the column space of M,, is easily described.

Lemma 5.3. Suppose that M, is recursively generated and in a canonical form. Then we have the following:

(1) M, satisfies the relation XY + (—1)""1YX® = 0 for everyi € {1,...,n — 1}.
(2) The column space Cq,, of My, is equal to

Cm,, = span ({]1} U O{Xi7xi—1y}).
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Proof. (1). We proceed via induction. For ¢ = 1, the relation holds due to M, being in canonical form. Now suppose
that the relation X'Y + (—1)*"1YX? = 0 holds in M., for some i € {1,...,n — 2}. Multiplying XY + YX = 0 by
X* from the left we obtain that

0= Xi+1Y + XZYX _ Xi+1Y + (71)i+2§{§§i+17
where we use the inductive hypothesis for the second equality. By RG, the relation X*T1Y + (—1)*+2YX**! also holds
in M,,, and hence the statement is proved.

(2). Consider a column indexed by a monomial X% Y/t X% Y2 ... X% Y%+1 where k € N, i, jr+1 € NU{0} and
11,71, -- -0k, Jk € N. Using (1), we know that such a column is equal to the =1 multiple of the column indexed by
the monomial X>¢=o ey >i21 de By using one of the relations (5.1), the column X2E0 0y 2i21 ¢ becomes a linear
combination of the columns of the form X and X¢~1Y with ¢ < n. O

Before proving our main result, the next two lemmas illustrate some properties of the moments in our setting. In
particular, we show that many moments obtained from nc atoms in the measure for M., are 0.

Lemma 5.4. Suppose that M, satisfies the relation XY + YX = 0. If 8 admits a nc measure, then there exists a
measure in which every nc atom is of the form

v Ot B o ,ult Ot
(5.2) X—<Bt 0t>, Y—<0t )
with (X,Y) € (SR2*2)2 ¢ € N, B € R'*t, 1 > 0. Moreover, every such atoms satisfies:
(X.Y)

(1) Bxzizi = 0 foreveryi € N such that 2i + 1 < 2n.

(2) ﬁg?i;/) = 0 for every j € NU {0} such that j + 1 < 2n.

(3) ﬂg?,;’;,? = 0 for every odd k € N.
Proof. Since M, satisfies XY + YX = 0, by [BZ18, Proposition 5.1] there exists a measure in which every nc atom
is of the form (X,Y) € (SR?**21)2 t € N, is of the form

s _ (vt B = (ul; O
X = (Bt ’YLL) ’ Y= (Ot */,LIt ’

where B € R ~ > 0, 1 > 0 (note that [BZ18, Proposition 5.1] is stated for the case n = 2, but the proof easily
generalizes to n € N). Moreover, the relation XY + YX = 0 implies that y = 0 and hence the atoms are of the form
(5.2). Let By = (BB!), and By = (B'B). The following calculations are elementary:

<o (Bi 0 oo (uBi 0 . B 0
2 _ 1 ) 2y _ [ HD1 _ 2iy2 _ (KD )
o= (0 m) =0 ) BT )
o 0 BB S9it1o 0 —uBiB F9it 1 0 p?BiB
2141 __ 1 2141 _ . 1 2i+1y2 . 1
X0 = (BgBt 0 > XY= <MBngt 0 > Xy (;ﬂB;Bt o )

The properties (1)-(3) are now easy to check, using
tr((BB")") = tr(B(B'B)""'B") = tr((B'B)""'B'B) = tr((B'B)"),
where the second equality follows from tr(C'D) = tr(DC), with C = B and D = (B'B)"" 1B, O

Lemma 5.5. Suppose that M., is in the canonical form. If 8 admits a nc measure, then:
(1) Bxzi+1 = Bx foreveryi € N such that 2i + 1 < 2n.
(2) Bxiy =0foreveryj € Nsuchthat j +1 < 2n.
(3) Bxry2 = 0 foreveryodd k € N.
(4) When the second relation is:
(a) Y2 =1 — X2, then:

Bxryz = Bxr — Bxr+2  forevery k €N suchthat k+2 < 2n.

