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ABSTRACT. The (classical) truncated moment problem, extensively studied by Curto and Fialkow, asks to characterize when
a finite sequence of real numbers indexes by words in commuting variables can be represented with moments of a positive
Borel measure µ on Rn. In [9] Burgdorf and Klep introduced its tracial analog, the truncated tracial moment problem, which
replaces commuting variables with non-commuting ones and moments of µ with tracial moments of matrices. In the bivariate
quartic case, where indices run over words in two variables of degree at most four, every sequence with a positive definite
7× 7 moment matrixM2 can be represented with tracial moments [8, 9]. In this article the case of singularM2 is studied.
ForM2 of rank at most 5 the problem is solved completely; namely, concrete measures are obtained whenever they exist and
the uniqueness question of the minimal measures is answered. ForM2 of rank 6 the problem splits into four cases, in two of
which it is equivalent to the feasibility problem of certain linear matrix inequalities. Finally, the question of a flat extension
of the moment matrixM2 is addressed. While this is the most powerful tool for solving the classical case, it is shown here
by examples that, while sufficient, flat extensions are mostly not a necessary condition for the existence of a measure in the
tracial case.

1. INTRODUCTION

1.1. Context. The Moment problem (MP) is a classical question in analysis and concerns the existence of a positive
Borel measure µ supported on a subset K of Rn, representing a given sequence of real or complex numbers indexed
by monomials as the integration of the corresponding monomials w.r.t. µ; nice expositions on the MP are [1, 36]. The
solution to the MP on Rn is given by Haviland’s theorem [25], which establishes the duality with positive polynomials
and relates the MP to real algebraic geometry (RAG). One of the cornerstones of RAG is the celebrated Schmüdgen
theorem [52], which solves the problem on compact basic closed semialgebraic sets and is the beginning of extensive
research of the MP in RAG; we refer the reader to [47, 50, 23, 46, 37, 41, 42, 44, 40] and the references therein for
further details. Another important aspect of the MP is uniqueness of the representing measures. For compact sets
the measure is unique (see e.g., [44]), while for noncompact sets, the question of uniqueness is highly nontrivial (see
[48, 49]).

There are various generalizations of the MP. Functional analysis studies various versions of matrix and operator
MPs; see [35, 34, 2, 55, 3, 13, 33] and references therein. The quantum MP from quantum physics is considered
in [24]. The rational MP, which extends Schmüdgen theorem from the polynomial algebra to its localizations, is
solved in [12], while [28] investigates the MP for the polynomial algebra in infinitely many variables. The MP on
semialgebraic sets of generalized function is considered in [32]. The beginning of free RAG is the solution of the full
non-commutative (nc) MP by McCullough [McC01] and Helton [Hel02]. The nc MP has been further investigated in
[31] and [30]. In [31] the authors solve the full nc MP for nc matrix polynomials on a bounded nc semialgebraic set,
while in [30] the truncated nc MP for nc matrix polynomials on a convex nc semialgebraic set is solved. Finally, the
most recent free MP is a tracial MP [8, 9, 7, 10] which is also the contents of this article.

The (classical) truncated moment problem (TMP) refers to the MP where only finitely many numbers in the sequence
are given and one wants to know if they can be generated from a measure. By the Bayer-Teichmann version [4] of
the Tchakaloff theorem [54], it is sufficient to study only finitely atomic measures. Furthermore, the TMP is more
general than the full MP by a result of Stochel [53]. Curto and Fialkow shined new light on the TMP in their series of
papers [15, 16, 17, 18, 19, 20, 21, 27]. One of their crowning achievements is the discovery that if a moment matrix
admits a rank preserving extension (to a moment matrix), then the corresponding sequence admits a representing
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measure. Using this result, they completely solved the bivariate quartic TMP. Recently, the representing measures for
the bivariate nonsingular quartic MP were constructed by the use of computer algebra [22].

The study of the truncated tracial moment problem (TTMP) was initiated by Burgdorf and Klep in [8, 9], followed
by [7]. A very nice reference including the results of this paragraph that also deals with polynomial optimization prob-
lems in matrix unknowns is [10]. The motivation to study the TTMP comes from trace-positive polynomials, which
are very interesting due to important applications, e.g., Connes’ embedding problem [14] from functional analysis and
Bessis-Moussa-Villani conjecture from statistical quantum mechanics have reformulations in terms of trace-positive
polynomials [38, 39, 6]. Determining if a polynomial is trace-positive, being the dual problem to the TTMP, is the con-
nection of the TTMP with free RAG. Using this duality the bivariate quartic tracial MP with a positive definite moment
matrix is solved in [8] (for alternative proof see [11]) by showing that bivariate quartic trace-positive polynomials are
always sums of hermitian squares and commutators. This fact does not generalize to higher powers or more variables
(see examples in [38, 39, 51]). In [9, 7] the authors obtain the tracial analogs of the results on the classical moment
problem of Curto and Fialkow, Stochel, Bayer and Teichmann, Fialkow and Nie [26], providing powerful means to
tackle the special cases of the TTMP in a way analogous way to the classical one.

In this section we state the main concepts and results of this paper. In Subsection 1.2 we introduce some essential
definitions before stating the main results in Subsection 1.3. Finally, Subsection 1.4 is a guide to the organization of
the rest of the paper.

1.2. Bivariate quartic tracial moment problem. In this subsection we state the main problem and introduce basic
definitions used throughout this article.

1.2.1. Noncommutative bivariate polynomials. We denote by 〈X,Y 〉 the free monoid generated by the noncommuting
letters X,Y and call its elements words in X,Y . Consider the free algebra R〈X,Y 〉 of polynomials in X,Y with
coefficients in R. Its elements are called noncommutative (nc) polynomials. Endow R〈X,Y 〉 with the involution
p 7→ p∗ fixing R∪ {X,Y } pointwise. The length of the longest word in a polynomial f ∈ R〈X,Y 〉 is the degree of f
and is denoted by deg(f) or |f |. We write R〈X,Y 〉≤k for all polynomials of degree at most k. For a word w ∈ 〈X,Y 〉,
w∗ is its reverse, and v ∈ 〈X,Y 〉 is cyclically equivalent to w, which we denote by v

cyc∼ w, if and only if v is a cyclic
permutation of w.

1.2.2. Bivariate quartic real tracial moment problem. Given a sequence of real numbers β ≡ β(4) = (βw)|w|≤4,
indexed by words w of length at most 4 such that

βv = βw whenever v
cyc∼ w and βw = βw∗ for all |w| ≤ 4,

i.e.,

β =
(
β1, βX , βY , βX2 , βXY = βY X , βY 2 , βX3 , βX2Y = βXYX = βY X2 ,

βXY 2 = βY XY = βY 2X , βY 3 , βX4 , βX3Y = βX2Y X = βXYX2 = βY X3 ,

βX2Y 2 = βXY 2X = βY 2X2 = βY X2Y , βXYXY = βY XYX ,

βXY 3 = βY XY 2 = βY 2XY = βY 3X , βY 4

)
,

the bivariate quartic real tracial moment problem (BQTMP) for β asks to find conditions for the existence of
N ∈ N, ti ∈ N, λi ∈ R>0 with

∑N
i=1 λi = 1 and pairs of real symmetric matrices (Ai, Bi) ∈ (SRti×ti)2, such that

(1.1) βw =

N∑
i=1

λiTr(w(Ai, Bi)),

where w runs over the indices of the sequence β and Tr denotes the normalized trace, i.e.,

Tr(A) =
1

t
tr(A) for every A ∈ Rt×t.

If such data exist, we say that β admits a representing measure. The vectors (Ai, Bi) are atoms of size ti and the
numbers λi are densities. We say that µ is a representing measure of type (m1,m2, . . . ,mr) if it consists of exactly
mi ∈ N ∪ {0} atoms of size i. A representing measure of type (m

(1)
1 ,m

(1)
2 , . . . ,m

(1)
r1 ) is minimal, if there does not

exist another representing measure of type (m
(2)
1 , m(2)

2 ,. . ., m(2)
r2 ) such that

r2 < r1 or (r2 = r1,m
(2)
r2 < m(1)

r1 ) or (r2 = r1,m
(2)
r2 = m(1)

r2 ,m
(2)
r2−1 < m

(1)
r1−1)
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or . . . or (r2 = r1,m
(2)
r2 = m(1)

r2 , . . . ,m
(2)
2 = m

(1)
2 ,m

(2)
1 < m

(1)
1 ).

If β1 = 1, then we say β is normalized. We may always assume that β is normalized (otherwise we replace Tr with
1
β1

Tr). If βX2Y 2 = βXYXY , we call β a commutative (cm) sequence and the MP reduces to the classical one solved
by Curto and Fialkow. If βX2Y 2 6= βXYXY , then β is a noncommutative (nc) sequence.

Remark 1.1. (1) Note that replacing a vector (Ai, Bi) with any vector

(UiAiU
t
i , UiBiU

t
i ) ∈ (SRti×ti)2

where Ui ∈ Rti×ti is an orthogonal matrix, preserves (1.1).
(2) By the tracial version [7, Theorem 3.8] of Bayer-Teichmann theorem [4], the problem (1.1) is equivalent to the

more general problem of finding a probability measure µ on (SRt×t)2 such that βw =
∫
(SRt×t)2

Tr(w(A,B)) dµ(A,B).

We associate to the sequence β the truncated moment matrixM2 = M2(β) of order 2 with rows and columns
indexed by words in R〈X,Y 〉≤2 in the degree-lexicographic order. The entry in row U and column V is βU∗V , i.e.,

(1.2) M2 =

1 X Y X2 XY YX Y2



1 β1 βX βY βX2 βXY βXY βY 2

X βX βX2 βXY βX3 βX2Y βX2Y βXY 2

Y βY βXY βY 2 βX2Y βXY 2 βXY 2 βY 3

X2 βX2 βX3 βX2Y βX4 βX3Y βX3Y βX2Y 2

XY βXY βX2Y βXY 2 βX3Y βX2Y 2 βXYXY βXY 3

YX βXY βX2Y βXY 2 βX3Y βXYXY βX2Y 2 βXY 3

Y2 βY 2 βXY 2 βY 3 βX2Y 2 βXY 3 βXY 3 βY 4

.

Observe that the matrixM2 is symmetric. If β admits a measure, thenM2 is positive semidefinite (psd); see Proposi-
tion 2.1. IfM2 represents a cm sequence, we call it a cm moment matrix. OtherwiseM2 is a nc moment matrix. By
[9, Corollaries 3.19, 3.20], β admits a measure if and only if there exists a moment matrixM2+k extendingM2, which
admits a rank preserving extensionM2+k+1. Furthermore, by [9, Corollary 3.2] in this case the atoms of size at most
rank(M2+k) are sufficient. IfM2 is positive definite, then β admits a measure since all trace-positive polynomials of
degree 4 are cyclically equivalent to sums of hermitian squares [8]. This is the duality established by [9, Theorem 4.4].
Moreover, the measure consists of at most 15 atoms of size 2 [7, Remark 3.9].

1.3. Results. In this paper we study the BQTMP for sequences with singular moment matrices. Initially, we ap-
proached this problem using a nc analog of the main tool for studying commutative sequences, i.e., finding rank
preserving extensions of the moment matrices involved. As is already well established by Curto and Fialkow, the
existence of a measure usually implies the existense of a rank preserving extension of a moment matrix, and hence a
minimal measure with rank(M2) atoms; see Theorem 2.7 below. However, in stark contrast to the commutative case,
our research soon revealed that this does not apply for noncommutative sequences β. Characterizing moment matrices
M2 which admit a flat extension is insufficient for solving the BQTMP. The most versatile tool in tackling the BQTMP
is the application of appropriate affine linear transformations on the sequences β, see Subsection 2.5 below. This splits
the BQTMP into finitely many cases according to the column relations that exist inM2. ForM2 of rank at most 5, we
completely characterize the existence, minimality and uniqueness of a measure in terms of the parameters βw. In two
out the four cases ofM2 being of rank at most 6, we prove that the BQTMP is equivalent to the feasibility problem of
certain linear matrix inequalities with an additional rank-to-variety condition for one of them. In all but a single case -
that ofM2 being rank 6 and satisfying Y2 = 1 - we show that atoms of size at most 2 suffice in the minimal measure
of β. We now give a brief outline of the results we prove in this paper.

Outline of the results on BQTMP: (We assume that β is a nc sequence.)
(1) If rank(M2) ≤ 3, then β does not admit a measure. Namely, if β admits a measure, then the columns

1,X,Y,XY inM2 must be linearly independent (see Corollary 2.3 below).
(2) If rank(M2) = 4, then it suffices, after applying an appropriate affine linear transformation, to study the case

whenM2 satisfies the column relations

X2 = 1, XY + YX = a1, Y2 = 1,

where a ∈ (−2, 2). By finding the representing atom of size 2 it turns out that such β always admits a measure.
Moreover, the representing atom is unique (up to orthogonal equivalence); see Theorem 3.1.
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(3) If rank(M2) = 5, then it suffices, after applying an appropriate affine linear transformation, to study four
special cases whenM2 satisfies the column relation

(1.3) XY + YX = 0

and one of

(1.4) X2 + Y2 = 1 or Y2 = 1 or Y2 − X2 = 1 or Y2 = X2

(see Proposition 4.1 (1)). Due to the first relation the atoms in the minimal measure are of special form (see
Proposition 5.1). In particular, all the atoms of size bigger than 1 have trace 0. Analyzing moment matrices
M2 generated only by atoms of size bigger than 1 with trace 0, we show that only one such atom of size 2
is needed. Since every atom of size 2 generates a moment matrix of rank 4, β admits a measure if and only
if there is a nc moment matrix M̃2 of rank 4 representing a nc sequence β̃ admitting a measure such that
M2−αM̃2, α > 0, is a cm moment matrix admitting a measure. However, there are infinitely many possible
atoms of size 2 satisfying relations (1.3) and (1.4). But there are at most 4 atoms of size 1 satisying (1.3) and
(1.4). Therefore it is easier to subtract candidates for a cm moment matrices M̂2. Namely, using Mathematica
we compute the smallest α > 0 such that rank

(
M2 − αM̂2

)
= 4. By the solution of the rank 4 case we can

characterize exactly, in terms of the parameters βw, when a measure exists, type of a minimal measure and its
uniqueness.

(4) If rank(M2) = 6, then it suffices, after applying an appropriate affine linear transformation, to understand the
four special cases whenM2 satisfies one of the column relations

X2 + Y2 = 1 or XY + YX = 0 or Y2 − X2 = 1 or Y2 = 1

(see Proposition 4.1 (2)). In the first three cases the atoms in the minimal measure for β are of size at most 2.
In the first two cases the measure always exists if βX = βY = βX3 = βX2Y = βY 3 = 0. This is proved by
computing, using Mathematica, the smallest α > 0 such that

rank
(
M2 − α

(
M(1,0)

2 +M(−1,0)
2

))
< 6

(resp. rank
(
M2 − αM(0,0)

2

)
< 6), whereM(x,y)

2 is the moment matrix generated by the atom (x, y) ∈ R2,
and using the results of rank(M2) ≤ 5. Otherwise, still referring to the first two cases of rank 6, if one of the
moments βX , βY , βX3 , βX2Y , βY 3 is nonzero, then the existence of the measure is equivalent to the feasibilty
of certain linear matrix inequalities.

1.4. Reader’s guide. The paper is organized as follows. In Section 2 we prove some preliminary results about tracial
moment sequences (see Subsections 2.1-2.5) and present the solution of the classical singular bivariate quartic MP (see
Theorem 2.7). In Section 3 we solve BQTMP withM2 of rank 4. In Section 4 we reduce the study of BQTMP with
M2 of rank 5 or 6 to four basic cases (see Proposition 4.1). In Section 5 we prove that in the basic cases of rank 5 and
three basic cases of rank 6, atoms are of a special form and all the atoms of size at least 2 in some minimal measure
have trace 0 (see Proposition 5.1). In Section 6 we solve all four basic cases of rank 5 (see Theorems 6.4, 6.7, 6.10,
6.13). In Section 7 we prove that in the first three basic cases of rank 6 atoms of size 2 suffice in the minimal measure
for β. Then we study the relation Y2 = 1−X2 in Subsection 7.1 (see Theorem 7.5 and Corollary 7.6) and the relation
XY + YX = 0 in Subsection 7.2 (see Theorem 7.8 and Corollary 7.9). In Section 8 we analyze the existence of flat
extensions with a moment structure for moment matricesM2 of rank 6.

Acknowledgement. Part of this paper was written at The University of Auckland under the supervision of Igor Klep
who was the MSc supervisor of the first author and the PhD co-supervisor of the second author. Both authors wish to
thank him for introducing us to this topic, the many insightful and inspiring discussions and support throughout the
research.

2. PRELIMINARIES

This section is devoted to terminology, notation and some preliminary results. Since these results hold for sequence
of any degree (not only of degree 4) we will work with a general case.
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2.1. Bivariate truncated tracial moment problem. BQTMP is a special case of a bivariate truncated tracial mo-
ment problem: Given a sequence of real numbers β ≡ β(2k) = (βw)|w|≤2k, indexed by words w of length at most 2k
such that

(2.1) βv = βw whenever v
cyc∼ w and βw = βw∗ for all |w| ≤ 2k,

when does there exist N ∈ N, ti ∈ N, λi ∈ R>0 with
∑N
i=1 λi = 1 and vectors (Ai, Bi) ∈ (SRti×ti)2, such that

(2.2) βw =

N∑
i=1

λiTr(w(Ai, Bi)),

where w runs over the indices of the sequence β.

2.2. Riesz functional and truncated moment matrix. For a polynomial p ∈ R〈X,Y 〉≤2k, let p̂ = (aw)w be its
coefficient vector with respect to the lexicographically-ordered basis{

1, X, Y,X2, XY, Y X, Y 2, . . . , X2k, . . . , Y 2k
}

of R〈X,Y 〉≤2k. Any sequence β ≡ β(2k) : β1, . . . , βX2k , . . . , βY 2k , which satisfies (2.1) defines the Riesz functional
Lβ(2k) : R〈X,Y 〉≤2k → R by

Lβ(2k)(p) :=
∑
|w|≤2k

awβw, where p =
∑
|w|≤2k

aww.

Notice that
βw = Lβ(2k)(w) for every |w| ≤ 2k.

The truncated moment matrixMk(β) of order k is defined by

Mk =Mk(β(2k)) = (βU∗V )|U |≤k,|V |≤k,

where the rows and columns are indexed by monomials in R〈X,Y 〉≤k in lexicographic order. When k = 2,M2 is of
the form (1.2).Mk is the unique matrix such that for p, q ∈ R〈X,Y 〉≤k we have that

〈Mkp̂, q̂〉 = Lβ(2k)(pq∗),

where 〈p̂, q̂〉 := p̂tq̂. In particular, the row w1(X,Y ) and column w2(X,Y ) entry ofMk is equal to〈
Mk

̂w2(X,Y ), ̂w1(X,Y )
〉

= Lβ(2k)(w2w
∗
1).

If β(2k) admits a measure, i.e., (2.2) holds for every βw, then for p ∈ R〈X,Y 〉 of degree at most k we have that

〈Mkp̂, p̂〉 = Lβ(2k)(pp∗) =

m∑
i=1

λiTr
(
p(Xi, Yi) (p(Xi, Yi))

∗) ≥ 0,

where λi, Xi, Yi are as in (2.2). This proves the following proposition.

Proposition 2.1. If β(2k) admits a measure, thenMk is positive semidefinite.

2.3. Support of a measure and RG relations. Let A be a matrix with its rows and columns indexed by words in
R〈X,Y 〉. Writing w(X,Y) we mean the column of A indexed by the word w. [A]E denotes the compression of A to
the rows and columns indexed by the elements of the set E. Similarly for vectors v, vE denotes the compression of v
to the entries indexed by words in E. 0m×n stand for the m × n matrix with zero entries. Usually we will omit the
subindex m× n, when the size will be clear from the context.

Let CMk
denote the column space ofMk, i.e.,

CMk
= span{1,X,Y, . . . ,Xk . . . ,Yk}.

For a polynomial p ∈ R〈X,Y 〉≤k of the form p =
∑
aww(X,Y ), we define

p(X,Y) =
∑
w

aww(X,Y)

and notice that p(X,Y) ∈ CMk
. We express linear dependencies among the columns ofMk as

p1(X,Y) = 0, . . . , pm(X,Y) = 0,
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for some p1, . . . , pm ∈ R〈X,Y 〉≤k, m ∈ N. We define the free zero set Z(p) of p ∈ R〈X,Y 〉 by

Z(p) :=
{

(A,B) ∈ (SRt×t)2 : t ∈ N, p(A,B) = 0t×t
}
.

Theorem 2.2 (1) (resp. (3)) is a real tracial analogue of [15, Proposition 3.1] (resp. [17, Theorem 1.6]).

Theorem 2.2. Suppose β(2k) admits a representing measure consisting of finitely many atoms (Xi, Yi) ∈ (SRti×ti)2,
ti ∈ N, with the corresponding densities λi ∈ (0, 1). Let p ∈ R〈X,Y 〉≤k be a polynomial. Then the following are
true:

(1) We have ⋃
i

(Xi, Yi) ⊆ Z(p) ⇔ p(X,Y) = 0 inMk.

(2) Suppose the sequence β(2k+2) = (βw)|w|≤k+1 is the extension of β generated by

βw =
∑
i

λiTr(w(Xi, Yi)).

LetMk+1 be the corresponding moment matrix. Then:

p(X,Y) = 0 inMk ⇒ p(X,Y) = 0 inMk+1.

(3) (Recursive generation) For q ∈ R〈X,Y 〉≤k such that pq ∈ R〈X,Y 〉≤k, we have

p(X,Y) = 0 inMk ⇒ (pq)(X,Y) = (qp)(X,Y) = 0 inMk.

Proof. Write p =
∑
|w|≤n aww where aw ∈ R. We have that

〈Mkp̂, p̂〉 = Lβ(pp∗) =
∑

|w|,|v|≤k

awavβwv∗ =
∑
i

λiTr(p(Xi, Yi)p
∗(Xi, Yi)).

Observe that

(2.3) Mkp̂ = p(X,Y) inMk.

