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ABSTRACT. Let L be a linear operator on univariate polynomials of bounded degree, mapping
into real symmetric matrices, such that its moment matrix is positive definite. It is known that L
admits a finitely atomic positive matrix-valued representing measure µ. Any µ with the smallest
sum of the ranks of the matricial masses is called minimal. In this paper, we characterize the
existence of a minimal representing measure containing a prescribed atom with prescribed rank
of the corresponding mass, thus extending a recent result [BKRSV20] for the scalar-valued case.
As a corollary, we obtain a constructive, linear algebraic proof of the strong truncated Hamburger
matrix moment problem [Sim06] in the nonsingular case. The results will be important in the
study of the truncated univariate rational matrix moment problem.

1. INTRODUCTION

In this paper we study matricial Gaussian quadrature rules for a linear operator L on uni-
variate polynomials of bounded degree, mapping into real symmetric matrices, such that the
corresponding moment matrix is positive definite. More precisely, we fix a real number t and a
natural number m ∈ N ∪ {0} and characterize, when there is a minimal representing measure
for L containing t in the support with the rank of the corresponding mass equal to m. Apart
from being interesting on its own extending a recent result [BKRSV20] from scalars to matrices,
the results will be importantly used in the solution to the truncated univariate matrix rational
moment problem, analogous to the scalar case [NZ25].

Let k ∈ N∪{0} and p ∈ N. We denote by R[x]≤k the vector space of univariate polynomials
of degree at most k and by Sp(R) the set of real symmetric matrices of size p × p. For a given
linear operator

(1.1) L : R[x]≤2n → Sp(R),

denote by Si := L(xi), i = 0, 1, . . . , 2n, its matricial moments and by

(1.2) M(n) := (Si+j−2)
n+1
i,j=1 =



1 X X2 · · · Xn

1 S0 S1 S2 · · · Sn

X S1 S2 . .
.

. .
.

Sn+1

X2 S2 . .
.

. .
.

. .
. ...

...
... . .

.
. .
.

. .
.

S2n−1

Xn Sn Sn+1 · · · S2n−1 S2n
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the corresponding n–th truncated moment matrix. Assume that M(n) is positive definite. It
is known (see Theorem 2.1 below), that L admits a positive Sp(R)-valued measure µ (see (2.1)),
such that

(1.3) L(p) =

∫
R
p dµ for every p ∈ R[x]≤2n.

Every measure µ satisfying (1.3) is a representing measure for L.
A representing measure µ =

∑ℓ
j=1Ajδxj

for L, where each 0 ̸= Aj ∈ Sp(R) is positive
semidefinite and δxj

stands for the Dirac measure supported in xj , is minimal, if
∑ℓ

j=1 rankAj

is minimal among all representing measures for L. In this case, (1.3) is equal to

(1.4) L(p) =
ℓ∑

j=1

Ajp(xj),

and (1.4) is a matricial Gaussian quadrature rule for L. The points xj are atoms of the mea-
sure µ. If x1, x2, . . . , xℓ are pairwise distinct, then for each j, the matrix Aj = µ({xj}) is the
mass of µ at xj and its rank is the multiplicity of xj in µ, which we denote by multµ xj . If x is
not an atom of µ, then multµ x := 0.

The motivation of the paper is to settle the following problem.

Problem. Let L be as in (1.1) such that M(n) (see (1.2)) is positive definite. Given t ∈ R and
m ∈ N ∪ {0}, characterize when there exists a minimal representing measure µ for L such that
multµ t = m.

In [BKRSV20, Theorem 1.4], the authors solved the scalar version (i.e., p = 1 in (1.1)) of the
Problem in terms of symmetric determinantal representations involving moment matrices. They
also showed how to determine other atoms of µ based on the determinant of some univariate
matrix polynomial. Their proof uses convex analysis and algebraic geometry, while an alter-
native proof, using moment theory, and an extension to minimal measures with finitely many
prescribed atoms, appears in [NZ+]. We mention that in [BKRSV20], a version of the Problem
with an atom at ∞, called evaluation at ∞, is also studied. The corresponding quadrature
rules are called generalized Gaussian quadrature rules. We also mention that in the scalar case,
the restriction to the case where M(n) is positive definite is natural. Namely, if M(n) is pos-
itive semidefinite but not positive definite, then the minimal representing measure is uniquely
determined [CF91, Theorems 3.9 and 3.10]. This fact does not generalize to the matrix case
and a version of the Problem with positive semidefinite M(n) is relevant. Moreover, it turns out
that this version is technically more involved and will be treated in our forthcoming work [ZZ+].

The main result of the paper is the solution to the Problem above.

Theorem 1.1. Let n, p ∈ N and L : R[x]≤2n → Sp(R) be a linear operator such that M(n)
is positive definite. Fix t ∈ R and m ∈ N ∪ {0}. Let H := (Si+j−1 − tSi+j−2)

n
i,j=1. Then the

following statements are equivalent:
(1) There exists a minimal representing measure µ for L such that multµ t = m.
(2) m ≤ rankH− (n− 1)p.

In the case m = 0, Theorem 1.1 simplifies to the following result.

Corollary 1.2. Let n, p ∈ N and L : R[x]≤2n → Sp(R) be a linear operator such that M(n) is
positive definite. Fix t ∈ R. Then there exists a minimal representing measure µ for L such that
multµ t = 0.
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A simple consequence of Corollary 1.2 is a solution to a strong truncated matrix Hamburger
moment problem in the nonsingular case (i.e., the matrix in (1.5) below is invertible).

Corollary 1.3. Let n1, n2, p ∈ N and Sk ∈ Sp(R) for k = −2n1,−2n1 + 1, . . . , 2n2. Assume
that the matrix

(1.5) (Si+j−2−2n1)
n1+n2+1
i,j=1

is positive definite. Then there exists a measure µ such that Sk =
∫
R x

kdµ for each k.

Corollary 1.3 is a special case of [Sim06, Theorem 3.3] under the assumption that the matrix
in (1.5) is positive definite. The techniques in [Sim06] use involved operator theory, by studying
self-adjoint extensions of certain, not necessarily everywhere defined, linear operator on the
finite dimensional Hilbert space of vector-valued Laurent polynomials. Our contribution is
a constructive, linear algebraic proof, in the sense that representing measures can be easily
computed following the steps in the proof of Theorem 1.1 (see Examples 4.1 and 4.2). To
extend Corollary 1.3 to the singular case (i.e., the matrix in (1.5) is only positive semidefinite
and not necessarily definite), Theorem 1.1 needs to be extended to the case M(n) is positive
semidefinite [ZZ+]. In the scalar case an alternative proof of [Sim06, Theorem 3.3] is [Zal22,
Theorem 3.1].

