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MATRIX FEJÉR-RIESZ THEOREM WITH GAPS

ALJAŽ ZALAR

Abstract. Two equivalent versions of the matrix Fejér-Riesz theorem char-
acterize positive semidefinite matrix polynomials on the complex unit circle
T and on the real line R. We extend the characterization to arbitrary closed
basic semialgebraic sets K ⊆ T and K ⊆ R by the use of matrix preorder-
ings from real algebraic geometry. In the T-case the characterization is the
same for all sets K , while in the R-case the characterizations for compact and
non-compact sets K are different. Furthermore, we study a complexity of the
characterizations in terms of a bound on the degrees of the summands needed.
We prove, for which sets K , K the degrees can be bounded by the degree of
the given matrix polynomial and provide counterexamples for the sets, where
this is not possible. At the end we give an application of results to a matrix
moment problem.

1. Introduction

1.1. Motivation. The name Matrix Fejér-Riesz theorem refers to the following
two results.

Theorem 1.1 (Fejér-Riesz theorem on T). Let

A(z) =
N
∑

m=−N

Amzm

be a n × n matrix Laurent polynomial from Mn

(

C
[

z, 1
z

])

, which is positive semi-

definite on T. Then there exists a matrix polynomial B(z) =
∑N

m=0 Bmzm from
Mn(C[z]), such that

A(z) = B(z)∗B(z),

where B(z)∗ = B
(

1
z̄

)T
.

Theorem 1.2 (Fejér-Riesz theorem on R). Let

F (x) =

2N
∑

m=0

Fmxm

be a n× n matrix polynomial from Mn(C[x]), which is positive semidefinite on R.

Then there exists a matrix polynomial G(x) =
∑N

m=0 Gmxm ∈ Mn(C[x]), such that

F (x) = G(x)∗G(x),

where G(x)∗ = G (x)
T
.
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The first proof of Theorem 1.2 that we are aware of is probably [11, Theorem 8.2]
from 1950s. The problem appears in the study of systems of integral equations and
they provide a complex analytical proof of the result. Due to an importance of the
factorization in linear systems (see [23], [17]), many different proofs have appeared
in literature. The factorization is called the continuous spectral factorization. Un-
der a conformal mapping of the upper half plane into the unit disk the factorization
is equivalent to the factorization of a matrix polynomial, positive semidefinite on
a unit complex circle, called the discrete spectral factorization (see Theorem 1.1
above; for an equivalence of the factorizations see Subsections 2.2, 3.2). Some of
the proofs of either of the factorizations can be found in [26], [23, Appendix B],
[16], [7], [4], [25, Theorem 12.8], [20], [8], [9], [30], [10], [13] etc. The main problems
of our paper are the following.

Problem 1. Characterize univariate matrix Laurent polynomials, which are posi-
tive semidefinite on a union of points and arcs in T.

Problem 2. Characterize univariate matrix polynomials, which are positive semi-
definite on a union of points and intervals (not necessarily bounded) in R.

1.2. Problem 1 - notation and known results. Let T := {z ∈ C : |z| = 1} be
the complex unit circle. Let C

[

z, 1
z

]

be the set of complex Laurent polynomials

with conjugation and z∗ = 1
z
as the involution. Let Mn

(

C
[

z, 1
z

])

be the set of

n × n complex Laurent polynomials over C
[

z, 1
z

]

with conjugated transpose as

the involution. We say A(z) ∈ Mn

(

C
[

z, 1
z

])

is hermitian, if A(z) = A(z)∗. We

write Hn

(

C
[

z, 1
z

])

for the set of all hermitian matrix Laurent polynomials from

Mn

(

C
[

z, 1
z

])

. The degree of the hermitian matrix Laurent polynomial

A(z) =

N
∑

m=−N

Amzm ∈ Hn

(

C

[

z,
1

z

])

is N , if AN 6= 0 (and hence A−N = A∗
N 6= 0), where N ∈ N ∪ {0}. We write

deg(A) = N . A(z) ∈ Hn

(

C
[

z, 1
z

])

is positive definite (resp. positive semidefinite)
in z0 ∈ T if v∗A(z0)v > 0 (resp. v∗A(z0)v ≥ 0) for every nonzero v ∈ Cn. We

write
∑

Mn

(

C
[

z, 1
z

])2
for the set of all finite sums of the expressions of the form

B(z)∗B(z) where B(z) ∈ Mn

(

C
[

z, 1
z

])

. We call such expressions hermitian squares

of matrix Laurent polynomials.
A basic closed semialgebraic set KS ⊆ T associated to a finite subset

S = {b1, . . . , bs} ⊂ H1

(

C

[

z,
1

z

])

is given by

K := KS = {z ∈ T : bj(z) ≥ 0, j = 1, . . . , s} .
The set K is regular, if it is equal to the closure of its interior. We define a n-th
matrix preordering T n

S
⊆ Hn

(

C
[

z, 1
z

])

by

T
n

S =







∑

e∈{0,1}s

τeb
e : τe ∈

∑

Mn (C [z])
2
for all e ∈ {0, 1}s







where e = (e1, . . . , es) and be stands for be11 · · · bess .
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Remark 1.3. (1) If A(z) =
∑M2

m=−M1
Amzm, where M1,M2 ∈ N ∪ {0} and

Am ∈ Mn(C), then we can write

A(z)∗A(z) =
(

z−M1A1(z)
)∗ (

z−M1A1(z)
)

= A1(z)
∗A1(z) ∈

∑

Mn (C [z])
2
.

Therefore we have the equality
∑

Mn (C [z])
2
=
∑

Mn

(

C
[

z, 1
z

])2
.

(2) The set T n
S

is the set of all finite sums of the elements from the set T 1
S

·
∑

Mn (C [z])
2
.

We write Posn�0(KS ) (resp. Posn≻0(KS )) for the set of all n× n hermitian ma-
trix Laurent polynomials, which are positive semidefinite (resp. positive definite)
on KS . We say T n

S
is saturated if T n

S
= Posn�0(KS ). Saturated matrix pre-

ordering T n
S

is boundedly saturated (resp. boundedly weakly saturated), if every
A ∈ Posn�0(KS ) (resp. A ∈ Posn≻0(KS )) is of the form

∑

e∈{0,1}s τeb
e, where

deg(τeb
e) ≤ deg(A) holds for every e ∈ {0, 1}s.

Theorem 1.1 can be restated in the following form.

Theorem 1.1’. Assume the notation as above. The set T n
∅ is boundedly saturated

for every n ∈ N.

The aim of this article is to study matrix generalizations of Theorem 1.1’ to an
arbitrary basic closed semialgebraic set K ⊆ T. The problem is the following.

Problem 1’. Assume K ⊆ T is a basic closed semialgebraic set. Does there exist
a finite set S ⊂ H1 (C [z]), such that K = KS and the n-th matrix preordering
T n

S
is saturated for every n ∈ N?

If the answer to Problem 1’ is yes, another problem appears.

Problem 1”. Assume K ⊆ T is a basic closed semialgebraic set. Suppose that for
a finite set S ⊂ H1 (C [z]), such that K = KS , the n-th matrix preordering T n

S

is saturated for every n ∈ N. Is T n
S

boundedly saturated for every n ∈ N?

Now we define two descriptions of the set K , which answer Problems 1’ and 1”.
Let K ⊆ T be a basic closed semialgebraic set. A set S = {b1, . . . , bs} ⊂

H1

(

C
[

z, 1
z

])

is a saturated description of K , if the following conditions hold:

(a) K = KS .
(b) For every boundary point a ∈ K , which is not isolated, there exists k ∈

{1, . . . , s}, such that bk(a) = 0 and dbk
dz

(a) 6= 0.
(c) For every isolated point a ∈ K , there exist k, l ∈ {1, . . . , s}, such that

bk(a) = bl(a) = 0, dbk
dz

(a) 6= 0, dbl
dz

(a) 6= 0 and bkbl 6= 0 on some neighbor-
hood of a.

Let T be positively oriented. For z, w ∈ T, z 6= w, let [z, w] (resp. (z, w)) denote
a closed (resp. open) arc on T with endpoints z and w. A set S ⊂ H1

(

C
[

z, 1
z

])

is
the natural description of K , if the following conditions hold:

(a) For every z1, z2 ∈ K , z1 6= z2 and (z1, z2) ∩ K = ∅,

b(z) := k · (z − z1)(z − z2)

z
∈ S ,

where k =
√
z1z2 ∈ T is such that b(z) ∈ Pos1�0([z2, z1]).
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(b) If K = {z0}, then

b1(z) = k1 ·
(z − z0)(z − iz0)

z
∈ S and b2(z) = k2 ·

(z − z0)(z + iz0)

z
∈ S ,

where k1 =
√

iz20 ∈ T, k2 =
√

−iz20 ∈ T are such that

b1(z) ∈ Pos1�0([z0, iz0]) and b2(z) ∈ Pos1�0([−iz0, z0]).

(c) These are the only elements of S .

Convention 1. An arc always has a non-empty interior. Therefore it is a regular
set.

1.3. Problem 1 - new results. One of the main results of the paper, which solves
Problem 1’, is the following.

Theorem A. The n-th matrix preordering T n
S

is saturated for every integer n ∈ N

if and only if S is a saturated description of K (see Theorem 2.1).

The answer to Problem 1” (except for a union of an arc and a point) is the
following.

Theorem B. Let K be a basic closed semialgebraic set.
The n-th matrix preordering T n

S
is boundedly saturated for the natural descrip-

tion S of K in either of the following cases:

• n = 1 and K is arbitrary,
• n ∈ N is arbitrary and K is an arc,
• n ∈ N is arbitrary and K is a union of at most three points,

(see Theorem 3.6).
The n-th matrix preordering T n

S
is not boundedly saturated for any set finite set

S ⊆ H1

(

C
[

z, 1
z

])

such that K = KS in the following cases:

• n ≥ 2 and K contains at least two arcs,
• n ≥ 2 and K is a union of m points with m ≥ 4,
• n ≥ 2 and K is a union of an arc an m isolated points with m ≥ 2,

(see Theorem 4.2).

Theorem B solves Problem 1” for every closed semialgebraic set K ⊆ T, different
from a union of an arc and a point. We formulate the remaining case as a conjecture.

Conjecture 1. Let K ⊆ T be a union of an arc and a point. Suppose S is
the natural description of K . Then the n-th matrix preordering T n

S
is boundedly

saturated for every integer n ∈ N.

The following table summarizes Theorems A and B and Conjecture 1.

K A B C
a union of at most three points Yes Yes Yes

a union of m points, where m ≥ 4 Yes Yes No
an arc Yes Yes Yes

a union of an arc and an isolated point Yes Yes D
a union of an arc and m isolated points, where m ≥ 2 Yes Yes No

includes at least two arcs Yes Yes No
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A := The n-th matrix preordering T
n

S is saturated for every saturated

description S of K and every integer n ∈ N.

B := The preordering T
1

S is boundedly saturated for the natural description

S of K .

C := The n-th matrix preordering T
n

S is boundedly saturated for the natural

description S of K and every integer n ∈ N.

D := See Conjecture 1.

The classification covers all closed semialgebraic sets K ⊆ T. Except for the
conjectured case it is complete. For example, the classification is complete for
regular sets.

