Matrix Fejér-Riesz Theorem with gaps

Aljaž Zalar

Institute of Mathematics, Physics, and Mechanics, Jadranska 19, 1000 Ljubljana, Slovenia

Abstract

The matrix Fejér-Riesz theorem characterizes positive semidefinite matrix polynomials on the real line \mathbb{R} . We extend a characterization to arbitrary closed semialgebraic sets $K \subseteq \mathbb{R}$ by the use of matrix preorderings from real algebraic geometry. In the compact case a denominator-free characterization exists, while in the non-compact case there are counterexamples. However, there is a weaker characterization with denominators in the non-compact case. At the end we extend the results to algebraic curves.

Keywords: positive polynomials, matrix polynomials, preorderings, Nichtnegativstellensatz, real algebraic geometry 2000 MSC: 14P10, 13J30, 47A56

1. Introduction

1.1. Motivation

The matrix Fejér-Riesz theorem is the following result (For the proof see either of [8], [18], [10], [6], [4], [17], [7]).

Theorem 1.1. Let $F(x) = \sum_{m=0}^{2N} F_m x^m$ be a $n \times n$ matrix polynomial from $M_n(\mathbb{C}[x])$ which is positive semidefinite on \mathbb{R} . Then there exists a matrix polynomial $G(x) = \sum_{m=0}^{N} G_m x^m \in M_n(\mathbb{C}[x])$ such that $F(x) = G(x)^* G(x)$ where $G(x)^* = \sum_{m=0}^{N} G_m^* x^m = \sum_{m=0}^{N} \overline{G_m}^T x^m = \overline{G(x)}^T$.

In the scalar case (n = 1) Theorem 1.1 has already been extended to a finite union of points and intervals (not necessarily bounded) in \mathbb{R} by S. Kuhlmann and Marshall [11, Theorem 2.2]. The main problem of our paper is the following.

Problem. Characterize univariate matrix polynomials which are positive semidefinite on a finite union of points and intervals (not necessarily bounded) in \mathbb{R} .

Preprint submitted to Elsevier

Email address: aljaz.zalar@imfm.si (Aljaž Zalar)

Our main results, which will be explicitly stated in Subsection 1.3, are a denominator-free generalization of Theorem 1.1 to a finite union of compact intervals in \mathbb{R} , a classification of counterexamples for a denominator-free generalization to an unbounded finite union of closed intervals in \mathbb{R} and a generalization with denominators in this case.

1.2. Notation and known results

Let $M_n(\mathbb{C}[x])$ be a set of all $n \times n$ matrix polynomials over $\mathbb{C}[x]$ equipped with the *involution* $F(x)^* = \overline{F(x)}^T$ where $\overline{x} = x$.

Remark 1.2. For n = 1 and $p(x) := \sum_{i=0}^{m} a_i x^i \in \mathbb{C}[x]$, the involution is $p(x)^* = \sum_{i=0}^{m} \overline{a_i} x^i$.

We say $F(x) \in M_n(\mathbb{C}[x])$ is hermitian if $F(x) = F(x)^*$. We write $\mathbb{H}_n(\mathbb{C}[x])$ for the set of all hermitian matrix polynomials from $M_n(\mathbb{C}[x])$. A matrix polynomial $F(x) \in \mathbb{H}_n(\mathbb{C}[x])$ is positive semidefinite in $x_0 \in \mathbb{C}$ if $v^*F(x_0)v \ge 0$ for every nonzero $v \in \mathbb{C}^n$. We denote by $\sum M_n(\mathbb{C}[x])^2$ the set of all finite sums of the expressions of the form $G(x)^*G(x)$ where $G(x) \in M_n(\mathbb{C}[x])$. We call such expressions hermitian squares of matrix polynomials.

The closed semialgebraic set associated to a finite subset $S = \{g_1, \ldots, g_s\} \subset \mathbb{R}[x]$ is given by $K_S = \{x \in \mathbb{R} : g_j(x) \ge 0, j = 1, \ldots, s\}$. We define the *n*-th matrix quadratic module generated by S in $\mathbb{H}_n(\mathbb{C}[x])$ by

$$M_S^n := \left\{ \sigma_0 + \sigma_1 g_1 + \ldots + \sigma_s g_s \colon \sigma_j \in \sum M_n(\mathbb{C}[x])^2, \ j = 0, \ldots, s \right\},$$

and the *n*-th matrix preordering generated by S in $\mathbb{H}_n(\mathbb{C}[x])$ by

$$T_S^n := \left\{ \sum_{e \in \{0,1\}^s} \sigma_e \underline{g}^e \colon \sigma_e \in \sum M_n(\mathbb{C}[x])^2 \text{ for all } e \in \{0,1\}^s \right\},\$$

where $e := (e_1, \ldots, e_s)$ and g^e stands for $g_1^{e_1} \cdots g_s^{e_s}$.

Remark 1.3. Note that T_S^n is the quadratic module generated by all products $g^e, e \in \{0,1\}^s$.

We write $\operatorname{Pos}_{\geq 0}^{n}(K_{S})$ for the set of all $n \times n$ hermitian matrix polynomials which are positive semidefinite on K_{S} . We say M_{S}^{n} (resp. T_{S}^{n}) is saturated if $M_{S}^{n} = \operatorname{Pos}_{\geq 0}^{n}(K_{S})$ (resp. $T_{S}^{n} = \operatorname{Pos}_{\geq 0}^{n}(K_{S})$).

Theorem 1.1 can be restated in the following form.

Theorem 1.1'. Assume the notation as above. The set $M_{\emptyset}^n = T_{\emptyset}^n$ is saturated for every $n \in \mathbb{N}$.

The aim of this article is to study matrix generalizations of Theorem 1.1' to an arbitrary closed semialgebraic set $K \subseteq \mathbb{R}$. In this notation Problem becomes the following.

Problem'. Assume $K \subseteq \mathbb{R}$ is a closed semialgebraic set. Does there exist a finite set $S \subset \mathbb{R}[x]$ such that $K = K_S$ and the n-th matrix quadratic module M_S^n or preordering T_S^n is saturated for every $n \in \mathbb{N}$?

Now we recall a description of a closed semialgebraic set $K \subseteq \mathbb{R}$, introduced in [11], which solves Problem' for n = 1. A set $S = \{g_1, \ldots, g_s\} \subset \mathbb{R}[x]$ is the natural description of K if it satisfies the following conditions:

- (a) If K has the least element a, then $x a \in S$.
- (b) If K has the greatest element a, then $a x \in S$.
- (c) For every $a \neq b \in K$, if $(a, b) \cap K = \emptyset$, then $(x a)(x b) \in S$.
- (d) These are the only elements of S.

Problem' has already been solved in the following cases:

- 1. The preordering T_S^1 is saturated for the natural description S of K (see [11, Theorem 2.2]).
- 2. For $K = K_{\{x,1-x\}} = [0,1]$, $M_{\{x,1-x\}}^n$ is saturated for every $n \in \mathbb{N}$ (see [5, Theorem 2.5] or [24, Theorem 7]).
- 3. For $K = K_{\{x\}} = [0, \infty)$, $M_{\{x\}}^n$ is saturated for every $n \in \mathbb{N}$ (see [24, Theorem 8] or [3, Proposition 3]).

Even more can be said in the case n = 1. There is a characterization of finite sets $S = \{g_1, \ldots, g_s\} \subset \mathbb{R}[x]$ such that the preordering T_S^1 is saturated, which we now explain. We separate two possibilities according to the compactness of K_S .

- 1. K_S is not compact: By [11, Theorem 2.2], T_S^1 is saturated iff S contains each of the polynomials in the natural description of K_S up to scaling by positive constants.
- 2. K_S is compact: Write K_S as the union of pairwise disjoint points and intervals, i.e., $K_S = \bigcup_{j=1}^{t} [x_j, y_j]$ where $x_j \leq y_j$ for every $j = 1, \ldots, t$. By a special case of Scheiderer's results [22, Corollary 4.4], [21, Theorem 5.17] (which cover non-singular curves in \mathbb{R}^n), $M_S^1 = T_S^1$ and M_S^1 is saturated iff the following two conditions hold:
 - (a) For every left endpoint x_j there exists $k \in \{1, \ldots, s\}$ such that $g_k(x_j) = 0$ and $g'_k(x_j) > 0$.
 - (b) For every right endpoint y_j there exists $k \in \{1, \ldots, s\}$ such that $g_k(y_j) = 0$ and $g'_k(y_j) < 0$.