Matricial Gaussian quadrature rules have been studied by several authors (e.g., [DD02,DLR96,
DS03]). These works address the question of computing atoms and masses of a representing
measure, which is uniquely determined after the odd matricial moment S2n+1 is fixed. The for-
mulas are in terms of the roots of the corresponding orthogonal matrix polynomial. A novelty
of our results is that we do not specify S2n+1, but characterize, when there is a suitable S2n+1,
that leads to a minimal measure containing a prescribed atom with prescribed multiplicity. In
the proof, we essentially construct S2n+1 with the required properties such that the extended
moment matrix M(n + 1), with rankM(n + 1) = rankM(n), has a suitable block column
relation (see Section 2.5).

Recently, a question related to the Problem was studied in [FKM24]. Namely, the authors
describe for t ∈ R, the set of all possible masses at t over all representing measures for L. In
particular, the maximal mass is determined. The focus of our work is on minimal representing
measures with fixed multiplicity of the mass at t. In a multivariate setting, the set of possi-
ble atoms in a representing measure has been charactarized in [MS24a], while the question of
possible masses in a given point was studied in [MS24b].

1.1. Reader’s guide. In Section 2 we introduce the notation and some preliminary results. In
Section 3 we present proofs of our main results, i.e., Theorem 1.1 and Corollaries 1.2, 1.3. In
Section 4 we demonstrate the application of Theorem 1.1 on numerical examples (see Examples
4.1 and 4.2). In particular, we show that a minimal representing measure containing a prescribed
atom with prescribed multiplicity is not unique and that a given atom can be a part of minimal
representing measures with different multiplicities. Finally, in Section 5 we allow the evaluation
at ∞ and prove a sufficient condition for the existence of a generalized matricial Gaussian
quadrature rule containing rankM(n − 1) real atoms, among which a prescribed atom has a
prescribed multiplicity (see Theorem 5.1).

2. PRELIMINARIES

Let m,m1,m2 ∈ N. We write Mm1,m2(R) for the set of m1×m2 real matrices and Mm(R) ≡
Mm,m(R) for short. For a matrix A ∈ Mm1,m2(R) we call the linear span of its columns a
column space and denote it by C(A). We denote by Im the identity m × m matrix and by
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0m1,m2 the zero m1 × m2 matrix, while 0m ≡ 0m,m for short. We use Mm(R[x]) to denote
m×m matrices over R[x]. The elements of Mm(R[x]) are called matrix polynomials.

Let p ∈ N. For A ∈ Sp(R) the notation A ⪰ 0 (resp. A ≻ 0) means A is positive semidefinite
(psd) (resp. positive definite (pd)). We use S⪰0

p (R) for the subset of all psd matrices in Sp(R).
Given a polynomial p(x) ∈ R[x], we write Z(p(x)) := {x ∈ R : p(x) = 0} for the set of its

zeros.

2.1. Matrix measures. Let Bor(R) be the Borel σ-algebra of R. We call

µ = (µij)
p
i,j=1 : Bor(R) → Sp(R)

a p× p Borel matrix-valued measure supported on R (or positive Sp(R)-valued measure) if

(1) µij : Bor(R) → R is a real measure for every i, j = 1, 2, . . . , p and

(2) µ(∆) ⪰ 0 for every ∆ ∈ Bor(R).
A positive Sp(R)-valued measure µ is finitely atomic, if there exists a finite set M ∈ Bor(R)

such that µ(R \ M) = 0p or equivalently, µ =
∑ℓ

j=1Ajδxj
for some ℓ ∈ N, xj ∈ R, Aj ∈

S⪰0
p (R). Let µ be a positive Sp(R)-valued measure and τ := tr(µ) =

∑p
i=1 µii denote its trace

measure. A polynomial f ∈ R[x]≤k is µ-integrable if f ∈ L1(τ). We define its integral by∫
R
f dµ =

(∫
R
f dµij

)p
i,j=1

.

2.2. Riesz mapping. Equivalently, one can define L as in (1.1) by a sequence of its values
on monomials xi, i = 0, 1, . . . , 2n. Throughout the paper we will denote these values by
Si := L(xi). If S := (S0, S1, . . . , S2n) ∈ (Sp)

2n+1 is given, then we denote the corresponding
linear mapping on R[x]≤2n by LS and call it a Riesz mapping of S.

2.3. Moment matrix and localizing moment matrices. For n ∈ N and

(2.1) S := (S0, S1, . . . , S2n) ∈ (Sp)
2n+1,

we denote by M(n) ≡ MS(n) as in (1.2) its n–th truncated moment matrix. For i, j ∈ N∪{0},
i+ j ≤ 2n, we also write

(2.2) v(j)
i =

(
Si+r−1

)j+1

r=1
=


Si

Si+1

...
Si+j


Given f ∈ R[x]≤2n and a linear operator L : R[x]≤2n → Sp(R), we define an f–localizing

linear operator by

Lf : R[x]≤2n−deg f → Sp(R), Lf (g) := L(fg).

We call the ℓ-th truncated moment matrix of Lf the ℓ–th truncated f–localizing moment
matrix of L and denote it by Hf (ℓ). Defining

S
(f)
i := Lf (x

i) = L(fxi),
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we have

Hf (ℓ) :=
(
S
(f)
i+j−2

)ℓ+1

i,j=1
=



1 X X2 · · · Xℓ

1 S
(f)
0 S

(f)
1 S

(f)
2 · · · S

(f)
ℓ

X S
(f)
1 S

(f)
2

. .
.

. .
.

S
(f)
ℓ+1

X2 S
(f)
2

. .
.

. .
.

. .
. ...

...
... . .

.
. .
.

. .
.

S
(f)
2ℓ−1

Xℓ S
(f)
ℓ S

(f)
ℓ+1 · · · S

(f)
2ℓ−1 S

(f)
2ℓ


In particular, for f(x) = x− t with t ∈ R, we have

Hx−t(ℓ) =



1 X X2 · · · Xℓ

1 S1 − tS0 S2 − tS1 S3 − tS2 · · · Sℓ+1 − tSℓ

X S2 − tS1 S3 − tS2 . .
.

. .
.

Sℓ+2 − tSℓ+1

X2 S3 − tS2 . .
.

. .
.

. .
. ...

...
... . .

.
. .
.

. .
.

S2ℓ − tS2ℓ−1

Xℓ Sℓ+1 − tSℓ Sℓ+2 − tSℓ+1 · · · S2ℓ − tS2ℓ−1 S2ℓ+1 − tS2ℓ


.

For i, j ∈ N ∪ {0}, i+ j ≤ 2n− deg f , we also write

(2.3) (f · v)(j)i :=
(
S
(f)
i+r−1

)j+1

r=1
=


S
(f)
i

S
(f)
i+1
...

S
(f)
i+j

 .