1.4. Problem 2 - notation and known results. Let Mn(C[x]) be a set of all
n × n complex matrix polynomials over C[x] with conjugated transpose as the
involution. The degree of a matrix polynomial

F (x) =
N
∑

m=0

Fmxm ∈ Mn(C[x])

is N if FN 6= 0. We write deg(F ) = N . We say F (x) ∈ Mn(C[x]) is hermitian, if
F (x) = F (x)∗. We write Hn(C[x]) for the set of all hermitian matrix polynomials
from Mn(C[x]). F (x) ∈ Hn(C[x]) is positive definite (resp. positive semidefinite) in
x0 ∈ C if v∗F (x0)v > 0 (resp. v∗F (x0)v ≥ 0) for every nonzero v ∈ Cn. We write
∑

Mn(C[x])
2 for the set of all finite sums of the expressions of the form G(x)∗G(x)

where G(x) ∈ Mn(C[x]). We call such expressions hermitian squares of matrix
polynomials.

A basic closed semialgebraic set KS ⊆ R associated to a finite subset

S = {g1, . . . , gs} ⊂ R [x]

is given by

K := KS = {x ∈ R : gj(x) ≥ 0, j = 1, . . . , s} .
The set K is regular, if it is equal to the closure of its interior. We define the n-th
matrix preordering T n

S ⊆ Hn(C[x]) by

T n
S :=







∑

e∈{0,1}s

σeg
e : σe ∈

∑

Mn(C[x])
2 for all e ∈ {0, 1}s







,

where e = (e1, . . . , es) and ge stands for ge11 · · · gess .

Remark 1.4. Note that T n
S is the set of all finite sums of elements from the set

T 1
S ·∑Mn (C [x])

2
.

We write Posn�0(K) (resp. Posn≻0(K)) for the set of all n × n hermitian matrix
polynomials, which are positive semidefinite (resp. definite) on KS . We say T n

S

is saturated if T n
S = Posn�0(KS). Saturated matrix preordering T n

S is boundedly

saturated (resp. boundedly weakly saturated), if every F ∈ Posn�0(KS) (resp. F ∈
Posn≻0(KS)) is of the form

∑

e∈{0,1}s σeg
e, where deg(σeg

e) ≤ deg(F ) holds for

every e ∈ {0, 1}s. Theorem 1.2 can be restated in the following form.



6 ALJAŽ ZALAR

Theorem 1.2’. Assume the notation as above. The set T n
∅ is boundedly saturated

for every n ∈ N.

The aim of this article is to study matrix generalizations of Theorem 1.2’ to an
arbitrary basic closed semialgebraic set K ⊆ R. The problem is the following.

Problem 2’. Assume K ⊆ R is a basic closed semialgebraic set. Does there exist
a finite set S ⊂ R[x], such that K = KS and the n-th matrix preordering T n

S is
saturated for every n ∈ N?

If the answer to Problem 2’ is yes, another problem appears.

Problem 2”. Assume K ⊆ R is a basic closed semialgebraic set. Suppose that
for a finite set S ⊂ R[x], such that K = KS, the n-th matrix preordering T n

S is
saturated for every n ∈ N. Is T n

S boundedly saturated for every n ∈ N?

Let K ⊆ R be a basic closed semialgebraic set. A set S = {g1, . . . , gs} ⊂ R [x] is
the natural description of K, if it satisfies the following conditions:

(a) If K has the least element a, then x− a ∈ S.
(b) If K has the greatest element a, then a− x ∈ S.
(c) For every a 6= b ∈ K, if (a, b) ∩K = ∅, then (x − a)(x− b) ∈ S.
(d) These are the only elements of S.

Problems 2’ and 2” have already been solved in the following cases:

(1) T 1
S is boundedly saturated for the natural description S of K (see [18,

Theorem 2.2] or [22, 2.7.3 Proposition] and [19, Theorem 4.1]).
(2) For K = K{x,1−x} = [0, 1], T n

{x,1−x} is boundedly saturated for every n ∈ N

(see [6] and [30]).
(3) For K = K{x} = [0,∞), T n

{x} is boundedly saturated for every n ∈ N (see

[30] and [3]).

Even more can be said in the case n = 1. There is a characterization of finite sets
S = {g1, . . . , gS} ⊂ R [x] such that the preordering T 1

S is saturated, which we now
explain. If the set KS is not compact, then T 1

S is saturated iff S contains each of
the polynomials in the natural description of KS up to scaling by positive constants
(see [18, Theorem 2.2]). Let now KS be a compact set. Write KS as the union of
pairwise disjoint points and intervals, i.e. KS = [xj , yj], where xj ≤ yj for every
j = 1, . . . , t. Then T 1

S is saturated if and only if the following two conditions hold:

(a) For every left endpoint xj there exists k ∈ {1, . . . , s}, such that gk(xj) = 0
and g′k(xj) > 0.

(b) For every right endpoint yj there exists k ∈ {1, . . . , s}, such that gk(yj) = 0
and g′k(yj) < 0.

(See [22, 9.3.3 Theorem] or [19, Theorem 3.2]. For the extension to curves in Rn,
see [28, Theorem 5.17] or [22, 9.3.5 Theorem].). We call every set S ⊂ R [x], that
satisfies the two conditions above, a saturated description of KS .

Convention 2. An interval always has a non-empty interior.

1.5. Problem 2 - new results. One of the main results of the paper, which solves
Problem 2’ for compact sets K, is the following.

Theorem C. Let K be compact. The n-th matrix preordering T n
S is saturated for

every n ∈ N if and only if S is a saturated description of K (see Theorem 2.2).
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The answers to Problem 2’ for unbounded sets K (except for a union of one or
two unbounded intervals and a point) and to Problem 2” (except for a union of a
regular component and a point or a union of two unbounded intervals and a point),
are given by Theorem D below.

Theorem D. Let K be a basic closed semialgebraic set.
The n-th matrix preordering T n

S is boundedly saturated for the natural description
S of K and every n ∈ N if K is either of the following:

• an interval,
• a union of two unbounded intervals,
• a union of at most three points,

(see Theorem 3.2).
The n-th matrix preordering T n

S is not boundedly saturated for any finite set
S ⊂ R[x] such that K = KS in the following cases:

• n ≥ 2 and K contains at least two intervals with at least one of them
bounded,

• n ≥ 2 and K is a union of m points with m ≥ 4,
• n ≥ 2 and K is a union of an interval (bounded or unbounded) and m
isolated points with m ≥ 2.

• n ≥ 2 and K is a union of two unbounded intervals and m isolated points
with m ≥ 2.

Moreover, T n
S is not even boundedly weakly saturated, if K is regular and has at

least two components, one of which is unbounded and the others are bounded (see
Theorem 4.1).

Theorem D solves Problem 2” for every closed semialgebraic set K ⊆ R, differ-
ent from the ones covered by Conjecture 2 below. Conjecture 2 is based on the
investigation of some examples and is the following.

Conjecture 2. Let K ⊆ R be either of the following:

• A union of a bounded interval and a point.
• A union of an unbounded interval and a point.
• A union of two unbounded intervals and a point.

Suppose S is the natural description of K. Then the n-th matrix preordering T n
S is

boundedly saturated for every integer n > 1.

Conjecture 2 is true for all three cases covered if and only if it is true for at
least one case covered. Let us explain. Suppose F is a matrix polynomials with
a ‘bounded description’ on a union of a bounded interval and a point. Then for

an appropriate d ∈ R, G(x) = (±(x − d))deg(F )F
(

± 1
x−d

)

is a matrix polynomial

with a ‘bounded description’ on a union of an unbounded interval and a point or
a ‘bounded description’ on a union of two unbounded intervals and a point. Vice
versa, by the equality F (x) = xdeg(F )G

(

± 1
x
+ d
)

, the reverse statements also hold.
Furthermore, by the results of Subsections 2.2 and 3.2, Conjecture 2 is true if and
only if Conjecture 1 is true.

If the set K is unbounded, then by the form of the polynomials in the natural
description S of K, the n-th matrix preordering T n

S is saturated if and only if T n
S is

boundedly saturated. Therefore, unbounded sets K without boundedly saturated
T n
S (see Theorem D above), also do not have saturated T n

S . Since for the natural
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description S of K, the preordering T 1
S is always boundedly saturated, the same

is true for an arbitrary finite set S ⊂ R[x] such that K = KS . However, the
characterization of the set Posn�0(K) for those sets K is the following.

Theorem E. Let K be an unbounded basic closed semialgebraic set with a saturated
description S and n ∈ N. Then F ∈ Mn(C[x]) belongs to Posn�0(K) if and only if

for every w ∈ C there exists h ∈ R[x], such that h(w) 6= 0, h (w) 6= 0 and h2F ∈ T n
S

(see Theorem 5.1).

The following table summarizes [19, Theorem 4.1], Theorems C and D and Con-
jecture 2.

K A B C
a union of at most three points Yes Yes Yes
a union of m points with m ≥ 4 Yes Yes No

a bounded interval Yes Yes Yes
a union of a bounded interval and an isolated point Yes Yes D

a union of a bounded interval and
m isolated points with m ≥ 2

Yes Yes No

a compact set containing at least two intervals Yes Yes No
an unbounded interval Yes Yes Yes

a union of an unbounded interval and an isolated point Yes D D
a union of an unbounded interval and

m isolated points with m ≥ 2
Yes No No

a union of two unbounded intervals Yes Yes Yes
a union of two unbounded intervals and an isolated point Yes D D

a union of two unbounded intervals and
m isolated points with m ≥ 2

Yes No No

includes a bounded and an unbounded interval Yes No No

A := The preordering T 1
S is boundedly saturated for the natural description

S of K.

B := The n-th matrix preordering T n
S is saturated for some finite set S such

that K = KS and every integer n ∈ N.

C := The n-th matrix preordering T n
S is boundedly saturated for the natural

description S of K and every integer n ∈ N.

D := See Conjecture 2.

Note that the classification covers all closed semialgebraic sets K ⊆ R. If K
includes at least one unbounded interval, then by the form of the polynomials in
the natural description S of K, T n

S is saturated if and only if T n
S is boundedly

saturated. By the paragraph after Conjecture 2 above, the value of all D-s in the
table is the same. It is also the same to the value of D in the table classifying sets
K ⊆ T above. However, for regular sets K ⊆ R, the classification is complete.

At the end we solve a matrix moment problem, which we studied in [3], for the
union of two unbounded intervals (see Theorem 6.1).
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1.6. Facts about higher dimensions. The motivation for our research comes
from noncommutative real algebraic geometry for matrix polynomials. The prob-
lem is the following: For a given semialgebraic set K in Rn characterize matrix

polynomials which are positive semidefinite on K. Let us briefly survey what is
known about the characterizations in higher dimensions. Positive definite polyno-
mials on Rn where first characterized in [12]. They generalize the characterization
of positive semidefinite polynomial from Mn(Q), where Q is a finite dimensional
extension of rational numbers (see [5]). For other proofs see [24], [14]. Generally,
for an arbitrary semialgebraic set K ⊆ Rn and multivariate polynomials the Pos-
itivstellensatz in the sense of Krivine-Stengle result was obtained by Cimprič (see
[2]). For a compact set K, a denominator free characterization of positive definite
matrix polynomials is a matrix version of Schmüdgen’s Positivstellensatz (see [3,
Theorem 6]).