(For another proof see [12, Theorem 3.2].). We call every set $S \subset \mathbb{R}[x]$ which satisfies the two conditions above a saturated description of K_S .

Convention. An interval always has a non-empty interior.

1.3. New results

One of the main results of the paper which solves Problem' for compact sets K is the following.

Theorem C. Let K be a compact semialgebraic set. The n-th matrix quadratic module M_S^n is saturated for every $n \in \mathbb{N}$ iff S is a saturated description of K (see Theorem 2.1).

The answers to Problem' for unbounded sets K (except for a union of one or two unbounded intervals and a point) are given by the following result.

Theorem D. Let K be an unbounded closed semialgebraic set.

The n-th matrix quadratic module M_S^n is saturated for the natural description S of K and every $n \in \mathbb{N}$ if K is either of the following:

- 1. An unbounded interval (by Theorem 1.1' and [24, Theorem 8]).
- 2. A union of two unbounded intervals (see Proposition 3.1).

The n-th matrix preordering T_S^n is not saturated for any finite set $S \subset \mathbb{R}[x]$ such that $K = K_S$ in the following cases (see Theorem 3.2):

- 1. $n \geq 2$ and K contains at least two intervals with at least one of them bounded.
- 2. $n \ge 2$ and K is a union of an unbounded interval and m isolated points with $m \ge 2$.
- 3. $n \ge 2$ and K is a union of two unbounded intervals and m isolated points with $m \ge 2$.

In the remaining cases of a union of one or two unbounded intervals and a point not covered by Theorems C and D we state the following conjecture based on the investigation of some examples.

Conjecture. Let $K \subseteq \mathbb{R}$ be either of the following:

- 1. A union of an unbounded interval and a point.
- 2. A union of two unbounded intervals and a point.

Suppose S is the natural description of K. Then the n-th matrix preordering T_{S}^{n} is saturated for every natural number n > 1.

Note that by an appropriate substitution of variables both cases covered by Conjecture are equivalent.

For the unbounded sets K with a negative answer to Problem' we obtain the following characterization of the set $\operatorname{Pos}_{\succeq 0}^{n}(K)$.

Theorem E. Let K be an unbounded closed semialgebraic set with a natural description S and $n \in \mathbb{N}$. Then the following statements are equivalent:

- 1. $F \in Pos_{\succ 0}^n(K)$.
- 2. For every $w \in \mathbb{C}$ there exists $h \in \mathbb{R}[x]$ such that $h(w) \neq 0$ and $h^2 F \in T_S^n$ (see Theorem 3.5).
- 3. For every $w \in \mathbb{C} \setminus K$ there exists $k_w \in \mathbb{N} \cup \{0\}$ such that

$$((x-\overline{w})(x-w))^{k_w}F \in T_S^n$$

(see Corollary 4.3 and Remark 4.4).

4. $(1+x^2)^k F \in T_S^n$ for some $k \in \mathbb{N} \cup \{0\}$ (Take w = i in 3.).

The following table summarizes [11, Theorem 2.2], Theorems C, D and Conjecture.

K	A	В
a bounded set	Yes	Yes
an unbounded interval	Yes	Yes
a union of an unbounded interval and an isolated point	Yes	С
a union of an unbounded interval and	Yes	No
m isolated points with $m \ge 2$		
a union of two unbounded intervals	Yes	Yes
a union of two unbounded intervals and an isolated point	Yes	С
a union of two unbounded intervals and	Yes	No
m isolated points with $m \ge 2$		
includes a bounded and an unbounded interval	Yes	No

- $A := \text{The preordering } T_S^1 \text{ is saturated for the natural description } S \text{ of } K.$
- $B := \text{The } n\text{-th matrix preordering } T_S^n \text{ is saturated for the natural description } S \text{ of } K \text{ and every integer } n \in \mathbb{N}.$

C := See Conjecture.

- **Remark 1.4.** 1. Since T_S^1 is saturated for the natural description S of K, it follows that if T_S^n is not saturated for some $n \in \mathbb{N}$, then $T_{S_1}^n$ is not saturated for any finite set S_1 satisfying $K_{S_1} = K$.
 - 2. The classification covers all closed semialgebraic sets $K \subseteq \mathbb{R}$. A set K is regular if it is equal to the closure of its interior. For regular sets $K \subseteq \mathbb{R}$ the classification is complete.

2. Saturated descriptions of a compact set $K \subset \mathbb{R}$ generate saturated *n*-th matrix quadratic modules

The solution to Problem' from the Introduction for a compact set K is the main result of this section (see Theorem 2.1 below). It also characterizes all finite sets S such that the quadratic module M_S^n is saturated for every natural number $n \in \mathbb{N}$.

Theorem 2.1. Suppose K is a non-empty compact semialgebraic set in \mathbb{R} . The n-th matrix quadratic module M_S^n is saturated for every $n \in \mathbb{N}$ iff S a saturated description of K.

The main ingredients in the proof of Theorem 2.1 are:

1. The n = 1 case [21, Theorem 5.17].

- 2. The " h^2F -proposition" (See Proposition 2.2 below. The proof uses the idea of diagonalizing matrix polynomials from [23, 4.3].).
- 3. Getting rid of h^2 in " h^2F -proposition" (The proof uses [20, Proposition 2.7], which is Proposition 2.6 below.).
- 2.1. " h^2F -proposition"

We call the following result " $h^2 F$ -proposition".

Proposition 2.2. Suppose K is a non-empty compact semialgebraic set in \mathbb{R} with a saturated description S. Then, for any $F \in \mathbb{H}_n(\mathbb{C}[x])$ such that $F \succeq 0$ on K and every point $x_0 \in \mathbb{C}$, there exists $h \in \mathbb{R}[x]$ such that $h(x_0) \neq 0$ and $h^2F \in M_S^n$.

To prove Proposition 2.2 we need Lemmas 2.3 and 2.4 below.

Lemma 2.3. Let $G = [g_{kl}]_{kl} \in M_n(\mathbb{C}[x])$. For every $1 \le k \le l \le n$ there exist unitary matrices $U_{kl} \in M_n(\mathbb{R})$ and $V_{kl} \in M_n(\mathbb{C})$ such that

$$U_{kl}GU_{kl}^* = \begin{bmatrix} p_{kl} & * \\ * & * \end{bmatrix}, \quad V_{kl}GV_{kl}^* = \begin{bmatrix} r_{kl} & * \\ * & * \end{bmatrix},$$

where

$$p_{kl} = \begin{cases} g_{kl}, & \text{for } 1 \le k = l \le n \\ \frac{1}{2}(g_{kl} + g_{lk} + g_{kk} + g_{ll}), & \text{for } 1 \le k < l \le n \end{cases},$$

$$r_{kl} = \begin{cases} g_{kl}, & \text{for } 1 \le k = l \le n \\ \frac{i}{2}(-g_{kl} + g_{lk}) + \frac{1}{2}(g_{kk} + g_{ll}), & \text{for } 1 \le k < l \le n \end{cases}.$$

Proof. We define $U_{11} = V_{11} := I_n$, $U_{kk} = V_{kk} := P_k$ for k = 2, ..., n, where P_k denotes the permutation matrix which permutes the first row and the k-th row.

For $1 \le k < l \le n$, define $U_{kl} := P_k S_{kl}$ where $S_{kl} = \left(s_{pr}^{(kl)}\right)_{pr} \in M_n(\mathbb{R})$ is the matrix with $s_{kk}^{(kl)} = s_{kl}^{(kl)} = s_{lk}^{(kl)} = \frac{1}{\sqrt{2}}, s_{ll}^{(kl)} = -\frac{1}{\sqrt{2}}, s_{pp}^{(kl)} = 1$ if $p \notin \{k, l\}$ and $s_{pr}^{(kl)} = 0$ otherwise.