2.4. Solution to the truncated matrix Hamburger moment problem.

Theorem 2.1 ([BW11, Theorem 2.7.6]). Let n, p ∈ N and

S ≡ S(2n) = (S0, S1, . . . , S2n) ∈ (Sp(R))2n+1

be a given sequence. Then the following statements are equivalent:
(1) There exists a representing measure for S.
(2) There exists a (rankM(n))–atomic representing measure for S.
(3) M(n) is positive semidefinite and C(v(n−1)

n+1 ) ⊆ C(M(n)), where v
(n−1)
n+1 is as in (2.2).

Remark 2.2. The truncated matrix Hamburger moment problem was also considered in [Bol96,
Dym89, DFKM09].

2.5. Support of the representing measure. Given a matrix polynomial P (x) =
∑n

i=0 x
iPi ∈

Mp(R[x]), we define the evaluation P (X) on the moment matrix M(n) (see (1.2)) to be a
matrix, obtained by replacing each monomial of P by the corresponding column of M(n) and
multiplying with the matrix coefficients Pi from the right, i.e.,

P (X) :=
n∑

i=0

X iPi= v
(n)
0 P0 + v

(n)
1 P1 + · · ·+ v(n)

n Pn ∈ M(n+1)p,p(R),

where v
(j)
i are as in (2.2) above. If P (X) = 0(n+1)p,p, then P is a block column relation of

M(n).
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The following lemma connects supp(µ) of a representing measure µ for S as in (2.1) with a
block column relation of M(n).

Lemma 2.3 ([KT22, Lemma 5.53]). Let n, p ∈ N and

S ≡ S(2n) = (S0, S1, . . . , S2n) ∈ (Sp)
2n+1

be a given sequence with a representing measure µ. If P (x) =
∑n

i=0 x
iPi ∈ Mp(R[x]) is a

block column relation of M(n), then

supp(µ) ⊆ Z(detP (x)).

2.6. Evaluation at ∞. We recall the definition of the evaluation at ∞ from [BKRSV20, Defi-
nition 1.1]. The evaluation at ∞ is the linear functional ev∞ : R[x]≤2n → R, defined by

(2.4) ev∞

(
2n∑
i=0

aix
i

)
= a2n.

Let L be as in (1.1). We say µ is a finitely atomic (R ∪ {∞})–representing measure for L if
it is of the form

µ =
ℓ∑

j=1

δxj
Aj + ev∞A,

where ℓ ∈ N, xj ∈ R, and Aj ∈ S⪰0
p (R), A ∈ S⪰0

p (R). If
∑ℓ

j=1 rankAj + rankA = r, we say
that µ is an r–atomic (R ∪∞)–representing measure for L.

3. PROOFS OF THEOREM 1.1 AND COROLLARIES 1.2, 1.3

In the proof of Theorem 1.1 we will need the following lemma on the determinant of a matrix
polynomial.

Lemma 3.1. Let p, n ∈ N, t ∈ R, and let

H(x) = (x− t)
n∑

i=0

xiHi + P0

be a nonzero matrix polynomial, where Hi, P0 ∈ Mp(R). We define

m := dimKerP0 and s := dim
(
KerP0

⋂ n⋂
i=0

KerHi

)
.

Then

(3.1) detH(x) =

{
(x− t)mg(x), if s = 0,

0, if s > 0,

where 0 ̸= g(x) ∈ R[x].

Proof. Clearly, if s > 0, there exists a nonzero vector v ∈ Rp such that H(x)v = 0p,1, which
implies (3.1). From now on we assume that s = 0. Let B := {b1, b2, . . . , bm, bm+1, . . . , bp} be
a basis of Rp such that the set {b1, b2, . . . , bm} is a basis of KerP0. Let us define an invertible
matrix

B :=
(
b1 b2 · · · bp

)
∈ Mp(R).

For i = 0, 1, . . . , n define matrices

(3.2) H̃i ≡
(
h̃
(1)
i h̃

(2)
i · · · h̃

(m)
i · · · h̃

(p)
i

)
:= HiB
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and let

(3.3) P̃0 ≡
(
0p,1 · · · 0p,1︸ ︷︷ ︸

m

p̃
(m+1)
0 · · · p̃

(p)
0

)
:= P0B,

where the last equality follows by b1, b2, . . . , bm ∈ KerP0. Define a matrix polynomial

H̃(x) := (x− t)
n∑

i=0

xiH̃i + P̃0 = H(x)B ∈ Mp(R[x]).

By (3.2) and (3.3), it follows that the first m columns of H̃(x) are of the form

(x− t)
n∑

i=0

xi
(
h̃
(1)
i h̃

(2)
i · · · h̃

(m)
i

)
,

while the last p−m columns of H̃(x) are equal to

(x− t)
n∑

i=0

xi
(
h̃
(m+1)
i h̃

(m+2)
i · · · h̃

(p)
i

)
+
(
p̃
(m+1)
0 p̃

(m+2)
0 · · · p̃

(p)
0

)
Observe that the first m columns of H̃(x) have a common factor (x− t). Using this observation
and upon factoring the determinant of H̃(x) column-wise we obtain

detH(x) =
det H̃(x)

detB
= (x− t)mg(x),

which proves (3.1). Since s = 0, g(x) ̸= 0 also holds. □

Proof of Theorem 1.1. Let v(j)
i be as in (2.2) and ((x− t) · v)(j)i as in (2.3) for f(x) = x − t.

Note that H from the statement of the theorem is equal to Hx−t(n − 1). First we establish the
following claim.

Claim. rank

(
v
(n)
0

Hx−t(n− 1)(
((x− t) · v)(n−1)

n

)T ) = (n+ 1)p.

Proof of Claim. We have

rank

(
v
(n)
0

Hx−t(n− 1)(
((x− t) · v)(n−1)

n

)T )
=rank

(
v
(n)
0 v

(n)
1 − tv

(n)
0 v

(n)
2 − tv

(n)
1 · · · v

(n)
n − tv

(n)
n−1

)
=rank

(
v
(n)
0 v

(n)
1 v

(n)
2 · · · v

(n)
n

)
=rankM(n) = (n+ 1)p,

where we used that M(n) is positive definite in the last equality. ■

Next we prove the implication (1) ⇒ (2). Let µ =
∑ℓ

j=1 δxj
Aj be a representing measure for

L such that the atoms xi ∈ R are pairwise distinct, Ai ∈ S⪰0
p (R), x1 = t, rankA1 = m and∑ℓ

j=1 rankAj = (n + 1)p. We compute S2n+1 with respect to the measure µ, i.e., S2n+1 :=∫
R x

2n+1 dµ =
∑ℓ

j=1 x
2n+1
j Aj . By the Claim,

np = rank

(
Hx−t(n− 1)(

((x− t) · v)(n−1)
n

)T) = rank
(
Hx−t(n− 1) ((x− t) · v)(n−1)

n

)
.(3.4)
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Define µ̃ :=
∑ℓ

j=2 δxj
Aj . Note that µ = δtA1 + µ̃ and

ℓ∑
j=2

rankAj =
ℓ∑

j=1

rankAj − rankA1 = (n+ 1)p−m.