2. Saturated descriptions of an arbitrary K ⊆ T and a compact

K ⊂ R generate saturated n-th matrix preorderings

The solutions to Problems 1’ for an arbitrary K and 2’ for a compact set K
from the Introduction, are the main results of this section (see Theorems 2.1 and 2.2
below). They also characterize all finite sets S and S, such that the preorderings
T n

S
and T n

S are saturated for every integer n ∈ N.

Theorem 2.1. Suppose K is a non-empty basic closed semialgebraic set in T.
The n-th matrix preordering T n

S
is saturated for every n ∈ N if and only if S a

saturated description of K .

Theorem 2.2. Suppose K is a non-empty basic compact semialgebraic set in R.
The n-th matrix preordering T n

S is saturated for every n ∈ N if and only if S a
saturated description of K.

Note that by [15, Theorem 2], T n
S is weakly saturated for every finite set S ⊂

R[x] satisfying K = KS . By Theorem 2.2, T n
S is even saturated exactly for every

saturated description S of K.
Theorems 2.1 and 2.2 can be proved independently from each other by the induc-

tion on the size of matrix polynomials n using exactly the same methods. However,
to avoid repetition and to establish the connection between Problems 1 and 2 (see
Subsection 2.2), we choose to prove Theorem 2.1 independently (see Subsection
2.1) and then derive Theorem 2.2 from it (see Subsection 2.3). The advantage of
this choice is also the fact, that we will need the connection between Problems 1
and 2 in the subsequent sections. The main ingredients in the proof of Theorems
2.1 and 2.2 are:

(1) The n = 1 case (For Problem 1’ it is derived from [28, Theorem 5.17] - see
Proposition 2.4 below. For Problem 2’ this is [22, 9.3.3 Theorem].).

(2) Proposition 2.7 for Problem 1’ and Corollary 2.8 for Problem 2’ (The proofs
use the idea of diagonalizing matrix polynomials. See [29, 4.3].).

(3) Getting rid of the denominators in Proposition 2.7 and Corollary 2.8 with
the use of Proposition 2.3 below, which is [27, Proposition 2.7] or [22, 9.6.1
Lemma].

Proposition 2.3. Suppose R is a commutative ring with 1 and Q ⊆ R. Let
Φ : R → C(K,R) be a ring homomorphism, where K is a topological space which is
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compact and Hausdorff. Suppose Φ(R) separates points in K. Suppose f1, . . . , fk ∈
R are such that Φ(fj) ≥ 0, j = 1, . . . , k and (f1, . . . , fk) = (1). Then there exist
s1, . . . , sk ∈ R such that s1f1 + . . .+ skfk = 1 and such that each Φ(sj) is strictly
positive.

2.1. Proof for T n
S
. The n = 1 case of Theorem 2.1 is the following.

Proposition 2.4. Suppose K is a non-empty basic closed semialgebraic set in T.
The preordering T 1

S
is saturated if and only if S is a saturated description of K .

Proof. We have the following diagram:

C[z, w] C[x, y] C[x,y]
(x2+y2−1)

C
[

z, 1
z

] ∼= C[z,w]
(zw−1)

................................................................................................................................................................... ......
......

q1
.................................................................................................................................................................................. ............

ϕ

................................................................................................................................................................................................................
.....
.......
.....

q2

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

...............
............

∃ ϕ̃ isomorphism

where ϕ is a unital ring homomorphism with ϕ(z) := x + iy, ϕ(w) := x − iy and
q1, q2 are quotient projections. Define f(x, y) := x2 + y2 − 1. By the diagram

above, ϕ̃
(

H1

(

C
[

z, 1
z

]))

= R[x,y]
(f) . Let us define the set S1 := ϕ̃(S ) ⊆ R[x,y]

(f) . We

write S1 = {g1 + (f), . . . , gs + (f)} and S := {g1, . . . , gs} ⊂ R[x, y]. Suppose
Z :=

{

(x, y) ∈ R2 : f(x, y) = 0
}

. Let vp be the natural valuation on the completion

of R[x,y]
(f) at the point p ∈ Z. By [28, Theorem 5.17] or [22, 9.3.5 Theorem], T 1

S + I

is saturated if and only if the following conditions hold:

(1) For each boundary point p ∈ KS ∩ Z, which is not an isolated point of
KS ∩ Z, there exists k ∈ {1, . . . , s}, such that vp(gk) = 1.

(2) For each isolated point p ∈ KS ∩ Z, there exist k, l ∈ {1, . . . , s}, such that
vp(gk) = vp(gl) = 1 and gkgl ≤ 0 in some neighbourhood of p in Z.

Let us prove, that this is fulfilled exactly when S is a saturated description of
K . First notice that p := (x0, y0) is a boundary (and isolated) point of KS ∩ Z
iff x0 + iy0 is a boundary (and isolated) point of K . Take g ∈ R[x, y], such that
g(p) = 0. Write g in the form

k1(x− x0) + k2(y − y0) + (x− x0)(y − y0)p(x, y) + (x− x0)
2q(x) + (y − y0)

2r(y),

where k1, k2 ∈ R, p(x, y) ∈ R[x, y], q(x) ∈ R[x], r(y) ∈ R[y]. By the use of x2
0 + y20 =

1, we write

f(x, y) = (x− x0)
2 + (y − y0)

2 + 2x0(x− x0) + 2y0(y − y0).

We may assume x0 6= 0 (For y0 6= 0 the proof is analogous.). Then we can write

g(x, y) =
k1
2x0

f(x, y) +

(

k2 − k1
y0
x0

)

(y − y0) +
∑

l+m≥2

klmf(x, y)l(y − y0)
m,
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with klm ∈ R. By the proof of [22, 12.2.2 Theorem],

ˆR [x, y]

(f) p

=
R [[x− x0, y − y0]]

ˆ(f)p
=

R [[f, y − y0]]

ˆ(f)p
= R [[y − y0]] ,

where
ˆR[x,y]
(f) p

(resp. ˆ(f)p) is the completion of R[x,y]
(f) (resp. (f)) at the point p.

Therefore vp(g) = 1 iff k2 6= k1
y0

x0
. Now,

b(z) = ϕ̃−1(g + (f)) =
z − (x0 + iy0)

2z
· c(z) + (z − (x0 + iy0))

2 · d(z),

where

c(z) = k1(z − (x0 − iy0))− ik2(z + (x0 − iy0))

and d(z) ∈ C
[

z, 1
z

]

. Furthermore, c(x0 + iy0) = 2ik1y0 − 2ik2x0. Hence,

c(x0 + iy0) 6= 0 ⇔ k2 6= k1
y0
x0

⇔ db

dz
(x0 + iy0) 6= 0.

Finally,

vp(g) = 1 ⇔ db

dz
(x0 + iy0) 6= 0.

Therefore, from the necessary and sufficient conditions for T 1
S + I being saturated

above we conclude that T 1
S

is saturated if and only if S is a saturated description
of K . �

To prove Proposition 2.7 below, which is the second main step in the proof of
Theorem 2.1, we need Lemmas 2.5 and 2.6 below.

Lemma 2.5. Let B = [bkl]kl ∈ Mn

(

C
[

z, 1
z

])

. For every 1 ≤ k ≤ l ≤ n there exist
unitary matrices Ukl ∈ Mn(R) and Vkl ∈ Mn(C) , such that

UklBU∗
kl =

[

ckl ∗
∗ ∗

]

, VklBV ∗
kl =

[

dkl ∗
∗ ∗

]

,

where

ckl =

{

bkl, for 1 ≤ k = l ≤ n
1
2 (bkl + blk + bkk + bll), for 1 ≤ k < l ≤ n

,

dkl =

{

bkl, for 1 ≤ k = l ≤ n
i
2 (−bkl + blk) +

1
2 (bkk + bll), for 1 ≤ k < l ≤ n

.

Proof. We define U11 = V11 := In, Ukk = Vkk := Pk for k = 2, . . . , n, where Pk

denotes the permutation matrix which permutes the first row and the k-th row.

For 1 ≤ k < l ≤ n, define Ukl := PkSkl, where Skl =
(

s
(kl)
pr

)

pr
∈ Mn(R) be the

matrix with s
(kl)
kk = s

(kl)
kl = s

(kl)
lk = 1√

2
, s

(kl)
ll = − 1√

2
, s

(kl)
pp = 1 if p /∈ {k, l} and

s
(kl)
pr = 0 otherwise.

For 1 ≤ k < l ≤ n, define Vkl := PkS̃kl, where S̃kl =
(

s̃
(kl)
pr

)

pr
∈ Mn(C) be the

matrix with s̃
(kl)
kk = s̃

(kl)
lk = 1√

2
, s̃

(kl)
kl = i√

2
, s̃

(kl)
ll = − i√

2
, s̃

(kl)
pp = 1 if p /∈ {k, l} and

s̃
(kl)
pr = 0 otherwise. �
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Lemma 2.6. For A =

[

a β
β∗ C

]

∈ Hn

(

C
[

z, 1
z

])

, where a = a∗ ∈ C
[

z, 1
z

]

,

β ∈ M1,n−1

(

C
[

z, 1
z

])

and C ∈ Hn−1

(

C
[

z, 1
z

])

it holds

(i) a4 · A =

[

a∗ 0
β∗ a∗In−1

] [

a3 0
0 a(aC − β∗β)

] [

a β
0 aIn−1

]

(ii)

[

a3 0
0 a(aC − β∗β)

]

=

[

a∗ 0
−β∗ a∗In−1

]

· A ·
[

a −β
0 aIn−1

]

.

Proof. Easy computation. �

Now we come to the second main step in the proof of Theorem 2.1.

Proposition 2.7. Suppose K is a non-empty basic closed semialgebraic set in T

and S a saturated description of K . Then for every A ∈ Posn�0(K ) and every

w ∈ C \ {0} there exists b ∈ C [z], such that b(w), b
(

1
w

)

6= 0 and (b∗b) · A ∈ T n
S
.

Proof. We prove by the induction on the size n of the matrix polynomials. For n = 1
we can take b = 1 by Proposition 2.4. Suppose the proposition holds for n− 1. We
will prove, that it holds for n. Let us take A ∈ Posn�0(K ). For K = T we can take
b = 1 by Theorem 1.1. Suppose now K 6= T. Take w ∈ C \ {0}. We separate two
cases. If w /∈ T, then we define c(z) = (z − w)∗(z − w). Else w ∈ T and we define
c(z) = z − w. If A = 0, we can take b = 1. Otherwise A 6= 0 and we can write
A = cmB, where m ∈ N∪{0}, B = [bkl]kl ∈ Mn

(

C
[

z, 1
z

])

, and B(w) = B
(

1
w

)

6= 0.
Let Ukl, Vkl, ckl, dkl be as in Lemma 2.5. If for some k0 ∈ {1, . . . , n}, it holds

bk0k0(w) = bk0k0

(

1
w

)

6= 0, then we define k0 = l0, Tk0k0 := Uk0k0 and b̃k0k0 := ck0k0 .