SinceMk is psd,

(2.4) Mkp̂ = 0 ⇔ 〈Mkp̂, p̂〉 = 0.

Since p(Xi, Yi)p
∗(Xi, Yi) is psd for each i, we have that

(2.5)
∑
i

λiTr(p(Xi, Yi)p
∗(Xi, Yi)) = 0 ⇔ p(Xi, Yi) = 0ti×ti .

By (2.3), (2.4) and (2.5), Theorem 2.2 (1) is true. Theorem 2.2 (2) follows easily.
It remains to prove Theorem 2.2 (3). If deg(p) = k, then q ∈ R and statement is clear. Else deg(p) < k. It suffices

to prove that

(2.6) (Xp)(X,Y) = (pX)(X,Y) = (Y p)(X,Y) = (pY )(X,Y) = 0 inMk.

First we will prove that (Xp)(X,Y) = 0 inMk. By Theorem 2.2 (1), we know that⋃
i

(Xi, Yi) ⊆ Z(p) ⇔ p(X,Y) = 0 inMk,(2.7) ⋃
i

(Xi, Yi) ⊆ Z(Xp) ⇔ (Xp)(X,Y) = 0 inMk.(2.8)

Since by assumption p(X,Y) = 0 inMk, it follows by Z(p) ⊆ Z(Xp), (2.7) and (2.8) that

(Xp)(X,Y) = 0 inMk.

By noticing that also the other three equalities of (2.6) are proved analogously, Theorem 2.2 (3) is true. �

Column relations forced uponMk with an application of Theorem 2.2 (3) will be important in solving BQTMP and
we will refer to them as the RG relations. IfMk satisfies RG relations, we sayMk is recursively generated. The
first consequence of the RG relations is the following important observation about a nc moment matrixMk.

Corollary 2.3. Suppose k ≥ 2 and β(2k) be a sequence such that βX2Y 2 6= βXYXY . Then the columns 1,X,Y,XY
ofMk are linearly independent.
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Proof. Let us say that 0 = a1+bX+cY+dXY for some a, b, c, d ∈ R. If d 6= 0, then we have that βX2Y 2 = βXYXY ,
which is a contradiction with the assumption. Hence d = 0. From 0 = a1 + bX + cY it follows by the RG relations
that

0 = aX + bX2 + cXY = aY + bXY + cY2.

If b 6= 0 or c 6= 0, it follows that βX2Y 2 = βXYXY . Hence b = c = 0. Finally 0 = a1 implies that a = 0. This proves
the corollary. �

Corollary 2.4. Suppose k ≥ 2 and β(2k) be a sequence such that βX2Y 2 6= βXYXY . IfMk is of rank at most 3, then
β does not admit a measure.

2.4. Flat extensions. For a matrix A ∈ SRs×s, an extension Ã ∈ SR(s+u)×(s+u) of the form

Ã =

(
A B
Bt C

)
for some B ∈ Rs×u and C ∈ Ru×u, is called flat if rank(A) = rank(Ã). This is equivalent to saying that there is a
matrix W ∈ Rs×u such that B = AW and C = W tAW . The connection between flat extensions and BTTMP is [9,
Theorem 3.19].

Theorem 2.5. Let β ≡ β(2k) be a sequence satisfying (2.1). IfMk(β) is psd and is a flat extension ofMk−1(β), then
β admits a representing measure.

2.5. Affine linear transformations. An important result for converting a given moment problem into a simpler, equiv-
alent moment problem is the application of affine linear transformations to a sequence β. For a, b, c, d, e, f ∈ R with
bf − ce 6= 0, let us define

φ(x, y) = (φ1(x, y), φ2(x, y)) := (a+ bx+ cy, d+ ex+ fy), (x, y) ∈ R2.

Let β̃(2k) be the sequence obtained by the rule

β̃w = Lβ(2k)(w ◦ φ) for every |w| ≤ k.

Notice that

Lβ̃(2k)(p) = Lβ(2k)(p ◦ φ) for every p ∈ R〈X,Y 〉≤k.

The following is the tracial analogue of [19, Proposition 1.9], which will allow us to make affine linear changes of
variables.

Proposition 2.6. Suppose β(2k) and β̃(2k) are as above andMk and M̃k the corresponding moment matrices. Let
Jφ : R〈X,Y 〉≤2k → R〈X,Y 〉≤2k be the linear map given by

Jφp̂ := p̂ ◦ φ.

Then the following hold:

(1) M̃k = (Jφ)tMkJφ.
(2) Jφ is invertible.
(3) M̃k � 0⇔Mk � 0.

(4) rankM̃k = rankMk.
(5) The formula µ = µ̃ ◦ φ establishes a one-to-one correspondence between the sets of representing measures of

β and β̃, and φ maps supp(µ) bijectively onto supp(µ̃).
(6) Mk admits a flat extension if and only if M̃k admits a flat extension.
(7) For p ∈ R〈X,Y 〉≤k, we have p(X̃, Ỹ ) = (Jφ)t((p ◦ φ)(X,Y )).

Proof. The proof is the same to the proof of the corresponding statement in the commutative case [20, Proposition
1.9]. �
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2.6. Classical bivariate quartic real moment problem. The classical bivariate quartic MP has been solved by Curto
and Fialkow in a series of papers, e.g., [15, 16, 17, 18, 19, 20, 21, 27]. The main technique used was the analysis
of the existence of a flat extension of a moment matrix M2. The solution of the singular bivariate quartic real MP
is Theorem 2.7 below. Given a polynomial p ∈ R[x, y]≤2 we write Zcm(p) =

{
(x, y) ∈ R2 : p(x, y) = 0

}
for the

variety generated by p.

Theorem 2.7. Suppose β ≡ β(4) is a commutative sequence with the associated moment matrixM2. Let

V :=
⋂

g∈R[x,y]≤2

g(X,Y)=0

Zcm(g)

be the variety associated toM2 and p ∈ R[x, y] a polynomial with deg(p) = 2. Then β has a representing measure
supported inZcm(p) if and only ifM(2) is positive semidefinite, recursively generated, satisfies rank(M(2)) ≤ cardV
and has a column dependency relation p(X,Y) = 0.

Moreover, assume that M2 is positive semidefinite, recursively generated and satisfies the column dependency
relation p(X,Y). The following statements are true:

(1) If rank(M2) ≤ 3, thenM2 always admits a flat extension and hence β a 3-atomic minimal measure.
(2) If rank(M2) = 4, thenM2 does not necessarily admit a flat extension and β does not necessarily come from

a measure.
(3) If rank(M2) = 5, then β always admits a measure, butM2 does not necessarily admit a flat extension. There

exists an affine linear transformation such that V is one of x2 + y2 = 1, y = x2, xy = 1, x2 = 1 or xy = 0.
In the first four casesM2 always admits a flat extension and hence β admits a 5-atomic measure. However,
in the last case there always exists a measure with 6 representing atoms, but not necessarily 5.

(4) If rank(M2) = 6, thenM2 always admits a flat extension and hence β admits a 6-atomic measure.

Proof. For the proof of the first part see [27] and references therein. Let us now prove points (1)-(4) of the second
part. Defining z := x + iy and z̄ := x − iy, β has a representing measure if and only if the complex sequence
γ
(4)
ij := Lβ(z̄izj) has a representing measure by [18, Proposition 1.12]. We write MC

2 for the associated complex
moment matrix. If 1,X,Y are linearly dependent, then Z ∈ span{1,Z} inMC

2 and henceM2 admits a flat extension
by [16, Theorem 2.1]. In particular, this is true if rank(M2) ≤ 2. If rank(M2) = 3 and 1,X,Y are linearly
independent, then 1,Z,Z are linearly independent, ZZ ∈ span{1,Z,Z} andM2 admits a measure by [18, Theorem
1.1]. This proves (1). Parts (2) and (3) follow by the results in [18, 27]. Part (4) follows by [22, Theorem 2.1]. �

3. SOLUTION OF THE BQTMP FORM2 OF RANK 4

In this section we solve the BQTMP for M2 of rank 4. In Theorem 3.1 we characterize exactly when the corre-
sponding sequence β admits a measure. Moreover, we prove that the minimal measure is unique (up to orthogonal
equivalence) of type (0, 1) and find the concrete atom. In particular, β admits a measure if and only ifM2 admits a
flat extension.

Let β ≡ β(4) be such that the moment matrixM2 ≡ M2(β) has rank 4. By Proposition 2.3 we may assume that
the set {1,X,Y,XY} is linearly independent and hence a basis for the column space CM2

. The main result of this
section is the following.

Theorem 3.1. Suppose β ≡ β(4) is a normalized sequence with the moment matrix M2 of rank 4. Let the set
{1,X,Y,XY} be a basis for the column space CM2

. Write

X2 = a11+ b1X + c1Y + d1XY,(3.1)
YX = a21+ b2X + c2Y + d2XY,(3.2)

Y2 = a31+ b3X + c3Y + d3XY,(3.3)

where aj , bj , cj , dj ∈ R for j = 1, 2, 3. The following statements are true:

(1) d1 = d3 = 0, d2 = −1.
(2) β admits a measure if and only ifM2 has a flat extension.
(3) β admits a measure if and only ifM2 is positive semidefinite and

c1 = b3 = 0, b2 = c3, c2 = b1.
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(4) Suppose β admits a measure. Then the minimal measure is of type (0, 1) with a unique (up to orthogonal
equivalence) atom (X,Y ) ∈ (SR2×2)2 given by

X =

√a1 +
b21
4

0

0 −
√
a1 +

b21
4

+
b1
2
· I2,

Y =

√
a3 +

c23
4
·
(

a
2

1
2

√
4− a2

1
2

√
4− a2 −a2

)
+
c3
2
· I2,

where a = 4a2+2b1c3√
(4a1+b21)(4a3+c

2
3)

and I2 is the 2× 2 identity matrix.

Proof. Part (1) follows by comparing the rows XY and YX on both sides of (3.1), (3.2), (3.3) and noticing that the
columns 1, X, Y, X2 and Y2 have the same entries in the rows XY and YX.

The implication (⇐) of (2) follows by Theorem 2.5. It remains to prove the converse. If β admits a measure, then
the extensionM3 ofM2, generated by the measure, must satisfy RG relations obtained from (3.1), (3.2), (3.3); see
Theorem 2.2 (3). On multiplying (3.1) from right (resp. left) by X (resp. Y) we conclude that in M3 the columns
X3,X2Y,YX2 lie in the linear span of the columns 1,X,Y,XY. By analogous reasoning it follows from (3.3) that the
same is true for Y3,Y2X,XY2. Finally using these conclusions after multiplying (3.2) by X (resp. Y), the same applies
to XYX,YXY. HenceM3 is a flat extension ofM2.

Now we prove the implication (⇒) of (3). LetM3 be a flat extension ofM2. Reasoning in the same way as in
(2) we must have X3 = a1X + b1X2 + c1XY in the column space of M3. Since X3 has the same entries in rows
XY, YX, it follows that c1 = 0. Analogously we conclude that b3 = 0. Applying an affine linear transformation
φ1(X,Y ) = (X − b1

2 , Y −
c3
2 ) to β we get β̃ with a psd moment matrix M̃2 of rank 4 satisfying the relations

X2 =
(
a1 +

b21
4

)
1, XY + YX = a41+ b4X + c4Y, Y2 =

(
a3 +

c23
4

)
1,

where

a4 = a2 +
b1c3

2
, b4 = b2 − c3, c4 = c2 − b1.

Claim 1: a1 +
b21
4 > 0 and a3 +

c23
4 > 0.

If a1 +
b21
4 ≤ 0, then β̃X4 = (a1 +

b21
4 )β̃X2 ≤ 0. The case β̃X4 < 0 contradicts to M̃2 being psd, while in the case

β̃X4 = 0 it follows that β̃X2 = β̃X4 = β̃X2Y 2 = 0 which contradicts to the rank of M̃2 being 4. Analogously we
conclude that a3 +

c23
4 > 0.

Applying an affine linear transformation φ2(X,Y ) =
(

X√
a1+

b21
4

, Y√
a3+

c23
4

)
to β̃ we get β̂ with a psd moment matrix

M̂2 of rank 4 satisfying the relations

(3.4) X2 = 1, XY + YX = a1+ bX + cY, Y2 = 1,

where

(3.5) a =
4a2 + 2b1c3

C
, b =

4(b2 − c3)

C
, c =

4(c2 − b1)

C
,

and C =
√

(4a1 + b21)(4a3 + c23). By RG relations it follows from (3.4) that the extension M̂3 of M̂2 satisfies the
relations

X2Y = Y,
XY2 + YXY = aY + bXY + cY2,

X2Y + XYX = aX + bX2 + cXY,
Y2X = X.

In particular,

(3.6) X + YXY = aY + bXY + cY2, Y + XYX = aX + bX2 + cXY.
Observing the rows XY and YX on the both sides of the equations in (3.6) and noticing that the columns Y, YXY, Y2,
X, X2 have the same entries in the rows XY, YX, we must have b = c = 0. Hence, (3.5) implies that b2 = c3 and
c2 = b1.
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Now we prove the implication (⇐) of (3). As above let

φ1(X,Y ) =
(
X − b1

2
, Y − c3

2

)
, φ2(X,Y ) =

( X√
a1 +

b21
4

,
Y√

a3 +
c23
4

)
.

Applying transformation φ2 ◦ φ1 to β we get β̂ with a psd moment matrix M̂2 of rank 4 satisfying the relations

(3.7) X2 = 1, XY + YX = a1, Y2 = 1,

where a = 4a2+2b1c3√
(4a1+b21)(4a3+c

2
3)

. We have to prove that β̂ admits a measure. From the relations (3.7) we get the following

system

(3.8)

βX2 = 1,

βX3 = βX ,

βX2Y = βY ,

βX4 = βX2 ,

βX3Y = βXY ,

βX2Y 2 = βY 2 ,

2βXY = a,

2βX2Y = aβX ,

2βXY 2 = aβY ,

2βX3Y = aβX2 ,

βX2Y 2 + βXYXY = aβXY ,

2βXY 3 = aβY 2 ,

βY 2 = 1,

βXY 2 = βX ,

βY 3 = βY ,

βX2Y 2 = βX2 ,

βXY 3 = βXY ,

βY 4 = βY 2 .

The solutions to (3.8) are given by

βY 4 = βX4 = βX2Y 2 = βY 2 = βX2 = 1

βXY 3 = βX3Y = βXY =
a

2
,

βXYXY =
a2

2
− 1,

and one of the following:
Case 1: βXY 2 = βX2Y = βY 3 = βY = βX3 = βX = 0,
Case 2: a = 2 and βX3 = βX = βY = βY 3 = βXY 2 = βX2Y ∈ R,
Case 3: a = −2 and βX3 = βX = −βY = −βY 3 = βXY 2 = −βX2Y ∈ R.

However, in Cases 2 and 3 the submatrices [M̂2]{X,Y} are of the form
(

1 ±1
±1 1

)
and are not positive definite. Hence

we are in Case 1 and M̂2 takes the form

(3.9) M̂2 =



1 0 0 1 a
2

a
2

1
0 1 a

2
0 0 0 0

0 a
2

1 0 0 0 0
1 0 0 1 a

2
a
2

1
a
2

0 0 a
2

1 (a
2

2
− 1) a

2
a
2

0 0 a
2

(a
2

2
− 1) 1 a

2
1 0 0 1 a

2
a
2

1


.

M̂2 is psd if and only if a ∈ (−2, 2). Now notice that the representing atom (X̂, Ŷ ) for M̂2 is given by the pair

(3.10) X̂ =

(
1 0
0 −1

)
, Ŷ =

(
a
2 − 1

2

√
4− a2

− 1
2

√
4− a2 −a2

)
.

This proves the implication (⇐) of (3).
It remains to prove part (4). Let φ1, φ2 and M̂2 be as in the proof of part (3). By Proposition 2.6 (5) the measures

µ for β are in the bijective correspodence with the measures µ̂ for β̂ given by the rule µ = µ̂(φ2 ◦ φ1) and supp(µ) =
(φ2 ◦ φ1)−1(supp(µ̂)). We have that

(φ2 ◦ φ1)−1(X,Y ) =
(√

a1 +
b21
4
·X +

b1
2
,

√
a3 +

c23
4
· Y +

c3
2

)
.

Therefore it suffices to prove the following claim.
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Claim 2: The atom (X̂, Ŷ ) ∈ (SR2×2)2 of the form (3.10) is up to orthogonal equivalence the unique atom for the
measure µ̂ of β̂.

Let (X,Y ) ∈ (SR2×2)2 be an atom representing β̂. Since X,Y do not commute and X2 = 1, the eigenvalues of
X must be 1, −1. Hence we may assume (after conjugating by a suitable orthogonal matrix) that

X = X̂ and Y =

(
k1 k2
k2 −k1

)
for some k1, k2 ∈ R.

Calculating the moment matrix M(X,Y )
2 generated by (X,Y ) and solving the system of equations obtained from

M(X,Y )
2 = M̂2 in Mathematica we get the solutions:

(1) k1 = a
2 , k2 = 1

2

√
4− a2,

(2) k1 = a
2 , k2 = − 1

2

√
4− a2.

Both solutions are unitarily equivalent pairs (the orthogonal equivalence is given by sending the first basis vector v1 to
v1 and the second basis vector v2 to −v2). This proves Claim 2. �

The following corollary will be very important in the proofs of theorems about the existence of a measure in the
rank 5 case.

Corollary 3.2. Suppose β ≡ β(4) has a psd moment matrixM2 of rank 4 satisfying the relations

X2 = a1, XY + YX = b1, Y2 = c1 for some a, b > 0, c ∈ R.

Then

(3.11) βX = βY = βX3 = βX2Y = βXY 2 = βY 3 = 0.

Proof. Applying an affine linear transformation φ(X,Y ) = ( X√
a
, Y√

c
) toM2 the relations of the corresponding matrix

M̃2 become

X2 = 1, XY + YX =
b√
ac
1, Y2 = 1.

Then M̃2 is of the form (3.9) (where we replace a with b√
ac

). In particular, we have

(3.12) β̃X = β̃Y = β̃X3 = β̃X2Y = β̃XY 2 = β̃Y 3 = 0.

Since the moments βw and β̃w for |w| ≤ 4 are scalar multiples of each other, (3.11) follows from (3.12). �

4. RANKS 5 AND 6 - REDUCTIONS

In this section we establish an essential result for solving a BQTMP with a moment matrix of rank 5 or 6. Namely,
it suffices to solve the BQTMP only for moment matrices satisfying especially nice column relations; see Proposition
4.1. In the subsequent sections we will analyze each of those cases separately.

Proposition 4.1. Suppose β ≡ β(4) has a moment matrixM2 of rank 5 or 6. Let Lβ be the Riesz functional belonging
to β. If β admits a measure, then there exists an affine linear transformation φ such that a sequence β̂, given by
β̂w = Lβ(w ◦ φ) for every |w(X,Y )| ≤ 4, has a moment matrix M̂2 such that:

(1) IfM2 is of rank 5, then M̂2 satisfies one of the following pair of relations:
Basic pair 1: XY + YX = 0 and X2 + Y2 = 1,
Basic pair 2: XY + YX = 0 and Y2 = 1,
Basic pair 3: XY + YX = 0 and Y2 − X2 = 1,
Basic pair 4: XY + YX = 0 and Y2 = X2.

(2) IfM2 is of rank 6, then M̂2 satisfies one of the following relations:
Basic relation 1: Y2 = 1− X2,
Basic relation 2: Y2 = 1+ X2,
Basic relation 3: XY + YX = 0,
Basic relation 4: Y2 = 1.

To prove Proposition 4.1 we need some lemmas.
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Lemma 4.2. Suppose β ≡ β(4) has a moment matrixM2 of rank 5 or 6 satisfying the relation

(4.1) Y2 = a11+ a2X + a3Y + a4X2 + a5XY + a6YX,

where ai ∈ R for each i. Let Lβ be the Riesz funtional belonging to β. If β admits a measure, then there exists an
affine linear transformation φ of the form

(4.2) φ(X,Y ) = (α1X + α2, α3Y + α4),

where αi ∈ R for each i, α1 6= 0, α4 6= 0, such that the sequence β̂ given by β̂w = Lβ(w◦φ) for every |w(X,Y )| ≤ 4,
has a moment matrix M̂(2) satisfying one of the following relations:

Relation 1: Y2 = 1− X2,
Relation 2: Y2 = 1,
Relation 3: Y2 = 1+ X2,
Relation 4: Y2 = X2.

Moreover, the relation 4 is equivalent to the relation
Relation 4’: XY + YX = 0.

Proof. By comparing the rows XY, YX on both sides of (4.1) we conclude that a5 = a6. We rewrite the relation (4.1)
as

(Y− a5X)2 = a11+ a2X + a3Y + (a4 + a25)X2.

Applying an affine linear transformation φ1(X,Y ) = (X,Y − a5X) to β we get β̃ with the moment matrix M̃(2)
satisfying the relation

(4.3) Y2 = a11+ (a2 + a3a5)X + a3Y + a4X2.

We separate three possibilities according to the sign of a4 ∈ R.

Case 1: a4 < 0. The relation (4.3) can be rewritten as(
Y− a3

2

)2
= −

(√
|a4|X−

a2 + a3a5

2
√
|a4|

)2
+
(
a1 +

a23
4

+
(a2 + a3a5)2

4a4

)
1.

Applying an affine linear transformation φ2(X,Y ) = (
√
|a4|X− a2+a3a5

2
√
|a4|

, Y − a3
2 ) to β̃ we get β withM(2) satisfying

the relation

(4.4) Y2 = −X2 +
(
a1 +

a23
4

+
(a2 + a3a5)2

4a4

)
1.

If C1 := a1 +
a23
4 + (a2+a3a5)

2

4a4
≤ 0, then by comparing the row Y2 on both sides of (4.4) we get

0 ≤ βY 4 + βX2Y 2 = C1 · βY 2 ≤ 0,

where we used that βY 4 ≥ 0, βX2Y 2 ≥ 0, βY 2 ≥ 0. But then βY 4 = βX2Y 2 = βY 2 = 0, which contradicts to the rank
of M̃(2) being 5 or 6. Therefore C1 > 0. Applying an affine linear transformation φ3(X,Y ) = ( X√

C1
, Y√

C1
) to β we

get β̂ with M̂(2) satisfying
Y2 = 1− X2,

which is the relation 1.