(b) Y2 =1 orY? =1 + X2, then we have that fx = 0.
(c) Y? =1, then:

Bxry2 = Bxr forevery k€N suchthat k—+2 < 2n.
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(d) Y? =1 + X2, then:
Bxry2 = Bxr + Bxr+2  forevery k €N suchthat k+ 2 < 2n.
(e) Y? = X2, then:
Bxry2 = Bxrt+2  forevery k€N  suchthat k—+2 <2n.

Proof. By Theorem 2.1 (1) possible cm atoms in the measure for 5 are:

(1) If Y2 =1 — X2 (1,0), (—1,0), (0,1), (0, —1).
() If Y2 =1: (0,1), (0,—1).
(3) If Y2 =1+ X2 (0,1), (0, —1).
(4) If Y? = X2: (0,0).

It is easy to check that the moment matrices M%’C’“), generated by possible cm atoms (z,y) € R2?, satisfy the cor-

responding relations stated in the lemma. It remains to prove that the nc atoms also satisfy them. By Lemma 5.5
there exist a measure such that in all cases the nc atoms (X, Y") are of the form (5.2) and satisfy (1), (2) and (3). The
statement (4a) for odd k£ € N follows by using (1) and (3), while for even k£ € N it follows by the following calculation

/65(};};2 _ tr(Xini}Q) _ tl"(j(v'%(lgt XQ)) (X21 )?21’-&-2) _ tr()?%) _ tr(i2i+2> _ ﬁg();Y ﬂg()gl3>/2
where we used that Y2 = I, — X for the second equality. The statement (4b) is clear for the nc atoms. The statement
(4c) follows by X¥Y?2 = X% since Y2 = I5. The statement (4d) for odd k € N follows by using (1), (3) and (4b),
while for even k € N it follows by the following calculation

ﬁg();ifn —tr ()?21}72) (X2z(l2t + XQ)) (X21 + X2z+2) ()?21) + tr(jz2i+2) BX);Y + ﬁg();};
where we used that Y2 = I, + X2 for the second equality. The statement (4e) follows by X¥Y2 = X*+2 gince
Y2 = X2, This proves the lemma. O

Proof of Theorem 5.2. We can assume WLOG that M,, is in the canonical form since the moment matrix admits a
measure if and only if its canonical form admits a measure. We rearrange the columns of M,, to the order

{1,X,X2,..., X" Y, XY, X%Y,..., X"y},
The rearranged moment matrix has the form

There are four cases to consider, each corresponding to a relation of (5.1). We present in detail the proof when we have
relations XY + YX = 0 and Y? = 1 — X2. The other three cases are argued similarly, and the details can be found in
Appendix B.

Given the relations XY + YX = 0 and Y2 = 1 — X2, by Lemma 5.5, the matrices M.,,(31, Bx, X), M, (B1,Y)
and B(fy ) are of the forms

1 X X2 XB . X2k X2k+1 . X"
1 B1 Bx Bxz Bx -+ Bxek Bx e cnfBxn + (1 —cn)pPx
X Bx Bx2 Bx PBx+ - Bx  Bxemzr 0 cpy1Bxntr + (1= cuyr)Bx
X2 Bx= Bx Bx+ Bx - PBxwm2 Bx e cnBxntz 4+ (1 —cn)Bx
(