Otherwise there exist k0 < l0, such that bk0l0(w) 6= 0 or bk0l0

(

1
w

)

6= 0.
Case 1: w ∈ T. From ck0l0(w) = dk0l0(w) = 0 we get bk0l0(w) = 0, which is a

contradiction. Hence either ck0l0(w) 6= 0 or dk0l0(w) 6= 0.
Case 2: w /∈ T. We have ck0l0 = Re(bk0l0) ∈ H1

(

C
[

z, 1
z

])

and dk0l0 =

Im(bk0l0) ∈ H1

(

C
[

z, 1
z

])

. Since for c ∈ H1

(

C
[

z, 1
z

])

, we know that c(w) = c
(

1
w

)

,

it follows that ck0l0(w) 6= 0 and ck0l0

(

1
w

)

6= 0 or dk0l0(w) 6= 0 and dk0l0

(

1
w

)

6= 0.

If ck0l0(w) 6= 0 and ck0l0

(

1
w

)

6= 0, we define Tk0l0 := Uk0l0 and b̃k0l0 := ck0l0 .

Else dk0l0(w) 6= 0 and dk0l0

(

1
w

)

6= 0 and we define Tk0l0 := Vk0l0 , b̃k0l0 := dk0l0 .

If we write Tk0l0BT ∗
k0l0

=

[

b̃k0l0 β̃

∗ C̃

]

with β̃ ∈ M1,n−1

(

C
[

z, 1
z

])

and C̃ ∈

Mn−1

(

C
[

z, 1
z

])

, then Tk0l0AT
∗
k0l0

=

[

cmb̃k0l0 cmβ̃

(cmβ̃)∗ cmC̃

]

=:

[

a β
β∗ C

]

. Therefore

by Lemma 2.6.(i) and dividing by (c∗c)2m , it follows that

b̃2A = T ∗
k0l0

[

b̃∗k0l0
0

β̃∗ b̃∗k0l0
In−1

] [

d 0
0 D

] [

b̃k0l0 β̃

0 b̃k0l0In−1

]

Tk0l0 ,

where

b̃ =
( c

c∗

)m

b̃2k0l0
∈ H1

(

C

[

z,
1

z

])

d =
(

c
c

c∗

)m

b̃3k0l0
∈ H1

(

C

[

z,
1

z

])

,

D =
(

c
c

c∗

)m

b̃k0l0

(

b̃k0l0C̃ − β̃∗β̃
)

∈ Hn−1

(

C

[

z,
1

z

])

.
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By Lemma 2.6.(ii) and dividing by (c∗c)m, we have also

[

d 0
0 D

]

=

[

b̃∗k0l0
0

−β̃∗ b̃∗k0l0
In−1

]

Tk0l0AT
∗
k0l0

[

b̃k0l0 −β̃

0 b̃k0l0In−1

]

It follows that d ≥ 0, D � 0 on K . By the induction hypothesis, used for the
polynomial D ∈ Hn−1

(

C
[

z, 1
z

])

, there exists b1 ∈ C [z], such that b1(w) 6= 0,

b1
(

1
w

)

6= 0 and b∗1b1D ∈ T n−1
S

. By Proposition 2.4, b∗1b1d ∈ T 1
S
. Hence, b∗bA ∈

T n
S
, where b = b1 · b̃ and b(w) 6= 0, b

(

1
w

)

6= 0. This concludes the proof. �

Finally, we can prove Theorem 2.1. We will use Proposition 2.3 to get rid of the
denominators in Proposition 2.7.

Proof of Theorem 2.1. By Proposition 2.4, T 1
S

is saturated if and only if S is a
saturated description of K . Therefore we have to prove only the if part. Let S

be a saturated description of K . We will prove that the set T n
S

is saturated for
every n ∈ N. Let R be the ring H1

(

C
[

z, 1
z

])

and Φ : R → C(T,R) the natural
map, i.e. Φ(a) = a|T. Φ is a ring homomorphism and T is a compact and Hausdorff
topological space. Φ(R) separates points in T. Indeed, define a1(z) =

1
z
+ z and

a2(z) = i(1
z
− z). Notice that a1, a2 ∈ H1

(

C
[

z, 1
z

])

. The equality a1(z1) = a2(z2)
holds if

1

z1
+ z1 =

1

z2
+ z2 ⇔ 1 + z21

z1
=

1 + z22
z2

⇔ (1 + z21)z2 = (1 + z22)z1

⇔ z2 − z1 = z1z2(z2 − z1).

The latter is true in T if and only if z2 ∈ {z1, z1}. So a1 separates all non-conjugate
pairs z1, z2. Similarly, a2(z1) = a2(z2) if and only if z1z2(z2 − z1) = z1 − z2. The
latter is true in T if and only if z2 ∈ {z1,−z1}. So a2 separates all conjugate pairs
z1, z2.

Let A ∈ Pos�0(K ). We will prove that A ∈ T n
S
. We define the ideal I ′ in

C
[

z, 1
z

]

by

I ′ := (b∗b : b ∈ C [z] , b∗b · A ∈ T
n

S ) ⊆ C

[

z,
1

z

]

.

Every ideal J ′ ⊆ C
[

z, 1
z

]

determines the ideal J := J ′ ∩ C[z] ⊆ C[z]. It holds

that J ′ =
{

J
zn : n ∈ N ∪ {0}

}

. Since the maximal ideals in C[z] are precisely (z−w),

where w ∈ C, the maximal ideals in C
[

z, 1
z

]

are precisely (z−w), where w ∈ C\{0}.
By Proposition 2.7, for every w ∈ C \ {0} there exists b ∈ C[z], such that

b(w), b
(

1
w

)

6= 0 and b∗b ·A ∈ T n
S
. Therefore I ′ = C[z, 1

z
].

Now we define the ideal I in R by

I = (b∗b : b ∈ C [z] , b∗b · A ∈ T
n

S ) ⊆ R.

We claim that I = R. Since I = C
[

z, 1
z

]

there exist c1, . . . , cm ∈ C
[

z, 1
z

]

and

b1, . . . , bm ∈ I ′, such that
∑m

j=1 cj(b
∗
jbj) = 1. Then also

∑m
j=1 c

∗
j (b

∗
jbj) = 1. Hence,

∑m
j=1

c∗j+cj

2 (b∗jbj) = 1. Therefore I = R.

By Proposition 2.3, there exist d1, . . . , dm ∈ Pos1≻0(T), such that
∑m

j=1 dj(b
∗
jbj) =

1. Therefore
∑m

j=1 dj(b
∗
jbj)A = A ∈ T n

S
, which concludes the proof. �
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2.2. Connection between Problems 1 and 2. In this subsection we link, by
the use of Möbius transformations, closed semialgebraic set in R with closed semi-
algebraic sets in T. To every matrix polynomial, positive semidefinite on a given
semialgebraic set in R, and to each linked semialgebraic set in T, we assign a matrix
polynomial, positive semidefinite on the linked set.

Möbius transformations that map R ∪ {∞} bijectively into T are exactly the
maps of the form

λz0,w0 : R ∪ {∞} → T, λz0,w0(x) := z0
x− w0

x− w0
,

where z0 ∈ T and w0 ∈ C \ R. Therefore, we connect a closed semialgebraic set
K ⊆ R with a closed semialgebraic set

Kz0,w0 := Cl (λz0,w0(K)) ,

where Cl(·) is the closure operator. Let F (x) be a matrix polynomial from the set
Posn�0(K). A matrix polynomial Λz0,w0,F (z) ∈ Posn�0(Kz0,w0) is defined by the rule

Λz0,w0,F (z) := ((z − z0)
∗(z − z0))

⌈ deg(F )
2 ⌉ · F

(

λ−1
z0,w0

(z)
)

,

where ⌈·⌉ is the ceiling function. Note that Λz0,w0,F (z) is well defined, since

λ−1
z0,w0

(z) =
zw0 − z0w0

z − z0
.

Note also, that the degree of Λz0,w0,F (z) is at most
⌈

deg(F )
2

⌉

. We also have

(∗) F (x) =

(

(x− w0)(x − w0)

4 · Im(w0)2

)⌈ deg(F )
2 ⌉

Λz0,w0,F (λz0,w0(x)),

where Im(·) is the imaginary part of ·.

2.3. Proof for T n
S . The second main step in the proof of Theorem 2.2, which we

prove by the use of Theorem 2.1 and the correspondence from Subsection 2.2, is
the following.

Corollary 2.8. Suppose K is a non-empty closed semialgebraic set in R and S
a saturated description of K. Then, for any F ∈ Hn(C[x]), the following are
equivalent:

(1) F � 0 on K.
(2) For w0 ∈ C \ R there is kw0 ∈ N ∪ {0}, such that

((x− w0)(x− w0))
kw0 F ∈ T n

S .

Proof. The non-trivial direction is (1) ⇒ (2). Choose w0 ∈ C \ R. Λ1,w0,F (z)
belongs to Posn�0(K1,w0). The set S := {Λ1,w0,g1(z), . . . ,Λ1,w0,gs(z)} is a saturated
description of K and by Theorem 2.1, we have Λ1,w0,F (z) ∈ T n

S
. By the equality

(∗),
(

(x− w0)(x − w0)

4 · Im(w0)2

)kw0

· F (x) ∈ T n
S ,

where kw0 ∈ N ∪ {0} equals k −
⌈

deg(F )
2

⌉

, where k is the degree of the summand

of the highest degree in one of the expression of Λ1,w0,F (z) as the element of T n
S
.

This concludes the proof of (1) ⇒ (2). �
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Finally, we can prove Theorem 2.2. We will use Proposition 2.3 to get rid of the
denominators in Corollary 2.8.

Proof of Theorem 2.2. By [22, 9.3.3 Theorem], T 1
S is saturated if and only if S is a

saturated description of K. Therefore we have to prove only the if part. Let S be
a saturated description of K. We will prove that T n

S is saturated for every n ∈ N.
Let R := R[x] and Φ : R → C(K,R) be the natural map, i.e. Φ(f) = f |K . Let
F ∈ Posn�0(K). We will prove that F ∈ T n

S . We define the ideal I in R[x] by

I := (h∗h : h ∈ C[x], h∗hF ∈ T n
S ) .

By Corollary 2.8, for every w ∈ C there exists h ∈ C[x], such that h(w), h(w) 6= 0
and h∗hF ∈ T n

S . Indeed, for w 6= {i,−i} take w0 = i in Corollary 2.8, while for
w ∈ {i,−i} take w0 = 2i. Therefore I = R[x]. By Proposition 2.3, there exist
s1, . . . , sm ∈ Pos1≻0(K) and h1, . . . , hm ∈ I, such that

∑m
j=1 sj(h

∗
jhj) = 1. Hence,

∑m
j=1 sj(h

∗
jhj)F = F ∈ T n

S , which concludes the proof. �

3. Natural descriptions and boundedly saturated n-th preorderings

In this section we study Problems 1” and 2”. In Subsection 3.1 we work with
Problem 2”. In Subsection 3.2 we continue to study connection between Problems
1 and 2 from Subsection 2.2. Finally, in Subsection 3.3, we use the results for
Problem 2” to derive the results for Problem 1”.

3.1. Problem 2”. By the following proposition, it suffices to study the natural
description S of a given set K ⊆ R, in Problem 2”.