Case 2: a4 = 0. Multiplying (4.3) with Y we get

(4.5) Y3 = a1Y + (a2 + a3a5)XY + a3Y2.

By comparing the rows XY, YX on both sides of (4.5) we conclude that a2 + a3a5 = 0. We can rewrite (4.3) as(
Y− a3

2

)2
=
(
a1 +

a23
4

)
1.

Applying an affine linear transformation φ4(X,Y ) = (X,Y − a3
2 ) to β̃ we get β withM(2) satisfying

(4.6) Y2 =
(
a1 +

a23
4

)
1.
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If C2 := a1 +
a23
4 ≤ 0, then by comparing the row Y2 on both sides of (4.6) we get

0 ≤ βY 4 = (a2 +
c22
4

)βY 2 ≤ 0,

where we used that βY 4 ≥ 0, βY 2 ≥ 0. But then βY 4 = βY 2 = 0 and hence also βX2Y 2 = 0, which contradicts to the
rank of M̃(2) being 5 or 6. Therefore C2 > 0. Applying an affine linear transformation φ5(X,Y ) = (X, Y√

C2
) to β

we get β̂ with M̂(2) satisfying

Y2 = 1,

which is the relation 2.

Case 3: a4 > 0. The relation (4.3) can be rewritten as(
Y− a3

2

)2
=
(√

a4X +
a2 + a3a5

2
√
a4

)2
+
(
a1 +

a23
4
− (a2 + a3a5)2

4a4

)
1.

Applying an affine linear transformation φ6(X,Y ) = (
√
a4X+ a2+a3a5

2
√
a4

, Y − a3
2 ) to β̃ we get β withM(2) satisfying

(4.7) Y2 = X2 +
(
a1 +

a23
4
− (a2 + a3a5)2

4a4

)
1.

We separate three possibilities according to the sign of C3 := a1 +
a23
4 −

(a2+a3a5)
2

4a4
.

Case 3.1: C3 > 0. Applying an affine linear transformation φ7(X,Y ) = ( X√
C3
, Y√

C3
) to β we get β̂ with M̂(2)

satisfying

Y2 = 1+ X2,

which is the relation 3.

Case 3.2: C3 = 0. The relation (4.7) is

Y2 = X2,

which is the relation 4. Applying an affine linear transformation φ8(X,Y ) = (X − Y,X + Y ) to β̃ we get β with
M(2) satisfying

XY + YX = 0,

which is the relation 4’.

Case 3.3: C3 < 0. Applying an affine linear transformation φ9(X,Y ) = (Y,X) to β we come into Case 3.1. �

Lemma 4.3. Suppose β ≡ β(4) has a moment matrixM2 of rank 5 with linearly independent columns 1, X, Y, XY.
Then one of the following cases occurs:

Case 1: The set {1,X,Y,XY,YX} is the basis for CM2
and the columns X2,Y2 belong to the span{1,X,Y}.

Case 2: The set
{
1,X,Y,X2,XY

}
is the basis for CM2

.
Case 3: The set

{
1,X,Y,Y2,YX

}
is the basis for CM2 .

Proof. If X2 /∈ span{1,X,Y}, it follows by comparing the rows XY and YX that X2 /∈ span{1,X,Y,XY}. Hence
we are in Case 2. Similarly, if Y2 /∈ span{1,X,Y}, then we are in Case 3. Otherwise {X2,Y2} ⊆ span{1,X,Y} and
sinceM2 is of rank 5, {1,X,Y,XY,YX} is a basis for CM2

. Hence we are in Case 1. �

Lemma 4.4. Suppose β ≡ β(4) has a moment matrix M2 of rank 6 with linearly independent columns 1, X, Y,
XY. There exists an affine linear transformation φ such that a sequence β̂, given by β̂w = Lβ(w ◦ φ) for every
|w(X,Y )| ≤ 4, has a moment matrix M̂2 such that:

Case 1: The set
{
1,X,Y,X2,XY,YX

}
is the basis for CM̂2

.
Case 2: The set

{
1,X,Y,X2,XY,Y2

}
is the basis for CM̂2

.
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Proof. If Y2 ∈ span
{
1,X,Y,X2,XY,YX

}
, then we are in Case 1 (linear independence of the columns

{
1,X,Y,X2,XY,YX

}
follows from the rank ofM2 being 6). Otherwise Y2 /∈ span

{
1,X,Y,X2,XY,YX

}
. In particular,

{
1,X,Y,XY,Y2

}
is a linearly independent set. Now we have two possibilities. Either

{
1,X,Y,XY,Y2,X2

}
is a linearly independent

set and we are in Case 2, or X2 ∈ span
{
1,X,Y,XY,Y2

}
and

{
1,X,Y,XY,Y2,YX

}
is a linearly independent set.

After applying an affine linear transformation φ(X,Y ) = (Y,X) we are in Case 1. �

Lemma 4.5. Suppose β ≡ β(4) has a moment matrixM2 satisfying one of the relations

Y2 + X2 = 1 or Y2 − X2 = 1 or Y2 = X2.

If β admits a measure µ, then the extensionM3 :=

(
M2 B3

Bt3 C3

)
generated by µ satisfies the relations

X2Y = YX2 and XY2 = Y2X.

In particular, the rows XY, YX are the same in the columns X2Y, YX2 and the columns XY2, Y2X.

Proof. We will give the proof in the case of the relation Y2 + X2 = 1. The other two cases are proved in the same
way. Multiplying Y2 + X2 = 1 by Y (resp. X) from the left (resp. right) gives X2Y = −Y3 + Y = YX2 and
Y2X = X− X3 = XY2. By Theorem 2.2 we must have X2Y = YX2 and XY2 = Y2X inM3. �

Finally we give the proof of Proposition 4.1 (1).

Proof of Proposition 4.1 (1). By Proposition 2.3 the columns 1, X, Y, XY ofM2 are linearly independent. By Lemma
4.3 there are three cases to consider.

Case 1: The set {1,X,Y,XY,YX} is the basis for CM2
and the columns X2,Y2 belong to the span {1,X,Y}.

By assumption there are constants aj , bj , cj ∈ R for j = 1, 2 such that

X2 = a11+ b1X + c1Y and Y2 = a21+ b2X + c2Y.

By multiplying the first relation with X and the second with Y it follows that if β admits a measure, then c1 = b2 = 0.
Let

φ1(X,Y ) =
(
X − b1

2
, Y − c3

2

)
, φ2(X,Y ) =

( X√
a1 +

b21
4

,
Y√

a3 +
c23
4

)
.

Applying an affine linear transformation φ2 ◦ φ1 to β we get β̃ with M̃(2) satisfying

X2 = Y2 = 1.

Equivalently, the relations are
Y2 − X2 = 0, Y2 = 1.

Finally applying an affine linear transformation φ3(X,Y ) = (X+Y
2 , Y−X2 ) to β̃ we get β̂ with M̂(2) satisfying

XY + YX = 0, X2 + Y2 = 1.

Hence we are in a basic pair 1 of Proposition 4.1.

Case 2: The set
{
1,X,Y,X2,XY

}
is the basis for CM2 .

By assumption there are constants aj , bj , cj , dj , ej ∈ R for j = 1, 2 such that

YX = a11+ b1X + c1Y + d1X2 + e1XY, Y2 = a21+ b2X + c2Y + d2X2 + e2XY.

By comparing the rows XY, YX of the both sides of equations we conclude that e1 = −1 and e2 = 0, so that the
relation are

(4.8) XY + YX = a11+ b1X + c1Y + d1X2 and Y2 = a21+ b2X + c2Y + d2X2.

By Lemma 4.2 there exists an affine linear transformation φ4 of the form (4.2) such that after applying φ4 to β the
second relation in (4.8) of the corresponding matrixM(2) becomes one of the following:

(4.9) Y2 = 1 or Y2 = 1− X2 or Y2 = X2 or Y2 = 1+ X2,
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while the first relation in (4.8) becomes

(4.10) XY + YX = a31+ b3X + c3Y + d3X2,

where a3, b3, c3, d3 ∈ R. We separate four possibilities according to the relation in (4.9).

Case 2.1: Y2 = 1 in (4.9). The relation (4.10) can be rewritten in the form

Y
(
X− c3

2

)
+
(
X− c3

2

)
Y = a31+ b3X + d3X2.

Applying an affine linear transformation φ5(X,Y ) = (X − c3
2 , Y ) to β we get β̆ with M̆(2) satisfying

(4.11) XY + YX = a41+ b4X + d4X2 and Y2 = 1,

where a4, b4, d4 ∈ R. Multiplying the first relation in (4.11) with X on left (resp. right) we get

X2Y + XYX = a4X + b4X2 + d4X3 = XYX + YX2.

Hence, X2Y = YX2. Multiplying the first relation in (4.11) with Y on right and using the second relation in (4.11), we
get

(4.12) X + YXY = a4Y + b4XY + d4X2Y.

Comparing the rows XY, YX on both sides of (4.12) gives b4 = 0. We now separate two possibilities depending on d4.

Case 2.1.1: d4 = 0 in (4.11). The relations (4.11) are

XY + YX = a41, Y2 = 1.

Using the second relation we can rewrite the first relation in the form(
X− a4

2
Y
)
Y + Y

(
X− a4

2
Y
)

= 0.

Applying an affine linear transformation φ6(X,Y) = (x− a4
2 y, y) to β̆ we get β̂ with M̂(2) satisfying

XY + YX = 0, Y2 = 1.

Hence we are in the basic pair 2 of Proposition 4.1 (1).

Case 2.1.2: d4 6= 0 in (4.11). The relations (4.11) are

X2 − 1

d4
(XY + YX) = −a4

d4
1 and Y2 = 1.

Summing together the first relation and the second relation multiplied by 1
d24

we get

(4.13)
1

d24
Y2 − 1

d4
(XY + YX) + X2 =

( 1

d24
− a4
d4

)
1.

Now we rewrite (4.13) in the form ( 1

d4
Y− X

)2
=
( 1

d24
− a4
d4

)
1.

Applying an affine linear transformation φ7(X,Y ) =
(

1
d4
y −X,Y

)
to β̆ we get β́ with Ḿ(2) satisfying

X2 =
( 1

d24
− a4
d4

)
1 and Y2 = 1.

Hence we are in Case 1.

Case 2.2: Y2 = 1− X2 in (4.9). Multiplying the relation (4.10) from the left by X (resp. Y) and comparing the rows
XY, YX on both sides using Lemma 4.5 we conclude that c3 = 0 (resp. b3 = 0). Thus the relation ofM(2) are

XY + YX = a31+ d3X2 and Y2 + X2 = 1.

Summing together the first relation and the second relation multiplied by α we get

(4.14) αY2 + (XY + YX) + (α− d3)X2 = (α+ a3)1.
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Choosing

α =
1

2

√
4 + d23 +

d3
2
,

we see that
α > 0, α− d3 > 0 and

√
(α− d3)α = 1,

and thus (4.14) can be rewritten in the form

(
√
α− d3X +

√
αY)2 = (α+ a3)1.

Applying an affine linear transformation φ8(X,Y ) = (X,
√
α− d3X +

√
αY ) to β we get β̂ with M̂(2) satisfying

(4.15) Y2 = (α+ a3)1 and XY + YX = a41+ d4X2,

where a4, d4 ∈ R. Since M̂(2) is psd of rank 5, α+ a3 > 0 and after normalization the relations (4.15) become

Y2 = 1 and XY + YX = a51+ d5X2,

where a5, d5 ∈ R. Hence we are in Case 2.1.

Case 2.3: Y2 = X2 in (4.9). As in the first paragraph of Case 2.2 we conclude that the relations ofM(2) are

XY + YX = a31+ d3X2 and Y2 = X2.

Applying an affine linear transformation φ9(X,Y ) = (X + Y, Y −X) to β̃ we get β withM(2) satisfying

(2− d3)X2 − (2 + d3)Y2 = 4a31 and XY + YX = 0, .

If d3 = 2, then after normalization we come into Case 2.1. If d3 = −2, then we come into Case 2.1 after we apply a
transformation (X,Y ) 7→ (Y,X) to change the roles of X and Y and normalize. Otherwise we apply an affine linear
transformation

φ10(X,Y ) = (
√
|2− d3|X,

√
|2 + d3|Y )

to β̃ and get β̆ with M̆(2) satisfying
XY + YX = 0

and one of the following:

(4.16) X2 + Y2 = 4a31 or X2 − Y2 = 4a31 or − X2 − Y2 = 4a31.

The first and the last cases are equivalent, since the third relation can be rewritten as X2 + Y2 = −4a31. Thus we
separate two possibilities in (4.16).

Case 2.3.1: X2 + Y2 = 4a31 in (4.16). It is easy to see that a3 > 0 (by M̆(2) being psd of rank 5, since otherwise
βY 2 = βX2Y 2 = βY 4 = 0). Thus after the normalization we are in the basic pair 1 of Proposition 4.1.

Case 2.3.2: X2 − Y2 = 4a31 in (4.16). We may assume that a3 ≤ 0 (otherwise we change the roles of X and Y). If
a3 < 0, then after normalization we come into the basic pair 3. Otherwise a3 = 0 and we are in the basic pair 4.

Case 2.4: Y2 = 1+ X2 in (4.9). As in the first paragraph of Case 2.2 we conclude that the relations ofM(2) are

XY + YX = a31+ d3X2 and Y2 = 1+ X2,

and after applying an affine linear transformation φ9(X,Y ) = (X + Y, Y −X) to β to get β̆ with M̆(2) satisfying

(2− d3)X2 − (2 + d3)Y2 = (4a3 − 2d3)1 and XY + YX = 2 · 1.
If d3 = 2, then after normalization we come into Case 2.1. If d3 = −2 then we come into Case 2.1 after we apply a
transformation (X,Y ) 7→ (Y,X) to change the roles of X and Y and normalize. Otherwise we apply an affine linear
transformation

φ11(X,Y ) = (
√
|2− d3|X,

√
|2 + d3|Y )

to β̆ and get β́ with Ḿ(2) satisfying

XY + YX = 2
√
|(4− d23|1

and one of the following

(4.17) X2 + Y2 = ã1 or X2 − Y2 = ã1 or − X2 − Y2 = ã1,
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where ã = 4a3 − 2d3. The first and the last cases are equivalent, since the third relation can be rewritten as
X2 + Y2 = −ã1. Thus we separate two possibilities in (4.17).

Case 2.4.1: X2+Y2 = ã1. It is easy to see that ã > 0 (by Ḿ(2) being psd of rank 5, since otherwise βY 2 = βX2Y 2 =
βY 4 = 0). Hence after normalization we come into Case 2.2.

Case 2.4.2: Y2 − X2 = ã1. We may assume that ã ≥ 0 (otherwise we change the roles of X and Y). If ã = 0, we are
in Case 2.3. Otherwise we apply a transformation

φ12(X,Y ) =
(
X,X − 2

√
|(4− d23|
ã

Y
)

to β́ and get β̂ with M̂(2) satisfying

Y2 +
(

1− 4(4− d23)2

ã2

)
X2 = 0 and XY + YX = −ã1+ ãX2.

It is easy to see that 1− 4(4−d23)
2

ã2 < 0 (by M̂(2) being psd of rank 5, since otherwise βY 4 = βX2Y 2 = βY 2 = βX2 = 0)
and after a further normalization of X the relations of the corresponding matrix M̂(2) become

Y2 − X2 = 0 and XY + YX = −â1− âX2, for some â ∈ R.

Hence we come into Case 2.3.

Case 3: The set
{
1,X,Y,Y2,YX

}
is the basis for CM2

.

Applying an affine linear transformation (X,Y ) 7→ (Y,X) we come into Case 2. �

Now we prove Proposition 4.1 (2).

Proof of Proposition 4.1 (2). By Lemma 4.4 we have to consider 2 different cases.

Case 1: The set
{
1,X,Y,X2,XY,YX

}
is the basis for CM2

.

By assumption there are constants ai, i = 1, . . . , 6, such that

Y2 = a11+ a2X + a3Y + a4X2 + a5XY + a6YX.

By Lemma 4.2 the statement of Proposition 4.1 follows.

Case 2: The set
{
1,X,Y,X2,XY,Y2

}
is the basis for CM2

.

By assumption there are constants ai, i = 1, . . . , 6, such that

(4.18) YX = a11+ a2X + a3Y + a4X2 + a5XY + a6Y2.

By comparing the rows XY, YX of the both sides of equation we conclude that a5 = −1. We separate two cases.

Case 2.1: a4 6= 0 or a6 6= 0. By symmetry we may assume that a6 6= 0. We rewrite the relation (4.18) as

Y2 = −a1
a6
1− a2

a6
X− a3

a6
Y− a4

a6
X2 − a5

a6
XY +

1

a6
YX.

By Lemma 4.2 the statement of Proposition 4.1 follows.

Case 2.2: a4 = a6 = 0. We rewrite the relation (4.18) as

(X + Y)Y + Y(X + Y)− 2Y2 = a11+ a2(X + Y) + (a3 − a2)Y.

Applying an affine linear transformation φ1(X,Y ) = (X + Y, Y ) to β we get β̃ with M̃(2) satisfying

XY + YX− 2Y2 = a11+ a2X + (a3 − a2)Y.

By Lemma 4.2 the statement of Proposition 4.1 (2) follows. �
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5. ATOMS IN THE MINIMAL MEASURE OF RANKS 5 AND 6

In this section we show that every β ≡ β(4) which admits a measure withM2 in one of the basic cases of rank 5
or one of the first three basic cases of rank 6 given by Proposition 4.1, admits a minimal measure with all the atoms
of special form; see Proposition 5.1 below. This form will be crucial in the subsequent sections where we will analyze
each basic case separately to show that the atoms of size 2 are sufficient.

Proposition 5.1. Suppose β ≡ β(4) has a moment matrixM2 satisfying one of the column relations

(5.1) XY + YX = 0 or Y2 = 1− X2 or Y2 = 1+ X2.

If β admits a measure, then the atoms are of the following two forms:

(1) (xi, yi) ∈ R2.
(2) (Xi, Yi) ∈ (SR2ti×2ti)2 for some ti ∈ N such that

Xi =

(
γiIti Bi
Bti −γiIti

)
and Yi =

(
µiIti 0
0 −µiIti

)
where γi ≥ 0, µi > 0 and Bi are ti × ti matrices.

Proof. Suppose µ is any measure representing β. By Theorem 2.2 every atom (Xi, Yi) in µ satisfies the relation (5.1).

Claim 1: We may assume that XiYi + YiXi and Yi are diagonal matrices.

Observe that XiYi + YiXi is symmetric and commutes with Yi. Therefore after a orthogonal transformation we
may assume that XiYi + YiXi and Yi are diagonal matrices.

Claim 2: We may assume that the atoms (Xi, Yi) of size greater than 1 are of the forms

(5.2) Xi =

(
Di1 Bi
Bti Di2

)
and Yi =

(
µiIni1 0

0 −µiIni2

)
,

where µi > 0, ni1, ni2 ∈ N, Di1 ∈ Rni1×ni1 and Di2 ∈ Rni2×ni2 are diagonal matrices and Bi ∈ Rni1×ni2 .

By an appropriate permutation we may assume that Yi is of the form

Yi =

`i⊕
j=1

(
µ
(i)
j Inij 0

0 −µ(i)j Imij

)⊕
0m×m,

where `i, nij ,mij ,m ∈ N ∪ {0}, µ(i)
j > 0 and µ(i)

j1
6= µ

(i)
j2

for j1 6= j2. Let

Xi = (X(i)
pr )pr

be the corresponding block decomposition of Xi. Since XiYi + YiXi is diagonal, it follows that

(1) for 1 ≤ p, r ≤ `i and p 6= r we have that

[XiYi + YiXi]2p−1,2r−1 = (µ(i)
p + µ(i)

r )X
(i)
2p−1,2r−1 = 0 ⇒ X

(i)
2p−1,2r−1 = 0,

[XiYi + YiXi]2p−1,2r = (µ(i)
p − µ(i)

r )X
(i)
2p−1,2r = 0 ⇒ X

(i)
2p−1,2r = 0,

[XiYi + YiXi]2p,2r = −(µ(i)
p + µ(i)

r )X
(i)
2p,2r = 0 ⇒ X

(i)
2p,2r = 0.

(2) for 1 ≤ p ≤ `i we have that

[XiYi + YiXi]2p−1,2`i+1 = µ(i)
p X

(i)
2p−1,2`i+1 = 0 ⇒ X

(i)
2p−1,2`i+1 = 0,

[XiYi + YiXi]2p,2`i+1 = −µ(i)
p X

(i)
2p,2`i+1 = 0 ⇒ X

(i)
2p,2`i+1 = 0,

[XiYi + YiXi]2`i+1,2p−1 = µ(i)
p X

(i)
2`i+1,2p−1 = 0 ⇒ X

(i)
2`i+1,2p−1 = 0,

[XiYi + YiXi]2`i+1,2p = −µ(i)
p X

(i)
2`i+1,2p = 0 ⇒ X

(i)
2`i+1,2p = 0.
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(3) for 1 ≤ p = r ≤ `i we have that

[XiYi + YiXi]2p−1,2p−1 = 2µ(i)
p X

(i)
2p−1,2p−1 is diagonal ⇒ X

(i)
2p−1,2p−1 is diagonal,

[XiYi + YiXi]2p,2p = −2µ(i)
p X

(i)
2p,2p is diagonal ⇒ X

(i)
2p,2p is diagonal.

So Xi is of the form

Xi =

`i⊕
j=1

(
X

(ij)
11 X

(ij)
12

(X
(ij)
12 )t X

(ij)
22

)⊕
X

(i)
`i+1.

Thus we can replace the atom (Xi, Yi) with the atoms of the form

(5.3) X̃ij =

(
X

(ij)
11 X

(ij)
12

(X
(ij)
12 )t X

(kij)
22

)
and Ỹij =

(
µ
(i)
j Inij

0

0 −µ(i)
j Imij

)
,

or

(5.4) X̃ij = X
(i)
`i+1 and Ỹij = 0.