For $1 \le k < l \le n$, define $V_{kl} := P_k \tilde{S}_{kl}$ where $\tilde{S}_{kl} = \left(\tilde{s}_{pr}^{(kl)}\right)_{pr} \in M_n(\mathbb{C})$ is the matrix with $\tilde{s}_{kk}^{(kl)} = \tilde{s}_{lk}^{(kl)} = \frac{1}{\sqrt{2}}, \ \tilde{s}_{kl}^{(kl)} = \frac{i}{\sqrt{2}}, \ \tilde{s}_{ll}^{(kl)} = -\frac{i}{\sqrt{2}}, \ \tilde{s}_{pp}^{(kl)} = 1$ if $p \notin \{k, l\}$ and $\tilde{s}_{pr}^{(kl)} = 0$ otherwise.

Lemma 2.4. For $F = \begin{bmatrix} a & \beta \\ \beta^* & C \end{bmatrix} \in \mathbb{H}_n(\mathbb{C}[x])$ where $a = a^* \in \mathbb{R}[x], \beta \in M_{1,n-1}(\mathbb{C}[x])$ and $C \in \mathbb{H}_{n-1}(\mathbb{C}[x])$ it holds that

(i)
$$a^4 \cdot F = \begin{bmatrix} a^* & 0 \\ \beta^* & a^* I_{n-1} \end{bmatrix} \begin{bmatrix} a^3 & 0 \\ 0 & a(aC - \beta^*\beta) \end{bmatrix} \begin{bmatrix} a & \beta \\ 0 & aI_{n-1} \end{bmatrix}$$
.
(ii) $\begin{bmatrix} a^3 & 0 \\ 0 & a(aC - \beta^*\beta) \end{bmatrix} = \begin{bmatrix} a^* & 0 \\ -\beta^* & a^* I_{n-1} \end{bmatrix} \cdot F \cdot \begin{bmatrix} a & -\beta \\ 0 & aI_{n-1} \end{bmatrix}$

Proof. Easy computation.

Proof of Proposition 2.2. The proof is by induction on the size n of the matrix polynomials. For n = 1 the proposition holds by the scalar case (We take h = 1 and use [21, Theorem 5.17] and [22, Corollary 4.4].). Suppose the proposition holds for n - 1. We will prove that it holds for n. Let us take $F := [f_{kl}]_{kl} \in \mathbb{H}_n(\mathbb{C}[x])$ where $F \succeq 0$ on K. Let us define

$$c(x) := \begin{cases} x - x_0, & x_0 \in \mathbb{R} \\ (x - x_0)(x - \overline{x_0}), & x_0 \in \mathbb{C} \setminus \mathbb{R} \end{cases}$$

If $F \equiv 0$, we can take h = 1. Otherwise $F \not\equiv 0$ and we write

$$F = c^m G$$
.

where $m \in \mathbb{N} \cup \{0\}, G = [g_{kl}]_{kl} \in \mathbb{H}_n (\mathbb{C} [x])$ and

$$G(x_0) = [g_{kl}(x_0)]_{kl} \neq 0.$$
(1)

Claim. One of the following two cases applies:

Case 1: $g_{k_0k_0}(x_0) \neq 0$ for some $k_0 \in \{1, ..., n\}$.

Case 2: $g_{kk}(x_0) = 0$ for all $k \in \{1, \ldots, n\}$ and for some $1 \le k_0 < l_0 \le n$ we have

 $\begin{aligned} \Re(g_{k_0l_0})(x_0) \neq 0 \quad \text{or} \quad \Im(g_{k_0l_0})(x_0) \neq 0, \\ \text{where } \Re(g_{k_0l_0}) := \frac{g_{k_0l_0} + \overline{g_{k_0l_0}}}{2} \in \mathbb{R}[x] \text{ and } \Im(g_{k_0l_0}) := \frac{g_{k_0l_0} - \overline{g_{k_0l_0}}}{2i} \in \mathbb{R}[x]. \end{aligned}$

Proof of Claim. Let us assume that none of the two cases applies. Then $\Re(g_{kl})(x_0) = \Im(g_{kl})(x_0) = 0$ for all $1 \le k \le l \le n$. Let us take l < k. Since $G \in \mathbb{H}_n (\mathbb{C}[x])$ is hermitian, it follows that $g_{lk} = \overline{g_{kl}} = \Re g_{kl} - i \cdot \Im g_{kl}$. Therefore $g_{lk}(x_0) = \Re g_{kl}(x_0) - i \cdot \Im g_{kl}(x_0) = 0$. Hence $g_{kl}(x_0) = 0$ for all $k, l \in \{1, \ldots, n\}$. This is a contradiction with (1) and proves Claim.

Let U_{kl} , V_{kl} , p_{kl} , r_{kl} be as in Lemma 2.3. We study each case from Claim separately:

Case 1: We define $T_{k_0k_0} := U_{k_0k_0}$, $\tilde{g}_{k_0k_0} := g_{k_0k_0}$. Notice that $\tilde{g}_{k_0k_0}(x_0) = g_{k_0k_0}(x_0) \neq 0$.

Case 2: We will separate three subcases:

Subcase 2.1. $p_{k_0 l_0}(x_0) \neq 0$: We define $T_{k_0 l_0} := U_{k_0 l_0}, \tilde{g}_{k_0 l_0} := p_{k_0 l_0}$. Notice that $\tilde{g}_{k_0 l_0}(x_0) \neq 0$.

Subcase 2.2. $r_{k_0 l_0}(x_0) \neq 0$: We define $T_{k_0 l_0} := V_{k_0 l_0}, \tilde{g}_{k_0 l_0} := r_{k_0 l_0}$. Notice that $\tilde{g}_{k_0 l_0}(x_0) \neq 0$.

Subcase 2.3. $p_{k_0l_0}(x_0) = r_{k_0l_0}(x_0) = 0$: We will prove that this subcase does not happen. By definition and assumptions we have

$$p_{k_0l_0}(x_0) = \frac{1}{2}(g_{k_0l_0} + g_{l_0k_0} + g_{k_0k_0} + g_{l_0l_0})(x_0) = \frac{1}{2}(g_{k_0l_0} + g_{l_0k_0})(x_0) = = (\Re g_{k_0l_0})(x_0)$$
$$r_{k_0l_0}(x_0) = \frac{i}{2}(-g_{k_0l_0} + g_{l_0k_0})(x_0) + \frac{1}{2}(g_{k_0k_0} + g_{l_0l_0})(x_0) = \frac{i}{2}(-g_{k_0l_0} + g_{l_0k_0})(x_0) = = (\Im g_{k_0l_0})(x_0)$$

Since we are in Case 2, $(\Re g_{k_0 l_0})(x_0) \neq 0$ or $(\Im g_{k_0 l_0})(x_0) \neq 0$. Contradiction. Hence Subcase 2.3 never happens.

To avoid repetition in what follows we define $k_0 = l_0$ if we are in Case 1. If we write $T_{k_0 l_0} GT^*_{k_0 l_0} = \begin{bmatrix} \tilde{g}_{k_0 l_0} & \tilde{\beta} \\ \tilde{\beta}^* & \tilde{C} \end{bmatrix}$ with $\tilde{\beta} \in M_{1,n-1}(\mathbb{C}[x])$ and $\tilde{C} \in M_{n-1}(\mathbb{C}[x])$, then $T_{k_0 l_0} FT^*_{k_0 l_0} = \begin{bmatrix} c^m \tilde{g}_{k_0 l_0} & c^m \tilde{\beta} \\ (c^m \tilde{\beta})^* & c^m \tilde{C} \end{bmatrix} =: \begin{bmatrix} a & \beta \\ \beta^* & C \end{bmatrix}$. Therefore by part (i) of Lemma 2.4 and dividing by c^{4m} , it follows that

$$\tilde{g}^{2}F = T_{k_{0}l_{0}}^{*} \begin{bmatrix} \tilde{g}_{k_{0}l_{0}}^{*} & 0\\ \tilde{\beta}^{*} & \tilde{g}_{k_{0}l_{0}}^{*}I_{n-1} \end{bmatrix} \begin{bmatrix} d & 0\\ 0 & D \end{bmatrix} \begin{bmatrix} \tilde{g}_{k_{0}l_{0}} & \tilde{\beta}\\ 0 & \tilde{g}_{k_{0}l_{0}}I_{n-1} \end{bmatrix} T_{k_{0}l_{0}},$$

where

$$\begin{split} \tilde{g} &= \tilde{g}_{k_0 l_0}^2 \in \mathbb{H}_1\left(\mathbb{C}\left[x\right]\right) = \mathbb{R}[x] \\ d &= c^m \tilde{g}_{k_0 l_0}^3 \in \mathbb{H}_1\left(\mathbb{C}\left[x\right]\right) = \mathbb{R}[x], \\ D &= c^m \tilde{g}_{k_0 l_0}\left(\tilde{g}_{k_0 l_0} \tilde{C} - \tilde{\beta}^* \tilde{\beta}\right) \in \mathbb{H}_{n-1}\left(\mathbb{C}\left[x\right]\right). \end{split}$$