Proposition 3.1. Let K ⊆ R be a non-empty basic closed semialgebraic set with
natural description S. Let S1 ⊂ R[x] be a finite set, such that KS1 = K. If T n

S is
not boundedly saturated, then T n

S1
is not boundedly saturated.

Proof. Let us write S = {g1, . . . , gs} and S1 = {f1, . . . , ft}, s, t ∈ N. By [19,
Theorem 4.1], the preordering T 1

S is boundedly saturated. Therefore for every
j = 1, . . . , t, fj =

∑

e∈{0,1}s σeg
e, where σe ∈ ∑R[x]2 and deg

(

σeg
e
)

≤ deg (fj)

for each e. Hence, if F ∈ T n
S1

is of the form F =
∑

e′∈{0,1}t τe′f
e′ , where τe′ ∈

∑

Mn (C[x])
2 and deg

(

τe′f
e′
)

≤ deg (F ) for each e′, then also F =
∑

e∈{0,1}s τeg
e,

where τe ∈∑Mn (C[x])
2
and deg

(

τeg
e
)

≤ deg (F ) for each e. Hence, if T n
S is not

boundedly saturated, also T n
S1

is not boundedly saturated. �

The affirmative answer to the question of Problem 2” for some sets K ⊆ R and
every n ∈ N is the following.

Theorem 3.2. Let K ⊆ R be either of the following:

• an interval,
• a union of two unbounded intervals,
• a union of at most three points.

Let S be the natural description of K. The n-th matrix preordering T n
S is boundedly

saturated for every n ∈ N.

Let K ⊆ R be a semialgebraic set and S := {g1, . . . , gs} ⊂ R[x] with K = KS.
We say that F belongs to the bounded part T n

S,b of a n-th matrix preordering T n
S ,
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if it can be written in the form F =
∑

e∈{0,1}s σeg
e with σe ∈ ∑Mn(C[x])

2 and

deg(σeg
e) ≤ deg(F ) for each e.

For the proof of the case of a union of at most three points we need the following.

Proposition 3.3. Let K = ∪m
j=1 {xj} ⊆ R be a union of points, where m ∈ N.

Suppose S is the natural description of K and n ∈ N. Then every F ∈ Posn�0(K)
with deg(F ) ≥ m− 1 belongs to T n

S,b.

Proof. If we divide F with
∏m

j=1(x − xj), we get F =
∏m

j=1(x − xj)G(x) + R(x),

where G(x), R(x) ∈ Mn (C[x]) and deg(R) < m. Let us expand a vector R in the
basis fj(x) :=

∏

ℓ 6=j(x− xℓ) to get

F (x) =
m
∑

j=1



(−1)kj

∏

ℓ 6=j

(x− xℓ)



Fj +
m
∏

j=1

(x− xj)G(x),

where kj ∈ {0, 1} is such that
∏

ℓ 6=j(−1)kj (x − xℓ) ∈ Pos1�0(K) and Fj ∈ Mn(C).

Since F ∈ Posn�0(K), it follows that Fj � 0 for each j. Write G(x) in the form

G(x) := G1

(

(x− x1)
2
)

+ (x− x1) ·G2

(

(x− x1)
2
)

,

where G1, G2 ∈ Mn (C[x]), and 2 deg(G1) ≤ deg(G), 2 deg(G2) ≤ deg(G)−1. Using
the identity

A =
(A+ 1)∗(A+ 1)

4
− (A− 1)∗(A− 1)

4
for the matrix coefficients of Gj

(

(x− x1)
2
)

, note that Gj

(

(x− x1)
2
)

can be writen
as

Gj

(

(x − x1)
2
)

= Gj1(x)−Gj2(x),

where Gj1, Gj2 ∈ ∑Mn (C[x])
2 and deg(Gj1), deg(Gj2) ≤ 2 deg(Gj) for j = 1, 2.

By [19, Theorem 4.1], it is also true that

(−1)kj

∏

ℓ 6=j

(x− xℓ) ∈ T 1
S,b, ±

m
∏

j=1

(x − xj) ∈ T 1
S,b, ±(x− x1)

m
∏

j=1

(x− xj) ∈ T 1
S,b,

and hence F ∈ T n
S,b. �

Proof of Theorem 3.2. We separate two cases:
Case 1: K has non-empty interior:

• K = R : The statement follows by Theorem 1.2.
• K = [a,∞) or K = (−∞, b] or K = [c, d], a, b, c, d ∈ R, c < d: The
statement follows by the known results for [0, 1] and [0,∞) (see Subsection
1.4) with the use of linear transformations x 7→ kx+ n, k, n ∈ R.

• K = (−∞, a] ∪ [b,∞), a, b ∈ R, a < b: By a linear change of variable,
we may assume that K = (−∞,−1] ∪ [1,∞). Every F ∈ Posn�0(K) is of

even degree. We define F1(x) = xdeg(F )F
(

1
x

)

and observe that F1 � 0 on
[−1, 1]. By the above and by the identity

x± 1 =
(x± 1)2 + (x+ 1)(1− x)

2
,

there exist matrix polynomials G1, H1 with deg(G1) ≤ deg(F )
2 , deg(H1) ≤

deg(F )
2 − 1, such that

F1(x) = G1(x)
∗G1(x) +H1(x)

∗H1(x)(x + 1)(1− x).
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Therefore

F (x) = xdeg(F )F1

(

1

x

)

= xdeg(F )

(

G1

(

1

x

)∗
G1

(

1

x

)

+H1

(

1

x

)∗
H1

(

1

x

)(

1

x
+ 1

)(

1− 1

x

))

=: G(x)∗G(x) +H(x)∗H(x)(1 + x)(x − 1),

where

G(x) := x
deg(F )

2 G1

(

1

x

)

, H := x
deg(F )

2 −1H1

(

1

x

)

are matrix polynomials with deg(G) ≤ deg(F )
2 , deg(H) ≤ deg(F )

2 − 1.

Case 2: K is a union of at most three points.

• |K| = 1 : The statement follows by Proposition 3.3.
• |K| = 2 : Let F ∈ Posn�0(K). If F is of degree 0, then it is of the form
G∗G for some G ∈ Mn(C). Hence, F ∈ T n

S,b. Otherwise, F is of degree ≥ 1
and F ∈ T n

S,b by Proposition 3.3. Hence, T n
S,b = T n

S and T n
S is boundedly

saturated for every n ∈ N.
• |K| = 3 : Let K := {x1} ∪ {x2} ∪ {x3} with x1, x2, x3 ∈ R, x1 < x2 < x3.
Let F ∈ Posn�0(K). If F is of degree 0, then F ∈ T n

S,b by the same argument

as above for |K| = 2. If F is of degree 1, then by the convexity of the set
{x ∈ R : F (x) � 0}, it follows that F ∈ Posn�0([x1, x3]). By Case 1 above, F
is of the form F ∗

0 F0+(x−x1)F
∗
1 F1+(x3−x)F ∗

2 F2 with F0, F1, F2 ∈ Mn(C).
Hence, F ∈ T n

S,b. Finally, if F is of degree≥ 2, then F ∈ T n
S,b by Proposition

3.3. Hence, T n
S,b = T n

S and T n
S is boundedly saturated for every n ∈ N.

This concludes the proof. �

3.2. Further connection between Problems 1 and 2. Assume the notation as
in Subsection 2.2. In this subsection we link, by the use of Möbius transformations,
closed semialgebraic set in T with closed with closed semialgebraic sets in R. To
every matrix polynomial, positive semidefinite on a given semialgebraic set in T,
and to each linked semialgebraic set in R, we assign a matrix polynomial, positive
semidefinite on the linked set. Finally, in Proposition 3.5, a connection between
natural descriptions of a given semialgebraic set and each linked set is established.

Recall that a map λz0,w0(x) : R ∪ {∞} → T is defined by λz0,w0(x) := z0
x−w0

x−w0
,

where z0 ∈ T and w0 ∈ C \ R (see Subsection 2.2). We link a closed semialgebraic
set K ⊆ T with a closed semialgebraic set

Kz0,w0 := λ−1
z0,w0

(K ) \ {∞}.
To each polynomial A(z) ∈ Posn�0(K ) we assign a polynomial Γz0,w0,A(x) ∈
Posn�0(Kz0,w0) by the rule

Γz0,w0,A(x) =

(

(x− w0)(x− w0)

4 · Im(w0)2

)deg(A)

·A (λz0,w0(x)) ,

where Im(·) is the imaginary part of ·. Note that Γz0,w0,A(x) is well defined by the
definition of λz0,w0(x), and that the degree of Γz0,w0,A(x) is at most 2 deg(A). We
also have the identity

(◦) A(z) = ((z − z0)
∗(z − z0))

deg(A) · Γz0,w0,A(λ
−1
z0,w0

(z)).
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Now we connect natural descriptions of Kz0,w0 ⊆ R and K ⊆ T. For tehnical
reasons, we introduce the notion of the even natural description of a semialgebraic
set. We call a set S′ the even natural description of a basic closed semialgebraic
set K ⊆ R if it satisfies (a) − (d) in the definition of the natural description of K
and in addition:

(e) If S′ includes both elements of the form x − a and b − x with a < b, then
we replace them by the element (x − a)(b− x).

Remark 3.4. By the equalities

x− a =
(x− a)(b − x) + (x− a)2

b− a
, b− x =

(x− a)(b − x) + (b− x)2

b− a
,

we have T 1
S = T 1

S′ .

The connection between the natural description of K ⊆ T and the even natural
description of Kz0,w0 ⊆ R is the following.

Proposition 3.5. Let K ⊆ T be the closed semialgebraic set with |K | > 1 and
Kz0,w0 ⊆ R the corresponding closed semialgebraic set with |Kz0,w0 | > 1. Let
S′ := {g1(x), . . . , gs(x)} be the even natural description of Kz0,w0 . Then the set

Λz0,w0,S′ := {Λz0,w0,g1 , . . . ,Λz0,w0,gs}
is exactly the set of polynomials from the natural description of the set K , up to
multiplying each member by some positive constant. Moreover,

Γz0,w0,Λz0,w0,S′
= S′.

Proof. Note that

Kz0,w0 = ∩s
j=1 {x ∈ R : gj(x) ≥ 0} and K = ∩s

j=1 {z ∈ T : Λz0,w0(gj) ≥ 0} .
Therefore it remains to show only, that every polynomial Λz0,w0(gj) is a polynomial
from the natural description of K , multiplied by some positive constant. We
separate two cases:

Case 1: gj(x) = ±(x− a)(x− b). Then

Λz0,w0,gj = k · (z − λz0,w0(a)) (z − λz0,w0(b))

z

where k ∈ C \ {0} is such that Λz0,w0,gj ∈ Pos1�0(K ).
Case 2: gj(x) = ±(x− a). Then

Λz0,w0,gj = k · (z − λz0,w0(a)) (z − z0)

z

where k ∈ C \ {0} is such that Λz0,w0,gj ∈ Pos1�0(K ).
The equality Γz0,w0,Λz0,w0,S′

= S′ is easily verified. �

3.3. Problem 1”. By the use of previous two Subsections we come to the following
affirmative answer to the question of Problem 1”.