X3 BX 6X4 BX ﬂXG T BX 5X2k+4 T C’YL+16X"+3 +(1- C7L+1)/6X

Xn CnﬁX"JF(l*Cn)ﬂX szn
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Y XY xx X2Fy X2h+ly Xn-ly
Y B1 — Bx2 0 Bxzrk — Bxzk+2 0
XY 0 BXQ — BX“ s 0 ﬁX2k+2 - Bx2k+4
X2Fy BX% — /Bx2k+2 0 BX‘““ — BX‘“C‘*'? 0
X2k+1Y 0 Bx2k+2 — /Bx2k+4 o 0 ﬁX4k+2 — 6X4k+4
Xn—lY
and
Y XY X2Y Xn-ly
1 /8y O 0o - 0
X[ 0 0 o - 0
(5.4 B(By) :=
X" \0 0 o - 0
respectively, where ¢, = % By Lemma 5.4 the nc atoms must be of the form (5.2). Hence the only way to

cancel the odd moment, Sx in M, (51, 8x,X) and By moment in B(fy ), is by using atoms of size 1, which are
(£1,0) and (0, £1).

Claim. We have that
|ﬁX|/’\}l’£Lsign(ﬁx)1,0) + |BYlM£lO,sign(ﬁy)l) jm/%}’o) +72M£L_1’0) _’_51/@1“;0,1) +52M£LO’_1)

for every v1, 72, 61,02 > O such that y; — 2 = Sx and §; — &2 = By

We consider four cases depending on the signs of Sx and Sy . If Sx > 0, then sign(Sx)1 = 1 and hence v; > Bx.
Else 8x < 0, sign(Bx)1 = —1 and hence 2 > |Sx|. Thus,

(55) |BX|M£LSign(ﬁX)LO) j 71/’\;1157’1,0) +72~//—\;l/£,,71’0)~
Similarly,
(5.6) |By | MO582B3)D < 5 MO 4 5, MO,

Now, (5.5) and (5.6) imply the claim.

By the claim it follows that <|BX |/W5?ign(ﬁx>1’0) + |ﬁy|/ﬁ5l0’51gn(3”)l)) is the smallest matrix (under the Lowner

partial ordering) such that, //\/T,L(Bl, Bx, By ) admits a measure if and only if
Ma(Br = Bx = By,0,0) = Mau(B1, Bx. By) = (|8x | MEF010) |y | Af(0sten(n)

admits a measure. Now observe that the existence of a measure for M, (81 — Sx — By, 0, X), i.e.,

1 X X2 X3 cee N
1 /B —|Bx|— Byl 0 Bx2 — |Bx] 0 cn(Bxn — |Bx])
X 0 Bx2 — |Bx] 0 Bxs —|Bx]| Cni1(Bxntr —[Bx])
X2 Bx> — |Bx| 0 Bxas — |Bx| 0 en(Bxn+z — |Bx|)
X3 0 Bxa — |Bx| 0 Bxs — |Bx]|

X" \ e, (Bxn — |Bx|)

Cnt1(Bxnts — |Bx])

Bxzn - |Bx|
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with support a subset of [—1, 1] is the truncated Hausdorf moment problem. Hence by [KN77, Theorem I11.2.3], the
matrix M,, (81 — Bx — By, 0, X) admits a measure if and only if it is psd and

Y XY . X2kY X2k+1ly oo X ly
Y ﬁl—ﬂx2—|ﬁy‘ 0 <o Bxor — Bxor+2 0
XY 0 Bxz — Bxa e 0 Bx2kt2 — Bxzrta
X2ky Bx2r — Bxzkt2 0 <o Bxar — Bxan+2 0
X2k+1Y 0 ﬁX2k+2 — ﬁX2k+4 oo 0 ,8X4k,+2 — ﬁX4k+4
Xty
which is exactly M., (81 — By,Y), is psd. Now note that if z;, ¢ = 1,...,k, k € N, are atoms in the measure for

M, (81 — Bx — By, 0, X) with the corresponding densities p;, ¢ =1, ..., k, then

with densities u;, ¢ = 1,. .., k, are atoms which represent m(ﬁl - Bx — By, 0,0). O

6. REDUCING THE DEGENERATE TRUNCATED HYPERBOLIC MOMENT PROBLEM

Prompted by the outcomes of the previous section (proof of Theorem 5.2), we use the reduction technique to present
a simplified proof one of the main results in [CF05], the degenerate truncated hyperbolic moment problem, i.e., when
M., is commutative and satisfies XY = 0.