By part (*ii*) of Lemma 2.4 and dividing by c^{2m} , we have also

$$\begin{bmatrix} d & 0 \\ 0 & D \end{bmatrix} = \begin{bmatrix} \tilde{g}_{k_0 l_0}^* & 0 \\ -\tilde{\beta}^* & \tilde{g}_{k_0 l_0}^* I_{n-1} \end{bmatrix} T_{k_0 l_0} F T_{k_0 l_0}^* \begin{bmatrix} \tilde{g}_{k_0 l_0} & -\tilde{\beta} \\ 0 & \tilde{g}_{k_0 l_0} I_{n-1} \end{bmatrix}$$

It follows that $d \ge 0$, $D \succeq 0$ on K. By the induction hypothesis used for the polynomial $D \in \mathbb{H}_{n-1}(\mathbb{C}[x])$, there exists $h_1 \in \mathbb{R}[x]$ such that $h_1(x_0) \ne 0$ and $h_1^2 D \in M_S^{n-1}$. By the scalar case [21, Theorem 5.17] and [22, Corollary 4.4], $h_1^2 d \in M_S^1$. Hence $h^2 F \in M_S^n$ where $h = h_1 \tilde{g} \in \mathbb{R}[x]$ and $h(x_0) \ne 0$. This concludes the proof.

Remark 2.5. By keeping track on the degree of h and using [12, Theorem 4.1], we can prove more in Proposion 2.2 above. Namely, h can be chosen of degree at most deg $(F)(3^n-1)$ and if $S = \{g_1, \ldots, g_s\}$ is the natural description of K, then $F = \sum_{e \in \{0,1\}^s} \sigma_e \underline{g}^e \in T_S^n$ for some $\sigma_e \in M_n(\mathbb{C}[x])^2$ with deg $(\sigma_e \underline{g}^e) \leq \deg(h^2 F)$.

2.2. Getting rid of h^2 in " h^2F -proposition"

To get rid of h^2 in " h^2F -proposition", which proves Theorem 2.1, we will use [20, Proposition 2.7]:

Proposition 2.6. Suppose R is a commutative ring with 1 and $\mathbb{Q} \subseteq R$. Let $\Phi : R \to C(K, \mathbb{R})$ be a ring homomorphism, where K is a topological space which is compact and Hausdorff. Suppose $\Phi(R)$ separates points in K. Suppose $f_1, \ldots, f_k \in R$ are such that $\Phi(f_j) \ge 0$, $j = 1, \ldots, k$ and $(f_1, \ldots, f_k) = (1)$. Then there exist $s_1, \ldots, s_k \in R$ such that $s_1f_1 + \ldots + s_kf_k = 1$ and such that each $\Phi(s_j)$ is strictly positive.

Proof of Theorem 2.1. By [22, Corollary 4.4] and [21, Theorem 5.17], M_S^1 is saturated if and only if S is a saturated description of K. Therefore we have to prove only the if part. Let S be a saturated description of K. We will prove that M_S^n is saturated for every $n \in \mathbb{N}$. Let $R := \mathbb{R}[x]$ and $\Phi : R \to C(K, \mathbb{R})$ be the natural map, i.e., $\Phi(f) = f|_K$. Take $F \in \operatorname{Pos}_{\geq 0}^n(K)$. We will prove that $F \in M_S^n$. Let $I := \langle h^2 \in \mathbb{R}[x] : h^2 F \in M_S^n \rangle$ be the ideal in $\mathbb{R}[x]$ generated by all h^2 where $h \in \mathbb{R}[x]$ is such that $h^2 F \in M_S^n$. Since $\mathbb{R}[x]$ is a principal ideal domain, there exists a polynomial $p \in \mathbb{R}[x]$ such that $I = \langle p \rangle$. If I was a proper ideal, all its elements would have a common zero $x_0 \in \mathbb{C}$. By Proposition 2.2, there exists $h \in \mathbb{R}[x]$ such that $h(x_0) \neq 0$ and $h^2 F \in M_S^n$. Since h belongs to I, it follows that I is not a proper ideal and hence $I = \mathbb{R}[x]$. By Proposition 2.6, there exist $s_1, \ldots, s_k \in \operatorname{Pos}_{\geq 0}^1(K)$ and $h_1, \ldots, h_k \in I$ such that $\sum_{j=1}^k s_j h_j^2 = 1$. Hence $\sum_{j=1}^k s_j h_j^2 F = F \in M_S^n$, which concludes the proof.

- **Remark 2.7.** 1. There is another proof of Theorem 2.1 which uses Proposition 2.2 just for the boundary points of K. We outline the main idea. There exists $h \in \mathbb{R}[x]$ such that $h \in \operatorname{Pos}_{\geq 0}^1(\mathbb{R})$, $h(x_0) > 0$ for every boundary point of K and $hF \in M_S^n$ (Take $h = \sum_{x_0 \in \partial K} h_{x_0}^2$ where ∂K is the boundary of K and h_{x_0} is the polynomial from Proposition 2.2 for the point x_0 .) Now multiply every member of the set S by h to obtain the set S_1 which satisfies conditions of [21, Corollary 5.17]. Thus $M_S^1 = M_{S_1}^1$ and $hF \in M_{S_1}^n$. This means there exist $\sigma_j \in \sum M_n(\mathbb{C}[x])^2$ such that $hF = \sigma_0 + \sigma_1 hg_1 + \ldots + \sigma_s hg_s$. From here it is easy to see that $F = \tau_0 + \sigma_1 g_1 + \ldots + \sigma_s g_s$ for some $\tau_0 \in \sum M_n(\mathbb{C}[x])^2$ and hence $F \in M_S^n$.
 - 2. By Remark 2.5, the degree of h in Proposition 2.2 and the degrees of summands in the expression of h^2F as the element of the preordering T_S^n generated by the natural description S of K can be bounded by the degree of F and n. It would be interesting to know if the same holds for F and an arbitrary compact set K. It can be shown this is true for a finite set K. The degrees can be bounded by $\max(\deg(F), |K| 1)$.

3. Unbounded sets K without saturated T_S^2 for any finite sets S with $K_S = K$

The answer to the question of Problem' for unbounded sets K is positive for an unbounded interval by Theorem 1.1' (if $K = \mathbb{R}$) and [24, Theorem 8] (if $K = [a, \infty)$). It is also easy to derive a positive answer for a union of two unbounded intervals from the case K = [a, b]:

Proposition 3.1. Let $K = (-\infty, a] \cup [b, \infty)$ be a union of two unbounded intervals where $a, b \in \mathbb{R}$ and a < b. Then the quadratic module $M^n_{\{(x-a)(x-b)\}}$ is saturated for every $n \in \mathbb{N}$.

Proof. By a linear change of variables, we may assume that $K = (-\infty, -1] \cup [1, \infty)$. Note that $F \in \text{Pos}_{\geq 0}^n(K)$ is of even degree. We define

$$F_1(x) = x^{\deg(F)} F\left(\frac{1}{x}\right)$$

and observe that $F_1 \succeq 0$ on [-1, 1]. By [5, Theorem 2.5] and by the identity

$$1 \pm x = \frac{(1 \pm x)^2 + (x+1)(1-x)}{2},$$

there exist matrix polynomials G_1 , H_1 such that

$$F_1(x) = G_1(x)^* G_1(x) + H_1(x)^* H_1(x)(x+1)(1-x),$$
$$\deg(G_1) \le \left\lfloor \frac{\deg(F_1)}{2} \right\rfloor \le \frac{\deg(F)}{2},$$
$$\deg(H_1) \le \left\lfloor \frac{\deg(F_1) - 1}{2} \right\rfloor \le \left\lfloor \frac{\deg(F) - 1}{2} \right\rfloor = \frac{\deg(F)}{2} - 1$$

Therefore

$$\begin{split} F(x) &= x^{\deg(F)} F_1(\frac{1}{x}) \\ &= x^{\deg(F)} (G_1(\frac{1}{x})^* G_1(\frac{1}{x}) + H_1(\frac{1}{x})^* H_1(\frac{1}{x})(\frac{1}{x}+1)(1-\frac{1}{x})) \\ &=: \quad G(x)^* G(x) + H(x)^* H(x)(1+x)(x-1), \end{split}$$

where

$$G(x) := x^{\frac{\deg(F)}{2}} G_1\left(\frac{1}{x}\right), \quad H := x^{\frac{\deg(F)}{2} - 1} H_1\left(\frac{1}{x}\right)$$

are matrix polynomials.