By orthogonal transformation the atom (5.4) can be replaced by the atom

X̂ij = D
(i)
`i+1 and Ỹij = 0,

where D(i)
`i+1 is a diagonal matrix and further on by atoms of size 1 of the form (x, 0), where x runs over the diagonal

of D(i)
`i+1. Hence we may assume that the atoms of size greater than 1 in the representing measure for β are of the form

(5.3). Further on, by appropriate orthogonal transformation we may assume that they are of the form (5.2). This proves
the claim.

Claim 3: We may assume that the atoms (Xi, Yi) of size greater than 1 are of the forms

Xi =

(
γiIti Bi
Bti −γiIti

)
and Yi =

(
µiIti 0
0 −µiIti

)
,

where γi ≥ 0, µi > 0 and Bi are ti × ti matrices for some ti ∈ N.

First we prove Claim 3 in case we have XY + YX = 0 in (5.1). Let us prove that we may assume invertibility

of Xi. After applying an orthogonal transformation to (Xi, Yi) we have Xi =

(
0 0

0 X̂i

)
where X̂ is invertible and

Yi =

(
Yi1 Yi2
Y ti2 Yi3

)
. From XiYi + YiXi = 0 it follows that Yi2X̂i = 0. Since X̂i is invertible, Yi2 = 0. Hence we can

replace the atom (Xi, Yi) with the atoms (0, Yi1) and (X̂i, Yi3). Since the atom (0, Yi1) can be further replaced with
the atoms of size 1, we may assume the Xi is invertible.

Observe that in (3) from the proof of Claim 2 we have

0 = [XiYi + YiXi]2p−1,2p−1 = 2µ(i)
p X

(i)
2p−1,2p−1 ⇒ X

(i)
2p−1,2p−1 = 0,

0 = [XiYi + YiXi]2p,2p = −2µ(i)
p X

(i)
2p,2p ⇒ X

(i)
2p,2p = 0.

Therefore Xi in (5.2) is of the form Xi =

(
0 Bi
Bti 0

)
with Bi ∈ Rni1×ni2 and ni1 = ni2 by the invertibility of Xi.

This proves Claim 3 in case we have XY + YX = 0 in (5.1).

It remains to prove Claim 3 in case we have Y2 = 1±X2 in (5.1). By Claim 2 and after an appropriate permutation
we may assume that Xi, Yi are of the form (5.2) with

Di1 =

pi⊕
j=1

λ
(i)
j Isij and Di2 =

ri⊕
j=1

γ
(i)
j Ivij ,

where pi, sij , ri, vij ∈ N and

λ
(i)
1 > λ

(i)
2 > . . . > λ(i)pi and γ

(i)
1 > γ

(i)
2 > . . . > γ(i)ri .



20 THE SINGULAR BIVARIATE QUARTIC TRACIAL MOMENT PROBLEM

Let
Bi = (B(i)

pr )pr

be the corresponding block decomposition of Bi, where

B(i)
pr ∈ Rsip×vir

for p = 1, . . . , pi, r = 1, . . . , ri. Calculating X2
i we get that

X2
i =

(
D2
i1 +BiB

t
i Di1Bi +BtiDi2

BtiDi1 +Di2Bi BtiBi +D2
i2

)
.

Since X2
i is a diagonal matrix, we conclude that

Di1Bi +BtiDi2 = 0.

Thus
[Di1Bi +BtiDi2]pr = (λ(i)p + γ(i)r )B(i)

pr = 0,

for 1 ≤ p ≤ pi, 1 ≤ r ≤ ri. We conclude that

λ(i)p = −γ(i)r or B(i)
pr = 0.

So in every row and every column in the block decomposition of Bi at most one block B(i)
pr is possibly nonzero, i.e.,

B
(i)
pr may be nonzero iff λ(i)p = −γ(i)r So after a suitable permutation Xi has the following block decomposition

Xi =
⊕

1≤p≤pi
1≤r≤ri

λ(i)
p +γ(i)

r =0

(
λ
(i)
p Isip B

(i)
pr

(B
(i)
pr )t γ

(i)
r Ivir

)⊕ ⊕
1≤p≤pk

λ(i)
p 6=−γ

(i)
r ∀r

(
λ
(i)
p Isip

)

⊕ ⊕
1≤r≤rk

λ(i)
p 6=−γ

(i)
r ∀p

(
γ
(i)
r Ivir

)
.

The corresponding block decomposition of Yi is of the form

Yi =
⊕

1≤p≤pi
1≤r≤ri

λ(i)
p +γ(i)

r =0

(
µiIsip 0

0 −µiIvir

)⊕ ⊕
1≤p≤pk

λ(i)
p 6=−γ

(i)
r ∀r

(
µiIsip

)
⊕ ⊕

1≤r≤rk
λ(i)
p 6=−γ

(i)
r ∀p

(
−µiIvir

)
.

Thus we can replace the atom (Xi, Yi) with the atoms of the form

(5.5) X̃ij =

(
λ
(i)
p Isip B

(i)
pr

(B
(i)
pr )t −λ(i)p Ivir

)
and Ỹij =

(
µiIsip 0

0 −µiIvir

)
or

X̃ij = λ(i)p and Ỹij = µi

or
X̃ij = γ(i)r and Ỹij = −µi.

Hence we may assume that the atoms (Xi, Yi) of size greater than 1 in the representing measure for M2 are of the
form (5.5). Now

X2
i =

(
(λ

(i)
p )2Isip +B

(i)
pr (B

(i)
pr )t 0

0 (B
(i)
pr )tB

(i)
pr + (λ

(i)
p )2Ivir

)
Since

X2
i = 1± Y 2

i =

(
(1± µ2

i )Isip 0
0 (1± µ2

i )Ivir

)
,
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it follows that

B(i)
pr (B(i)

pr )t = (1± µ2
i − (λ(i)p )2)Isip(5.6)

(B(i)
pr )tB(i)

pr = (1± µ2
i − (λ(i)p )2)Ivir .(5.7)

We separate two cases according to the value of 1± µ2
i − (λ

(i)
p ).

Case 1: 1± µ2
i − (λ

(i)
p ) = 0.

It follows that B(i)
pr = 0. Then Xi is diagonal and commutes with Yi. Therefore the atom (Xi, Yi) can be replaced

by the atoms (λ
(i)
p , µi) and (−λ(i)p ,−µi).

Case 2: 1± µ2
i − (λ

(i)
p ) 6= 0.

From (5.6) and (5.7) it follows that

sip = rank(B(i)
pr (B(i)

pr )t) ≤ min(rank(B(i)
pr ), rank((B(i)

pr )t)) ≤ min(sip, vir)(5.8)

vir = rank((B(i)
pr )tB(i)

pr ) ≤ min(rank((B(i)
pr )t), rank(B(i)

pr )) ≤ min(vir, sip).(5.9)

It follows from (5.8) and (5.9) that sip = vir in (5.5) which proves Claim 3 and concludes the proof of Proposition
5.1. �

6. SOLUTION OF THE BQTMP FORM2 OF RANK 5

In this section we solve the BQTMP forM2 of rank 5. By Proposition 4.1 it suffices to solve four basic cases. In
Subsections 6.1, 6.2, 6.3, 6.4 we study these cases separately. We characterize exactly whenM2 admits a measure,
see Theorems 6.4, 6.7, 6.10 and 6.13. Moreover, we characterize type and uniqueness of the minimal measures. In
particular, the minimal measure is almost always unique (up to orthogonal equivalence), except in one subcase for
which there are two minimal measures, and there is always exactly one atom from (SR2×2)2 in the minimal measure
and up to three atoms from R2.

Let (X,Y ) ∈ (SRt×t)2 where t ∈ N. We denote by M(X,Y )
2 the moment matrix generated by (X,Y ), i.e.,

βw(X,Y ) = Tr(w(X,Y )) for every |w(X,Y )| ≤ 4.
The following proposition will be used in all four basic cases to prove that if β admits a measure, then it has a

representing measure with the atoms of size at most 2.

Proposition 6.1. Let us fix a pair (R1, R2) of the basic case relations given by Proposition 4.1 (1). If every sequence
β ≡ β(4) with βX = βY = βX3 = 0 and a moment matrixM2(β) of rank 5 with column relations R1 and R2, admits
a measure with atoms of size at most 2, then every sequence β̃ ≡ β̃(4) which admits a measure and has a moment
matrix M̃2 of rank 5 with column relations R1 and R2, admits a measure with atoms of size at most 2.

Proof. Suppose β̃ admit a measure and has a moment matrix M̃2 of rank 5 with column relations R1 and R2. By
Proposition 5.1 we may assume that all the atoms (Xi, Yi) ∈ (SRui×ui)2 of size ui > 1 are of the form

Xi =

(
γiIti Bi
Bti −γiIti

)
, Yi =

(
µiIti 0
0 −µiIti

)
,

where γi ≥ 0, µi > 0 and Bi are ti × ti matrices. Calculating X3
i we get

X3
i =

(
γi(γ

2
i Iti +BiB

t
i ) (γ2i Iti +BiB

t
i )Bi

(γ2i Iti +BtiBi)B
t
i −γi(γ2i Iti +BtiBi)

)
.

ThereforeM(Xi,Yi)
2 satisfies βX = βY = βX3 = 0. By assumption the atom (Xi, Yi) can be replaced by the atoms of

size at most 2. �

6.1. Pair XY + YX = 0 and Y2 + X2 = 1. In this subsection we study a sequence β ≡ β(4) with a moment matrix
M2 of rank 5 satisfying the relations XY + YX = 0 and Y2 + X2 = 1. In Theorem 6.4 we characterize exactly when
β admits a measure. Moreover, we classify type and uniqueness of the minimal measure.

The form ofM2 is given by the following proposition.



22 THE SINGULAR BIVARIATE QUARTIC TRACIAL MOMENT PROBLEM

Proposition 6.2. Suppose β ≡ β(4) is a sequence with a moment matrixM2 of rank 5 satisfying the relations

(6.1) XY + YX = 0 and X2 + Y2 = 1.

ThenM2 is of the form

(6.2)



β1 βX βY βX2 0 0 β1 − βX2

βX βX2 0 βX 0 0 0
βY 0 β1 − βX2 0 0 0 βY
βX2 βX 0 βX4 0 0 βX2 − βX4

0 0 0 0 βX2 − βX4 −βX2 + βX4 0
0 0 0 0 −βX2 + βX4 βX2 − βX4 0

β1 − βX2 0 βY βX2 − βX4 0 0 β1 − 2βX2 + βX4

.

Proof. The relations (6.1) give us the following system inM2

(6.3)

2βXY = 0,

2βX2Y = 0,

2βXY 2 = 0,

2βX3Y = 0,

βX2Y 2 + βXYXY = 0,

2βXY 3 = 0,

βY 2 = β1 − βX2 ,

βXY 2 = βX − βX3 ,

βY 3 = βY − βX2Y ,

βX2Y 2 = βX2 − βX4 ,

βXY 3 = βXY − βX3Y ,

βY 4 = βY 2 − βX2Y 2 .

The solution to (6.3) is given by

βX = βX3 ,

βXYXY = βX4 − βX2 ,

βXY = βX2Y = βXY 2 = βX3Y = βXY 3 = 0,

βY 4 = β1 − 2βX2 + βX4 ,

βY 3 = βY ,

βX2Y 2 = βX2 − βX4 ,

and thusM2 takes the form (6.2). �

Proposition 6.3. Suppose β ≡ β(4) is a normalized sequence with a moment matrix M2 of rank 5 satisfying the
relations XY + YX = 0 and X2 + Y2 = 1. ThenM2 is positive semidefinite if and only if

0 < βX2 < 1, |βX | < βX2 , |βY | < (1− βX2), A < βX4 < βX2 ,

where

A =
−β3

X2 + β4
X2 − β2

X + β2
Y β

2
X + 3βX2β2

X − 2β2
X2β2

X

−βX2 + β2
Y βX2 + β2

X2 + β2
X − βX2β2

X

.

Proof. The statement is easily checked using Mathematica. �

The following theorem characterizes normalized sequences β with a moment matrixM2 of rank 5 satisfying the
relations XY + YX = 0 and X2 + Y2 = 1, which admit a measure.

Theorem 6.4. Suppose β ≡ β(4) is a normalized sequence with a moment matrixM2 of rank 5 satisfying the relations
XY + YX = 0 and X2 + Y2 = 1. Then β admits a measure if and only if

(6.4) |βY | < 1− |βX |, |βY | < βX2 < 1− |βY |, A ≤ βX4 < βX2 ,

where

A =
−β2

X2 − |βX |+ 2βX2 |βX |+ |βY ||βX |
−1 + |βY |+ |βX |

.

Moreover, the minimal measure is unique (up to orthogonal equivalence) and of type:

• (1, 1) if and only if βXβY = 0 and βX4 = A.

There are two minimal measures (up to orthogonal equivalence) of type:

• (2, 1) if and only if βX = βY = 0 or (βXβY 6= 0 and βX4 = A).
• (3, 1) if and only if βXβY 6= 0 and βX4 6= A.
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Proof. First note that the pairs (x, y) ∈ R2 satisfying the equations xy + yx = 0 and x2 + y2 = 1 are

(1, 0), (−1, 0), (0, 1), (0,−1) ∈ R2.

By Lemma 2.2 these are the only pairs in R2 which can be atoms of size 1 in the measure for β.

Claim 1: β with βX = βY = 0 and psdM2 admits a measure. Moreover, there are two minimal measures of type
(2,1).

Using (6.2) we see thatM2 is of the form

M2 =



1 0 0 βX2 0 0 1− βX2

0 βX2 0 0 0 0 0
0 0 1− βX2 0 0 0 0

βX2 0 0 βX4 0 0 βX2 − βX4

0 0 0 0 βX2 − βX4 βX4 − βX2 0
0 0 0 0 βX4 − βX2 βX2 − βX4 0

1− βX2 0 0 βX2 − βX4 0 0 1− 2βX2 + βX4

.

We define the matrix function
B(α) :=M2 − α

(
M(1,0)

2 +M(−1,0)
2

)
,

where

M(±1,0)
2 =


1 ±1 0 1
±1 1 0 ±1
0 0 0 0
1 ±1 0 1

⊕03,

and 03 stands for the 3× 3 matrix with zero entries. Then

B(α) =



1− 2α 0 0 βX2 − 2α 0 0 C
0 βX2 − 2α 0 0 0 0 0
0 0 C 0 0 0 0

βX2 − 2α 0 0 βX4 − 2α 0 0 D
0 0 0 0 D −D 0
0 0 0 0 −D D 0
C 0 0 D 0 0 C −D

,

where
C = 1− βX2 , D = βX2 − βX4 .

Let α0 > 0 be the smallest positive number such that the rank of B(α0) is smaller than 5. Using Mathematica (solving
det(B(α){1,X,Y,X2,XY}) = 0) we get that

α0 = min

(
βX2

2
,

β2
X2 − βX4

2(−1 + 2βX2 − βX4)

)
.

Subclaim 1.1: α0 =
β2
X2−βX4

2(−1+2βX2−βX4 )
.

We define

∆ :=
βX2

2
−

β2
X2 − βX4

2(−1 + 2βX2 − βX4)
=

(1− βX2)(βX2 − βX4)

2(1− 2βX2 + βX4)
.

To prove the subclaim we have to prove that ∆ > 0. SinceM2 is psd of rank 5, it follows that

1− βX2 > 0, βX2 − βX4 > 0, 1− 2βX2 + βX4 > 0.

Thus ∆ > 0.

The matrix B(α0) is psd of rank 4 and satisfies the column relations

X2 =
βX2 − βX4

1− βX2

1, XY + YX = 0, Y2 =
1− 2βX2 + βX4

1− βX2

1.

By Theorem 3.1 it has a unique (up to orthogonal equivalence) 1-atomic measure with an atom (X,Y ) ∈ (SR2×2)2.
ThereforeM2 has a minimal measure of type (2, 1). Indeed, minimality follows by the following facts:

• SinceM2 is a nc moment matrix, there must be at least one atom of size > 1 in the representing measure.
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• If there is exactly one atom of size 2 in the representing measure, then there must be at least one atom of size
1, since otherwiseM2 would have rank at most 4. Since βX = βY = 0, atoms (1, 0), (−1, 0) (resp. (0, 1),
(0,−1)) occur in pairs with the same densities.

By symmetry there exists a unique minimal measure of type (2,1) involving the atoms (0, 1) and (0,−1). This con-
cludes the proof of Claim1.

Claim 2: If β admits a measure, then it has a representing measure with the atoms of size at most 2.

Claim 2 follows by Proposition 6.1 and Claim 1.

Claim 3: β admits a measure if and only if (6.4) holds.

A special case βX = βY = 0 of Claim 3 follows by Claim 1. Let us assume that βX 6= 0 or βY 6= 0 and suppose
that β admits a measure. By Claim 2,

(6.5) M2 =
∑
i

λiM(xi,yi)
2 +

∑
j

ξjM
(Xj ,Yj)
2 .

where (xi, yi) ∈ R2, (Xj , Yj) ∈ SR2×2, λi > 0, ξj > 0 and
∑
i λi +

∑
j ξj = 1. By Corollary 3.2,

(6.6) β
(j)
X = β

(j)
Y = β

(j)
X3 = β

(j)
X2Y = β

(j)
XY 2 = β

(j)
Y 3 = 0,

where β(j)
w(X,Y ) are the moments ofM(Xj ,Yj)

2 . By the first paragraph in the proof of Theorem 6.4,

(6.7)
∑
i

λiM(xi,yi)
2 = λ1M(1,0)

2 + λ2M(−1,0)
2 + λ3M(0,1)

2 + λ4M(0,−1)
2 ,

where λi ≥ 0 for each i. Using (6.5), (6.6) and (6.7) we conclude that

∑
i

λiM(xi,yi)
2 =



a βX βY b 0 0 c
βX b 0 βX 0 0 0
βY 0 a 0 0 0 βY
b βX 0 b 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
c 0 βY 0 0 0 c

 for some a, b, c ≥ 0,

where
βX = λ1 − λ2, βY = λ3 − λ4, b = λ1 + λ2, c = λ3 + λ4, a = b+ c.

Subclaim 3.1: We have that
∑
i λiM

(xi,yi)
2 � A, where

A :=



|βX |+ |βY | βX βY |βX | 0 0 |βY |
βX |βX | 0 βX 0 0 0
βY 0 |βX |+ |βY | 0 0 0 βY
|βX | βX 0 |βX | 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
|βY | 0 βY 0 0 0 |βY |

.

There are the following possibilities:

(1) If βX ≥ 0 and βY ≥ 0, then since

λ1 ≥ βX , λ3 ≥ βY , λ2 ≥ 0, λ4 ≥ 0, M(±1,0)
2 � 0, M(0,±1)

2 � 0,

it follows that ∑
i

λiM(xi,yi)
2 � βXM(1,0)

2 + βYM(0,1)
2 .
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(2) If βX ≥ 0 and βY < 0, then since

λ1 ≥ βX , λ4 ≥ |βY |, λ2 ≥ 0, λ3 ≥ 0, M(±1,0)
2 � 0, M(0,±1)

2 � 0,

it follows that ∑
i

λiM(xi,yi)
2 � βXM(1,0)

2 + |βY |M(0,−1)
2 .

(3) If βX < 0 and βY ≥ 0, then since

λ2 ≥ |βX |, λ3 ≥ βY , λ1 ≥ 0, λ4 ≥ 0, M(±1,0)
2 � 0, M(0,±1)

2 � 0,

it follows that ∑
i

λiM(xi,yi)
2 � |βX |M(−1,0)

2 + βYM(0,1)
2 .

(4) If βX < 0 and βY < 0, then since

λ2 ≥ |βX |, λ4 ≥ |βY |, λ1 ≥ 0, λ3 ≥ 0, M(±1,0)
2 � 0, M(0,±1)

2 � 0,

it follows that ∑
i

λiM(xi,yi)
2 � |βX |M(−1,0)

2 + |βY |M(0,−1)
2 .

Combining all possibilities proves the subclaim.

M2 −A is of the form

1− |βY | − |βX | 0 0 βX2 − |βX | 0 0 E
0 βX2 − |βX | 0 0 0 0 0
0 0 E 0 0 0 0

βX2 − |βX | 0 0 βX4 − |βX | 0 0 βX2 − βX4

0 0 0 0 βX2 − βX4 −βX2 + βX4 0
0 0 0 0 −βX2 + βX4 βX2 − βX4 0
E 0 0 βX2 − βX4 0 0 F,

,

where
E = 1− βX2 − |βY | and F = E − βX2 + βX4 .

By Subclaim 3.1,

M2 −
∑
i

λiM(xi,yi)
2 �M2 −A.

Using Mathematica,

(6.8) M2 −A � 0 and (M2 −A){1,X,Y,XY} � 0

(which are necessary conditions for the existence of a measure for a nc moment matrixM2 − A by Proposition 2.1
and Corollary 2.3) andM2 is psd if and only if (6.4) holds. This proves Claim 3.

Claim 4: Minimal measures are as stated in the theorem.

If βX = βY = 0, Claim 4 follows by Claim 1. Suppose βX 6= 0 or βY 6= 0. Let A be as in the proof of Claim 3.
The following statements are true:

(1) Minimal measure is unique of type (1,1) if and only if the rank ofM2 − A is 4 and one of the moments βX ,
βY is 0.

(2) Minimal measure is unique of type (2,1) if and only if
(a) the rank ofM2 −A is 4 and βXβY 6= 0.
(b) the rank ofM2−A is 5 and one of the moments βX , βY is 0 in which case we subtractα

(
M(1,0)

2 +M(−1,0)
2

)
or α

(
M(0,1)

2 +M(0,−1)
2

)
with the smallest α > 0 such that the rank falls to 4.

(3) There are two minimal measures of type (3,1) if and only if the rank ofM2 −A is 5 and βXβY 6= 0 in which
case we subtract α

(
M(1,0)

2 +M(−1,0)
2

)
or α

(
M(0,1)

2 +M(0,−1)
2

)
with the smallest α > 0 such that the

rank falls to 4.
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The rank ofM2 −A is 5 exactly when in addition to (6.8),

(M2 −A){1,X,Y,X2,XY} � 0.

in addition toM2 −A. Using Mathematica we obtain exactly the statement in the theorem. �

6.2. Pair XY + YX = 0 and Y2 = 1. In this subsection we study a sequence β with a moment matrixM2 of rank 5
satisfying the relations XY+YX = 0 and Y2 = 1. In Theorem 6.7 we characterize exactly when β admits a measure.
Moreover, we classify type and uniqueness of the minimal measure.