Let L̃ : R[x] → Sp(R) be a linear operator, defined by

L̃(xi) ≡ S̃i :=

∫
R
xi dµ̃ for i ∈ N ∪ {0}.

Let S̃ := (S̃0, S̃1, . . . , S̃2n+2). We have

(n+ 1)p−m = rankM(n)−m ≤ rankMS̃(n) ≤ rankMS̃(n+ 1),

rankMS̃(n+ 1) ≤
ℓ∑

j=2

rankAj = (n+ 1)p−m,
(3.5)

where the first inequality follows from the fact that the difference M(n)−MS̃(n) is a sum of m
matrices of rank 1. The inequalities (3.5) imply that (n+1)p−m ≤ MS̃(n+1) ≤ (n+1)p−m,
whence all inequalities in (3.5) must be equalities. In particular,

rankMS̃(n) = rankMS̃(n+ 1) = (n+ 1)p−m.(3.6)

For every i ∈ N ∪ {0} we have

S̃i+1 − tS̃i =

∫
R
(xi+1 − txi) dµ̃

=

∫
R
(xi+1 − txi) d(µ̃+ δtA1)

=

∫
R
(xi+1 − txi) dµ

= Si+1 − tSi.

(3.7)

Let H̃x−t(n− 1) be the (x− t)–localizing moment matrix of L̃,

ṽ
(n)
i =

(
S̃i+r−1

)n+1

r=1
=


S̃i

S̃i+1

...

S̃i+n

 and ((x− t) · ṽ)(n−1)
n :=


S̃n+1 − tS̃n

S̃n+2 − tS̃n+1

...

S̃2n − tS̃2n−1

 .

By (3.7), it follows that

(3.8) H̃x−t(n− 1) = Hx−t(n− 1) and ((x− t) · ṽ)(n−1)
n = ((x− t) · v)(n−1)

n .

Hence,

rank

(
ṽ
(n)
0

Hx−t(n− 1)(
((x− t) · v)(n−1)

n

)T ) = rank

(
ṽ
(n)
0

H̃x−t(n− 1)(
((x− t) · ṽ)(n−1)

n

)T )
= rankMS̃(n) =︸︷︷︸

(3.6)

np+ (p−m).
(3.9)
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It follows from (3.4) and (3.9) that

rank

(
ṽ
(n)
0

Hx−t(n− 1)(
((x− t) · v)(n−1)

n

)T )

=rank

(
ã1 ã2 · · · ãp−m

Hx−t(n− 1)(
((x− t) · v)(n−1)

n

)T ) ,

(3.10)

where ã1, ã2, . . . , ãp−m are p−m columns of the block ṽ
(n)
0 . We have

rank

(
ṽ
(n)
0

Hx−t(n− 1)(
((x− t) · v)(n−1)

n

)T )

=︸︷︷︸
(3.9)

rank

(
ṽ
(n)
0

H̃x−t(n− 1)(
((x− t) · ṽ)(n−1)

n

)T )

=rank
(
ṽ
(n)
0 ṽ

(n)
1 − tṽ

(n)
0 ṽ

(n)
2 − tṽ

(n)
1 · · · ṽ

(n)
n − tṽ

(n)
n−1

)
=rank

(
ṽ
(n)
0 ṽ

(n)
1 ṽ

(n)
2 · · · ṽ

(n)
n

)
=︸︷︷︸

(3.6)

rank
(
ṽ
(n)
0 ṽ

(n)
1 ṽ

(n)
2 · · · ṽ

(n)
n ṽ

(n)
n+1

)
=rank

(
ṽ
(n)
0 ṽ

(n)
1 − tṽ

(n)
0 ṽ

(n)
2 − tṽ

(n)
1 · · · ṽ

(n)
n+1 − tṽ

(n)
n

)
=rank

(
ṽ
(n)
0 H̃x−t(n)

)
=︸︷︷︸

(3.8)

rank
(
ṽ
(n)
0 Hx−t(n)

)
.

(3.11)

Write

((x− t) · v)(n)n =:
(
k1 k2 · · · kp

)
.

By (3.10) and (3.11), for every j = 1, 2, . . . , p, there exist α(j)
1 , α

(j)
2 , . . . , α

(j)
p−m ∈ R and vj ∈

Mnp,1(R), such that

kj = α
(j)
1 ã1 + α

(j)
2 ã2 + . . .+ α

(j)
p−mãp−m +

(
Hx−t(n− 1)(

((x− t) · v)(n−1)
n

)T) vj.

Hence, we have

Hx−t(n) =

(
ã1 ã2 · · · ãp−m

Hx−t(n− 1)(
((x− t) · v)(n−1)

n

)T )(0p−m,np W
Inp V

)
,

where

W :=


α
(1)
1 α

(2)
1 · · · α

(p)
1

α
(1)
2 α

(2)
2 · · · α

(p)
2

...
...

. . .
...

α
(1)
p−m α

(2)
p−m · · · α

(p)
p−m

 and V :=
(
v1 v2 · · · vp

)
.
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Writing ãj =:

(
bj
cj

)
∈
(
Mnp,1(R)
Mp,1(R)

)
for each j = 1, 2, . . . , p−m, we have(

Hx−t(n− 1) ((x− t) · v)(n−1)
n

)
=
(
b1 b2 · · · bp−m Hx−t(n− 1)

)(0p−m,np W
Inp V

)
and hence,

rank
(
Hx−t(n− 1) ((x− t) · v)(n−1)

n

)
=rank

(
Hx−t(n− 1)

(
b1 b2 · · · bp−m

)
W +Hx−t(n− 1)V

)
=rank

(
Hx−t(n− 1)

(
b1 b2 · · · bp−m

)
W
)

≤ rankHx−t(n− 1) + rank
(
b1 b2 · · · bp−m

)
W

≤ rankHx−t(n− 1) + p−m.

(3.12)

Using (3.4) in (3.12) concludes the proof of the implication (1) ⇒ (2).

It remains to prove the implication (2) ⇒ (1). Let us first describe the main idea of the proof.
The aim is to construct a matrix S2n+1 ∈ Sp(R) such that

(3.13) dimKerHx−t(n) = m.

It will then follow from

Ker

(
Hx−t(n− 1)(

((x− t) · v)(n−1)
n

)T) = {0},

that there are m columns in ((x− t) · v)(n)n , which are in the span of the other columns of
Hx−t(n). By the Claim, the matrix

(3.14) M :=

(
v
(n)
0

Hx−t(n− 1)(
((x− t) · v)(n−1)

n

)T )
is invertible. This fact and (3.13) will imply that there exists a polynomial

PL(x) = (x− t)
(
xnIp −

n−1∑
i=0

xiPi,L

)
− P0,

where Pi,L, P0 ∈ Mp(R) and rankP0 = p − m, which is a block column relation of the ma-

trix M(n + 1) =

(
M(n) v

(n)
n+1(

v
(n)
n+1

)T
S2n+2

)
, where S2n+2 is uniquely determined by rankM(n) =

rankM(n+ 1). Hence,

(3.15) detPL(x) = (x− t)mg(x),

for some polynomial g(x) ∈ R[x] of degree (n+1)p−m with g(t) ̸= 0. Thus, Theorem 1.1.(1)
will follow from (3.15), Theorem 2.1 and Lemma 2.3. Moreover, the constructed measure µ
will satisfy multµ t = m.