The negative answer to the question of Problem' for almost all remaining unbounded sets K (except for a union of an unbounded interval and a point or a union of two unbounded intervals and a point) and all $n \ge 2$ is the main result of this section.

Theorem 3.2. Let an unbounded closed semialgebraic set $K \subseteq \mathbb{R}$ satisfy either of the following:

- 1. K contains at least two intervals with at least one of them bounded.
- 2. K is a union of an unbounded interval and m isolated points with $m \geq 2$.

3. K is a union of two unbounded intervals and m isolated points with $m \ge 2$. If $S \subset \mathbb{R}[x]$ is a finite set with $K_S = K$, then the 2-nd matrix preordering T_S^2 is not saturated.

It is sufficient to prove Theorem 3.2 for the natural description S of K by the following lemma.

Lemma 3.3. Let $K \subseteq \mathbb{R}$ be an unbounded closed semialgebraic set with the natural description S. Let $S_1 \subset \mathbb{R}[x]$ be a finite set such that $K_{S_1} = K$. For every $n \in \mathbb{N}$ such that the n-th matrix preordering T_S^n is not saturated, also the n-th matrix preordering $T_{S_1}^n$ is not saturated.

Proof. Let us write $S := \{g_1, \ldots, g_s\}$ and $S_1 := \{f_1, \ldots, f_t\}$. We have to show that every matrix polynomial F from $T_{S_1}^n$ also belongs to T_S^n . A matrix polynomial F from $T_{S_1}^n$ is of the form

$$F = \sum_{e' \in \{0,1\}^t} \tau_{e'} f_1^{e'_1} \dots f_t^{e'_t},$$
(2)

where $e' := (e'_1, \ldots, e'_i)$ and $\tau_{e'} \in \sum M_n (\mathbb{C}[x])^2$. By [11, Theorem 2.2], the preordering T_S^1 is saturated and thus for each j there exist $\sigma_{e,j} \in \sum \mathbb{R}[x]^2$ such that

$$f_j = \sum_{e \in \{0,1\}^s} \sigma_{e,j} \, g_1^{e_1} \cdots g_s^{e_s}, \tag{3}$$

where $e := (e_1, \ldots, e_s)$. Plugging (3) into (2) and rearranging terms we obtain $F \in T_S^n$. This concludes the proof.

In the remaining part of this section we will prove Theorem 3.2. The major step will be Proposition 3.4.

Let K be a closed semialgebraic set with a natural description $S = \{g_1, \ldots, g_s\}$. For $n \in \mathbb{N}$ and $d \in \mathbb{N} \cup \{0\}$ we define the set

$$T_{S,d}^{n} := \left\{ \sum_{e \in \{0,1\}^{s}} \sigma_{e} \underline{g}^{e} \colon \sigma_{e} \in \sum M_{n}(\mathbb{C}[x])^{2} \text{ and } \deg(\sigma_{e} \underline{g}^{e}) \leq d \; \forall e \in \{0,1\}^{s} \right\}.$$

Proposition 3.4. Let $K = [x_1, x_2] \cup [x_3, \infty)$ be a union of a bounded and an unbounded interval where $x_1 < x_2 < x_3$. Let us define the polynomial

$$F_k(x) := \begin{bmatrix} x + A(k) & D(k) \\ D(k) & x^2 + B(k)x + C(k) \end{bmatrix},$$

where

We define $p_k(x) := x^2 + B(k)x + C(k)$. For every $k \in \mathbb{R}$ which satisfies

$$k > 0, \tag{4}$$

$$D(k)^{2} = k^{3} + k^{2}(-2x_{1} + x_{2} + x_{3}) + k(x_{2}x_{3} + x_{1}^{2} - x_{1}x_{2} - x_{1}x_{3}) > 0,$$
 (5)

$$p_k\left(-\frac{B(k)}{2}\right) = \frac{3}{4}k^2 + k\left(-x_1 + \frac{x_2 + x_3}{2}\right) - \left(\frac{x_2 - x_3}{2}\right)^2 > 0, \qquad (6)$$

the matrix polynomials $F_k(x)$ belongs to $Pos_{\geq 0}^2(K)$, but:

Claim 1. $F_k \notin T_{S_1}^2$ where S_1 is the natural description of any set K_1 of the form

$$[x_1, x_2] \cup \bigcup_{j=1}^m [x_{2j+1}, x_{2j+2}] \cup [x_{2m+3}, \infty) \subseteq K$$

with $m \in \mathbb{N} \cup \{0\}$ and $x_j \leq x_{j+1}$ for each j (and $x_1 < x_2 < x_3$). In particular,

 $F_k(x) \notin T_S^2$,

where S is the natural description of K.

Claim 2. $F_k \notin T^2_{S_2,2}$ where S_2 is the natural description of any set K_2 of the form

 $[x_1, x_2] \cup \bigcup_{j=3}^m \{x_j\} \subset K$

with $m \in \mathbb{N}$, $m \ge 4$ and $x_j < x_{j+1}$ for each j.

Proof. First we will prove that $F_k(x)$ belongs to $\operatorname{Pos}_{\geq 0}^2(K)$ for every $k \in \mathbb{R}$ satisfying the conditions (4)-(6). Note that every sufficiently large k satisfies the conditions (4)-(6). Condition (5) ensures that $D(k) \in \mathbb{R}$ and hence $F \in$ $\mathbb{H}_n(\mathbb{R}[x])$. The determinant of $F_k(x)$ is $(x - x_1)(x - x_2)(x - x_3) \in \operatorname{Pos}_{\geq 0}^1(K)$. The upper left corner of F is non-negative for $x \geq x_1 - k$ and hence it belongs to $\operatorname{Pos}_{\geq 0}^1(K)$ by (4). The lower right corner is a quadratic polynomial $p_k(x)$ with a vertex in $x = \frac{-B(k)}{2}$. Since k satisfies (6), $p_k\left(\frac{-B(k)}{2}\right) > 0$. So $p_k(x)$ is positive on \mathbb{R} and hence $p_k \in \operatorname{Pos}_{\geq 0}^1(K)$. Since all principal minors of $F_k(x)$ are non-negative on K, the conclusion $F_k(x) \in \operatorname{Pos}_{\geq 0}^2(K)$ follows.

We will separately prove both claims of the theorem.

Proof of Claim 1. The set

$$\{\underbrace{x-x_1}_{g_1(x)}, \underbrace{(x-x_2)(x-x_3)}_{g_2(x)}, \dots, \underbrace{(x-x_{2m+2})(x-x_{2m+3})}_{g_{m+2}(x)}\}$$

is the natural description S_1 of K_1 . We will prove that $F_k(x) \notin T_{S_1}^2$ by contradiction. Let us assume $F_k \in T_{S_1}^2$. Then for every $e := (e_1, \ldots, e_{m+2}) \in \{0, 1\}^{m+2}$ there exists $\sigma_e \in \sum M_n(\mathbb{C}[x])^2$, such that

$$F_k = \sum_{e \in \{0,1\}^{m+2}} \sigma_e g_1^{e_1} \cdots g_{m+2}^{e_{m+2}}.$$
(7)

By the degree comparison of both sides of (7), there exist $\sigma_j \in \sum M_n(\mathbb{C}[x])^2$, such that

$$F_k(x) = \sigma_0 + \sigma_1(x - x_1) + \sum_{j=1}^{m+1} \sigma_{j+1}(x - x_{2j})(x - x_{2j+1}),$$
(8)

 $\deg(\sigma_0) \le 2$, $\deg(\sigma_j) = 0$ for $j = 1, \dots, m+2$.