Remark 6.1. Curto and Fialkow have previously used the reduction technique for the complex moment problem when
Z = Z, and shown how the truncated complex moment problem with this column relation is equivalent to the truncated
Hamburger moment problem (see the discussion after [CF96, Conjecture 3.16]).

Theorem 6.2. [CF05, Theorem 3.1] Let M,, be a moment matrix satisfying the relations XY = YX = 0. If M,, is
positive semidefinite, recursively generated and satisfies rank(M,,) < card(V), where

Ve (] ) € g =0).
gER[X,Y] <o,
g(X,Y)=0 in M.,

then it admits a representing measure. Moreover, ifrank(M,,) < 2n, then M., admits a (rank(M,,))-atomic measure,

and if rank(M,,) = 2n + 1, then M,, admits a (2n + 1)- or (2n + 2)-atomic measure.

Proof. Note that the basis for Cp,, is a subset of {1,X,..., X" Y,...,Y"}. Reordering the columns to
1,X,X2,...,X"Y,..., YY", XY,..., XY ! X%y, ..., X?Yy" 2, ... X"y,

we have that M,, = M & 0 where

1 at bt Bxz ... Bxn+1 By2 ... PByn+1 Bx By
M:(a A 0), A= : : , B= : : , a=| |, b=|  |.
Y o0 B : : : : : :
,BX'H.+1 ce 5X2n ﬁyn+1 ce Byzn Bxn Byn
We separate two cases according to the rank of M,,.

Case 1: rank(M,,) = 2n + 1. From M > 0 it follows that the Schur complement 7 := 1 —a'A~'a — b'B~1b > 0 of

t _ ¢
the block A® B is positive. For a := a’A~'a+ % we have that 1 — o = b* B~'b+Z and (z aA), (1 b @ %) are both

positive definite. By [CF91, Theorem 3.9] they admit a measure consisting of n + 1 atoms xq, ..., x, and yo, . . . , Yn,
respectively. So M,, admits a measure consisting of at most 2n + 2 atoms (xq,0), ..., (z,,0),(0,%0),---, (0, yn),
with only one potential duplication, namely (z;,0) = (0,y;) = (0, 0) for some i, j.
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Case 2: rank(M,,) < 2n. Let k; := rank A = rank Ay, and ko := rank B = rank By,, where Ay, , By, are the
leading principal submatrices of size k1, ko of A, B, and the second equalities follow from M,, being RG. We denote

1 a}; bz
by ai,, by, the restrictions of a, b to the first k1, kp rows, respectively. We write My, , := (akl Akll 0 ) . We
be, O By,
separate two cases according to the difference (rank(/\/ln) —rank (A 0) )

0 B
Case 2.1: (rank(./\/ln) — rank ('3 g)) = 1. We have k1 < n or ko < n. We may assume WLOG that k; < n. In A

we have Xk1+1 = Zf;l 7:X? for some ; € R. By [CF96, Proposition 3.9], Xk1+1 = Zfll ~;X* holds also int/\/ln.
Hence 1 # 0, since otherwise Ay, = [Mn]{x xk1} is singular, which contradicts rank Ay, = k;. In (Z il) we

.....

have
ki—1

[Xkl]{x,...,Xn} = Z Vi1 X x,... xn-
i=0

t
akl

Since y; # 0 there is a unique value of * such that X*1 = Zf;gl 7i+1X* and rank (a* Ay
1

k1
t og-1 ¢
ap, A, ak, @
a A)’

psd and RG. Since the Schur complement of My, 1, is positive (1 - ailA,;lakl — b’,;zB,;lbk2 > 0), we have that

) = ky, this is given by

gt A1 : :
* 1= ay A "ay,, making the matrix

1-—- azlA,;l ap, > bzl By, b, and hence (again by Schur complements) the matrix

<1 — azl A];lakl biz )
bk1 Bk1 ’
is positive definite. By [CF91, Theorem 3.9] both,