Let

k := rank
(
Hx−t(n− 1) ((x− t) · v)(n−1)

n

)
− rankHx−t(n− 1)

= np− rankHx−t(n− 1),
(3.16)

where we used that M from (3.14) is invertible in the last equality. By assumption (2), we have

np− rankHx−t(n− 1) +m = k +m ≤ p,
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or equivalently
k ≤ p−m.

In order to simplify the technical structure of the proof, we make the following modification.
We permute the columns of ((x− t) · v)(n−1)

n using a permutation matrix P ∈ Mp(R) to obtain
a matrix

̂((x− t) · v)
(n−1)

n ≡
( ̂((x− t) · v)

(n−1)

n;1︸ ︷︷ ︸
p−m

columns

̂((x− t) · v)
(n−1)

n;2︸ ︷︷ ︸
m

columns

)
:= ((x− t) · v)(n−1)

n P,

(3.17)

such that

rank
(
Hx−t(n− 1) ̂((x− t) · v)

(n−1)

n;1

)
= rank

(
Hx−t(n− 1) ((x− t) · v)(n−1)

n

)
= rankHx−t(n− 1) + k = np.

(3.18)

By (3.18), it follows that

(3.19) ̂((x− t) · v)
(n−1)

n;2 =
(
Hx−t(n− 1) ̂((x− t) · v)

(n−1)

n;1

)
J

for some J ∈ M(n+1)p−m,m(R) or equivalently(
Hx−t(n− 1) ̂((x− t) · v)

(n−1)

n;1
̂((x− t) · v)

(n−1)

n;2

)(−J
Im

)
= 0np,m.(3.20)

We will now define Ẑ ∈ Sp(R) such that Hx−t(n− 1) ̂((x− t) · v)
(n−1)

n( ̂((x− t) · v)
(n−1)

n

)T
Ẑ

(−J
Im

)
= 0(n+1)p,m.

By (3.20), it suffices to establish the equality

(3.21)
(( ̂((x− t) · v)

(n−1)

n

)T
Ẑ
)(−J

Im

)
= 0p,m.

Let us decompose Ẑ as

(3.22) Ẑ :=

(
Ẑ1 Ẑ2

ẐT
2 Ẑ3

)
,

where Ẑ1, Ẑ2 and Ẑ3 are of sizes (p −m) × (p −m), (p −m) ×m and m ×m, respectively.
In this notation, (3.21) becomes

(3.23)

( ̂((x− t) · v)
(n−1)

n;1

)T
Ẑ1 Ẑ2( ̂((x− t) · v)

(n−1)

n;2

)T
ẐT

2 Ẑ3

(−J
Im

)
= 0p,m.

We choose Ẑ1 ∈ Sp−m(R) so that

(3.24) rank

 Hx−t(n− 1) ̂((x− t) · v)
(n−1)

n;1( ̂((x− t) · v)
(n−1)

n;1

)T
Ẑ1

 = np+ (p−m)

and define

(3.25) Ẑ2 :=
(( ̂((x− t) · v)

(n−1)

n;1

)T
Ẑ1

)
J and Ẑ3 :=

(( ̂((x− t) · v)
(n−1)

n;2

)T
ẐT

2

)
J.



12 A. ZALAR AND I. ZOBOVIČ

By (3.25), it is clear that Ẑ satisfies (3.21). It remains to show that Ẑ is symmetric. Since
Ẑ1 ∈ Sp−m(R), we only need to show that Ẑ3 ∈ Sm(R). But this follows by the following
computation:

Ẑ3 =
(( ̂((x− t) · v)

(n−1)

n;2

)T
ẐT

2

)
J =

(
̂((x− t) · v)

(n−1)

n;2

Ẑ2

)T

J

=︸︷︷︸
(3.19),
(3.25)

 Hx−t(n− 1) ̂((x− t) · v)
(n−1)

n;1( ̂((x− t) · v)
(n−1)

n;1

)T
Ẑ1

 J

T

J

= JT

 Hx−t(n− 1) ̂((x− t) · v)
(n−1)

n;1( ̂((x− t) · v)
(n−1)

n;1

)T
Ẑ1

T

J.

Defining the vectors c1, c2, . . . , cm by

C ≡
(
c1 c2 · · · cm

)
:= (Inp ⊕ P )

(
−J
Im

)
and the matrix Z by

(3.26) Z := PẐP T ∈ Sp(R),

we have

c1, c2, . . . , cm ∈ Ker

(
Hx−t(n− 1) ((x− t) · v)(n−1)

n(
((x− t) · v)(n−1)

n

)T
Z

)
and c1, c2, . . . , cm are linearly independent. Indeed,(

Hx−t(n− 1) ((x− t) · v)(n−1)
n(

((x− t) · v)(n−1)
n

)T
Z

)
C

=

 Hx−t(n− 1) ̂((x− t) · v)
(n−1)

n P T

P
( ̂((x− t) · v)

(n−1)

n

)T
PẐP T

 (Inp ⊕ P )

(
−J
Im

)

= (Inp ⊕ P )

 Hx−t(n− 1) ̂((x− t) · v)
(n−1)

n( ̂((x− t) · v)
(n−1)

n

)T
Ẑ

 (Inp ⊕ P T )(Inp ⊕ P )

(
−J
Im

)

= (Inp ⊕ P )

 Hx−t(n− 1) ̂((x− t) · v)
(n−1)

n( ̂((x− t) · v)
(n−1)

n

)T
Ẑ

(−J
Im

)
=︸︷︷︸

(3.20),
(3.21)

(Inp ⊕ P )0(n+1)p,m = 0(n+1)p,m.

Defining
S2n+1 := Z + tS2n ∈ Sp(R),

the equality (3.13) holds. Since M from (3.14) is invertible, it follows that

M̂ := (Inp ⊕ P T )M =

(
v̂
(n)
0

Hx−t(n− 1)( ̂((x− t) · v)
(n−1)

n

)T
)
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is also invertible, where

v̂
(n)
0 := (Inp ⊕ P T )v

(n)
0 .(3.27)

Therefore  ̂((x− t) · v)
(n−1)

n;1

Ẑ1

ẐT
2

 = M̂
(
U1

U2

)

for some real matrices U1 ∈ Mp,p−m(R) and U2 ∈ Mnp,p−m(R) with

(3.28) rankU1 = p−m (see (3.24)),

or equivalently

(3.29)

M̂
̂((x− t) · v)

(n−1)

n;1

Ẑ1

ẐT
2


−U1

−U2

Ip−m

 = 0(n+1)p,(p−m).