By observing the monomial x^2 on both sides of (8), it follows that $\sigma_2 = \begin{bmatrix} 0 & 0 \\ 0 & k_0 \end{bmatrix}$ for some $k_0 \in [0, 1]$. Equivalently, (8) can be written as

$$F_k(x) - \sigma_2(x - x_2)(x - x_3) = \sigma_0 + \sigma_1(x - x_1) + \sum_{j=2}^{m+1} \sigma_{j+1}(x - x_{2j})(x - x_{2j+1}).$$

The right-hand side belongs to $\operatorname{Pos}_{\geq 0}^2(\hat{K}_1)$ where $\hat{K}_1 = K_1 \cup [x_2, x_3]$. We will prove that the left-hand side does not belong to $\operatorname{Pos}_{\geq 0}^2(\hat{K}_1)$, which is a contradiction. The determinant of the left-hand side is

$$q(x) := (x - x_2)(x - x_3)(x(1 - k_0) - (x_1 - x_1k_0 + kk_0)).$$

There are two cases two consider: $k_0 = 0$ and $k_0 > 0$. In the first case, $q(x) = (x - x_1)(x - x_2)(x - x_3)$ which is negative on (x_2, x_3) , a contradiction with $q|_{\hat{K}_1} \ge 0$. In the second case, $q(x_1) = (x_1 - x_2)(x_1 - x_3)(-kk_0) < 0$, which is also a contradiction with $q|_{\hat{K}_1} \ge 0$. Thus

$$F_k(x) - \sigma_2(x - x_2)(x - x_3) \notin \text{Pos}_{\geq 0}^2(\hat{K}_1),$$

which is a contradiction. Therefore F_k cannot be expressed in the form (7) and so $F_k \notin T_{S_1}^2$.

Proof of Claim 2. The set

$$\{\underbrace{x-x_1}_{g_1(x)},\underbrace{(x-x_2)(x-x_3)}_{g_2(x)},\ldots,\underbrace{(x-x_{m-1})(x-x_m)}_{g_{m-1}(x)},\underbrace{x_m-x}_{g_m(x)}\}$$

is the natural description S_2 of K_2 . If $F_k \in T^2_{S_2,2}$, then there exist $\tau_j \in \sum M_n(\mathbb{C}[x])^2$ such that

$$F_k(x) = \tau_0 + \tau_1(x - x_1) + \sum_{j=2}^{m-1} \tau_j(x - x_j)(x - x_{j+1}) + \tau_m(x_m - x) + \tau_{m+1}(x - x_1)(x_m - x),$$
(9)

 $\deg(\tau_0) \le 2, \ \deg(\tau_j) = 0 \ \text{for} \ j = 1, \dots, m+1.$

From (9) it follows that

$$(F_k(x) - \tau_j(x - x_j)(x - x_{j+1}))|_{K_2} \succeq 0 \text{ for } j = 2, \dots, m-1.$$
 (10)

From (10) it follows that

$$\ker F_k(x_1) \subseteq \ker \tau_j, \ \ker F_k(x_2) \subseteq \ker \tau_j \quad \text{for } j = 3, \dots, m-1.$$

Since ker $F_k(x_1) \oplus \ker F_k(x_2) = \mathbb{C}^2$, we conclude that $\tau_j = 0$ for $j = 3, \ldots, m-1$. Hence (9) becomes

$$F_k(x) = \tau_0 + \tau_1(x - x_1) + \tau_2(x - x_2)(x - x_3) + \tau_m(x_m - x) + \tau_{m+1}(x - x_1)(x_m - x),$$

or equivalently,

$$F_k(x) - \tau_2(x - x_2)(x - x_3) = \tau_0 + \tau_1(x - x_1) + \tau_m(x_m - x) + \tau_{m+1}(x - x_1)(x_m - x).$$
(11)

Since the determinant of the left hand side is of degree 4 and is divisible by $(x - x_1)(x - x_2)(x - x_3)$ (divisibility by $x - x_1$ is due to ker $F_k(x_1) \neq \{0\}$ and (10) for j = 2), it cannot be non-negative on $[x_1, x_m]$ (This follows by a simple geometric argument.). Hence the left-hand side of (11) does not belong to $\operatorname{Pos}_{\geq 0}^2([x_1, x_m])$, while the right-hand side does. This is a contradiction and thus $F_k \notin T_{S_2,2}^2$.

Proof of Theorem 3.2.1. By Lemma 3.3, we may assume that S is the natural description of K. Let us write K in the form $K_0 \cup K_1$ where K_0 is the set of isolated points of K and K_1 is the regular part of K (i.e., does not have isolated points). We separate three cases depending on the form of K_1 .

Case 1: K_1 is bounded from below and unbounded from above. Let us divide the isolated part K_0 into disjoint sets K_{01} , K_{02} where in K_{01} are all those points which are smaller than the minimum of K_1 and in K_{02} all the others. The set $K_2 := K_1 \cup K_{02}$ is of the form

$$[x_1, x_2] \cup \bigcup_{j=1}^p [x_{2j+1}, x_{2j+2}] \cup [x_{2p+3}, \infty),$$

where $p \in \mathbb{N} \cup \{0\}$, $x_1 < x_2 < x_3$ and $x_j \leq x_{j+1}$ for each $j \geq 3$. Let us take a polynomial $F_1 \in \text{Pos}_{\geq 0}^2(K_2)$ and define the polynomial

$$F(x) := \prod_{y \in K_{01}} (x - y) \cdot F_1(x) \in \operatorname{Pos}_{\succeq 0}^2(K).$$
(12)

Let $S := \{g_1, \ldots, g_s\}$ be the natural description of K. If F belongs to T_S^2 , then for every $e \in \{0, 1\}^s$ there exists $\sigma_e \in \sum M_n(\mathbb{C}[x])^2$ such that

$$F = \sum_{e \in \{0,1\}^s} \sigma_e \underline{g}^e.$$
(13)

Since for every $y \in K_{01}$ and every $e \in \{0,1\}^s$ we have F(y) = 0 and $\sigma_e \underline{g}^e(y) \succeq 0$, it follows from (13) that $\sigma_e \underline{g}^e(y) = 0$. Therefore $\prod_{y \in K_{01}} (x-y)$ divides each $\sigma_e \underline{g}^e$.

Claim. There exist $\tau_e \in \sum M_n(\mathbb{C}[x])^2$ and $h_e \in \operatorname{Pos}^1_{\geq 0}(K_2)$ such that

$$\frac{\sigma_e \underline{g}^e}{\prod_{y \in K_{01}} (x - y)} = \tau_e h_e.$$

Proof of Claim. Let us take $y \in K_{01}$. We separate two possibilities.

- 1. x y divides σ_e : Then $\sigma_e g^e = \hat{\sigma}_e \cdot (x y)^2 g^e$ where $\hat{\sigma}_e \in \sum M_n(\mathbb{C}[x])^2$ and $\frac{(x-y)^2 \underline{g}^e}{x-y} = (x-y)\underline{g}^e \in \operatorname{Pos}^1_{\succeq 0}(K_2).$ 2. x-y does not divide σ_e : Then x-y divides \underline{g}^e and hence $\sigma_e \underline{g}^e = \sigma_e \cdot (x-y)$
- $y)\hat{g}_e$ where $\hat{g}_e := \frac{\underline{g}^e}{x-y} \in \operatorname{Pos}^1_{\geq 0}(K_2).$

Repeating the above procedure for every $y \in K_{01}$ we obtain τ_e and h_e proving Claim.

Let S_2 be the natural description of K_2 . By [11, Theorem 2.2], $h_e \in T^1_{S_2}$. It follows that $F_1 = \sum_e \tau_e h_e \in T_{S_2}^2$.