¢ A-1 ¢ t 41 ¢
ap, Ay, ok, @ 1—ay, Apag, b
( " A) , and ( ' B)’

admit a k- and (ko + 1)-atomic measures, respectively. Hence M,, admits a rank M, -atomic measure.
Case 2.2: (rank(/\/l”) — rank (’3 g)) = 0. The Schur complement 1 — a’,;lA,;lakl — b, Bk_zlka of the block
Ay, ® By, in My, , is equal to zero, thus

ay, A,;llakl at 0 by, Bk_zl b, 0 b,
M, ko = ak, A, 0] + 0 0 0
0 0 0 b, 0 DBy,

-1 +
Ak1 ag, a
a A

atA e
U._( ' A),

is psd and of rank n. Let U; be the j-th column of U. Suppose there is a nontrivial linear combination 0 = U; +
>, 6;U; where §; € R, ip < nand §;, # 0. Observe also the matrix

V= (bzsz_;ka béfz)
b, By, )’

t
If k1 < n, then as in Case 2.1 we see that (akl ) is psd, RG and of rank k; (similarly if ks < n). Let us

now assume that £; = n. Then the matrix

is psd, of rank ko, and there is a nontrivial linear combination 0 = V; + Zfi;l ¢;V; where (; € R and Vj is the j-th
column of V. Therefore

atAfla—Fb’,isz_lbk V14

2 2 U; J

©.1) 0= a + 6i<0’>+ YooGlo],
bk, 2<i<io 2<j<ka+1 Vi

J
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V!

f )t ,v15 € R, Vj’ € R*2. By [CF96, Proposition 3.9], (6.1) implies that M,, must satisfy the

0=1+ > &X'+ Y GY.

1<i<ip—1 1<j<k2
But then card(V) < ig — 1 + ko, which implies

card(V) <mn — 1+ kg < n + ko = rank(M,,),

a contradiction with the assumption rank(M,,) < card(V). Hence U, 41 € span{Uj, ..
V is RG for every ko. By [CF91, Theorem 3.9], both

bt

b)

<a;1A,;11akl cj) ind (b@Bg—;bkg

a
admit a k- and ko-atomic measure, respectively, and M,, admits a (rank(M,,))-atomic measure.

where V; = (vlj
column relation

., U, } and U is RG. Similarly,

O

Remark 6.3. The matrix M,, of rank M,, = 2n + 1 satisfying the assumptions of Theorem 6.2 admits a (2n + 1)-

t A—1 t tp—1 t
a’A”a i‘) or Zy = (b Bb b bB) is RG, i.e., the last column is in the span

atomic if and only if one of Z; := <
1-b'B~' al
A

admits a (n + 1)-atomic measure which gives a (2n + 1)-atomic measure for M,,. Similarly for the pair Z5 and
(1 —a'A~la b
b B

of the others. Indeed, if Z; is RG then it admits a n-atomic measure and ( ) being positive definite
). If Z; and Z, are not RG, and M, admits a (2n + 1)-atomic measure, there must exist an « € (0, 1)

1-— bt . .
b @ B) admit a (n + 1)-atomic measures

with the shared atom (0, 0). But then removing (0, 0) as an atom of both we are left with rank n» matrices Z; and Zs,
both admitting a measure. Hence they should be RG which would be a contradiction.

t
suchthat @ > a*A~la, 1 — a > b* B~1b, and both matrices (z :) and (

APPENDIX A. DIRECT CALCULATIONS FOR SOME RESULTS FROM THE MANUSCRIPT

A.1. Transformations for Lemma 3.2. Firstly, note that all the square roots are well-defined which follows from the
fact that M is psd (for details see the proof of [BZ18, Proposition 4.1 (1)]). We separate 5 cases according to d € R.