By (3.20), (3.25) and (3.29), we have thatv̂
(n)
0

Hx−t(n− 1) ̂((x− t) · v)
(n−1)

n( ̂((x− t) · v)
(n−1)

n

)T
Ẑ




−U1 0p,m

−U2 −J1
Ip−m −J2
0m,p−m Im

 = 0(n+1)p,p,

where J =:

(
J1
J2

)
∈
(

Mnp,m(R)
Mp−m,m(R)

)
. Therefore

(
̂((x− t) · v)

(n−1)

n

Ẑ

)(
Ip−m −J2
0m,p−m Im

)

=

(
Hx−t(n− 1)( ̂((x− t) · v)

(n−1)

n

)T
)(

U2 J1
)
+ v̂

(n)
0

(
U1 0p,m

)(3.30)

Using (3.27) and(
̂((x− t) · v)

(n−1)

n

Ẑ

)
=

(
((x− t) · v)(n−1)

n P
P TZP

)
= (Inp ⊕ P T )((x− t) · v)(n)n P

in (3.30), we get

(3.31) ((x− t) · v)(n)n Gn =
n−1∑
i=0

((x− t) · v)(n)i Gi + v
(n)
0

(
U1 0p,m

)
,

where Gn := P

(
Ip−m −J2
0m,p−m Im

)
and G0, G1, . . . , Gn−1 ∈ Mp(R). Since Gn is invertible,

(3.31) is equivalent to

((x− t) · v)(n)n =
n−1∑
i=0

((x− t) · v)(n)i GiG
−1
n + v

(n)
0

(
U1 0p,m

)
G−1

n .
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We now define the matrix polynomial

H(x) := (xn+1 − txn)Ip −
n−1∑
i=0

(xi+1 − txi)GiG
−1
n −

(
U1 0p,m

)
G−1

n

= (x− t)

(
xnIp −

n−1∑
i=0

xiGiG
−1
n

)
−
(
U1 0p,m

)
G−1

n .

(3.32)

Observe that H(x) is monic of degree n+ 1 and represents the block column relation H(X) =
0(n+1)p,p in the matrix

(3.33) M(n+ 1) =

(
M(n) v

(n)
n+1(

v
(n)
n+1

)T
S2n+2

)
,

where S2n+2 is uniquely determined by rankM(n) = rankM(n+ 1). Note that

rank
(
U1 0p,m

)
G−1

n = rank
(
U1 0p,m

)
=︸︷︷︸

(3.28)

p−m,

whence

dim
(
Ker

(
U1 0p,m

)
G−1

n

)
= m.

By Lemma 3.1 used for H(x) from (3.32), we get that

detH(x) = (x− t)mg(x),

for some polynomial g(x) ∈ R[x] of degree (n + 1)p − m. By Theorem 2.1, there exists a
representing measure for L of the form µ =

∑ℓ
j=1 δxj

Aj , where ℓ ∈ N, xj ∈ R are pairwise
distinct, Aj ∈ S⪰0

p (R) and (n + 1)p = rankM(n) =
∑ℓ

j=1 rankAj . By Lemma 2.3, the
atoms x1, x2, . . . , xℓ are exactly pairwise distinct zeros of detH(x). Hence, t = xj′ for some
j′ ∈ {1, 2, . . . , ℓ}, and rankAj′ ≥ m. We now need to show that rankAj′ = m. Suppose on
the contrary that rankAj′ = m′ for some

(3.34) m′ > m.

Let us define the measure µ̃ := µ − δtAj′ . By analogous reasoning as for µ in the proof of
implication (1) ⇒ (2), we obtain an equality of type (3.11), where m is replaced by m′, and
ã1, ã2, . . . , ãp−m′ are p − m′ columns of the block ṽ

(n)
0 :=

(
S̃0 S̃1 · · · S̃n

)
, where S̃i :=∫

R x
i dµ̃. The equality is equivalent to

Hx−t(n) =

(
ã1 ã2 · · · ãp−m′

Hx−t(n− 1)(
((x− t) · v)(n−1)

n

)T )(0p−m′,np W̃

Inp Ṽ

)
,
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for some matrices W̃ ∈ Mp−m′,p(R) and Ṽ ∈ Mnp,p(R). Hence, we have

rankHx−t(n)

= rank

(
Hx−t(n− 1)(

((x− t) · v)(n−1)
n

)T (
ã1 ã2 · · · ãp−m′

)
W̃ +

(
Hx−t(n− 1)(

((x− t) · v)(n−1)
n

)T) Ṽ

)

=rank

(
Hx−t(n− 1)(

((x− t) · v)(n−1)
n

)T (
ã1 ã2 · · · ãp−m′

)
W̃

)

≤ rank

(
Hx−t(n− 1)(

((x− t) · v)(n−1)
n

)T)+ rank
(
ã1 ã2 · · · ãp−m′

)
W̃

≤ rank

(
Hx−t(n− 1)(

((x− t) · v)(n−1)
n

)T)+ p−m′

=np+ p−m′.

(3.35)

On the other hand, we have

rankHx−t(n) = rank

 Hx−t(n− 1) ((x− t) · v)(n−1)
n;1 ((x− t) · v)(n−1)

n;2(
((x− t) · v)(n−1)

n;1

)T
Ẑ1 Ẑ2(

((x− t) · v)(n−1)
n;2

)T
ẐT

2 Ẑ3


=︸︷︷︸

(3.19),
(3.25)

rank

 Hx−t(n− 1) ((x− t) · v)(n−1)
n;1(

((x− t) · v)(n−1)
n;1

)T
Ẑ1(

((x− t) · v)(n−1)
n;2

)T
ẐT

2


=︸︷︷︸

(3.19),
(3.25)

rank

(
Hx−t(n− 1) ((x− t) · v)(n−1)

n;1(
((x− t) · v)(n−1)

n;1

)T
Ẑ1

)

=︸︷︷︸
(3.24)

np+ p−m

(3.36)

Combining (3.35) and (3.36), we get m ≥ m′, which is a contradiction with (3.34). Therefore
multµ t = m and g(t) ̸= 0. This completes the proof. □