We have proved that for $F_1 \in \operatorname{Pos}_{\geq 0}^2(K_2)$ and $F \in \operatorname{Pos}_{\geq 0}^2(K)$ defined by (12), from $F \in T_S^2$ it follows that $F_1 \in T_{S_2}^2$. Therefore, to find $F \in \operatorname{Pos}_{\geq 0}^2(K)$ and $F \notin T_S^2$, it is sufficient to find $F_1 \in \text{Pos}_{\geq 0}^2(K_2)$ and $F_1 \notin T_{S_2}^2$. Let us define the set $K_3 := [x_1, x_2] \cup [x_3, \infty)$. By Claim 1 of Proposition 3.4, there exists a polynomial $F_1 \in \operatorname{Pos}_{\geq 0}^2(K_3) \subseteq \operatorname{Pos}_{\geq 0}^2(K_2)$ such that $F_1 \notin T_{S_2}^2$. This proves Case 1.

Case 2: K_1 is unbounded from below and bounded from above. Make a substitution $x \mapsto -x$ and observe that the set $-K_1$ is of the form in Case 1 and that the natural description of K maps into the natural description of -K.

Case 3: K_1 is unbounded from below and above. Let $d \in \mathbb{R}$ be the smallest endpoint of K_1 . Define the map $\lambda_d : \mathbb{R} \setminus \{d\} \to \mathbb{R}$ with $\lambda_d(x) := \frac{1}{d-x}$. Observe that $\lambda_d(K_1) =: K_2$ is the set of the form $[x_1, x_2] \cup [x_3, x_4] \cup \ldots \cup [\hat{x}_{2m+1}, \infty)$ where $m \in \mathbb{N}$ and $x_j < x_{j+1}$ for every j. Let S_3 be the natural description of $\lambda_d(K)$. As in Case 1, construct the polynomial $F \in \operatorname{Pos}_{\geq 0}^2(\lambda_d(K))$ such that $F \notin T_{S_2}^2$. Now $G(x) = x^{\left(2 \left\lceil \frac{\deg(F)}{2} \right\rceil\right)} \cdot F\left(d - \frac{1}{x}\right) \in \operatorname{Pos}_{\geq 0}^2(K)$ and $G \notin T_{S_2}^2$

Proof of Theorem 3.2.2 and 3.2.3. By Lemma 3.3, we may assume that S is the natural description of K. Let $d \in \mathbb{R}$ be an arbitrary point such that $d \notin K$. Define the map $\lambda_d : \mathbb{R} \setminus \{d\} \to \mathbb{R}$ with $\lambda_d(x) := \frac{1}{d-x}$. Observe that $\lambda_d(K)$ is the set of the form $[x_1, x_2] \cup \bigcup_{j=3}^m \{x_j\}$ where $m \ge 4$ and the points x_j are pairwise different. Further on, we may choose $d \in \mathbb{R}$ such that $x_1 < x_2 < x_3 < \ldots < x_m$ or $x_m < x_{m-1} < \ldots < x_3 < x_1 < x_2$. By substitution $x \mapsto -x$, we may assume that $x_1 < x_2 < x_3 < \ldots < x_m$. Let $S_1 = \{g_1, \ldots, g_s\}$ be the natural description of $\lambda_d(K)$. Notice that to prove the statement of the theorem, it is sufficient to find $F \in \operatorname{Pos}_{\geq 0}^2(\lambda_d(K))$ of degree 2k such that $F \notin T^2_{S_1,2k}$. By Claim 2 of Proposition 3.4, there is $F \in \operatorname{Pos}_{\geq 0}^2(\lambda_d(K))$ of degree 2 such that $F \notin T^2_{S_{1,2}}$. This concludes the proof.

Theorem 3.5 gives a characterization of the set $\operatorname{Pos}_{\geq 0}^{n}(K)$ for unbounded sets K.

Theorem 3.5. Suppose K is an unbounded closed semialgebraic set in \mathbb{R} and S the natural description of K. Then, for any $F \in \mathbb{H}_n(\mathbb{C}[x])$, the following are equivalent:

- 1. $F \in Pos_{\succ 0}^n(K)$.
- 2. There exists a polynomial $h \in \mathbb{R}[x]$ such that for every isolated point $w \in K$, $h(w) \neq 0$ and $h^2 F \in T_S^n$.
- 3. For every point $w \in \mathbb{C}$ there exists a polynomial $h \in \mathbb{R}[x]$ such that $h(w) \neq 0$ and $h^2 F \in T_S^n$.

Proof. For the implication $(3) \Rightarrow (2)$ construct h in the same way as in Remark 2.7 (replace the boundary of K with the set of its isolated points). The implication $(2) \Rightarrow (1)$ is trivial. The proof of direction $(1) \Rightarrow (3)$ is the same as the proof of Proposition 2.2, just that we use [11, Theorem 2.2] for the n = 1 case instead of [22, Theorem 5.17].

4. Generalizations of the results to curves

In this section Theorem 2.1 is generalized to curves in \mathbb{R}^n . A characterization of sets S satisfying Theorem 4.1.1 was proved by Scheiderer in [21, Theorem 5.17] and [22, Corollary 4.4]. Using the same method as in the proof of Theorem 2.1 we obtain the implication $1. \Rightarrow 2$. of the following theorem.

Theorem 4.1. Suppose I is a prime ideal of $\mathbb{R}[\underline{x}]$ with $\dim(\frac{\mathbb{R}[\underline{x}]}{I}) = 1$ and let $\mathcal{Z}(I) := \{\underline{x} \in \mathbb{R}^d : f(\underline{x}) = 0 \text{ for every } f \in I\}$ be its vanishing set. Let $S := \{g_1, \ldots, g_s\}$ be a finite subset of $\mathbb{R}[\underline{x}]$ and $K_S = \{\underline{x} \in \mathbb{R}^d : g_1(\underline{x}) \ge 0, \ldots, g_s(\underline{x}) \ge 0\}$ the associated semialgebraic set. Suppose the set $K_S \cap \mathcal{Z}(I)$ is compact. Then the following are equivalent:

- 1. The quadratic module $M_S^1 + I$ is saturated.
- 2. The n-th quadratic module $M_S^n + M_n(I)$ is saturated for every $n \in \mathbb{N}$.

An example of a non-singular curve is the unit circle. Theorem 1.1 has an equivalent version for the unit complex circle \mathbb{T} (see [19] or [16]). By passing from complex numbers to pairs of real numbers and by Theorem 4.1, we obtain a generalization of this equivalent version to an arbitrary semialgebraic set in the unit circle. To explain this generalization we need some notation. Let us equip the set of $n \times n$ matrix Laurent polynomials $M_n(\mathbb{C}\left[z, \frac{1}{z}\right])$ with an involution $A(z)^* := \overline{A(\frac{1}{z})}^T$. We denote by $\mathbb{H}_n(\mathbb{C}[z, \frac{1}{z}])$ the set of all $B \in M_n(\mathbb{C}\left[z, \frac{1}{z}\right])$ such that $B^* = B$, and by $\sum M_n(\mathbb{C}[z])^2$ the set of all finite sums of elements of the form B^*B where $B \in M_n(\mathbb{C}[z])$. Let $\mathscr{S} = \{b_1, \ldots, b_s\}$ be a finite set from $\mathbb{H}_1(\mathbb{C}[z, \frac{1}{z}])$ and $\mathscr{K}_{\mathscr{S}} = \{z \in \mathbb{T} : b_j(z) \ge 0, j = 1, \ldots, s\}$ the associated semialgebraic set. Let the *n*-th matrix quadratic module generated by \mathscr{S} in $\mathbb{H}_n(\mathbb{C}[z, \frac{1}{z}])$ be

$$\mathcal{M}_{\mathscr{S}}^{n} := \{\tau_{0} + \tau_{1}b_{1} + \ldots + \tau_{s}b_{s} \colon \tau_{j} \in \sum M_{n}\left(\mathbb{C}\left[z\right]\right)^{2} \text{ for } j = 0, \ldots, s\}.$$

We write $\operatorname{Pos}_{\geq 0}^{n}(\mathscr{H}_{\mathscr{S}})$ for the set of elements from $\mathbb{H}_{n}(\mathbb{C}[z, \frac{1}{z}])$ which are positive semidefinite on $\mathscr{K}_{\mathscr{S}}$.