Case 2.1: d < —2.

Transformation (z,y) — The first relation of My The second relation of My
(z+yy—2) 2-dXZ— 2+ d)Y? = (da—2d)1 XY + YX = 21
(V2 —dx,v/—2 — dy) X%+ Y? = (4a — 2d)1 XY + YX = 2vd? — 41

1 1 2 2 _ _ VP—dq _. ~
(\/ﬁz,\/ﬁy) X +Y —]1 XY+YX— 2a_d]l—.a]l
(z,2+y) XY + YX = al + 2X*? Y? = (1+a)l
1 __a 22 2 _

(xﬁy) XY + VX = 21+ —2=X Y2 =1
—z+ A=y,y 2= (M- &) =at et
(ﬁ, y) X2 =1 Y2 =1
(B, 1) XY +YX =0 X2+Y2=1
Case 2.2: d = —2.
Transformation (x,y) — | The first relation of My | The second relation of M,
(x+y,y —x) X?=(a+1)1 XY+ VYX =21
(Ase9) X2 =1 XY + YX = 21
T —
(y, ) Y2 =1 XY +YX= Z-1
(:f— jﬂy,y) Y2 =1 XY +YX=0

Case2.3: —2<d<?2.




26 THE TRACIAL MOMENT PROBLEM ON QUADRATIC VARIETIES

Transformation (z,y) — The first relation of Mo The second relation of M

(xr+y,y—=z) (2-d)X2 - (24 d)Y? = (4a — 2d)1 XY + YX = 21

(V2 —dz, V2 + dy) X2 - Y? = (4a — 2d)1 XY + YX = 2v4 — d’1

We may assume that 4a — 2d < 0. Otherwise we do the transformation (z,y) — (y, z)

(a: - V4_d2y) X2 (M—I)Y2=O XY + YX = —(2d — 4a)X? — (2d — 4a)1
T (2d — 4a)?
C
(@x, y) Y2 X2=0 XY + YX = — VO (2d — 4a) 1 + v/O(2d — 4a)X2
—_————
D
(x+y,y —x) (2—D)X?—(2+ D)Y? = —4D1 XY+YX=0

Case 2.3.1: D = 2.

Transformation (z,y) — | The first relation of Mo | The second relation of My
(z,y) X2 =21 XY+ YX=0
Y 2 —
75T Y =1 XY+ YX=0

Case 2.3.2: D = —2.

Transformation (x, y) — | The first relation of My | The second relation of My
(z,9) Y2 =21 XY+ YX=0
. 2 _ _
xﬁ> Y2=1 XY +YX =0
Case 2.3.3: |D| # 2.
Transformation (z,y) — The first relation of M The second relation of Mo

(/|2 = Dlz,\/]2+ Dly) | £X2+Y? = —4D /|4 — d?|1 XY +YX=0

Case 2.3.3.1: X2 + Y2 = A1, A > 0.

The first relation of Mo
X2+Y2=1

Transformation (z,y) —

(= v2)

The second relation of My

XY +YX=0

Case 2.3.3.2: Y2 — X2 = Al.

We may assume that A > 0 for if not, we may transform (z,y) — (y, z).

Transformation (z,y) — | The first relation of My | The second relation of Moy
1 1 2 2
= Y*-X=1 XY+YX=0
(\/X‘T ﬁy>

Case 2.4: 2 = d.
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Transformation (z,y) — | The first relation of Mo | The second relation of My
(x+y,y —x) Y2=(1-a)l XY +VYX =21
(w, Sy Y2=1 XY + YX = 21
x—ﬁy,y Y2=1 XY+YX=0
Case 2.5: 2 < d.