Proof of Corollary 1.2. Let v(j)
i be as in (2.2) and ((x− t) · v)(j)i as in (2.3). Since M(n) is

invertible, it follows that the matrix

M :=

(
v
(n)
0

Hx−t(n− 1)(
((x− t) · v)(n−1)

n

)T )
is also invertible. Therefore

rank

(
Hx−t(n− 1)(

((x− t) · v)(n−1)
n

)T) = np,

whence rankHx−t(n− 1) ≥ (n− 1)p. By Theorem 1.1, the corollary follows. □

Proof of Corollary 1.3. Define a sequence S̃ = (S̃0, S̃1, . . . , S̃2n1+2n2), where S̃i := Si−2n1 . By
assumption (1.5), MS̃(n1+n2) := (S̃i+j−2)

n1+n2+1
i,j=1 is positive definite. By Corollary 1.2, S̃ has
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a minimal representing measure µ̃ =
∑ℓ

j=1Ajδxj
for some xj ∈ R \ {0} and Aj ∈ S⪰0

p (R).
Namely, S̃i =

∑ℓ
j=1Ajx

i
j for each i = 0, 1, . . . , 2n1 + 2n2. But then

Si = S̃i+2n1 =
ℓ∑

j=1

Ajx
i+2n1
j =

ℓ∑
j=1

(Ajx
2n1
j )xi

j,

whence µ :=
∑ℓ

j=1(Ajx
2n1
j )δxj

is a representing measure in Corollary 1.3. □

Remark 3.2. (1) The polynomial H(x) (see (3.32)), which is a block column relation of the
matrix in (3.33), can also be obtained by computing(

HT
0 HT

1 · · · HT
n

)T
:= M(n)−1v

(n)
n+1,

to obtain H(x) = xn+1Ip −
∑n

i=0 x
iHi.

(2) The zeroes of the polynomial g(x) from (3.15) correspond to the other atoms in the repre-
senting measure, while the multiplicity of the atom as the zero of g(x) coincides with the
multiplicity of the atom.

(3) Assume a linear operator L : R[x]≤2n → Sp(R) has a representing measure µ =
∑ℓ

j=1 δxj
Aj ,

where the atoms xj ∈ R are pairwise distinct, Aj ∈ S⪰0
p (R) and

∑ℓ
j=1 rankAj = (n+1)p.

Assume that we know the atoms x1, x2, . . . , xℓ. It remains to compute the masses Aj . We
denote by V ≡ V(x1,x2,...,xℓ) :=

(
xi−1
j

)ℓ
i,j=1

the Vandermonde matrix. Since x1, x2, . . . , xℓ

are pairwise distinct, it follows that V is invertible. The masses Aj are obtained via(
A1 A2 · · · Aℓ

)T
=
(
V −1 ⊗ Ip

)
v
(ℓ−1)
0 ,

where ⊗ denotes the Kronecker product of two matrices, i.e., V −1 ⊗ Ip = (V ⊗ Ip)
−1 =(

(xi−1
j Ip)

ℓ
i,j=1

)−1 . Note that if ℓ > 2n + 2, then not all Sj are given. In particular,
S2n+2, S2n+3, . . . , Sℓ−1 need to be computed recursively by

Sj =
(
Sj−n−1 Sj−n · · · Sj−1

) (
HT

0 HT
1 · · · HT

n

)T
,

for j = 2n+ 2, 2n+ 3, . . . , ℓ− 1, where Hi are as in (1) above.

(4) If m = p in Theorem 1.1, then k must be 0 in (3.16) and there are no blocks ̂((x− t) · v)
(n−1)

n;1

(see (3.17)) and Ẑ1, Ẑ2 (see (3.22)). Moreover, k = 0 implies that

rank
(
Hx−t(n− 1) ((x− t) · v)(n−1)

n

)
= rankHx−t(n− 1) = np,

whence Hx−t(n− 1) is invertible. Further, J in (3.19) is equal to

J = Hx−t(n− 1)−1((x− t) · v)(n−1)
n ,

while Z in (3.19) is equal to

Z =
(
((x− t) · v)(n−1)

n

)T
(Hx−t(n− 1))−1((x− t) · v)(n−1)

n .

Therefore, the measure µ for L, with multµ t = m, is unique.
(5) If m < p in Theorem 1.1, then k > 0 in (3.16) and we have a free choice of selecting

Ẑ1 ∈ Sp−m(R) and different possibilities for J in (3.19). To be precise, J can be chosen
arbitrarily from the set{(

Hx−t(n− 1) ̂((x− t) · v)
(n−1)

n;1

)† ̂((x− t) · v)
(n−1)

n;2 + U : U ∈ M(n+1)p−m,m(R)

such that
(
Hx−t(n− 1) ̂((x− t) · v)

(n−1)

n;1

)
U = 0np,m

}
,
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where (∗)† denotes the Moore-Penrose pseudoinverse of the matrix (∗). Therefore, in this
case, a measure µ for L such that multµ t = m is not unique, as can be seen in Example 4.1
below.

4. EXAMPLES

In this section we demonstrate the application of Theorem 1.1 on numerical examples.

The following example considers a moment sequence S with k > 0 as defined in (3.16). We
construct two distinct (n+1)p–atomic representing measures for S. In both cases, the measures
include 0 in the support with largest multiplicity allowed by Theorem 1.1, namely m = p − k,
demonstrating that a representing measure for S containing an atom t with multµ t = m is not
unique whenever m < p.

Example 4.1. 1 Let p = 2, n = 1 and

S0 =

(
18 10
10 7

)
, S1 =

(
2 2
2 2

)
, S2 =

(
50 26
26 14

)
.

We can easily check that M(1) ≻ 0. Let t = 0. We have that

Hx(0) =
(
S1

)
=

(
2 2
2 2

)
and (x · v)(0)1 =

(
S2

)
=

(
50 26
26 14

)
.

We observe that rankHx(0) = 1 and rank
(
Hx(0) (x · v)(0)1

)
= 2, therefore k = 1 in

(3.16). In this case, we can take a trivial permutation P = I2 in (3.17) since (x · v)(0)1 =(
(x · v)(0)1;1 (x · v)(0)1;2

)
, where (x · v)(0)1;1 =

(
50
26

)
, satisfies

rank
(
Hx(0) (x · v)(0)1

)
= rank

(
Hx(0) (x · v)(0)1;1

)
.

Let J :=
(
−1

2
1 1

2

)T . We check that

(x · v)(0)1;2 =

(
26
14

)
=
(
Hx(0) (x · v)(0)1;1

)
J.