The form ofM2 is given by the following proposition.

Proposition 6.5. Suppose β ≡ β(4) is a sequence with a moment matrixM2 of rank 5 satisfying the relations

(6.9) XY + YX = 0 and Y2 = 1.

ThenM2 is of the form

(6.10)



β1 0 βY βX2 0 0 β1
0 βX2 0 βX3 0 0 0
βY 0 β1 0 0 0 βY
βX2 βX3 0 βX4 0 0 βX2

0 0 0 0 βX2 −βX2 0
0 0 0 0 −βX2 βX2 0
β1 0 βY βX2 0 0 β1


.

Proof. The relations (6.9) give us the following system inM2

(6.11)

2βXY = 0,

2βX2Y = 0,

2βXY 2 = 0,

2βX3Y = 0,

βX2Y 2 + βXYXY = 0,

2βXY 3 = 0,

βY 2 = β1,

βXY 2 = βX ,

βY 3 = βY ,

βX2Y 2 = βX2 ,

βXY 3 = βXY ,

βY 4 = βY 2 .

The solution to (6.11) is given by

(6.12)

βXY = 0,

βX2Y = 0,

βXY 2 = βX = 0,

βX3Y = βXY 3 = 0,

βXYXY = −βX2 ,

βY 4 = βY 2 = β1,

βY 3 = βY ,

βX2Y 2 = βX2 ,

and thusM2 takes the form (6.10). �

Proposition 6.6. Suppose β ≡ β(4) is a normalized sequence with a moment matrix M2 of rank 5 satisfying the
relations XY + YX = 0 and Y2 = 1. ThenM2 is positive semidefinite if and only if

βX3 ∈ R, βX2 > 0, |βY | < 1, βX4 >
−β3

X2 − β2
X3 + β2

Y β
2
X3

−βX2 + β2
Y βX2

.

Proof. The statement is easily checked using Mathematica. �

The following theorem characterizes normalized sequences β with a moment matrixM2 of rank 5 satisfying the
relations XY + YX = 0 and Y2 = 1, which admit a measure.

Theorem 6.7. Suppose β ≡ β(4) is a normalized sequence with a moment matrixM2 of rank 5 satisfying the relations
XY + YX = 0 and Y2 = 1. Then β admits a measure exactly in the following cases:

(1) M2 is positive semidefinite and βX3 = βY = 0. The minimal measure is unique (up to orthogonal equiva-
lence) and of type (2,1).

(2) M2 is positive semidefinite and

(6.13) βX3 = 0, βX2 > 0, 0 < |βY | < 1, βX4 ≥
β2
X2

1− |βY |
.

Moreover, assume that (6.13) holds. The minimal measure is unique (up to orthogonal equivalence). It is of

type (1,1) if and only if βX4 =
β2
X2

1−|βY | . Otherwise it is of type (2,1).
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Proof. First note that the pairs (x, y) ∈ R2 satisfying the equations xy + yx = 0 and y2 = 1 are

(0, 1), (0,−1) ∈ R2.

By Lemma 2.2 these are the only pairs from R2 which can be atoms of size 1 in the measure for β.

Claim 1: β with βX3 = βY = 0 and psdM2 admits a measure. Moreover, the minimal measure is unique and of type
(2,1).

Using (6.10) we see thatM2 is of the form

M2 =



1 0 0 βX2 0 0 1
0 βX2 0 0 0 0 0
0 0 1 0 0 0 0

βX2 0 0 βX4 0 0 βX2

0 0 0 0 βX2 −βX2 0
0 0 0 0 −βX2 βX2 0
1 0 0 βX2 0 0 1

.

We define the matrix function
B(α) :=M2 − α(M(0,1)

2 +M(0,−1)
2 ),

where

M(0,±1)
2 =



1 0 ±1 0 0 0 1
0 0 0 0 0 0 0
±1 0 1 0 0 0 ±1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 ±1 0 0 0 1

.

Then

B(α) =



1− 2α 0 0 βX2 0 0 1− 2α
0 βX2 0 0 0 0 0
0 0 1− 2α 0 0 0 0

βX2 0 0 βX4 0 0 βX2

0 0 0 0 βX2 −βX2 0
0 0 0 0 −βX2 βX2 0

1− 2α 0 0 βX2 0 0 1− 2α

.

Let α0 > 0 be the smallest positive number such that the rank of B(α0) is smaller than 5. Using Mathematica (solving
det(B(α){1,X,Y,X2,XY}) = 0) we get that

α0 = min

(
1

2
,
βX4 − β2

X2

2βX4

)
.

Subclaim 1.1: α0 =
βX4−β2

X2

2βX4
.

We define

∆ :=
1

2
−
βX4 − β2

X2

2βX4

=
β2
X2

2βX4

.

To prove the subclaim we have to prove that ∆ > 0. SinceM2 is psd, this is true.

The matrix B(α0) is psd matrix of rank 4 and satisfies the relations

X2 =
βX4

βX2

1, XY + YX = 0, Y2 = 1.

By Theorem 3.1 it has a unique (up to orthogonal equivalence) 1-atomic measure with an atom (X,Y ) ∈ (SR2×2)2.
ThereforeM2 has a minimal measure of type (2,1). Indeed, minimality follows by the following facts:

• SinceM2 is a nc moment matrix, there must be at least one atom of size > 1 in the representing measure.
• If there is exactly one atom of size 2 in the representing measure, then there must be at least one atom of size

1, since otherwiseM2 would have rank at most 4. Since βX = βY = 0, atoms (0, 1), (0,−1) occur in pairs
with the same densities.
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Claim 2: If β admits a measure, then it has a representing measure with the atoms of size at most 2.

Claim 2 follows by Proposition 6.1 and Claim 1.

Claim 3: If βx3 6= 0 or βY 6= 0, then β admits a measure if and only if (6.13) holds.

Let us assume that βx3 6= 0 or βY 6= 0 and suppose that β admits a measure. By Claim 2,

(6.14) M2 =
∑
i

λiM(xi,yi)
2 +

∑
j

ξjM
(Xj ,Yj)
2 .

where (xi, yi) ∈ R2, (Xj , Yj) ∈ SR2×2, λi > 0, ξj > 0 and
∑
i λi +

∑
j ξj = 1. By Corollary 3.2,

(6.15) β
(j)
X = β

(j)
Y = β

(j)
X3 = β

(j)
X2Y = β

(j)
XY 2 = β

(j)
Y 3 = 0,

where β(j)
w(X,Y ) are the moments ofM(Xj ,Yj)

2 . By the first paragraph in the proof of Theorem 6.7, it follows that

(6.16)
∑
i

λiM(xi,yi)
2 = λ1M(0,1)

2 + λ2M(0,−1)
2 ,

where λi ≥ 0 for i = 1, 2. Using (6.14), (6.15) and (6.16) we conclude that
∑
i λiM

(xi,yi)
2 is of the form

(6.17)
∑
i

λiM(xi,yi)
2 =



a 0 βY 0 0 0 a
0 0 0 0 0 0 0
βY 0 a 0 0 0 βY
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
a 0 βY 0 0 0 a

 for some a ≥ 0,

where
βY = λ1 − λ2, a = λ1 + λ2.

Subclaim 3.1: If β has a measure, then βX3 = 0.

Combining (6.14), (6.15) and (6.17), the subclaim follows.

Subclaim 3.2: We have that
∑
i λiM

(xi,yi)
2 � A, where

A =



|βY | 0 βY 0 0 0 |βY |
0 0 0 0 0 0 0
βY 0 |βY | 0 0 0 βY
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
|βY | 0 βY 0 0 0 |βY |

.

There are the following possibilities:

(1) If βY > 0, then since

λ1 ≥ βY , λ2 ≥ 0, M(0,1)
2 � 0, M(0,−1)

2 � 0,

it follows that ∑
i

λiM(xi,yi)
2 � βYM(0,1)

2 .

(2) If βY < 0, then since

λ2 ≥ |βY |, λ1 ≥ 0, M(0,1)
2 � 0, M(0,−1)

2 � 0,

it follows that ∑
i

λiM(xi,yi)
2 � |βY |M(0,−1)

2 .
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Combining all possibilities proves the subclaim.

M2 −A is of the form 

1− |βY | 0 0 βX2 0 0 1− |βY |
0 βX2 0 0 0 0 0
0 0 1− |βY | 0 0 0 0

βX2 0 0 βX4 0 0 βX2

0 0 0 0 βX2 −βX2 0
0 0 0 0 −βX2 βX2 0

1− |βY | 0 0 βX2 0 0 1− |βY |

.

By Subclaim 3.2,M2 −
∑
i λiM

(xi,yi)
2 �M2 −A. Using Mathematica,

(6.18) M2 −A � 0 and (M2 −A){1,X,Y,XY} � 0

(which are necessary conditions for the existence of a measure for a nc moment matrixM2 − A by Proposition 2.1
and Corollary 2.3) andM2 −A is psd if and only if (6.13) holds.

Claim 4: Minimal measures are as stated in the theorem.

If βX3 = βY = 0, Claim 4 follows by Claim 1. Suppose βY 6= 0. Let A be as in the proof of Claim 3. The
following statements are true:

(1) Minimal measure is unique of type (1,1) if and only if the rank ofM2 −A � 0 is 4.
(2) Minimal measure is unique of type (2,1) if and only if the rank ofM2 −A � 0 is 5 in which case we subtract

α
(
M(0,1)

2 +M(0,−1)
2

)
with the smallest α > 0 such that the rank falls to 4.

The rank ofM2 −A is 5 exactly when in addition to (6.18),

(M2 −A){1,X,Y,X2,XY} � 0.

in addition toM2 −A. Using Mathematica we obtain exactly the statement in the theorem. �

6.3. Pair XY + YX = 0 and Y2 − X2 = 1. In this subsection we study a sequence β with a moment matrixM2 of
rank 5 satisfying the relations XY + YX = 0 and Y2 + X2 = 1. In Theorem 6.10 we characterize exactly when β
admits a measure. Moreover, we classify the type and uniqueness of the minimal measure.

The form ofM2 is given by the following proposition.

Proposition 6.8. Suppose β ≡ β(4) is a sequence with a moment matrixM2 of rank 5 satisfying the relations

(6.19) XY + YX = 0 and Y2 − X2 = 1.

ThenM2 is of the form

(6.20)



β1 βX βY βX2 0 0 β1 + βX2

βX βX2 0 −βX 0 0 0
βY 0 β1 + βX2 0 0 0 βY
βX2 −βX 0 βX4 0 0 βX2 + βX4

0 0 0 0 βX2 + βX4 −βX2 − βX4 0
0 0 0 0 −βX2 − βX4 βX2 + βX4 0

β1 + βX2 0 βY βX2 + βX4 0 0 β1 + 2βX2 + βX4

.

Proof. The relations (6.1) give us the following system inM2

(6.21)

2βXY = 0,

2βX2Y = 0,

2βXY 2 = 0,

2βX3Y = 0,

βX2Y 2 + βXYXY = 0,

2βXY 3 = 0,

βY 2 = β1 + βX2 ,

βXY 2 = βX + βX3 ,

βY 3 = βY + βX2Y ,

βX2Y 2 = βX2 + βX4 ,

βXY 3 = βXY + βX3Y ,

βY 4 = βY 2 + βX2Y 2 .

The solution to (6.21) is given by

βX = −βX3 ,

βXYXY = −βX4 − βX2 ,

βXY = βX2Y = βXY 2 = βX3Y = βXY 3 = 0,

βX4 = β1 + 2βX2 + βX4 ,

βY 3 = βY ,

βX2Y 2 = βX2 + βX4 ,
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and thusM2 takes the form (6.20). �

Proposition 6.9. Suppose β ≡ β(4) is a sequence with a moment matrixM2 of rank 5 satisfying the relations XY +
YX = 0 and Y2 − X2 = 1. ThenM2 is positive semidefinite if and only if

0 < βX2 , |βX | <
√
βX2 , |βY | < A, B < βX4 ,

where

A =

√
βX2 + β2

X2 − β2
X − βX2β2

X

βX2

,

B =
β3
X2 + β4

X2 + β2
X − β2

Y β
2
X + 3βX2β2

X + 2β2
X2β2

X

βX2 − β2
Y βX2 + β2

X2 − β2
X − βX2β2

X

.

Proof. The statement is easily checked using Mathematica. �

The following theorem characterizes normalized sequences β with a moment matrixM2 of rank 5 satisfying the
relations XY + YX = 0 and Y2 − X2 = 1, which admit a measure.

Theorem 6.10. Suppose β ≡ β(4) is a sequence with a moment matrixM2 of rank 5 satisfying the relations XY +
YX = 0 and Y2 − X2 = 1. Then β admits a measure exactly in the following cases:

(1) M2 is positive semidefinite and βX = βY = 0. The minimal measure is unique (up to orthogonal equivalence)
and of type (2,1).

(2) M2 is positive semidefinite and

(6.22) βX = 0, 0 < |βY | < 1, βX4 ≥
β2
X2

1− |βY |
.

Moreover, assume that (6.22) holds. The minimal measure is unique (up to orthogonal equivalence). It is of
type (1,1) if and only if βX4 =

βX2

1−|βY | . Otherwise it is of type (2,1).

Proof. First note that the pairs (x, y) ∈ R2 satisfying the equations xy + yx = 0 and y2 − x2 = 1 are

(0, 1), (0,−1) ∈ R2.

By Lemma 2.2 these are the only pairs from R2 which can be atoms of size 1 in the measure of β.

Claim 1: β with βX = βY = 0 and psdM2 admits a measure. Moreover, the minimal measure is unique and of type
(2,1).

Using (6.10) we see thatM2 is of the form

M2 =



1 0 0 βX2 0 0 1 + βX2

0 βX2 0 0 0 0 0
0 0 1 + βX2 0 0 0 0

βX2 0 0 βX4 0 0 βX2 + βX4

0 0 0 0 βX2 + βX4 −βX2 − βX4 0
0 0 0 0 −βX2 − βX4 βX2 + βX4 0

1 + βX2 0 0 βX2 + βX4 0 0 1 + 2βX2 + βX4

.

We define the matrix function
B(α) :=M2 − α

(
M(0,1)

2 +M(0,−1)
2

)
,

whereM(0,1)
2 ,M(0,−1)

2 are as in the proof of Theorem 6.4. We have that

B(α) =



1− 2α 0 0 βX2 0 0 C(α)
0 βX2 0 0 0 0 0
0 0 C(α) 0 0 0 0

βX2 0 0 βX4 0 0 βX2 + βX4

0 0 0 0 βX2 + βX4 −βX2 − βX4 0
0 0 0 0 −βX2 − βX4 βX2 + βX4 0

C(α) 0 0 βX2 + βX4 0 0 D(α)

,

where
C(α) = 1 + βX2 − 2α, D(α) = 1 + 2βX2 + βX4 − 2α.
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Let α0 > 0 be the smallest positive number such that the rank of B(α0) is smaller than 5. Using Mathematica (solving
det(B(α0){1,X,Y,X2,XY}) = 0) we get

α0 = min

(
1 + βX2

2
,
βX4 − β2

X2

2βX4

)
.

Subclaim 1.1: α0 =
βX4−β2

X2

2βX4
.

We define

∆ :=
1 + βX2

2
−
βX4 − β2

X2

2βX4

=
βX2(βX2 + βX4)

2βX4

> 0.

To prove the subclaim we have to prove that ∆ > 0. SinceM2 is psd, this is true.

The matrix B(α0) is psd matrix of rank 4 and satisfies the relations

X2 =
βX4

βX2

1, XY + YX = 0, Y2 =
βX2 + βX4

βX2

1.

By Theorem 3.1 it has a unique (up to orthogonal equivalence) 1-atomic measure with an atom (X,Y ) ∈ (SR2×2)2.
ThereforeM2 has a unique minimal measure of type (2,1). Indeed, minimality follows by the following facts:

• SinceM2 is a nc moment matrix, there must be at least one atom of size > 1 in its representing measure.
• If there is exactly one atom of size 2 in the representing measure forM2, then there must be at least one atom

of size 1, since otherwiseM2 would have rank at most 4. Since βX = βY = 0, atoms (0, 1), (0,−1) occur in
pairs with the same densities.

Claim 2: If β admits a measure, then it has a representing measure with the atoms of size at most 2.

Claim 2 follows by Proposition 6.1 and Theorem 6.7 (1).

Claim 3: If βX 6= 0 or βY 6= 0, then β admits a measure if and only if (6.22) holds.

Let us assume that βX 6= 0 or βY 6= 0 and suppose that β admits a measure. By Claim 2,

(6.23) M2 =
∑
i

λiM(xi,yi)
2 +

∑
j

ξjM
(Xj ,Yj)
2 .

where (xi, yi) ∈ R2, (Xj , Yj) ∈ SR2×2, λi > 0, ξj > 0 and
∑
i λi +

∑
j ξj = 1. By Corollary 3.2,

(6.24) β
(j)
X = β

(j)
Y = β

(j)
X3 = β

(j)
X2Y = β

(j)
XY 2 = β

(j)
Y 3 = 0,

where β(j)
w(X,Y ) are the moments ofM(Xj ,Yj)

2 . By the first paragraph in the proof of Theorem 6.10,

(6.25)
∑
i

λiM(xi,yi)
2 = λ1M(0,1)

2 + λ2M(0,−1)
2 ,

where λi ≥ 0 for i = 1, 2. Using (6.23), (6.24) and (6.25) we conclude that
∑
i λiM

(xi,yi)
2 is of the form

(6.26)
∑
i

λiM(xi,yi)
2 =



a 0 βY 0 0 0 a
0 0 0 0 0 0 0
βY 0 a 0 0 0 βY
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
a 0 βY 0 0 0 a

 for some a ≥ 0,

where
βY = λ1 − λ2, a = λ1 + λ2.

Subclaim 3.1: If β has a measure, then βX = 0.

Combining (6.23), (6.24) and (6.26), the subclaim follows.
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Subclaim 3.2: We have that
∑
i λiM

(xi,yi)
2 � A, where

A =



|βY | 0 βY 0 0 0 |βY |
0 0 0 0 0 0 0
βY 0 |βY | 0 0 0 βY
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
|βY | 0 βY 0 0 0 |βY |

.

There are the following possibilities:

(1) If βY ≥ 0, then since

λ1 ≥ βY , λ2 ≥ 0, M(0,1)
2 � 0, M(0,−1)

2 � 0,

it follows that ∑
i

λiM(xi,yi)
2 � βYM(0,1)

2 .

(2) If βY < 0, then since

λ2 ≥ |βY |, λ1 ≥ 0, M(0,1)
2 � 0, M(0,−1)

2 � 0,

it follows that ∑
i

λiM(xi,yi)
2 � |βY |M(0,−1)

2 .

Combining (1) and (2) proves the subclaim.

M2 −A is of the form

1− |βY | 0 0 βX2 0 0 E
0 βX2 0 0 0 0 0
0 0 E 0 0 0 0

βX2 0 0 βX4 0 0 βX2 + βX4

0 0 0 0 βX2 + βX4 −βX2 − βX4 0
0 0 0 0 −βX2 − βX4 βX2 + βX4 0
E 0 0 βX2 + βX4 0 0 F,

,

where

E = 1 + βX2 − |βY |, F = E + βX2 + βX4 .

By Subclaim 3.1,M2 −
∑
i λiM

(xi,yi)
2 �M2 −A. Using Mathematica,

(6.27) M2 −A � 0 and (M2 −A){1,X,Y,XY} � 0

(which are necessary conditions for the existence of a measure for a nc moment matrixM2 − A by Proposition 2.1
and Corollary 2.3) andM2 −A is psd if and only if (6.22) holds.

Claim 4: Minimal measures are as stated in the theorem.

If βX = βY = 0, Claim 4 follows by Claim 1. Suppose βY 6= 0. Let A be as in the proof of Claim 3. The following
statements are true:

(1) Minimal measure is unique of type (1,1) if and only if the rank ofM2 −A � 0 is 4.
(2) Minimal measure is unique of type (2,1) if and only if the rank ofM2 −A � 0 is 5 in which case we subtract

α
(
M(0,1)

2 +M(0,−1)
2

)
with the smallest α > 0 such that the rank falls to 4.

The rank ofM2 −A is 5 exactly when in addition to (6.27),

(M2 −A){1,X,Y,X2,XY} � 0.

in addition toM2 −A. Using Mathematica we obtain exactly the statement in the theorem. �
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6.4. Pair XY + YX = 0 and Y2 = X2. In this subsection we study a sequence β with a moment matrixM2 of rank
5 satisfying the relations XY + YX = 0 and Y2 + X2 = 1. In Theorem 6.13 we characterize exactly when β admits a
measure. Moreover, we classify the type and uniqueness of the minimal measure.

The form ofM2 is given by the following proposition.

Proposition 6.11. Suppose β ≡ β(4) is a sequence with a moment matrixM2 satisfying the relations

(6.28) XY + YX = 0 and Y2 = X2.

ThenM2 is of the form

(6.29)



β1 βX βY βX2 0 0 βX2

βX βX2 0 0 0 0 0
βY 0 βX2 0 0 0 0
βX2 0 0 βX4 0 0 βX4

0 0 0 0 βX4 −βX4 0
0 0 0 0 −βX4 βX4 0

βX2 0 0 βX4 0 0 βX4

.

Proof. The relations (6.28) give us the following system inM2

(6.30)

2βXY = 0,

2βX2Y = 0,

2βXY 2 = 0,

2βX3Y = 0,

βX2Y 2 + βXYXY = 0,

2βXY 3 = 0,

βY 2 = βX2 ,

βXY 2 = βX3 ,

βY 3 = βX2Y ,

βX2Y 2 = βX4 ,

βXY 3 = βX3Y ,

βY 4 = βX2Y 2 .

The solution to (6.30) is given by

βXY = βX3 = βX2Y = βXY 2 = βY 3 = βX3Y = βXY 3 = 0,

βY 2 = βX2 ,

βXYXY = −βX2Y 2 = −βY 4 = −βX4 ,

and thusM2 takes the form (6.29). �

Proposition 6.12. Suppose β ≡ β(4) is a sequence with a moment matrix M2 of rank 5 satisfying the relations
XY + YX = 0 and Y2 = X2. ThenM2 is positive semidefinite if and only if

0 < βX2 , |βX | <
√
βX2 , |βY | <

√
−β2

X + βX2 ,
β3
X2

−β2
Y − β2

X + βX2

< βX4 .