Transformation (x,y) — The first relation of Mo The second relation of My
(r+y,y—x) (2-d)X2 - (24 d)Y? = (4a — 2d)1 XY + YX = 21
(Vd —2z,/d + 2y) X2 +Y? = (2d — 4a)1 XY + YX = 2vd? — 41

1 1 V&4 _. ~
(m%m@/) X2+vY2i=1 XY+ YX = ¥o—1 =:al
(x,z+y) XY + YX = al + 2X? Y2 =(1+a)l

1 __a 2 w2 2 _
x,ﬁy XY—FYX_M]I—%\/H’*EX Y =1
1 +a _ 2@\ _. —
—x + 7myay X2 = (% — m) =:al Y2 =1
(&) X2 =1 V2 =1
(24 %) XY + YX =0 X2+ Y2 =1

A.2. Calculations for Lemma 3.3. The statement of the lemma follows by the following calculations:

Bx = Lgw (bX +¢Y) = bfx + cfy =0,
By = Ly (eX + fY) = efix + fBy =0,
Bxs = L (0X +¢Y)%) = Ly (X3 +0%e(X?Y + XY X + Y X?) +bA(XY2 4+ VXY + V2X) +Y?)
= b%Bxs + 3b%cBx2y + 3bc*Bxy2 + P Pys =0,
Bxzy = L (bX +cY)?(eX + fY))
= Ly (0%eX® + 07 XY +bee(XY X + Y X?) +bef (XY?+YXY) + PeY?X + 2 fY?)
= b%efxs + (B f + 2bce) Bx2y + (2bcf + Pe)Bxy2 + ¢ fBys =0,
Bys = Ly ((eX + fY)?) = Ly (2X3 + 2 f(X?Y + XY X +YX?) +efA (XY + VXY +V2X) + fY%)
= e*Bxs + 3e fBx2y + 3ef*Bxy2 + f*Pys = 0.

A.3. Calculations for Lemma 4.4. Part (3) of Lemma 4.4 follows by the following calculations:

~ oy~ )2 t . . .
X% =X%? = < D ;’_Dxx Dtx ) , 4 _ (D? + z2")? + DxatD *
A x v - < ' D%*x + (2t2)? )’
)?17)?173(3 Ow), )?3}7_(1§3+mtf)+f)mt ; )
N * —2tDx )’
S D3 + 22D + Daa? * . .
X3 = N e 2 _ gt _
( ] wthr )’ XVXYV = ( b e be )
x —xtx
S90S D? + zat —Dux ~
2
X Y: ( I’tlf\) 7xtx ), Y4:In;

where D = Dy 0.
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APPENDIX B. THEOREM 4.2 - REMAINING CASES

B.1. Relations XY+ YX = 0 and Y? = 1. By Lemma 5.5, the matrix M, (81, Bx, X ) must have 3x = 0 and hence
we will write it as M., (81, X). The forms of M, (81, X ), M,,(51,Y) are

B.1)
1 X X2 x3 . X2k X2k+1 - X"
1 ﬁl 0 5)(2 0 ﬁxzk 0 Cnﬂxn
X 0 sz 0 ﬂxzx ce 0 ﬁX2k+2 s Cn+1ﬁXn+1
X2 Bxe 0 Bx4 0 cor Byorte 0 coo epBxnt2
X3 0 ﬁX‘* 0 ,BXG ce 0 ﬁx2k+4 ce Cn+1ﬁxn+3
X" CnﬁX" Cn+1BXn+1 Cnﬁxwrz Cn+1ﬁxn+3 s cn/BXn+2k Cn+1/3Xn+2k+1 s ﬁx‘zn
Y XY s X2ky X2hFly ... Xy
Y b1 0 a Bz 0 o Cp—1fxn
XY 0 ﬂxz ce 0 ﬂX2k+2 ce Cn/BXn+1
X2ky Bxcz2x 0 e Bxar 0 <o+ Cp—1Bxn+2
XQk'HY 0 Bx2k+2 s 0 ﬁx4k+2 s Cn,BXn+3
xXn—ly Cn,lﬁxn—1 CpfBxn - Cnflﬂxwrqu CnﬂXnJrzk ce- Bx2n—2
respectively, where ¢, = (_1)2m+1, and B(fy ) has the form (5.4). By Lemma 5.4 the nc atoms must be of the form