Theorem 3.6. Let K ⊆ T be a non-empty basic closed semialgebraic set with
natural description S . The n-th matrix preordering T n

S
is boundedly saturated in

either of the following cases:

• n = 1 and K is arbitrary.
• n ∈ N is arbitrary and K is an arc,
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• n ∈ N is arbitrary and K is a union of at most three points.

Proof of Theorem 3.6. We separate two cases:
Case 1: |K | > 1. Take A(z) ∈ Posn�0(K ). If K 6= T, choose z0 ∈ T\K . Oth-

erwise choose an arbitrary z0 ∈ K . Choose also w0 ∈ C \ R. Then Γz0,w0,A(x) ∈
Posn�0(Kz0,w0) and deg (Γz0,w0,A(x)) ≤ 2 deg(A). By [19, Theorem 4.1] and The-
orem 3.2, it follows that that Γz0,w0,A(x) ∈ T n

S,b, where S is the natural de-
scription of Kz0,w0 . By replacing the natural description S with the even nat-
ural description S′ := {g1, . . . , gs}, we get Γz0,w0,A(x) =

∑

e∈{0,1}s σeg
e, where

deg
(

σeg
e
)

≤ 2 deg(A) for each e. By the identity (◦) above and by Proposition 3.5,
it follows that A(z) ∈ T n

S
.

Case 2: |K | = 1. By the definition, S = {b1(z), b2(z)}, where b1(z) = k1 ·
(z−z0)(z−iz0)

z
, b2(z) = k2 · (z−z0)(z+iz0)

z
, k1 =

√

iz20 , k2 =
√

−iz20 , such that b1 ∈
Pos1�0([z0, iz0]), b2 ∈ Pos1�0([−iz0, z0]). Choose z3 ∈ (iz0,−iz0). Then

g1(x) := Γz3,i,b1(x) = k3(x− x0)(x − x1),

g2(x) := Γz3,i,b2(x) = k4(x− x0)(x − x2),

where k3, k4 < 0 are negative constants, x0 = λ−1
z3,i

(z0), x1 = λ−1
z3,i

(iz0), x2 =

λ−1
z3,i

(−iz0) and x2 < x0 < x1. Define S′ := {g1, g2}. Then K := KS′ = {x0}. Let

S be the natural description of K. Choose A(z) ∈ Posn�0(K ). Then Γz3,i,A(x) ∈
Posn�0(K) and deg(Γz3,i,A) ≤ 2 deg(A). We know that

x− x0 =
−k3(x − x0)

2 + g1(x)

(−k3)(x1 − x0)
= σ0 + σ1g1 ∈ T 1

S′ ,

−(x− x0) =
−k4(x − x0)

2 + g2(x)

(−k4)(x0 − x2)
= σ2 + σ3g2 ∈ T 1

S′ ,

−(x− x0)
2 =

g1(x) + g2(x)

−(k3 + k4)
+ c(x− x0) = σ4 + σ5g1 + σ6g2 ∈ T 1

S′ ,

where c ∈ R, σj ∈ ∑R[x]2 for j = 1, . . . , 6 and deg(σj) ≤ 2 for j = 0, 2, 4 and
deg(σj) = 0 for j = 1, 3, 5, 6. Since deg(Γz3,i,A) ≤ 2 deg(A). Then

Γz3,i,A(x) = τ0 + τ1(x− x0)− τ2(x− x0)− τ3(x− x0)
2,

where τj ∈
∑

Mn(C[x])
2 for each j and deg(τ0) ≤ 2 deg(A), deg(τj) ≤ 2 deg(A)− 2

for j = 1, 2, 3. Therefore

Γz3,i,A(x) = τ̂0 + τ̂1g1 + τ̂2g2,

where τ̂j ∈ ∑Mn(C[x])
2 for each j and deg(τ̂0), deg(τ̂1g1), deg(τ̂2g2) ≤ 2 deg(A).

Hence,

A(z) = ((z − z3)
∗(z − z3))

deg(A)
Γz3,i,A(λ

−1
z3,i

(z)) ∈ T
n

S ,b.

This concludes the proof. �

4. Sets K , K without boundedly saturated T 2
S
, T 2

S for any finite

sets S , S with KS = K , KS = K

The negative answers to the questions of Problems 1” and 2” for almost all
remaining sets K, K not covered by Theorems 3.2 and 3.6 (except for a union of
an interval and a point or a union of two unbounded intervals and a point) and all
n ≥ 2 are the main results of this section (see Theorems 4.1 and 4.2 below). By
Propositions 3.1 and 4.5 below, it suffices to study natural descriptions.



20 ALJAŽ ZALAR

Theorem 4.1. Let a non-empty basic closed semialgebraic set K ⊆ R satisfy either
of the following:

(1) K contains at least two intervals with at least one of them bounded,
(2) K is a union of m points with m ≥ 4,
(3) K is a union of an interval (bounded or unbounded) and m isolated points

with m ≥ 2.
(4) K is a union of two unbounded intervals and m isolated points with m ≥ 2.

If S ⊂ R[x] is a finite set with KS = K, then the 2-nd matrix preordering T 2
S is not

boundedly saturated. Moreover,

(5) If K is regular with at least two components, one of which is unbounded and
the others are bounded, then T 2

S is not even boundedly weakly saturated.

Theorem 4.2. Let a non-empty basic closed semialgebraic set K ⊆ T satisfy either
of the following:

(1) K contains at least two arcs,
(2) K is a union of m points with m ≥ 4,
(3) K is a union of an arc and m isolated points with m ≥ 2.

If S ⊂ H1

(

C
[

z, 1
z

])

is a finite set with KS = K , then the 2-nd matrix preordering

T 2
S

is not boundedly saturated.

Let K ⊆ R be a semialgebraic set with natural description S := {g1, . . . , gs}.
Recall that F belongs to the bounded part T n

S,b of a n-th matrix preordering T n
S ,

if it can be written in the form F =
∑

e∈{0,1}s σeg
e with σe ∈ ∑Mn(C[x])

2 and

deg(σeg
e) ≤ deg(F ) for each e.

4.1. Proof of (1) and (5) of Theorem 4.1.

Proposition 4.3. Let K = [x1, x2] ∪ [x3,∞) be a union of a bounded and an
unbounded interval, where x1 < x2 < x3. Let us define the polynomial

Fk(x) :=

[

x+A(k) D(k)
D(k) x2 +B(k)x+ C(k)

]

,

where

A(k) := k − x1,

B(k) := −k − x2 − x3,

C(k) := k2 + k(−x1 + x2 + x3) + x2x3,

D(k) :=
√

A(k)C(k) + x1x2x3 =

=
√

k3 + k2(−2x1 + x2 + x3) + k(x2x3 + x2
1 − x1x2 − x1x3).

For every k, which satisfies

k3 + k2(−2x1 + x2 + x3) + k(x2x3 + x2
1 − x1x2 − x1x3) > 0,

3

4
k2 + k

(

−x1 +
x2 + x3

2

)

−
(

x2 − x3

2

)2

> 0,

Fk(x) belongs to Pos2�0(K) and does not belong to T 2
S1
, where S1 is the natural

description of any set K1 of the form

[x1, x2] ∪ ∪m
j=1[x2j+1, x2j+2] ∪ [x2m+3,∞) ⊆ K
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with m ≥ 0 and xj ≤ xj+1 for each j. In particular, Fk(x) /∈ T 2
S.

Moreover, for every fixed k above and every ǫ > 0 sufficiently small, Fk(x)+ǫI2 /∈
T 2
S1
.

Proof. First we will prove, that Fk(x) ∈ Pos2�0(K) for k satisfying the conditions
in the statement of the proposition. The determinant of Fk(x) is (x − x1)(x −
x2)(x−x3) ∈ Pos1�0(K). The upper left corner of F is non-negative for x ≥ x1 − k;

hence it belongs to Pos1�0(K). The lower right corner is a quadratic polynomial

p(x) := x2 +Bx+ C with a vertex in x = −B
2 . By the choice of k,

p

(−B

2

)

=
3

4
k2 + k

(

−x1 +
x2 + x3

2

)

−
(

x2 − x3

2

)2

> 0.

So p(x) is positive on R and hence p ∈ Pos1�0(K). Since all principal minors of

Fk(x) are non-negative on K, Fk(x) ∈ Pos2�0(K).

Now we will prove that Fk(x) /∈ T 2
S1
. We know that

S1 = {x− x1, (x− x2)(x− x3), . . . , (x− x2m+2)(x − x2m+3)}
=: {g1, g2, . . . , gm+2} .

If Fk ∈ T 2
S1
, then it can be written in the form Fk =

∑

e∈{0,1}m+2 σeg
e, where

σe ∈
∑

Mn(C[x])
2 for every {0, 1}m+2 and ge = ge11 · · · gem+2

m+2 for e = (e1, . . . , em+2).
By the degree comparison we conclude, that the non-zero part can be just

(•) Fk(x) = σ0 + σ1(x− x1) +

m+1
∑

j=1

σj+1(x− x2j)(x− x2j+1),

where σj ∈
∑

M2(C[x])
2 for each j and deg(σ0) ≤ 2, deg(σj) = 0 for j = 1, . . . ,m+

2. By observing the monomial x2 on both sides, it follows that σ2 =

[

0 0
0 k0

]

for

some k0 ∈ [0, 1]. Equivalently (•) can be written as

Fk(x)− σ2(x− x2)(x− x3) = σ0 + σ1(x− x1) +

m
∑

i=2

σi(x− x2i)(x− x2i+1).

The right-hand side belongs to Pos2�0(K̂1), where K̂1 = K1 ∪ [x2, x3]. But the
determinant of the left-hand side

q(x) = (x− x2)(x− x3)(x(1 − k0)− (x1 − x1k0 + kk0))

is a non-zero polynomial of degree 3 with zeroes x = x2 and x = x3. q is indeed
non-zero, since otherwise 1−k0 = x1−x1k0+kk0 = 0, so k0 = 1 and x1−x1+k =
k = 0, which is a contradiction. Since q cannot have double zeroes at x = x2 and
x = x3, q /∈ Pos(K̂1). Hence Fk(x) − σ2(x − x2)(x − x3) /∈ Pos2�0(K̂1), which is a

contradiction. Therefore Fk cannot be expressed in the form (*) and so Fk /∈ T 2
S1
.

Finally we will prove, that for a fixed k there and ǫ > 0 sufficiently small,
Fk(x)+ ǫI2 /∈ T 2

S1
. With the same arguments as above, Fk + ǫI2 ∈ T 2

S1
would imply

Fk(x) + ǫI2 − σ2(x− x2)(x− x3) = σ0 + σ1(x− x1) +

m
∑

i=2

σi+1(x− x2i)(x− x2i+1),
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where σ2 =

[

0 0
0 k

]

for some k ∈ [0, 1]. The right-hand side again belongs to

Pos2�0(K̂), where

K̂ =

{

[x1,∞), if m = 1
[x1, x4] ∪ ∪m

i=3[x2i−1, x2i] ∪ [x2m+1,∞), otherwise
.

On computing the determinant of the left-hand side in the point x = x1 we get

−k(x1 − x2)(x1 − x3)(x1 +A(k) + ǫ) + ǫ(x2
1 +B(k)x1 + C(k) + x1 +A(k) + ǫ),

which is non-negative for

k ≤ ǫ(x2
1 +B(k)x1 + C(k) + x1 +A(k) + ǫ)

(x1 − x2)(x1 − x3)(x1 +A(k) + ǫ)
.