Proof. The statement is easily checked using Mathematica. �

The following theorem characterizes normalized sequences β with a moment matrixM2 of rank 5 satisfying the
relations XY + YX = 0 and X2 = Y2, which admit a measure.

Theorem 6.13. Suppose β ≡ β(4) is a sequence with a moment matrixM2 of rank 5 satisfying the relations XY +
YX = 0 and X2 = Y2. Then β admits a measure if and only ifM2 is positive semidefinite and βX = βY = 0. The
minimal measure is unique (up to orthogonal equivalence) and of type (1,1).

Proof. First note that the only pair (x, y) ∈ R2 satisfying the equations xy + yx = 0 and y2 = x2 is

(0, 0) ∈ R2.

By Lemma 2.2 this is the only pair from R2 which can be an atom of size 1 in the measure of β. We have

(6.31) M(0,0)
2 = (1)⊕ 06,

where 06 stands for the 6× 6 matrix with only zero entries.

Claim 1: If βX = βY = 0, then β admits a measure. Moreover, the minimal measure is unique (up to orthogonal
equivalence) and of type (1,1).
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Using (6.29) we see thatM2 is of the form

M2 =



1 0 0 βX2 0 0 βX2

0 βX2 0 0 0 0 0
0 0 βX2 0 0 0 0

βX2 0 0 βX4 0 0 βX4

0 0 0 0 βX4 −βX4 0
0 0 0 0 −βX4 βX4 0

βX2 0 0 βX4 0 0 βX4

.

We define the matrix function
B(α) :=M2 − αM(0,0)

2 .

We have that

B(α) =



1− α 0 0 βX2 0 0 βX2

0 βX2 0 0 0 0 0
0 0 βX2 0 0 0 0

βX2 0 0 βX4 0 0 βX4

0 0 0 0 βX4 −βX4 0
0 0 0 0 −βX4 βX4 0

βX2 0 0 βX4 0 0 βX4

.

Let α0 > 0 be the smallest positive number such that the rank of B(α0) is smaller than 5. Using Mathematica (solving
det(B(α){1,X,Y,X2,XY}) = 0) we get

α0 =
βX4 − β2

X2

βX4

.

The matrix B(α0) is psd matrix of rank 4 and satisfies the relations

X2 =
βX4

βX2

1, XY + YX = 0, Y2 =
βX4

βX2

1.

By Theorem 3.1 it has a unique (up to orthogonal equivalence) 1-atomic measure with an atom (X,Y ) ∈ (SR2×2)2.
ThereforeM2 has a unique minimal measure of type (1,1). Indeed, minimality follows by the following facts:

• SinceM2 is a nc moment matrix, there must be at least one atom of size > 1 in its representing measure.
• If there is exactly one atom of size 2 in the representing measure forM2, then there must be at least one atom

of size 1, since otherwiseM2 would have rank at most 4.

Claim 2: If βX 6= 0 or βY 6= 0, then β does not admit a measure.

Subclaim 2.1: If β admits a measure, then it has a representing measure with the atoms of size at most 2.

Subclaim 2.1 follows by Proposition 6.1 and Claim 1.

Suppose that β admits a measure and βX 6= 0 or βY 6= 0. By Subclaim 2.1,

(6.32) M2 =
∑
i

λiM(xi,yi)
2 +

∑
j

ξjM
(Xj ,Yj)
2 .

where (xi, yi) ∈ R2, (Xj , Yj) ∈ SR2×2, λi > 0, ξj > 0 and
∑
i λi +

∑
j ξj = 1. By Corollary 3.2,

(6.33) β
(j)
X = β

(j)
Y = β

(j)
X3 = β

(j)
X2Y = β

(j)
XY 2 = β

(j)
Y 3 = 0,

where β(j)
w(X,Y ) are the moments ofM(Xj ,Yj)

2 . By the first paragraph in the proof of Theorem 6.13,

(6.34)
∑
i

λiM(xi,yi)
2 = λM(0,0)

2 ,

where λ > 0. Using (6.32), (6.33) and (6.34) it follows that

0 =
∑
j

β
(j)
X = βX and 0 =

∑
j

β
(j)
Y = βY .

This is a contradiction with the assumption βX 6= 0 or βY 6= 0, which proves Claim 2. �
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7. BQTMP WITHM2 IN THE BASIC CASES 1 AND 2 OF RANK 6

In this section we solve the BQTMP for M2 in the basic cases 1 and 2 of rank 6 given by Proposition 4.1. In
Subsections 7.1 and 7.2 we study each case separately. We characterize whenM2 admits a measure, see Theorems 7.5
and 7.8. Corollaries 7.6 and 7.9 translate the existence of a measure into the feasibility problem of three linear matrix
inequalities and a rank-to-variety condition from Theorem 2.7.

The following proposition states that if β has a moment matrixM2 of rank 6 in the basic cases 1, 2 or 3 given by
Proposition 4.1 (2) and β admits a measure, then it has a representing measure with the atoms of size at most 2.

Proposition 7.1. Let us fix a basic case relation 1, 2 or 3 given by Proposition 4.1 (2) and denote it byR. If a sequence
β with a moment matrixM2(β) of rank 6 satisfying R admits a measure, then it admits a measure with atoms of size
at most 2.

Proof. Suppose β has a moment matrixM2(β) of rank 6 satisfying R and admits a measure. By Proposition 5.1 we
may assume that all the atoms (Xi, Yi) ∈ (SRui×ui)2 of size ui > 1 are of the form

Xi =

(
γiIti Bi
Bti −γiIti

)
, Yi =

(
µiIti 0
0 −µiIti

)
,

where γi > 0, µi > 0 and Bi are ti × ti matrices. Calculating Y 2
i we get

(7.1) Y 2
i = µ2

i I2ti .

ThereforeM(Xi,Yi)
2 satisfies the relations R and (7.1) and hence it is of rank at most 5. By the results from Sections 3

and 6 it can be represented by the atoms of size at most 2. �

The following two propositions say more about the minimal measure.

Proposition 7.2. Let us fix a basic case relation 1, 2 or 3 given by Proposition 4.1 (2) and denote it byR. If a sequence
β with a moment matrixM2 satisfying R admits a measure of type (k, 1), then

(1) 2 ≤ k ≤ 5 if R is equal to Y2 = 1− X2 or Y2 = 1+ X2.
(2) 2 ≤ k ≤ 6 if R is equal to XY + YX = 0.

Proof. By assumption,

M2 =

k∑
i=1

λiM(xi,yi)
2 + ξM(X,Y )

2 ,

where (xi, yi) ∈ R2, (X,Y ) ∈ (SR2×2)2, k ∈ N, λi > 0, ξ > 0 and
∑k
i=1 λi + ξ = 1. Equivalently

M2 − ξM(X,Y )
2 =

k∑
i=1

λiM(xi,yi)
2 .

Since
∑k
i=1 λiM

(xi,yi)
2 is a cm moment matrix of rank at most 6 satisfying the relation R, then by Theorem 2.7

(1) 2 ≤ k ≤ 5 if R is equal to Y2 = 1− X2 or Y2 = 1+ X2,
(2) 2 ≤ k ≤ 6 if R is equal to XY + YX = 0,

which proves Proposition 7.2. �

Proposition 7.3. Let us fix a basic case relation 1 or 2 given by Proposition 4.1 (2) and denote it by R. If every
sequence β with βX = βY = βX3 = βX2Y = β3

Y = 0 and a moment matrixM2(β) of rank 6 with column relation
R, admits a measure with exactly one atom of size 2 and some atoms of size 1, then every sequence β̃ which admits a
measure and has a moment matrix M̃2 of rank 6 with the scolumn relation R, admits a measure with exactly one atom
of size 2 and some atoms of size 1.

Proof. Suppose β̃ admits a measure and has a moment matrix M̃2 of rank 6 with column relation R. By Proposition
5.1 we may assume that all the atoms (Xi, Yi) ∈ (SRui×ui)2 of size ui > 1 are of the form

Xi =

(
γiIti Bi
Bti −γiIti

)
, Yi =

(
µiIti 0
0 −µiIti

)
,



36 THE SINGULAR BIVARIATE QUARTIC TRACIAL MOMENT PROBLEM

where γi ≥ 0, µi > 0 and Bi are ti × ti matrices. Calculating X3
i , X2

i Yi and Y 3
i we get

X3
i =

(
γi(γ

2
i Iti +BiB

t
i ) (γ2i Iti +BiB

t
i )Bi

(γ2i Iti +BtiBi)B
t
i −γi(γ2i Iti +BtiBi)

)
,

X2
i Yi =

(
µi(γ

2
i Iti +BiB

t
i ) 0

0 −µi(γ2i Iti +BtiBi)

)
,

Y 3
i =

(
µ3
i Iti 0
0 −µ3

i Iti

)
.

Therefore
∑
iM

(Xi,Yi)
2 satisfies βX = βY = βX3 = βX2Y = βY 3 = 0. If the rank of

∑
iM

(Xi,Yi)
2 is at most 5, then∑

iM
(Xi,Yi)
2 can be represented by exactly one atom of size 2 and some atoms of size 1 by the results of previous

sections. Else the rank of
∑
iM

(Xi,Yi)
2 is 6 and the same conclusion follows by assumption. �

7.1. Relation Y2 = 1−X2. In this subsection we study a sequence β with a moment matrixM2 of rank 6 satisfying
the relation Y2 = 1 − X2. In Theorem 7.5 we characterize when β admits a measure. In Corollary 7.6 we show
that the existence of a measure is equivalent to the feasibility problem of three linear matrix inequalities (LMIs) and
rank-to-cardinality condition from Theorem 2.7.

The form ofM2 is given by the following proposition.

Proposition 7.4. Let β ≡ β(4) be a sequence with a moment matrixM2 satisfying the relation

(7.2) Y2 = 1− X2.

ThenM2 is of the form

(7.3)



β1 βX βY βX2 βXY βXY β1 − βX2

βX βX2 βXY βX3 βX2Y βX2Y βX − βX3

βY βXY β1 − βX2 βX2Y βX − βX3 βX − βX3 βY − βX2Y
βX2 βX3 βX2Y βX4 βX3Y βX3Y βX2 − βX4

βXY βX2Y βX − βX3 βX3Y βX2 − βX4 βXYXY βXY − βX3Y
βXY βX2Y βX − βX3 βX3Y βXYXY βX2 − βX4 βXY − βX3Y

β1 − βX2 βX − βX3 βY − βX2Y βX2 − βX4 βXY − βX3Y βXY − βX3Y β1 − 2βX2 + βX4

.

Proof. The relation (7.2) gives us the following system inM2

(7.4)

βY 2 = β1 − βX2 ,

βXY 2 = βX − βX3 ,

βY 3 = βY − βX2Y ,

βX2Y 2 = βX2 − βX4 ,

βXY 3 = βXY − βX3Y ,

βY 4 = βY 2 − βX2Y 2 .

Plugging in the expressions for βY 2 and βX2Y 2 in the expression for βY 4 gives the form (7.3) ofM2. �

The following theorem characterizes normalized sequences β with a moment matrixM2 of rank 6 satisfying the
relation Y2 = 1− X2, which admit a measure.

Theorem 7.5. Suppose β ≡ β(4) is a normalized sequence with a moment matrixM2 of rank 6 satisfying the relation
Y2 = 1− X2. Then β admits a measure if and only ifM2 is positive semidefinite and one of the following is true:

(1) βX = βY = βX3 = βX2Y = 0. Moreover, there exists a measure of type (4,1).
(2) There exist

a1 ∈ (0, 1), a2 ∈
(
−2
√
a1(1− a1), 2

√
a1(1− a1)

)
such that

M :=M2 − ξM(X,Y )
2

is a positive semidefinite cm moment matrix satisfying rankM ≤ cardVM , where VM is the variety associated
to M (as in Theorem 2.7),

(7.5) X =

(√
a1 0
0 −√a1

)
, Y =

√
(1− a1)

(
a
2

1
2

√
4− a2

1
2

√
4− a2 −a2

)
,

a =
a2√

a1(1− a1)
,

and ξ > 0 is the smallest positive number such that the rank ofM2 − ξM(X,Y )
2 is smaller than the rank of

M2.
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Proof. First we will prove (1).M2 is of the form

1 0 0 βX2 βXY βXY 1− βX2

0 βX2 βXY 0 0 0 0
0 βXY 1− βX2 0 0 0 0

βX2 0 0 βX4 βX3Y βX3Y βX2 − βX4

βXY 0 0 βX3Y βX2 − βX4 βXYXY βXY − βX3Y
βXY 0 0 βX3Y βXYXY βX2 − βX4 βXY − βX3Y

1− βX2 0 0 βX2 − βX4 βXY − βX3Y βXY − βX3Y 1− 2βX2 + βX4

.

We define the matrix function
B(α) :=M2 − α

(
M(1,0)

2 +M(−1,0)
2

)
.

We have that

B(α) =



1− 2α 0 0 βX2 − 2α βXY βXY D
0 βX2 − α βXY 0 0 0 0
0 βXY D 0 0 0 0

βX2 − 2α 0 0 βX4 − 2α βX3Y βX3Y C
βXY 0 0 βX3Y C E βXY − βX3Y
βXY 0 0 βX3Y E C βXY − βX3Y
D 0 0 C βXY − βX3Y βXY − βX3Y D − C

,

where
C = βX2 − βX4 , D = 1− βX2 , E = βXYXY .

Let α0 > 0 be the smallest positive number such that the rank of B(α0) is smaller than 6. Using Mathematica and
calculating α0 such that det

(
B(α0){1,X,Y,X2,XY,YX}

)
= 0 we get

α0 = min
(
α1,

F

2G

)
,

where

α1 =
β2
XY − βX2 + β2

X2

2(−1 + βX2)
,

F = βXYXY (β2
X2 − βX4) + βX2(β2

X2 − 4βXY βX3Y − βX4(1 + βX2)) + 2β2
X3Y +

+βX4(βX4 + 2β2
XY ),

G = 2βXY (βXY − 2βX3Y ) + βXYXY (2βX2 − 1− βX4) + βX2(2βX2 − 1− 3βX4)+

+2β2
X3Y + βX4(1 + βX4).

Claim 1: α0 = F
2G < α1.

Using Mathematica and calculating α2, α3, α4 such that

det
(
B(α2){1,X2}

)
= 0, det

(
B(α3){1,XY}

)
= 0, det

(
B(α4){1,XY,YX}

)
= 0

we get

α2 =
β2
X2 − βX4

2(−1 + 2βX2 − βX4)
, α3 =

−β2
XY + βX2 − βX4

2(βX2 − βX4)
,

α4 =
−2β2

XY + βXYXY + βX2 − βX4

2(βXYXY + βX2 − βX4)
.

If α1 ≤ F
2G , then since B(α1) � 0, it follows that α1 ≤ min(α2, α3, α4). Using Mathematica, the system

α1 ≤ min(α2, α3, α4), det
(
M2{Y}

)
> 0, det

(
M2{XY}

)
> 0,(7.6)

det
(
M2{X,Y}

)
> 0, det

(
M2{1,X2}

)
> 0, det

(
M2{1,XY,YX}

)
> 0,(7.7)

does not have solutions. Hence α0 = F
2G < α1.

Using Mathematica to calculate the kernel of B( F2G ) we conclude that B( F2G ) satisfies the relations

XY + YX = a1+ dX2, Y2 + X2 = 1
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for some a, d ∈ R. We also have

β
(B)
X = β

(B)
Y = β

(B)
X3 = β

(B)
X2Y = β

(B)
XY 2 = β

(B)
Y 3 = 0,

where β(B)
w(X,Y ) are the moments of B( F2G ). This is a special case in the proof of Proposition 4.1, i.e., Case 2.2.

Following the proof we see that after using only transformations of type

(x, y) 7→ (α1x+ β1y, α2x+ β2y)

for some α1, α2, β1, β2 ∈ R, we come into the basic case 1 or 2 of rank 5 with β̃X = β̃Y = β̃X3 = 0. But every such
sequence admits a measure of type (2,1) by Theorems 6.4 and 6.7. Hence β admits a measure of type (4, 1).

It remains to prove (2). Suppose that β admits a measure. By Proposition 7.3 and Theorem 7.5 (1),

(7.8) M2 =
∑
i

λiM(xi,yi)(2) + ξM(X,Y )(2),

where (xi, yi) ∈ R2, (X,Y ) ∈ (SR2×2)2, λi > 0, ξ > 0 and
∑
i λi + ξ = 1. Therefore

M2 − ξM(X,Y )
2

is a cm moment matrix satisfying the relations

Y2 = 1− X2 and XY = YX.

By Theorem 2.7, M admits a measure if and only if M is psd and satisfies rankM ≤ cardVM . To conclude the proof
it only remains to prove that X,Y are of the form (7.5).M(X,Y )

2 is a nc moment matrix rank 4. Therefore the columns
{1,X,Y,XY} are linearly independent and hence

X2 = a11+ b1X + c1Y + d1XY, and Y2 = a31+ b3X + c3Y + d3XY,

where aj , bj , cj , dj ∈ R for j = 1, 3. By Theorem 3.1 (1), d1 = d3 = 0. By Theorem 3.1 (3), c1 = b3 = 0. Since
X2 + Y2 = 1 it follows that b1 = c3 = 0 and a3 = 1− a1. By Theorem 3.1 (4), X and Y are of the form (7.5). �

The following theorem translates the BQTMP for β withM2 of rank 6 satisfying Y2 = 1− X2 into the feasibility
problem of some LMIs and a rank-to-cardinality condition from Theorem 2.7.

Corollary 7.6. Suppose β ≡ β(4) is a normalized sequence with a moment matrixM2 of rank 6 satisfying the relation
Y2 = 1− X2. Let L(a, b, c, d, e) be the following linear matrix polynomial

a βX βY b c c a− b
βX b c βX3 βX2Y βX2Y βX − βX3

βY c a− b βX2Y βX − βX3 βX − βX3 βY − βX2Y
b βX3 βX2Y d e e b− d
c βX2Y βX − βX3 e b− d b− d c− e
c βX2Y βX − βX3 e b− d b− d c− e

a− b βX − βX3 βY − βX2Y b− d c− e c− e a− 2b+ d

,

where a, b, c, d, e ∈ R. Then β admits a measure if and only if there exist a, b, c, d, e ∈ R such that

(1) L(a, b, c, d, e) � 0,
(2) M2 − L(a, b, c, d, e) � 0,
(3) (M2 − L(a, b, c, d, e)){1,X,Y,XY} � 0,
(4) rank(L(a, b, c, d, e)) ≤ cardVL, where VL is the variety associated to the moment matrix L(a, b, c, d, e) (see

Theorem 2.7).

Proof. By Theorem 7.5, β admits a measure if and only if

(7.9) M2 =

k∑
i=1

λiM(xi,yi)
2 + ξM(X,Y )

2 ,

where (xi, yi) ∈ R2, (X,Y ) ∈ (SR2×2)2, λi > 0, ξ > 0 and
∑
i λi + ξ = 1. By Corollary 3.2,

(7.10) β
(X,Y )
X = β

(X,Y )
Y = β

(X,Y )
X3 = β

(X,Y )
X2Y = β

(X,Y )
XY 2 = β

(X,Y )
Y 3 = 0,
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where β(X,Y )
w(X,Y ) are the moments ofM(X,Y )

2 . Using (7.9) and (7.10), we conclude that
∑
i λiM

(xi,yi)
2 and ξM(X,Y )

2

are of the forms 

a βX βY b c c a− b
βX b c βX3 βX2Y βX2Y βX − βX3

βY c a− b βX2Y βX − βX3 βX − βX3 βY − βX2Y
b βX3 βX2Y d e e b− d
c βX2Y βX − βX3 e b− d b− d c− e
c βX2Y βX − βX3 e b− d b− d c− e

a− b βX − βX3 βY − βX2Y b− d c− e c− e a− 2b+ d

,(7.11)



1− a 0 0 βX2 − b A1(c) A1(c) A2(a, b)
0 βX2 − b A1(c) 0 0 0 0
0 A1(c) A2(a, b) 0 0 0 0

βX2 − b 0 0 βX4 − d A3(e) A3(e) A4(b, d)
A1(c) 0 0 A3(e) A4(b, d) βXYXY − (b− d) A5(c, e)
A1(c) 0 0 A3(e) βXYXY − (b− d) A4(b, d) A5(c, e)
A2(a, b) 0 0 A4(b, d) A5(c, e) A5(c, e) A6(a, b, d)

,(7.12)

where

A1(c) = βXY − c, A2(a, b) = 1− βX2 − (a− b),
A3(e) = βX3Y − e, A4(b, d) = βX2 − βX4 − (b− d),

A5(c, e) = βXY − βX3Y − (c− e), A6(a, b, d) = 1− 2βX2 + βX4 − (a− 2b+ d),

for some a, b, c, d, e ∈ R. Notice that the matrix (7.11) equals to L(a, b, c, d, e) and the matrix (7.12) to M2 −
L(a, b, c, d, e). Since L(a, b, c, d, e) is a cm moment matrix, it admits a measure by Theorem 2.7 if and only if (1)
and (4) of Theorem 7.6 are true. Since M2 − L(a, b, c, d, e) is a nc moment matrix satisfying Y2 = 1 − X2 and
β̃X = β̃Y = β̃X3 = β̃X2Y = β̃XY 2 = β̃Y 3 = 0, it admits a measure by the results of rank 4 and 5 cases and Theorem
7.5 (1) if and only if (2) and (3) of Theorem 7.6 are true. �

7.2. Relation XY + YX = 0. In this subsection we study a sequence β ≡ β(4) with a moment matrixM2 of rank
6 satisying the relation XY + YX = 0. In Theorem 7.8 we characterize when β admits a measure. In Corollary 7.9
we show that the existence of a measure is equivalent to the feasibility problem of three LMIs and a rank-to-variety
condition from Theorem 2.7.

The form ofM2 is given by the following proposition.