(5.2). Hence the only way to cancel the 8y moment in B(3y) is by using atoms of size 1, which are (0, £1). Since
we have that

By MOS0 < JAOD 4 540

for every v,6 > 0 such that v — 6 = By (Indeed, By > 0 implies that sign(fy)l = 1, v > Sy and hence
|By MBI <0 A1) \while By < 0 implies that sign(8y )1 = —1,3 > | By | and hence | By M= AID <
MY .), it follows that /\/l (81, By ) admits a measure if and only if

Mo (By = By, 0) = Mo (81, By) — | By |M©OsiEn(B)1)

admits a measure. Note that the existence of a measure M, (81 — By, X) is the truncated Hamburger moment problem.
By [CF91, Theorem 3.9], the matrix M,,(51 — By, X) admits a measure with size 1 atoms from R if and only if
M, (51 — By, X) is psd and recursively generated. Now note thatif x;, i = 1,...,k, k € N, are atoms in the measure
for M,,(81 — By, X) with the corresponding densities p;, i =1, ..., k, then

((i :3)((1) _01)), i=1,... .k

with densities 1;, 7 = 1,.. ., k, are atoms which represent /\’/\l;(ﬂl — By, 0,0).
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B.2. Relations XY + YX = 0 and Y? = 1 + X2. By Lemma 5.5, the matrix M., (31, Bx, X) has the form (B.1),
M, (B1,Y) is equal to

Y XY e X2y X2k +ly S Xnoly
Y Bi+ Bxz 0 e Bxen o+ Bxane 0
XY 0 Bx2 + Bxa s 0 Bxar+2 + Bxzkta
X2ky Bxzr + Bxzrte 0 coo o Bxar + Bxak+2 0
X2k+ly 0 Bxorte + Bxorta - -- 0 Bxarte + Bxanta

Xty

and B(fy ) has the form (5.4). By Lemma 5.4 the nc atoms must be of the form (5.2). Hence the only way to cancel
the Sy moment in B(Sy ) is by using atoms of size 1, which are (0, £1). As in §B.1 we argue that /\A/lj,,(ﬂl, By ) admits
a measure if and only if M,, (81 — By, X ) admits a measure with atoms from R of size 1 if and only if it is psd and
recursively generated. Now note that if z;, ¢ = 1,...,k, k € N, are atoms in the measure for M,, (51 — By, X) with
the corresponding densities p;, ¢ = 1,.. ., k, then

( 0 V14 a7 0 ) P k
x; 0 ) 0 _ /1 ¥ -1'3 9 T Ly eeey iy
with densities p;, 7 = 1,.. ., k, are atoms which represent //\/lvn(ﬁl — By,0,0).

B.3. Relations XY + YX = 0 and Y? = X2. By Lemma 5.5, the matrix M., (31, 8x,X) has the form (B.1),
M, (51,Y) is equal to

Y XY X2y X3Y ... X%y X%ty ... xXn-ly
Y Bxz 0 PBxa 0 o0 Bxoree 0
XY [ 0 Bys 0 Bye - 0 Byeess
X2Y | fBxs 0 Bye 0 - Byass O
XY | 0 Bye 0 Bxs - 0 Byowss

Xy

and B(fy) = 0. Note that the existence of a measure M,, (51, 0, X) is the truncated Hamburger moment problem. By
[CF91, Theorem 3.9], the matrix M., (51,0, X) admits a measure with atoms from R of size 1 if and only if it is psd

and recursively generated. Now note that if z;,7 = 1,..., k, k € N, are atoms in the measure for M,, (1, X ) with the
corresponding densities p;, 7 = 1,..., k, then
((xi 0) , (O _xi) =1k,
with densities 1;, 7 = 1,. .., k, are atoms which represent /\’/\l;(ﬂl, 0,0).
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