On computing the determinant of the left-hand side in the point x = x2+x3

2 we get

k
(x3 − x2)

2

4

(

x2 + x3

2
+A(k) + ǫ

)

+ det

(

F1

(

x2 + x3

2

)

+ ǫI2

)

.

Since x2+x3

2 +A+ ǫ > x1 +A+ ǫ = N + ǫ > 0, this is equivalent to

k ≥ − det
(

F1

(

x2+x3

2

)

+ ǫI2
)

(x3−x2)2

4

(

x2+x3

2 +A+ ǫ
)
.

Since det
(

F1

(

x2+x3

2

))

< 0, for ǫ > 0 small enough we have

− det

(

F1

(

x2 + x3

2

)

+ ǫI2

)

>
− det

(

F1

(

x2+x3

2

))

2
> 0.

Hence, for ǫ > 0 small enough,

ǫ · (x2
1 +Bx1 + C + x1 +A+ ǫ)

(x1 − x2)(x1 − x3)(x1 +A+ ǫ)
<

− det
(

F1

(

x2+x3

2

)

+ ǫI2
)

(x3−x2)2

4

(

x2+x3

2 +A+ ǫ
)
.

For those ǫ, the determinant of F1(x) + ǫI2 − σ2(x−x2)(x− x3) cannot be positive
semidefinite in x1 and x2+x3

2 simultaneously, which is a contradiction. Therefore

Fk(x) + ǫI2 /∈ T 2
S1

for ǫ > 0 sufficiently small. �

Proof of (5) of Theorem 4.1. By Proposition 3.1, we may assume S is the natural
description of K. We separate two cases, depending on the form of K.

Case 1: K is bounded from below and unbounded from above. K is of the form
∪m
j=1[x2j−1, x2j ] ∪ [x2m+1,∞), where m ∈ N and xj < xj+1 for j = 1, . . . , 2m. By

Proposition 3.1, we may assume S is the natural description of K. Let us define
the set K1 := [x1, x2] ∪ [x3,∞). By Proposition 4.3, there exists a polynomial
F ∈ Pos2≻0(K1), such that F /∈ T 2

S = T 2
S,b. Hence, T

2
S is not weakly saturated.

Case 2: K is unbounded from below and bounded from above. K is of the form
(−∞, x1] ∪m

j=1 [x2j , x2j+1], where m ∈ N and xj < xj+1 for j = 1, . . . , 2m+ 1. By

Case 1, T 2
S1

is not saturated, where S1 is the natural description of −K. Hence, T 2
S

is not weakly saturated. �

Proof of (1) of Theorem 4.1. By Proposition 3.1, we may assume S is the natural
description of K. Let us write K in the form K := ∪m

j=1{xj} ∪K1, where m ∈ N

and K1 is the regular part of K. Let S1 be the natural description of K1. We
separate two cases, depending on the form of K1.
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Case 1: K1 is bounded from one side and unbounded from the other. By (5)
of Theorem 4.1, there is a polynomial F1 ∈ Pos2≻0(K1) and F1 /∈ T 2

S1
= T 2

S1,b
.

Write S := {g1, . . . , gs}. The polynomial F (x) :=
∏m

j=1(x − xj) · F1(x) belongs

to Pos2�0(K). If F ∈ T 2
S = T 2

S,b, then F =
∑

e∈{0,1}s σeg
e, where each σe ∈

∑

Mn(C[x])
2. Since F (xj) = 0 and σeg

e(xj) � 0, we conclude that σeg
e(xj) = 0 for

j = 1, . . . ,m and each e. Therefore
∏m

j=1(x−xj) divides each σeg
e. Hence, σeg

e =
∏m

j=1(x − xj) · τehe, where τe ∈ ∑Mn(C[x])
2, he ∈ Pos1�0(K1) and deg(τehe) ≤

deg(F1). By [19, Theorem 4.1], he ∈ T 1
S1,b

. It follows that F1 ∈ T 2
S1,b

, which is a

contradiction. Therefore T 2
S is not saturated.

Case 2: Other K1. Let d ∈ R be the maximum of K1. Define the map
λd : R \ {d} → R with λd(x) := 1

d−x
. Observe that λd(K1) =: K2 is the set

of the form ∪m1

j=1[x̂2j−1, x̂2j ] ∪ [x̂2m1+1,∞), where m1 ∈ N and x̂j < x̂j+1 for

j = 1, . . . , 2m1. By Proposition 4.3, there is a polynomial F2 ∈ Pos2�0(K2) of

degree 2 with F2 /∈ T 2
S2

= T 2
S2,b

, where S2 is the natural description ofK2. Therefore

F1(x) = x2F2

(

d− 1
x

)

∈ Pos2�0(K1) and F1 /∈ T 2
S1,b

, To construct F (x) ∈ Pos2�0(K)

with F /∈ T 2
S,b, proceed as in Case 1. Therefore T 2

S is not boundedly saturated. �

Concrete examples for the statement of (5) and (1) of Theorem 4.1 in the cases
K1 := [−1, 0] ∪ [1,∞) and K2 = (−∞,−2] ∪

[

0, 23
]

∪ [2,∞) respectively, are the
following.

Example 1. Let us take a ∈ (1,∞) and ϕ ∈ [0, 2π). The matrix polynomial

Fa,ϕ(x) :=

[

x+ a eiϕ
√
a3 − a

e−iϕ
√
a3 − a x2 − a · x+ (a2 − 1)

]

is positive semidefinite on K1 := [−1, 0] ∪ [1,∞), but

Fa,ϕ /∈ T 2
S1
,

where S1 is the natural description of K1. Moreover, for ǫ > 0 sufficiently small
also

Fa,ϕ + ǫI2 /∈ T 2
S1
,

where I2 is the 2× 2 identity matrix.

Proof. The arguments are the same as for the matrix polynomial Fk(x) in Propo-
sition 4.3. �

Example 2. Let us take a ∈ (1,∞) and ϕ ∈ [0, 2π). The matrix polynomial

Ga,ϕ(x) := x2Fa,ϕ

(

1

x
− 1

2

)

=

[

x2
(

a− 1
2

)

+ x x2 · eiϕ
√
a3 − a

x2 · e−iϕ
√
a3 − a x2

(

a2 + a
2 − 3

4

)

+ x (1− a) + 1

]

is positive semidefinite on K2 := (−∞,−2] ∪
[

0, 23
]

∪ [2,∞), but

Ga,ϕ /∈ T 2
S2
,

where S2 is the natural description of K2.
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Proof. From Ga,ϕ(x) = x2Fa,ϕ

(

1
x
− 1

2

)

, it follows that Ga,ϕ(x) � 0 for 1
x
− 1

2 ∈ K1.

Hence, Ga,ϕ(x) � 0 for x ∈ K2. If Ga,ϕ ∈ T 2
S2
, then

Ga,ϕ = σ0 + σ1(x+ 2)x+ σ2

(

x− 2

3

)

(x− 2) + σ3(x+ 2)x

(

x− 2

3

)

(x− 2) ,

where σj ∈
∑

M2 (C[x]) for j = 0, 1, 2, 3. From the degree comparison we conclude
that σ3 = 0, deg(σ0) ≤ 2, and deg(σ1) = deg(σ2) = 0. But then Fa,ϕ(x) =

σ̃0+ σ̃1(x+1)+ σ̃2x(x− 1) ∈ T 2
S1
, where σ̃0(x) =

(

x+ 1
2

)2
σ0

(

1
x+ 1

2

)

, σ̃1 = 2σ1 and

σ̃2 = 4
3σ2. This is in contradiction with Example 1. Hence, Ga,ϕ /∈ T 2

S2
. �

4.2. Proof of (2) and (3) of Theorem 4.1. The following Proposition and the
construction of the counterexample for the statements (2) and (3) of Theorem 4.1
is due to Jaka Cimprič. I thank him for allowing me to include his result here.

Proposition 4.4. Let K = {x1, x2, x3, x4} be the 4 element set with x1 < x2 <
x3 < x4. The polynomial F (x) := F2x

2 + F1x + F ∈ Hn(C[x]), which belongs to
Pos2�0(K) and satisfies

(1) ker(F (x2))⊕ ker(F (x3)) = Cn,
(2) F2 6� 0,

does not belong to the bounded part T n
S,b of the n-th matrix preordering T n

S , where
S is the natural description of K.

Proof. Write eij(x) = (x − xi)(x − xj) for i, j = 1, 2, 3, 4. If F (x) belongs to T n
S,b,

then we can write F (x) in the form

(∗) F (x) = Ae12(x) + Be23(x) + Ce34(x) +D(−e14(x)) +G(x)

with A,B,C,D ∈ ∑

Mn(C)
2 and G(x) := G2x

2 + G1x + G0 ∈ ∑

Mn(C[x])
2.

We have F (x2) = Ce34(x2) + D(−e14(x2)) + G(x2) and F (x3) = Ae12(x3) +
D(−e14(x3)) + G(x3). Therefore ker(F (x2)) ⊆ ker(D) and ker(F (x3)) ⊆ ker(D).
Hence Cn = ker(F (x2))⊕ ker(F (x3)) ⊆ ker(D). So D = 0. Comparing the leading
coefficients in (∗) we get F2 = A+B + C +G2 � 0, which is a contradiction. �

Proof of (2) and (3) of Theorem 4.1. The set K has one of the following forms:

• K = ∪m
j=1{xj}, where m ≥ 4 and xj < xj+1 for j = 1, . . . ,m− 1.

• K = [x1, x2] ∪ ∪m
j=3{xj}, where m ≥ 4, xj1 6= xj2 for j1 6= j2 and xj /∈

[x1, x2] for j = 3, . . . ,m.

By an appropriate substitution (see Case 2 in the proof of (1) of Theorem 4.1),
we may assume x1 < x2 < x3 < x4 for either of the forms above. Define the
polynomials ejℓ(x) := (x − xj)(x − xℓ), where j, ℓ = 1, 2, 3, 4. Let us define the
matrix polynomial Fk(x) = Ake12(x) +Bke23(x) + Cke34(x), where

Ak = (x4 − x3)

[

1 k
k k2

]

, Bk = (x1 − x4)

[

1 k
k 1

]

, Ck = (x2 − x1)

[

k2 k
k 1

]

.
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For k > 1 we have

Fk(x1) = (x2 − x1)(x3 − x1)(x4 − x1)

[

k2 − 1 0
0 0

]

� 0,

Fk(x2) = (x2 − x1)(x3 − x2)(x4 − x2)

[

k2 k
k 1

]

� 0,

Fk(x3) = (x3 − x1)(x3 − x2)(x4 − x3)

[

1 k
k k2

]

� 0,

Fk(x4) = (x4 − x1)(x4 − x2)(x4 − x3)

[

0 0
0 k2 − 1

]

� 0.

Since k > 1, it holds also that Fk(x2)⊕ Fk(x3) = C2.
Since det(Fk(xj)) = 0 for j = 1, 2, 3, 4 and deg(det(Fk)) ≤ 4, it follows that

det(Fk(xj)) = p(k)
∏4

j=1(x− xj), where

p(k) :=
(k2 − 1)

k

(

k2(x2 − x1)(x4 − x3) + (x3 − x1)(x2 − x4)
)

∈ R[k].