Proposition 7.7. Let β ≡ β(4) be a sequence with a moment matrixM2 of rank 6 satisfying the relation

(7.13) XY + YX = 0

ThenM2 is of the form

(7.14)



β1 βX βY βX2 0 0 βY 2

βX βX2 0 βX3 0 0 0
βY 0 βY 2 0 0 0 βY 3

βX2 βX3 0 βX4 0 0 βX2Y 2

0 0 0 0 βX2Y 2 −βX2Y 2 0
0 0 0 0 −βX2Y 2 βX2Y 2 0
βY 2 0 βY 3 βX2Y 2 0 0 βY 4

.

Proof. The relation (7.13) gives us the following system inM2

(7.15)

2βXY = 0,

2βX2Y = 0,

2βXY 2 = 0,

2βX3Y = 0,

βX2Y 2 + βXYXY = βXY ,

2βXY 3 = 0.

Thus the solution of the system (7.15) is given by the statement of the proposition. �

The following theorem characterizes normalized sequences β with a moment matrixM2 of rank 6 satisfying XY+
YX = 0, which admit a measure.

Theorem 7.8. Suppose β ≡ β(4) is a normalized sequence with a moment matrixM2 of rank 6 satisfying the relation
XY + YX = 0. Then β admits a measure if and only ifM2 is positive semidefinite and one of the following is true:

(1) βX = βY = βX3 = βY 3 = 0. There exists a measure of type (2,1) or (3,1).



40 THE SINGULAR BIVARIATE QUARTIC TRACIAL MOMENT PROBLEM

(2) There exist
a1 > 0, a3 > 0,

such that
M :=M2 − ξM(X,Y )

2

is a positive semidefinite cm moment matrix satisfying rankM ≤ cardVM , where VM is the variety associated
to M (as in Theorem 2.7),

(7.16) X =

(√
a1 0
0 −√a1

)
, Y =

(
0

√
a3√

a3 0

)
and ξ > 0 is the smallest positive number such that rank ofM2 − ξM(X,Y )

2 is smaller than the rank ofM2.

Proof. First we will prove (1).M2 is of the form

M2 =



1 0 0 βX2 0 0 βY 2

0 βX2 0 0 0 0 0
0 0 βY 2 0 0 0 0

βX2 0 0 βX4 0 0 βX2Y 2

0 0 0 0 βX2Y 2 −βX2Y 2 0
0 0 0 0 −βX2Y 2 βX2Y 2 0
βY 2 0 0 βX2Y 2 0 0 βY 4

.

We define the matrix function
B(α) :=M2 − αM(0,0)

2 .

Let α0 > 0 be the smallest positive number such that the rank of B(α0) is smaller than 6. Using Mathematica and
calculating α0 such that det(B(α0){1,X,Y,X2,XY,Y2}) = 0 we get

α0 =
βY 4β2

X2 − 2βY 2βX2βX2Y 2 + βX2Y 2 + β2
Y 2βX4 − βX4βY 4

β2
X2Y 2 − βX4βY 4

.

Using Mathematica to calculate the kernel of B(α0) we get that B(α0) satisfies the relations

Y2 =
βX4βY 4 − β2

X2Y 2

βY 2βX4 − βX2βX2Y 2

1+
βY 2βX2Y 2 − βY 4βX2

βY 2βX4 − βX2βX2Y 2

X2, XY + YX = 0.

It also satisfies
β
(B)
X = β

(B)
Y = β

(B)
XY = β

(B)
X3 = β

(B)
X2Y = β

(B)
XY 2 = β

(B)
Y 3 = 0,

where β(B)
w(X,Y ) are the moments of B(α0). This is a special case in the proof of Proposition 4.1 (1) , i.e., Case 2.3.

Following the proof we see that after using only transformations of type

(x, y) 7→ (α1x+ β1y, α2x+ β2y)

for some α1, α2, β1, β2 ∈ R, we come into one of the basic pairs 1 or 4 of rank 5 with β̃X = β̃Y = β̃X3 = 0. But
every such moment matrix admits a measure of type (1,1) or (2,1) by Theorems 6.4 and 6.13. Hence M2 admits a
measure of type (2,1) or (3,1).

It remains to prove (2). Suppose that β admits a measure. By Propositions 7.3 and Theorem 7.8 (1),

M2 =
∑
i

λiM(xi,yi)
2 + ξM(X,Y )

2 ,

where (xi, yi) ∈ R2, (X,Y ) ∈ (SR2×2)2, λi > 0, ξ > 0 and
∑
i λi + ξ = 1. Therefore

M :=M2 − ξM(X,Y )
2

is a cm moment matrix satisfying the relations

XY + YX = 0 and XY = YX.
By Theorem 2.7, M admits a measure if and only if M is psd and satisfies rankM ≤ cardVM . To conclude the proof
it only remains to prove that X,Y are of the form (7.16). M(X,Y )

2 is a nc moment matrix of rank 4. Therefore the
columns {1,X,Y,XY} are linearly independent and hence

X2 = a11+ b1X + c1Y + d1XY and Y2 = a31+ b3X + c3Y + d3XY.
where aj , bj , cj , dj ∈ R for j = 1, 2, 3. By Theorem 3.1 (1), d1 = d3 = 0. By Theorem 3.1 (3), c1 = b3 = 0. Since
XY + YX = 0 it follows that b1 = c3 = 0. By Theorem 3.1 (4), X and Y are of the form (7.16). �
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The following corollary translates the BQTMP for β withM2 of rank 6 satisying XY+YX = 0 into the feasibility
problem of some LMIs and a rank-to-variety condition from Theorem 2.7.

Corollary 7.9. Suppose β ≡ β(4) is a normalized sequence with a moment matrixM2 of rank 6 satisfying the relation
XY + YX = 0. Let us define a linear matrix polynomial

L(a, b, c, d, e) =



a βX βY b 0 0 c
βX b 0 βX3 0 0 0
βY 0 c 0 0 0 βY 3

b βX3 0 d 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
c 0 βY 3 0 0 0 e

,

where a, b, c, d, e ∈ R. Then β admits a measure if and only there exist

(7.17) a ∈ (0, 1), b ∈ (0, βX2), c ∈ (0, βY 2), d ∈ (0, βX4), e ∈ (0, βY 4),

such that
(1) L(a, b, c, d, e) � 0,
(2) M2 − L(a, b, c, d, e) � 0,
(3) rank(L(a, b, c, d, e)) ≤ cardVL, where VL is the variety associated to the moment matrix L(a, b, c, d, e) (see

Theorem 2.7).

Proof. By Theorem 7.8, β admits a measure if and only if

(7.18) M2 =

k∑
i=1

λiM(xi,yi)
2 + ξM(X,Y )

2 ,

where (xi, yi) ∈ R2, (X,Y ) ∈ (SR2×2)2, λi > 0, ξ > 0 and
∑
i λi + ξ = 1. By Corollary 3.2,

(7.19) β
(X,Y )
X = β

(X,Y )
Y = β

(X,Y )
X3 = β

(X,Y )
X2Y = β

(X,Y )
XY 2 = β

(X,Y )
Y 3 = 0,

where β(X,Y )
w(X,Y ) are the moments ofM(X,Y )

2 . Since XY+YX = 0, we also have β(X,Y )
XY = 0. Using (7.18) and (7.19),

we conclude that
∑
i λiM

(xi,yi)
2 and ξM(X,Y )

2 are of the forms

a βX βY b 0 0 c
βX b 0 βX3 0 0 0
βY 0 c 0 0 0 βY 3

b βX3 0 d 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
c 0 βY 3 0 0 0 e

,(7.20)



1− a 0 0 βX2 − b 0 0 βY 2 − c
0 βX2 − b 0 0 0 0 0
0 0 βY 2 − c 0 0 0 0

βX2 − b 0 0 βX4 − d 0 0 βX2Y 2

0 0 0 0 βX2Y 2 −βX2Y 2 0
0 0 0 0 −βX2Y 2 βX2Y 2 0

βY 2 − c 0 0 βX2Y 2 0 0 βY 4 − e

,(7.21)

for some a, b, c, d, e ∈ R. Notice that the matrix (7.20) is L(a, b, c, d, e) and the matrix (7.21) isM2 − L(a, b, c, d, e).
Since L(a, b, c, d, e) is a cm moment matrix, it admits a measure by Theorem 2.7 if and only if (1) and (3) of Corollary
7.9 are true. SinceM2 − L(a, b, c, d, e) is a nc moment matrix satisfying

XY + YX = 0 and β̃X = β̃Y = β̃X3 = β̃Y 3 = 0,

it admits a measure by the results of rank 4 and 5 cases and Theorem 7.8 (1) if and only if (2) of Corollary 7.9 is
true. �

8. FLAT EXTENSIONS FOR THE BQTMP FORM2 OF RANK 6

In this section we characterize when a sequence β ≡ β(4) with a moment matrixM2 of rank 6 satisfying one of the
basic relations of Proposition 4.1 (2), admits a flat extension to a moment matrixM3. Note that this is a sufficient (by
Theorem 2.5) but not necessary condition for the existence of a measure. We demonstrate with examples that the gap
between sequences admitting a measure and flat extension is big.
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8.1. Preliminaries. In this subsection we introduce some preliminaries needed in solving the flat extension question.
First we establish the form of an extensionM of a moment matrixM2 to be a moment matrix of degree 3.

Proposition 8.1. SupposeM3 =

(
M2 B3

Bt3 C3

)
is a moment matrix of degree 3, where B3 ∈ R7×8 and C3 ∈ R8×8

and let the rows and columns be order lexicographically. Then B3 and C3 are of the forms

X3 X2Y XYX XY2 YX2 YXY Y2X Y3



1 βX3 βX2Y βX2Y βXY 2 βX2Y βXY 2 βXY 2 βY 3

X βX4 βX3Y βX3Y βX2Y 2 βX3Y βXYXY βX2Y 2 βXY 3

Y βX3Y βX2Y 2 βXYXY βXY 3 βX2Y 2 βXY 3 βXY 3 βY 4

X2 βX5 βX4Y βX4Y βX3Y 2 βX4Y βX2Y XY βX3Y 2 βX2Y 3

XY βX4Y βX3Y 2 βX2Y XY βX2Y 3 βX2Y XY βXY 2XY βXY 2XY βXY 4

YX βX4Y βX2Y XY βX2Y XY βXY 2XY βX3Y 2 βXY 2XY βX2Y 3 βXY 4

Y2 βX3Y 2 βX2Y 3 βXY 2XY βXY 4 βX2Y 3 βXY 4 βXY 4 βY 5

,

X3 X2Y XYX XY2 YX2 YXY Y2X Y3



X3 βX6 βX5Y βX5Y βX4Y 2 βX5Y βX3Y XY βX4Y 2 βX3Y 3

X2Y βX5Y βX4Y 2 βX3Y XY βX3Y 3 βX2Y X2Y βX2Y 2XY βX2Y 2XY βX2Y 4

XYX βX4Y X βX3Y XY βX2Y X2Y βX2Y 2XY βX3Y XY βXYXYXY βX2Y 2XY βXY 3XY

XY2 βX4Y 2 βX3Y 3 βX2Y 2XY βX2Y 4 βX2Y 2XY βXY 3XY βXY 2XY 2 βXY 5

YX2 βX5Y βX2Y X2Y βX3Y XY βX2Y 2XY βX4Y 2 βX2Y 2XY βX3Y 3 βX2Y 4

YXY βX3Y XY βX2Y 2XY βXYXYXY βXY 3XY βX2Y 2XY βXY 2XY 2 βXY 3XY βXY 5

Y2X βX4Y 2 βX2Y 2XY βX2Y 2XY βXY 2XY 2 βX3Y 3 βXY 3XY βX2Y 4 βXY 5

Y3 βX3Y 3 βX2Y 4 βXY 3XY βXY 5 βX2Y 4 βXY 5 βXY 5 βY 6 .

,

respectively.

Proof. This follows by definition of moment matrices. �

If B3 and C3 are of the form given in Proposition 8.1, then we say they have a moment structure.
The moment structure of C3 implies the system given by following proposition is satisfied.

Proposition 8.2. IfM3 is a moment matrix, then C3 := (Cij)ij satisfies the following system

(8.1)

C47 = C66,

C25 = C33,

C12 = C13 = C15,

C18 = C24 = C57,

C16 = C23 = C35,

C38 = C46 = C67,

C48 = C68 = C78,

C14 = C17 = C22 = C55,

C28 = C58 = C44 = C77,

C26 = C27 = C34 = C37 = C45 = C56.

Recall from Subsection 2.1 that for a polynomial p ∈ R〈X,Y 〉≤2k, p̂ = (aw)w denotes the coefficient vector with
respect to the lexicographically-ordered basis

{1, X, Y,X2, XY, Y X, Y 2, . . . , X2k, . . . , Y 2k}
of R〈X,Y 〉≤2k We will use the following proposition to show that some of the equations in (8.1) are automatically
satisfied for any flat extensionM of a moment matrixMn, i.e.,M does not need to have the moment structure.

Proposition 8.3. SupposeM =

(
Mn Bn+1

Btn+1 Cn+1

)
is a flat extension of a moment matrixMn with rows and columns

indexed by monomials of degree at most n+1. Let 〈·, ·〉M be a bilinear form on R〈X,Y 〉≤n+1 defined by 〈w1, w2〉M :=

〈Mŵ1, ŵ2〉 . For polynomials p, q ∈ R〈X,Y 〉≤n+1 we have

(8.2) 〈p, q〉M = 〈q, p〉M,
and

(8.3) 〈p, q〉M = 〈q∗, p∗〉M.



THE SINGULAR BIVARIATE QUARTIC TRACIAL MOMENT PROBLEM 43

Proof. If p, q are polynomials of degree at most n, then (8.2), (8.3) are true due to the moment structure of Mn.
Suppose p and q be polynomials of degree at most n + 1. The equality 〈p, q〉M = 〈q, p〉M is true since M is
symmetric. From rank(M) = rank(Mn), it follows that inM we have

p(X,Y) =
∑
|u|≤n

auu(X,Y) and q(X,Y) =
∑
|t|≤n

btt(X,Y),

for some au, bt ∈ R. Now by the properties of bilinear forms and the moment structure ofMn, we have

〈p, q〉M = 〈Mp̂, q̂〉 =
〈
M
( ∑
|u|≤n

auû
)
,
∑
|t|≤n

btt̂
〉

=
∑
|u|≤n

∑
|t|≤n

aubt
〈
Mû, t̂

〉
=
∑
|u|≤n

∑
|t|≤n

aubt
〈
Mt̂∗, û∗

〉
=
〈
M
( ∑
|t|≤n

btt̂∗
)
,
∑
|u|≤n

auû∗
〉

= 〈Mq̂∗, p̂∗〉

= 〈q∗, p∗〉M.

This establishes Proposition 8.3. �

Corollary 8.4. SupposeM =

(
M2 B3

Bt3 C3

)
is a flat extension of a moment matrixM2 with rows and columns indexed

by monomials of degree at most 3. We write C3 = (Cij)ij . Then we have:

(8.4)

C12 = C15,

C24 = C57,

C23 = C35,

C46 = C67,

C48 = C78,

C14 = C17,

C22 = C55,

C28 = C58,

C44 = C77,

C26 = C56,

C27 = C45,

C34 = C37.

Therefore assuming B3 has a moment structure,M is a moment matrix of degree 3 if and only if

(8.5)

C47 = C66,

C25 = C33,

C12 = C13,

C18 = C24,

C16 = C23,

C38 = C46,

C48 = C68,

C14 = C22,

C28 = C44,

C26 = C27 = C34.

Proof. Claim 1: C12 = C15.

C12 = 〈X2Y,X3〉M = 〈X3, Y X2〉M (by (8.3))

= 〈Y X2, X3〉M = C15 (by (8.2)).

Claim 2: C24 = C57.

C24 = 〈XY 2, X2Y 〉M = 〈Y X2, Y 2X〉M (by (8.3))

= 〈Y 2X,Y X2〉M = C57 (by (8.2)).

Claim 3: C23 = C35.

C23 = 〈XYX,X2Y 〉M = 〈Y X2, XY X〉M (by (8.3))

= 〈XYX, Y X2〉M = C35 (by (8.2)).

Claim 4: C46 = C67.

C46 = 〈Y XY,XY 2〉M = 〈Y 2X,Y XY 〉M (by (8.3))

= 〈Y XY, Y 2X〉M = C67 (by (8.2)).

Claim 5: C48 = C78.

C48 = 〈Y 3, XY 2〉M = 〈Y 2X,Y 3〉M (by (8.3))

= 〈Y 3, Y 2X〉M = C78 (by (8.2)).

Claim 6: C14 = C17.
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C14 = 〈XY 2, X3〉M = 〈X3, Y 2X〉M (by (8.3))

= 〈Y 2X,X3〉M = C17 (by (8.2)).

Claim 7: C22 = C55.

C22 = 〈X2Y,X2Y 〉M = 〈Y X2, Y X2〉M = C55 (by (8.3)).

Claim 8: C28 = C58.

C28 = 〈Y 3, X2Y 〉M = 〈Y X2, Y 3〉M (by (8.3))

= 〈Y 3, Y X2〉M = C58 (by (8.2)).

Claim 9: C44 = C77.

C44 = 〈XY 2, XY 2〉M = 〈Y 2X,Y 2X〉M = C77 (by (8.3)).

Claim 10: C26 = C56.

C26 = 〈Y XY,X2Y 〉M = 〈Y X2, Y XY 〉M (by (8.3))

= 〈Y XY, Y X2〉M = C56 (by (8.2)).

Claim 11: C27 = C45.

C27 = 〈Y 2X,X2Y 〉M = 〈Y X2, XY 2〉M (by (8.3))

= 〈XY 2, X2Y 〉M = C45 (by (8.2)).

Claim 12: C34 = C37.

C34 = 〈XY 2, XY X〉M = 〈XYX, Y 2X〉M (by (8.3))

= 〈Y 2X,XY X〉M = C37 (by (8.2)).

This proves the first statement of Corollary 8.4. The second statement follows by observing that if M is a moment
matrix, then the entries of C3 are independent from the other entries ofM and combining (8.1) with (8.4). �

IfM =

(
Mn Bn+1

Btn+1 Cn+1

)
is a flat extension ofMn, then there is a matrix W such that

Bn+1 =MnW and Cn+1 = W tMnW.

By the following lemma Cn+1 is independent of the choice of W satisfying Bn+1 =MnW .

Lemma 8.5. Let A ∈ SRm×m be a symmetric matrix and W1,W2 ∈ Rm×p matrices satisfying AW1 = AW2. Then
W t

1AW1 = W t
2AW2.

Proof. Since W t
jAWj are symmetric matrices, we have

W t
1AW1 = W t

2AW2 ⇔
〈
(W t

1AW1 −W t
2AW2)v, v

〉
for every v ∈ Rp

⇔
〈
AW1v,W1v〉 = 〈AW2v,W2v

〉
for every v ∈ Rp.

Let us write v1 := W1v and v2 := W2v. By assumption AW1 = AW2 it follows that Av1 = Av2. The following
calculation holds:

0 = 〈A(v1 − v2), (v1 + v2)〉 = 〈Av1, v1〉+ 〈Av1, v2〉 − 〈Av2, v1〉 − 〈Av2, v2〉
= 〈Av1, v1〉+ 〈v1, Av2〉 − 〈Av2, v1〉 − 〈Av2, v2〉
= 〈Av1, v1〉+ 〈Av2, v1〉 − 〈Av2, v1〉 − 〈Av2, v2〉 = 〈Av1, v1〉 − 〈Av2, v2〉 .

This concludes the proof of the lemma. �

8.2. Relation Y2 = 1−X2. The candidate for B3 in a moment matrixM3 generated by the measure forM2 is given
by the following.

Proposition 8.6. Let β ≡ β(4) be a sequence with a moment matrixM2 of rank 6 satisfying the relation Y2 = 1−X2.

Suppose β admits a measure µ. If M3 =

(
M2 B3

Bt3 C3

)
is a moment matrix generated by the measure µ, then B3

satisfies
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(8.6)

βX2Y 3 = βXY 2XY = βX2Y − q,
βX3Y 2 = βX2Y XY = βX3 − p,

βXY 4 = βX − 2βX3 + p,

βY 5 = βY − 2βX2Y + q,

βX5 = p,

βX4Y = q,

where p, q ∈ R are parameters.

Proof. The RG relations which must hold inM3 are

Y3 = Y− X2Y,
Y3 = Y− YX2,

XY2 = X− X3,

Y2X = X− X3.

From these relations we get the following system:

βXY 4 = (βX − βX3)− βX3Y 2 ,

βXY 4 = (βX − βX3)− βX2Y XY ,

βY 5 = (βY − βX2Y )− βX2Y 3 ,

βX2Y 3 = βX2Y − βX4Y ,

βX3Y 2 = βX3 − βX5 ,

βXY 2XY = βX2Y − βX4Y .

Now the solution of this system is given by the statement of the proposition. �

Theorem 8.7. Suppose β ≡ β(4) is a sequence with a moment matrixM2 of rank 6 satisfying the relation Y2 = 1−X2.
Let us define the moments of degree 5 by (8.6) and B3 as in Proposition 8.1. Then the following are true:

(1) There exists a matrix W ∈ R7 × R10 such that

B3 =M2W.

(2) We write M = {1,X,Y,X2,XY,YX}. Let W1 ∈ R6 × R10 be the matrix

W1 = (M2|M )−1B3|M .

IfM =

(
M2 B3

Bt3 C3

)
is a flat extension ofM2, then C3 = (Cij)ij is equal to W t

1M2|MW1 andM has a

moment structure if and only if

(8.7)

C47 = C66,

C25 = C33,

C12 = C13,

C16 = C23,

C48 = C68,

C14 = C22,

C28 = C44,

C26 = C27.

Proof. To prove (1) we have to show that every column of B3 belongs to the linear span of the columns ofM2. Since
the proofs are analogous, we will establish this only for the column X3. SinceM2|M is positive definite, it follows
that

(8.8) X3|M = a11|M + a2X|M + a3Y|M + a4X2|M + a5XY|M + a6YX|M ,

for some ai ∈ R. Notice that a5 = a6. Using the relation Y2 = 1− X2 we calculate

a1βY 2 + a2βXY 2 + a3βY 3 + a4βX2Y 2 + 2a5βXY 3

= a1(β1 − βX2) + a2(βX − βX3) + a3(βY − βX2Y ) + a4(βX2 − βX4)

+2a5(βXY − βX3Y )

= βX3 − p.