Corollary 4.2. $\mathcal{M}^n_{\mathscr{S}} = Pos^n_{\succ 0}(\mathscr{K}_{\mathscr{S}})$ iff \mathscr{S} satisfies the following conditions:

- (a) For every boundary point $a \in \mathscr{K}_{\mathscr{S}}$ which is not isolated there exists $k \in$
- $\{1, \ldots, s\} \text{ such that } b_k(a) = 0 \text{ and } \frac{db_k}{dz}(a) \neq 0.$ (b) For every isolated point $a \in \mathscr{K}_{\mathscr{F}}$ there exist $k, l \in \{1, \ldots, s\}$ such that $b_k(a) = b_l(a) = 0, \frac{db_k}{dz}(a) \neq 0, \frac{db_l}{dz}(a) \neq 0$ and $b_k b_l \leq 0$ on some neighborhood of a.

As an application of Corollary 4.2 we obtain the following improvement of Theorem 3.5:

Corollary 4.3. Suppose K is an unbounded closed semialgebraic set in \mathbb{R} and S the natural description of K. Then, for $F \in \mathbb{H}_n(\mathbb{C}[x])$, the following are equivalent:

- 1. $F \in Pos_{\succeq 0}^n(K)$.
- 2. For every $w \in \mathbb{C} \setminus \mathbb{R}$ there exists $k_w \in \mathbb{N} \cup \{0\}$ such that

$$((x-\overline{w})(x-w))^{k_w}F \in M_S^n.$$

To prove Corollary 4.3 we need some preliminaries. Möbius transformations that map $\mathbb{R} \cup \{\infty\}$ bijectively into \mathbb{T} are exactly the maps of the form

$$\lambda_{z_0,w_0}: \mathbb{R} \cup \{\infty\} \to \mathbb{T}, \quad \lambda_{z_0,w_0}(x):=z_0 \frac{x-w_0}{x-\overline{w_0}},$$

where $z_0 \in \mathbb{T}$ and $w_0 \in \mathbb{C} \setminus \mathbb{R}$. Notice that $\lambda_{z_0,w_0}^{-1}(x) = \frac{z\overline{w_0} - z_0 w_0}{z - z_0}$. If F(x) is a matrix polynomial from $M_n(\mathbb{C}[x])$, then

$$\Lambda_{z_0,w_0,F}(z) := ((z - z_0)^* (z - z_0))^{\left\lceil \frac{\deg(F)}{2} \right\rceil} \cdot F\left(\lambda_{z_0,w_0}^{-1}(z)\right)$$

is a matrix polynomial from $M_n(\mathbb{C}[z,\frac{1}{z}])$. Observe that

$$F(x) = \left(\frac{(x - \overline{w_0})(x - w_0)}{4 \cdot \Im(w_0)^2}\right)^{\left\lceil \frac{\deg(F)}{2} \right\rceil} \cdot \Lambda_{z_0, w_0, F}(\lambda_{z_0, w_0}(x)),$$

where $\Im(w_0)$ is the imaginary part of w_0 .

Proof of Corollary 4.3. The non-trivial direction is $1. \Rightarrow 2$. Choose $w_0 \in \mathbb{C} \setminus$ \mathbb{R} . Observe that $\Lambda_{1,w_0,F}(z)$ belongs to the set $\operatorname{Pos}_{\succeq 0}^n(\mathscr{K}_{w_0})$ where $\mathscr{K}_{w_0} :=$ $\operatorname{Cl}(\lambda_{1,w_0}(K))$ and $\operatorname{Cl}(\cdot)$ is the closure operator. Let $\overline{S} = \{g_1,\ldots,g_s\}$ be the natural description of K. Then $\mathscr{S} := \{\Lambda_{1,w_0,g_1}(z),\ldots,\Lambda_{1,w_0,g_s}(z)\}$ satisfies the conditions of Corollary 4.2 and hence $\Lambda_{1,w_0,F} \in \mathcal{M}^n_{\mathscr{S}}$. Therefore

$$\left(\frac{(x-\overline{w_0})(x-w_0)}{4\cdot\operatorname{Im}(w_0)^2}\right)^{k_{w_0}}\cdot F(x)\in M_S^n,$$

where $k_{w_0} \in \mathbb{N} \cup \{0\}$ equals $k - \left\lceil \frac{\deg(F)}{2} \right\rceil$ with k being the degree of the summand of the highest degree in the expression of $\Lambda_{1,w_0,F}(z)$ as the element of $\mathcal{M}^n_{\mathscr{S}}$. \Box **Remark 4.4.** By a similar but more technical proof we can show, that Corollary 4.3.2 is true for all $w \in \mathbb{C} \setminus K$, i.e., it is true also for $w \in \mathbb{R} \setminus K$.

Acknowledgment. I would like to thank to my advisor Jaka Cimprič for proposing the problem, many helpful suggestions and the help in establishing Claim 2 of Proposition 3.4.

I am also very grateful to the anonymous referee for a detailed reading of the previous and final versions of the manuscript and many suggestions for improvements.

References

References

- J. Cimprič, Strict positivstellensätze for matrix polynomials with scalar constraints, Linear algebra appl. 434 (2011) 1879–1883.
- J. Cimprič, Real algebraic geometry for matrices over commutative rings, J. Algebra 359 (2012) 89–103.
- [3] J. Cimprič, A. Zalar, Moment problems for operator polynomials. J. Math. Anal. Appl. 401 (2013) 307–316.
- [4] M.D. Choi, T.Y. Lam, B. Reznick, Real zeros of positive semidefinite forms I, Math. Z. 171 (1980) 1–26.
- [5] H. Dette, W.J. Studden, Matrix measures, moment spaces and Favard's theorem for the interval [0,1] and $[0,\infty)$, Linear Algebra Appl. 345 (2002) 169–193.
- [6] D.Z. Djoković, Hermitian matrices over polynomial rings. J. Algebra 43 (1976) 359–374.
- [7] M. Dritschel, On factorization of trigonometric polynomials, Integr. equ. oper. theory 49 (2004) 11–42.
- [8] I.T. Gohberg, M.G. Krein, A system of integral equation on a semiaxis with kernels depending on different arguments. Uspekhi matemat. nauk 13 (1958) 3–72.
- [9] C. Hanselka, M. Schweighofer M., Positive semidefinite matrix polynomials, preprint.
- [10] V.A. Jakubovič, Factorization of symmetric matrix polynomials, Dokl. Akad. Nauk 194 (1970) 532–535.
- [11] S. Kuhlmann, M. Marshall, Positivity, sums of squares and the multidimensional moment problem, Trans. Amer. Math. Soc. 354 (2002) 4285–4301.
- [12] S. Kuhlmann, M. Marshall, N. Schwartz, Positivity, sums of squares and the multidimensional moment problemII, Adv. Geom. 5 (2005) 583–607.
- [13] A.N. Malyshev, Factorization of matrix polynomials, Sibirsk. Mat. Zh. 23 (1982) 136–146.
- [14] B. Mangold, Quadratsummen von Matrixpolynomen in einer Variable, Bachelorarbeit, University of Konstanz, 2013.
- [15] M. Marshall, Positive polynomials and sums of squares, American Mathematical Society, Providence, 2008.

- [16] V.M. Popov, Hyperstability of control systems, Springer-Verlag, Berlin, 1973.
- [17] I. Gohberg, P. Lancaster, L. Rodman, Matrix polynomials, Computer Science and Applied Mathematics. Academic Press, Inc., New York-London, 1982.
- [18] M. Rosenblatt, A multidimensional prediction problem, Ark. Mat. vol. 3 (1958) 407–424.
- [19] M. Rosenblum, Vectorial Toeplitz operators and the Fejér-Riesz theorem, J. Math. Anal. Appl. 23 (1968), 139-147.
- [20] C. Scheiderer, Sums of squares on real algebraic surfaces, Manuscr. Math. 119 (2006) 395–410.
- [21] C. Scheiderer, Sums of squares on real algebraic curves, Math. Z. 245 (2003) 725–760.
- [22] C. Scheiderer, Distinguished representations of non-negative polynomials, J. Algebra 289 (2005) 558–573.
- [23] K. Schmüdgen, Noncommutative real algebraic geometry some concepts and first ideas. in: Emerging applications of algebraic geometry, IMA Vol. Math. Appl., 149, Springer, New York, 2009, pp. 325–350.
- [24] Y. Savchuk, K. Schmüdgen K., Positivstellensätze for algebras of matrices. Linear Algebra Appl. 436 (2012) 758–788.