Let us define the interval I :=
(

1,
√

(x3−x1)(x4−x2)
(x2−x1)(x4−x3)

)

. For k ∈ I, p(k) < 0 and

det(Fk) ∈ Pos1�0([x1, x2] ∪ [x3, x4]). Let us write Fk(x) :=

[

ak(x) bk(x)
bk(x) ck(x)

]

with

ak(x), bk(x), ck(x) ∈ R[x, k]. By the calculations of Fk(xj) above, a(x1) > 0,
a(x2) > 0, a(x3) > 0 and a(x4) = 0. Since degx(ak) ≤ 2, if ak has another
zero x0 on the interval (x1, x4), then it lies on the interval (x3, x4). But then
det(Fk(x0)) ≤ 0, which is contradiction. Thus, (ak)|[x1,x4] ≥ 0. Similarly also

(ck)|[x1,x4] ≥ 0. Hence, Fk ∈ Pos2�0([x1, x2] ∪ [x3, x4]). Let S1 be the natural de-

scription of the set K1 := {x1, x2, x3, x4}. By Proposition 4.4, Fk(x) /∈ T 2
S1,b

for

k ∈ I. Suppose S2 is the natural description of K2 := [x1, x2] ∪ {x3, x4}. Since
S2 ⊂ S1, it follows that Fk(x) /∈ T 2

S2,b
. Define the polynomial r(x) =

∏m
j=5(x− xj)

and the matrix polynomial Gk(x) = r(x)Fk(x). Let us assume Gk ∈ T 2
S,b, where S

is the natural description of K. Then all the summands in the sum are divisible by

r(x). Hence, Fk(x) =
Gk(x)
r(x) belongs to T 2

S1,b
. This is a contradiction. �

4.3. Proof of Theorem 4.2. It is enough to prove Theorem 4.2 for the natural
description S of K by the following.

Proposition 4.5. Let K ⊆ T be a non-empty basic closed semialgebraic set with
natural description S . Let S1 ⊂ H1

(

C
[

z, 1
z

])

be a finite set, such that KS1 = K .
If T n

S
is not boundedly saturated, then T n

S1
is not boundedly saturated.

Proof. The proof is analogous to the proof of Proposition 3.1, just that we use
Theorem 3.6 instead of [18, Theorem 4.1]. �

Proof of Theorem 4.2. Assume the notation from Subsections 2.2 and 3.2. Choose
z0 /∈ K . The set Kz0,i has one of the forms from Theorem 4.1. Hence, there

is a polynomial F ∈ Pos2�0(Kz0,i) (or F ∈ Pos2≻0(Kz0,i)) of even degree, such

that F /∈ T 2
S′,b, where S′ is the even natural description of Kz0,i. But then

Λz0,i,F (z) ∈ Pos2�0(K ) (or Λz0,i,F (z) ∈ Pos2≻0(K )) and Λz0,i,F (z) /∈ T 2
S ,b (Here

we used Proposition 3.5.). �
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5. Nichtnegativstellensatz for an arbitrary K

By the results of Section 3, we see, that for almost all unbounded sets K, there
are polynomials from Posn�0(K) that do not belong to T n

S , where S is any finite set
S ⊂ R[x] such that K = KS. The main result of this section is the characterization
of Posn�0(K) for unbounded sets K.

Theorem 5.1. Suppose K is an unbounded basic closed semialgebraic set in R and
S a saturated description of K. Then, for any F ∈ Hn(C[x]), the following are
equivalent:

(1) F ∈ Posn�0(K).

(2) (1 + x2)kF ∈ T n
S for some k ∈ N ∪ {0}.

(3) For w ∈ C\K there exists kw ∈ N∪{0}, such that ((x− w)∗(x− w))kw F ∈
T n
S .

(4) For every w ∈ C there exists h ∈ R[x], such that h(w) 6= 0, h(w) 6= 0 and
h2F ∈ T n

S .
(5) For every p ∈ N there exists h ∈∑R[x]2, such that hF = F 2p + F ′, where

F ′ ∈ T n
S .

The characterization of Posn�0(K) in the case of multivariate real matrix poly-
nomials is [2, Theorem B]. The improvement of [2, Theorem B] in the univariate
case is the fact, that h in (5) of Theorem 5.1 above can be taken from R[x] instead
of Mn(R[x]).

Proof of equivalence (1) ⇔ (2) of Theorem 5.1. It follows by Corollary 2.8 for
w0 = i.

Proof of equivalence (1) ⇔ (3) of Theorem 5.1. We will need an additional
lemma to prove (1) ⇒ (3) for the case w ∈ R \K. Let K ⊆ T be a semialgebraic
set with a saturated description S := {b1, . . . , bs}. We say that A lies in the
bounded part T n

S ,b of T n
S
, if it can be writen in the form A =

∑

e∈{0,1}s τeb
e with

τe ∈
∑

Mn(C[z])
2 and deg(τeb

e) ≤ deg(A) for each e.
Assume the notation from Subsections 2.2 and 3.2.

Lemma 5.2. Let K ⊆ T be a non-empty basic closed semialgebraic set and S a
saturated description of K . Then for every A ∈ Posn�0(K ) and every

(1) z0 ∈ T if K = T,
(2) z0 ∈ T \ K if K 6= T,

there exists ℓz0 ∈ N ∪ {0}, such that ((z − z0)
∗(z − z0))

ℓz0 A ∈ T n
S ,b.

Proof. If K = T, we choose kz0 = 0 and the result follows by Theorem 1.1.
Otherwise let z0 ∈ T \ K . We have Γz0,i,A(x) ∈ Posn�0(Kz0,i). Note that Kz0,i is
a non-empty basic compact semialgebraic set with a saturated description Γz0,i,S .
By Theorem 2.2, Γz0,i,A(x) ∈ T n

Γz0,i,S
. But then by (◦),

((z − z0)
∗ · (z − z0))

ℓz0 · A(z) ∈ T
n

S ,b

for ℓz0 ∈ N ∪ {0} great enough. �

Proof of equivalence (1) ⇔ (3) of Theorem 5.1. For w ∈ C\R the statement follows
by Corollary 2.8. Let now w ∈ R\K. IfK = R, there is nothing to prove. Otherwise
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K 6= R. Λ1,i,F (z) ∈ Posn�0(K1,i). By Lemma 5.2, for every z0 ∈ T \K there exists
ℓz0 ∈ N ∪ {0}, such that

((z − z0)
∗(z − z0))

ℓz0 Λ1,i,F (z) ∈ T
n
Λ1,i,S ,b.

By (∗) and the fact that z0 6= 1 (Since K is unbounded, 1 ∈ K1,i.), it follows that

(

(x− i)(x+ i)

4

)⌈ deg(F )
2 ⌉+ℓz0

·
(

((z − z0)
∗(z − z0))

ℓz0 Λ1,i,F

)

(λ1,i(x)) =

=

(

(x− i)(x+ i)

4

)⌈ deg(F )
2 ⌉+ℓz0

(

(

(λ1,i(x) − z0)
2

−z0λ1,i(x)

)ℓz0

· Λ1,i,F (λ1,i(x))

)

=

=

(

(2− (z0 + z0))

4

)ℓz0

· (x− λ1,i(z0))
ℓz0 · F (x) ∈ T n

S .

Hence,

(x− λ1,i(z0))
ℓz0 · F (x) ∈ T n

S

for some ℓz0 ∈ N ∪ {0}. When z0 runs over T \K , λ1,i(z0) runs over R \K, which
is exactly (3) for w ∈ R \ K (For w = λ1,i(z0), kw := ℓz0 .) This concludes the
proof. �

Proof of equivalence (1) ⇔ (4) of Theorem 5.1. It follows from the equivalence
(1) ⇔ (3). If K = R, we can take h = 1, by Theorem 1.2. Otherwise there are
x1, x2 ∈ R \ K, x1 6= x2. For w 6= x1 take h(x) = (x − x1)

kx1 from (3), while for
w = x1 take h(x) = (x− x2)

kx2 from (3).

Proof of equivalence (1) ⇔ (5) of Theorem 5.1. The non-trivial direction is
(1) ⇒ (5). Let us write

F 2p−1 = [fjl]jl =

n
∑

j=1

fjjEjj +
∑

j<l

fjl (Ejl + Eji) .

For every j = 1, . . . , n we have

fjjEjj �
(

1 + f2
jj

)

Ejj �
(

1 + f2
jj

)

In.

For every 1 ≤ j < l ≤ n we have

fjl (Ejl + Eji) �
(

1 + fjlfjl
)

(Ejj + Ell) �
(

1 + fjlfjl
)

In.

We use those inequalities and obtain F 2p−1 � h̃In, where h̃ :=
∑

j,l

(

1 + fjlfjl
)

In.

We will argue that h̃F −F 2p ∈ Posn�0(K). By the equality h̃F −F 2p = F (h̃In −
F 2p−1), the inclusions F ∈ Posn�0(K) and h̃In − F 2p−1 ∈ Posn�0(R) ⊆ Posn�0(K),

and the fact that the matrix polynomials F , h̃In −F 2p−1 commute, it follows that
h̃F − F 2p ∈ Posn�0(K).

Now we will prove, that there is h ∈ ∑R[x]2 and F ′ ∈ T n
S , such that hF =

F 2p + F ′. By the equivalence (1) ⇔ (2) of Theorem 5.1, there exists k ∈ N ∪ {0},
such that (1+x2)k(h̃F−F 2p) ∈ T n

S . It follows that (1+x2)2kh̃F = (1+x2)2kF 2p+F̃ ,

where F̃ ∈ T n
S . We can write (1 + x2)2k = 1 + r(x), where r ∈∑R[x]2. It follows

that

(1 + x2)2kh̃F = (1 + x2)2kF 2p + F̃ = F 2p + rF 2k + F̃ .

Therefore hF = F 2p+F ′ for h := (1+x2)2kh̃ ∈∑R[x]2 and F ′ := rF 2k + F̃ ∈ T n
S .
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6. Application to the matrix moment problem

Given a closed subset K of Rn, one of the matrix versions of the K-moment prob-
lem asks for a characterization of the linear functionals L : Mn (R[x1, . . . , xn]) → R

which arise by integration with respect to a suitable operator Borel measure on
K. See [3] for details and the basic terminology. [3, Theorem 3] is such a char-
acterization. With the use of results of this paper we obtain Švecov’s theorem for
matrix polynomials (see [3, Corollary 1] for Hamburger’s, Stieltjes’ and Hausdorff’s
theorems for matrix polynomials):

Theorem 6.1. Let L be a linear functional on Hn(R[x]). For each p ∈ N0 write
Sp := [L(xpEk,l)]k,l=1,...,n where Ek,l are coordinate matrices. Then L has an
integral representation with a positive operator-valued measure E whose support is
contained in (−1, 0] ∪ [1,∞) iff [Si+j ]i,j=0,...,m and [Si+j+2 − Si+j+1]i,j=0,...,m are
positive semidefinite for every m ∈ N0.

Proof. Use [3, Theorem 3] and Theorem 3.2 for a union of two unbounded intervals.
�

Acknowledgment. I would like to thank to my advisor Jaka Cimprič for proposing
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