By the form of B3 it follows that

X3 = a11+ a2X + a3Y + a4X2 + a5XY + a6YX inM3.

This proves part (1).
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IfM is a flat extension ofM2, then in particular rank(
(
M2 B3

)
) = rankM2. Since the columns from M are

the basis for the column space ofM2, we have

B3 =M2

(
W1

01×10

)
.

By Lemma 8.5 it follows that

C3 =
(
W t

1 010×1
)
M2

(
W1

01×10

)
= W t

1M2|MW1.

Now we will establish the relations which will prove that the system (8.5) holds if and only if the system (8.7) holds.

Claim 1: C18 = C24.

C18 = 〈Y 3, X3〉M3 = 〈Y −X2Y,X3〉M3 (by RG relations)

= 〈Y,X3〉M3
− 〈X3, X2Y 〉M3

(by (8.2))

= 〈X,X2Y 〉M3 − 〈X3, X2Y 〉M3 (by the moment structure of B3)

= 〈XY 2, X2Y 〉M3
= C24 (by RG relations).

Claim 2: C16 − C23 = C38 − C46.

C16 − C23 = 〈Y XY,X3〉M3
− 〈XYX,X2Y 〉M3

= 〈Y XY,X −XY 2〉M3
− 〈X2Y,XY X〉M3

(by RG relations and (8.2))

= (〈X,Y XY 〉M3
− 〈X2Y,XY X〉M3

)− 〈Y XY,XY 2〉M3

(by the moment structure of B3)

= 〈Y 3, XY X〉M3
− 〈Y XY,XY 2〉M3

(by RG relations)
= C38 − C46.

Claim 3: C37 − C27 = C12 − C13.

C37 − C27 = 〈Y 2X,XY X〉M3
− 〈Y 2X,X2Y 〉M3

= 〈X −X3, XY X〉M3 − 〈Y 2X,X2Y 〉M3 (by RG relations)

= (〈X,X2Y 〉M3
− 〈Y 2X,X2Y 〉M3

)− 〈X3, XY X〉M3

(by the moment structure of B3)

= 〈X3, X2Y 〉M3
− 〈X3, XY X〉M3

= C12 − C13.

Using Claims 1-3 proves Theorem 8.7 (2). �

Remark 8.8. Assume the notation as in Theorem 8.7. IfM is a flat extension and has a moment structure, then we
must also have

C26 = C18 and C14 = C25,

which follows by the following:

C48 − C68 = 〈Y 3, XY 2〉M3
− 〈Y 3, Y XY 〉M3

= 〈Y 3, XY 2〉M3
− 〈Y −X2Y, Y XY 〉M3

(by RG relations)

= 〈Y 3, XY 2〉M3
− 〈Y 3, X〉M3

+ 〈X2Y, Y XY 〉M3

(by the moment structure of B3)

= 〈X2Y, Y XY 〉M3 − 〈Y 3, X3〉M3 (by RG relations)

= 〈Y XY,X2Y 〉M3
− 〈X3, Y 3〉M3

(by (8.2))
= C26 − C18,

and
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C58 − C44 = 〈Y 3, Y X2〉M3 − 〈XY 2, XY 2〉M3

= 〈Y −X2Y, Y X2〉M3
− 〈XY 2, XY 2〉M3

(by RG relations)

= (〈Y, Y X2〉M3
− 〈XY 2, XY 2〉M3

)− 〈Y X2, X2Y 〉M3
(by (8.2))

= (〈X,XY 2〉M3
− 〈XY 2, XY 2〉M3

)− 〈Y X2, X2Y 〉M3

(by the moment structure of B3)

= 〈XY 2, X3〉M3 − 〈Y X2, X2Y 〉M3 (by RG relations and (8.2))
= C14 − C25.

We present now a special case which highlights the difference between the classical and the tracial truncated moment
problems. In this example a flat extensionM3 ofM2 does not exist, but a measure forM2 always exists.

Example 8.9. For βX4 ∈
(
1
4 ,

1
2

)
, the following matrices are psd moment matrices of rank 6 satisfying the relation

Y2 = 1− X2,

M2(βX4) =



1 0 0 1
2

0 0 1
2

0 1
2

0 0 0 0 0

0 0 1
2

0 0 0 0
1
2

0 0 βX4 0 0 1
2
− βX4

0 0 0 0 1
2
− βX4 0 0

0 0 0 0 0 1
2
− βX4 0

1
2

0 0 1
2
− βX4 0 0 βX4


.

Let us define the moments of degree 5 by (8.6) and B3 as in Proposition 8.1. Using Mathematica we calculate
W t

1M2|MW1 from Theorem 8.7 (2) and check that for any βX4 the system from Theorem 8.7 does not have a so-
lution, e.g.,

C47(p, q, βX4) =
1

2
− 2βX4 + 2β2

X4 +
4q2

1− 2βX4

+
4p2

−1 + 4βX4

,

C66(p, q, βX4) =
4q2

1− 2βX4

+
4p2

−1 + 4βX4

,

(C47 − C66)(p, q, βX4) =
1

2
(1− 2βX4)2 6= 0.

HenceM2(βX4) does not admit a flat extension with a moment structure. However, for every βX4 ∈ ( 1
4 ,

1
2 ),M2(βX4)

admits a measure by Theorem 7.5 (1).

8.3. Relation XY + YX = 0. The candidate for B3 in a moment matrix M3 generated by the measure for M2 is
given by the following.

Proposition 8.10. Let β ≡ β(4) be a sequence with a moment matrixM2 of rank 6 satisfying the relation XY+YX =

0. Suppose β admits a measure µ. IfM3 =

(
M2 B3

Bt3 C3

)
is a moment matrix generated by the measure µ, then B3

satisfies

(8.9)
βX4Y = βX2Y XY = βX3Y 2 = βX2Y 3 = βXY 2XY = βXY 4 = 0,

βX5 = p and βY 5 = q,

where p, q ∈ R are parameters.

Proof. The RG relations which must hold inM3 are

X2Y + XYX = 0,

XYX + YX2 = 0,

YXY + Y2X = 0,

XY2 + YXY = 0.

From this relations we get the following system:
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2βX4Y = 0,

βX3Y 2 + βX2Y XY = 0,

2βX2Y XY = 0,

βX2Y 3 + βXY 2XY = 0,

2βXY 2XY = 0,

2βXY 4 = 0.

Now the solution of this system is given by the statement of the proposition. �

Theorem 8.11. Suppose β ≡ β(4) is a sequence with a moment matrixM2 of rank 6 satisfying the relation XY+YX =
0. Let us define the moments of degree 5 by (8.9) and B3 as in Proposition 8.1. Then the following are true:

(1) There exists a matrix W ∈ R7 × R10 satisfying

B3 =M2W.

(2) We write M = {1,X,Y,X2,XY,Y2}. Let W1 ∈ R6 × R10 be the matrix

W1 = (M2|M )−1B3|M .

IfM =

(
M2 B3

Bt3 C3

)
is a flat extension ofM2, then C3 = (Cij)ij is equal to W t

1M2|MW1 andM has a

moment structure if and only if

(8.10)

C12 = C13 = 0,

C18 = C24,

C16 = C23,

C38 = C46,

C48 = C68 = 0,

C14 = C22,

C28 = C44,

C26 = C27 = C34.

Proof. The proof is analogous to the proof of Theorem 8.7. Using similar arguments we prove the following claim:

Claim: C47 = C66, C25 = C33, C12 = −C13, C24 = C57, C48 = −C68.

By Claim the system (8.5) holds if and only if the system (8.10) holds. �

Example 8.12. For βX4 > 1, the following matrices are psd moment matrices of rank 6 satisfying the relation XY +
YX = 0,

M2(βX4) =



1 0 0 1 0 0 1
0 1 0 0 0 0 0
0 0 1 0 0 0 0
1 0 0 βX4 0 0 1
0 0 0 0 1 −1 0
0 0 0 0 −1 1 0
1 0 0 1 0 0 2

.

Let us define the moments of degree 5 by (8.9) and B3 as in Proposition 8.1. Using Mathematica we calculate
W t

1M2|MW1 from Theorem 8.11 (2) and get

p2

β
X4−1

+ 4 0 0 2 0 −2 2 0

0 1 −1 0 1 0 0 2
0 −1 1 0 −1 0 0 −2
2 0 0 1 0 −1 1 0
0 1 −1 0 1 0 0 2
−2 0 0 −1 0 1 −1 0
2 0 0 1 0 −1 1 0
0 2 −2 0 2 0 0 q2 + 4.


The system (8.10) does not have a solution, e.g., −2 = C16 6= C23 = −1. Hence M2(βX4) does not admit a flat
extensionM3. However, for every βX4 > 1,M2(βX4) admits a measure by Theorem 7.8 (1).

8.4. Relation Y2 = 1+ X2. The form ofM2 is given by the following proposition.

Proposition 8.13. Let β ≡ β(4) be a sequence with a moment matrixM2 satisfying the relation

(8.11) Y2 = 1+ X2.
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ThenM2 if of the form

(8.12)



β1 βX βY βX2 βXY βXY β1 + βX2

βX βX2 βXY βX3 βX2Y βX2Y βX + βX3

βY βXY β1 + βX2 βX2Y βX + βX3 βX + βX3 βY + βX2Y
βX2 βX3 βX2Y βX4 βX3Y βX3Y βX2 + βX4

βXY βX2Y βX + βX3 βX3Y βX2 + βX4 βXYXY βXY + βX3Y
βXY βX2Y βX + βX3 βX3Y βXYXY βX2 + βX4 βXY + βX3Y

β1 + βX2 βX + βX3 βY + βX2Y βX2 + βX4 βXY + βX3Y βXY + βX3Y β1 + 2βX2 + βX4


Proof. The relation (8.11) gives us the following system inM2

(8.13)

βY 2 = β1 + βX2 ,

βXY 2 = βX + βX3 ,

βY 3 = βY + βX2Y ,

βX2Y 2 = βX2 + βX4 ,

βXY 3 = βXY + βX3Y ,

βY 4 = βY 2 + βX2Y 2 .

Plugging in the expressions for βY 2 and βX2Y 2 in the expression for βY 4 gives the form (8.12) ofM2. �

The candidate for B3 in a moment matrixM3 generated by the measure forM2 is given by the following.

Proposition 8.14. Let β ≡ β(4) be a sequence with a moment matrixM2 of rank 6 satisfying the relation Y2 = 1+X2.

Suppose β admits a measure µ. If M3 =

(
M2 B3

Bt3 C3

)
is a moment matrix generated by the measure µ, then B3

satisfies

(8.14)

βX2Y 3 = βXY 2XY = βX2Y + q,

βX3Y 2 = βX2Y XY = βX3 + p,

βXY 4 = βX + 2βX3 + p,

βY 5 = βY + 2βX2Y + q,

βX5 = p,

βX4Y = q,

where p, q ∈ R are parameters.

Proof. The RG relations which must hold inM3 are

Y3 = Y + X2Y,
Y3 = Y + YX2,

XY2 = X + X3,

Y2X = X + X3.

From these relations we get the following system:

βXY 4 = (βX + βX3) + βX3Y 2 ,

βXY 4 = (βX + βX3) + βX2Y XY ,

βY 5 = (βY + βX2Y ) + βX2Y 3 ,

βX2Y 3 = βX2Y + βX4Y ,

βX3Y 2 = βX3 + βX5 ,

βXY 2XY = βX2Y + βX4Y .

The solution of this system is given by the statement of the proposition. �

Theorem 8.15. Suppose β ≡ β(4) is a sequence with a moment matrix M2 of rank 6 satisfying the relation Y2 =
1+ X2. Let us define the moments of degree 5 by (8.14) and B3 as in Proposition 8.1. Then the following are true:

(1) There exists a matrix W ∈ R7 × R10 satisfying

B3 =M2W.

(2) We write M = {1,X,Y,X2,XY,YX}. Let W1 ∈ R6 × R10 be the matrix

W1 = (M2|M )−1B3|M .

IfM =

(
M2 B3

Bt3 C3

)
is a flat extension ofM2, then C3 = (Cij)ij is equal to W t

1M2|MW1 andM has a

moment structure if and only if
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(8.15)

C47 = C66,

C25 = C33,

C12 = C13,

C16 = C23,

C48 = C68,

C14 = C22,

C28 = C44,

C26 = C27,

Proof. The proof is analogous to the proof of Theorem 8.7. Using similar arguments we prove the following claim:

Claim: C18 = C24, C16 − C23 = C46 − C38, C37 − C27 = C13 − C12.

By Claim the system (8.5) holds if and only if the system (8.15) holds. �

We present now a special case which highlights the difference between the classical and the tracial truncated moment
problems. In this example a flat extension ofM2 with a moment structure does not exist, but a measure forM2 always
exists.

Example 8.16. For βX4 > 1
4 , the following matrices are psd moment matrices of rank 6 satisfying the relation

Y2 = 1+ X2,

M2(βX4) =



1 0 0 1
2

0 0 3
2

0 1
2

0 0 0 0 0

0 0 3
2

0 0 0 0
1
2

0 0 βX4 0 0 1
2
+ βX4

0 0 0 0 1
2
+ βX4 0 0

0 0 0 0 0 1
2
+ βX4 0

3
2

0 0 1
2
+ βX4 0 0 2 + βX4


.

Let us define the moments of degree 5 by (8.14) and B3 as in Proposition 8.1. Using Mathematica we calculate
W t

1M2|MW1 from Theorem 8.15 (2) and check that for any βX4 the system from Theorem 8.15 does not have a
solution, e.g.,

C47(p, q, βX4) =
1

2
+ 2βX4 + 2β2

X4 +
4q2

1 + 2βX4

+
4p2

−1 + 4βX4

,

C66(p, q, βX4) =
4q2

1 + 2βX4

+
4p2

−1 + 4βX4

,

(C47 − C66)(p, q, βX4) =
1

2
(1 + 2βX4)2 6= 0.

Hence M2(βX4) does not admit a flat extension M3. However, we will show that for every βX4 > 1
4 , M2(βX4)

admits a measure. We define the matrix function

B(α) :=M2 − α
(
M(0,1)

2 +M(0,−1)
2

)
.

Let α0 > 0 be the smallest positive number such that the rank of B(α0) is smaller than 6. Using Mathematica and
calculating α0 such that det

(
B(α0){1,X,Y,X2,XY,YX}

)
= 0 we get

α0 = min
(3

4
,
−1 + 4βX4

8βX4

)
.

For βX4 > 1
4 we have α0 =

−1+4βX4

8βX4
. Using Mathematica, the kernel of B(α0) satisfies the relations

X2 = 2βX4 , Y2 = (1 + 2βX4)1.

We also have
β
(B)
X = β

(B)
Y = β

(B)
X3 = β

(B)
X2Y = β

(B)
XY 2 = β

(B)
Y 3 = 0,

where β(B)
w(X,Y ) are the moments ofB(α0). This is a special case in the proof of Proposition 4.1, i.e., Case 1. Following

the proof we see that after using only transformations of type

(x, y) 7→ (α1x+ β1y, α2x+ β2y)

for some α1, α2, β1, β2 ∈ R, we come into the basic case 1 of rank 5 with β̃X = β̃Y = β̃X3 = 0. But every such
sequence admits a measure of type (2,1) by Theorem 6.4. Hence β admits a measure of type (4, 1).
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8.5. Relation Y2 = 1. The form ofM2 is given by the following proposition.

Proposition 8.17. Let β ≡ β(4) be a sequence with a moment matrixM2 satisfying the relation

(8.16) Y2 = 1.

ThenM2 is of the form

(8.17) M2 =



β1 βX βY βX2 βXY βXY β1
βX βX2 βXY βX3 βX2Y βX2Y βX
βY βXY β1 βX2Y βX βx βY
βX2 βX3 βX2Y βX4 βX3Y βX3Y βX2

βXY βX2Y βX βX3Y βX2 βXYXY βXY
βXY βX2Y βX βX3Y βXYXY βX2 βXY
β1 βX βY βX2 βXY βxy β1

.

Proof. The relation (8.16) gives us the following system inM2

(8.18)

βY 2 = β1,

βXY 2 = βX ,

βY 3 = βY ,

βX2Y 2 = βX2 ,

βXY 3 = βXY ,

βY 4 = βY 2 .

This gives the form (8.17) ofM2. �

The candidate for B3 in a moment matrixM3 generated by the measure forM2 is given by the following.

Proposition 8.18. Let β ≡ β(4) be a sequence with a moment matrixM2 of rank 6 satisfying the relation Y2 = 1.

Suppose β admits a measure µ. IfM3 =

(
M2 B3

Bt3 C3

)
is a moment matrix generated by the measure µ, then B(3) is

of the form

(8.19) B(3) =



βX3 βX2Y βX2Y βX βX2Y βX βX βY
βX4 βX3Y βX3Y βX2 βX4Y βXYXY βX2 βXY
βX3Y βX2 βXYXY βXY βX2 βXY βXY β1
p q q βX3 q r βX3 βX2Y
q βX3 r βX2Y r βX2Y βX2Y βX
q r r βX2Y βX3 βX2Y βX2Y βX

βX3 βX2Y βX2Y βX βX2Y βX βX βY

,

where p, q, r ∈ R are parameters.

Proof. The RG relations which must hold inM3 are

Y3 = Y, XY2 = X, Y2X = X.
From these relations we get the following system:

(8.20)
βX2Y 3 = βX2Y ,

βXY 4 = βXY ,
βY 5 = β1,

βX3Y 2 = βX3 ,

βXY 2XY = βX2Y ,

βXY 4 = βX .

Now the solution of the system (8.20) is given by the statement of the proposition. �

Theorem 8.19. Suppose β ≡ β(4) is a sequence with a moment matrixM2 of rank 6 satisfying the relation Y2 = 1

and let B3 be as in formula (8.19). Then the following are true:
(1) There exists a matrix W ∈ R7 × R10 satisfying

B3 =M2W.

(2) We write M = {1,X,Y,X2,XY,Y2}. Let W1 ∈ R6 × R10 be the matrix

W1 = (M2|M )−1B3|M .

IfM =

(
M2 B3

Bt3 C3

)
is a flat extension ofM2, then C3 = (Cij)ij is equal to W t

1M2|MW1 andM has a

moment structure if and only if
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(8.21)

C66 = βX2 .

C25 = C33,

C12 = C13,

C16 = C23,

C22 = βX4 ,

C26 = βXYXY = βX3Y .

Proof. The proof is analogous to the proof of Theorem 8.7. Using similar arguments we prove the following claim:

Claim: C47 = βX2 , C38 = C46, C48 = C68, C14 = βX4 , C28 = β44, C27 = βX3Y , C37 = βXYXY .

By Claim the system (8.5) holds if and only if the system (8.21) holds. �

We present now a special case which highlights the difference between the classical and tracial moment problems.
In this example a flat extension ofM2 toM3 exists only in the special case, but a measure forM2 always exists.

Example 8.20. For βX4 > 1, the following matrices are psd moment matrices of rank 6 satisfying Y2 = 1,

M2(βX4) =



1 0 0 1 0 0 1
0 1 0 0 0 0 0
0 0 1 0 0 0 0
1 0 0 βX4 0 0 1
0 0 0 0 1 0 0
0 0 0 0 0 1 0
1 0 0 1 0 0 1

,

Let us define B3 by (8.19). Using Mathematica we calculate W t
1M2|MW1 from Theorem 8.19 (2):

p2

β
X4−1

+ 2q2 + β2
X4 rq + pq

β
X4−1

2rq + pq
β
X4−1

βX4 rq + pq
β
X4−1

pr
β
X4−1

βX4 0

rq + pq
β
X4−1

q2

β
X4−1

+ r2 + 1 q2

β
X4−1

+ r2 0 q2

β
X4−1

+ 1 qr
β
X4−1

0 1

2rq + pq
β
X4−1

q2

β
X4−1

+ r2 q2

β
X4−1

+ 2r2 0 q2

β
X4−1

+ r2 qr
β
X4−1

0 0

βX4 0 0 1 0 0 1 0

rq + pq
β
X4−1

q2

β
X4−1

+ 1 q2

β
X4−1

+ r2 0 q2

β
X4−1

+ r2 + 1 qr
β
X4−1

0 1

pr
β
X4−1

qr
β
X4−1

qr
β
X4−1

0 qr
β
X4−1

r2

β
X4−1

0 0

βX4 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1


.

For the flat extension we must have, by Theorem 8.19,

r2

βX4 − 1
= 1,

q2

βX4 − 1
+ 1 =

q2

βX4 − 1
+ 2r2,

rq +
pq

βX4 − 1
= 2rq +

pq

βX4 − 1
,

pr

βX4 − 1
=

q2

βX4 − 1
+ r2,

q2

βX4 − 1
+ r2 + 1 = βX4 ,

qr

βX4 − 1
= 0.

Using Mathematica we see that these equations are satisfied if and only if

βX4 =
3

2
in which case p = ± 1

2
√

2
, q = 0, r = ± 1√

2
.

However, we will prove that for every βX4 > 1,M2(βX4) admits a measure. We define the matrix function

B(α) :=M2(βX4)− αA,
where

A =



1 0 0 1 0 0 1
0 1 0 0 0 0 0
0 0 1 0 0 0 0
1 0 0 1 0 0 1
0 0 0 0 1 −1 0
0 0 0 0 −1 1 0
1 0 0 1 0 0 1

.

A is a psd moment matrix of rank 4 satisfying the relations

X2 = 1, XY + YX = 0, Y2 = 1
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and thus admits a measure by Theorem 3.1 (3). But then

B
(1

2

)
=



1
2

0 0 1
2

0 0 1
2

0 1
2

0 0 0 0 0

0 0 1
2

0 0 0 0
1
2

0 0 βX4 − 1
2

0 0 1
2

0 0 0 0 1
2

1
2

0

0 0 0 0 1
2

1
2

0
1
2

0 0 1
2

0 0 1
2


is a psd cm moment matrix of rank 5 satisfying Y2 = 1 and XY = YX and hence admits a 5-atomic measure with the
atoms of the from (xj , yj) ∈ R2, j = 1, . . . , 5, by Theorem 2.7.
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