We will now construct the matrix Z = Ẑ (see (3.22)), which is used in the proof of Theorem
1.1 to obtain a polynomial H(x) (see (3.32)), being a block column relation of

(
M(1) v

(1)
2

)
and such that Z(detH(x)) is precisely the set of atoms in some minimal representing measure
for S := (S0, S1, S2). Note that since t = 0, we have S3 = Z. For every Z1 ∈ R, the matrix

S3 = Z =

(
Z1 Z2

ZT
2 Z3

)
,

where Z2 =
((

(x · v)(0)1;1

)T
Z1

)
J and Z3 =

((
(x · v)(0)1;2

)T
ZT

2

)
J , is symmetric and satisfies

(3.21).
Let Z(1)

1 := 2 and Z
(2)
1 := 98. Computing

Z
(i)
2 =

((
(x · v)(0)1;1

)T
Z

(i)
1

)
J and Z

(i)
3 =

((
(x · v)(0)1;2

)T
(Z

(i)
2 )T

)
J

1The Mathematica file with numerical computations can be found on the link https://github.com/
ZobovicIgor/Matricial-Gaussian-Quadrature-Rules/tree/main.

https://github.com/ZobovicIgor/Matricial-Gaussian-Quadrature-Rules/tree/main
https://github.com/ZobovicIgor/Matricial-Gaussian-Quadrature-Rules/tree/main
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for i = 1, 2, we get S(1)
3 = Z(1) =

(
2 2
2 2

)
and S

(2)
3 = Z(2) =

(
98 50
50 26

)
. We can obtain the

coefficients H(i)
0 , H

(i)
1 of the corresponding matrix polynomials

H(i)(x) = x2I2 − xH
(i)
1 −H

(i)
0

by computing (see Remark 3.2.(1))(
H

(i)
0

H
(i)
1

)
= M(1)−1 ·

(
S2

S
(i)
3

)
for i = 1, 2. The polynomials are the following:

H(1)(x) = x2I2 − x

(
2 1

2

−4 −1

)
−
(
3 3

2

0 0

)
,

H(2)(x) = x2I2 − x

(
6 5

2

−8 −3

)
−
(
3 3

2

0 0

)
,

with the determinants

detH(1)(x) = x(x− 1)(x−
√
3)(x+

√
3),

detH(2)(x) = x(x− 3)(x− 1)(x+ 1).

Therefore the sets {0, 1,
√
3,−

√
3} and {0, 3, 1,−1} represent the atoms of two distinct ma-

trix measures for (S0, S1, S2). Note that both determinants only have zeroes of multiplicity 1,
therefore the multiplicities of all the atoms from both sets are 1. We confirm this by comput-
ing the corresponding masses for both sets of atoms. It turns out (using Remark 3.2.(3)) that

the masses for the atoms 0, 1,
√
3,−

√
3 in the first measure are

(
0 0
0 1

)
,
(
2 2
2 2

)
,

(
8 4
4 2

)
,(

8 4
4 2

)
, respectively, and the masses for the atoms 0, 3, 1,−1 in the second measure are(

0 0
0 1

)
,

(
4 2
2 1

)
,

(
2 2
2 2

)
,

(
12 6
6 3

)
, respectively.

The next example illustrates that the inequality in Theorem 1.1.(2) can be strict. Namely,
starting from a measure whose atom 0 has multiplicity strictly smaller than rankHx(n − 1) −
(n − 1)p, we build a new representing measure in which the multiplicity of the atom 0 is the
highest possible, i.e., equal to rankHx(n− 1)− (n− 1)p.

Example 4.2. 2 Let µ =
∑4

j=1 δxj
Aj be a finitely atomic matrix measure with (x1, x2, x3, x4) =

(0, 1,−1,−2) and (A1, A2, A3, A4) =

((
2 2
2 2

)
,

(
1 1
1 1

)
,

(
0 0
0 1

)
,

(
1 0
0 0

))
, and let L be a

linear operator, defined by L(p) =
∫
R p dµ for every p ∈ R[x]≤2. We define

S0 := L(1) =

(
4 3
3 4

)
, S1 := L(x) =

(
−1 1
1 0

)
and S2 := L(x2) =

(
5 1
1 2

)
.

The measure µ contains the atom 0 with multµ 0 = rankA1 = 1. However, the localizing
matrix Hx(0) =

(
S1

)
is invertible, therefore

rank
(
Hx(0) S2

)
= rankHx(0) = 2 < rankHx(0) + 2−multµ 0 = 3.

2The Mathematica file with numerical computations can be found on the link https://github.com/
ZobovicIgor/Matricial-Gaussian-Quadrature-Rules/tree/main.

https://github.com/ZobovicIgor/Matricial-Gaussian-Quadrature-Rules/tree/main
https://github.com/ZobovicIgor/Matricial-Gaussian-Quadrature-Rules/tree/main
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Since rank
(
Hx(0) S2

)
= rankHx(0), it follows from Theorem 1.1 that there exists a 4–

atomic representing matrix measure µ̃ for L which contains the atom 0 with multµ̃ 0 = 2. Such
measure µ̃ is unique (see Remark 3.2.(4)) and we will now find its atoms. We first compute

S
(µ̃)
3 := ST

2 S
−1
1 S2 =

(
5 1
1 2

)T

·
(
−1 1
1 0

)−1

·
(
5 1
1 2

)
=

(
11 13
13 8

)
.

Then we obtain the polynomial H(x), which is a block column relation of
(
M(1) v

(1)
2

)
and

such that Z(detH(x)) is precisely the set of atoms in some minimal represenitng measure for
L. Namely, H(x) = x2I2 − xH1 −H0 where

(
H0

H1

)
= M(1)−1

(
S2

S
(µ̃)
3

)
=


(
0 0
0 0

)
(
1 2
6 3

)
 .

Thus, it follows that

H(x) = x2I2 − x

(
1 2
6 3

)
.

The atoms of the measure µ̃ are the zeroes of

detH(x) = x2(x2 − 4x− 9) = x2(x− 2 +
√
13)(x− 2−

√
13),

therefore
µ̃ = δ0B1 + δ2−

√
13B2 + δ2+

√
13B3,

where rankB1 = 2 and rankB2 = rankB3 = 1. By Remark 3.2.(3), the masses of the atoms
are

B1 =

(
3 10

3
10
3

34
9

)
, B2 =

(
13+3

√
13

26
−13−5

√
13

78

−13−5
√
13

78
13+2

√
13

117

)
, B3 =

(
13−3

√
13

26
5
√
13−13
78

5
√
13−13
78

13−2
√
13

117

)
.

5. GENERALIZED MATRICIAL GAUSSIAN QUADRATURE RULES WITH PRESCRIBED ATOM

In this section we allow the evaluation at ∞ (see (2.6)) as a measure and prove a sufficient
condition for the existence of a generalized matricial Gaussian quadrature rule for a linear op-
erator L : R[x]≤2n → Sp(R), containing rankM(n− 1) real atoms, among which a prescribed
atom has a prescribed multiplicity (see Theorem 5.1).

Let m,n ∈ N and

M =

(
A B
C D

)
∈ Mn+m(R),

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n and D ∈ Rm×m. The Schur complement [Zha05]
of D in M is defined by M

/
D = A−BD−1C.

Theorem 5.1. Let n, p ∈ N and L : R[x]≤2n → Sp(R) be a linear operator such that M(n− 1)
is positive definite. Fix t ∈ R and m ∈ N ∪ {0}. Assume the notation from §2. If

(5.1) m = rank
(
Hx−t(n− 2) ((x− t) · v)(n−2)

n−1

)
− rankHx−t(n− 2)

and

(5.2) M(n)
/
M(n− 1) ⪰ 0,

then there exists a (rankM(n))–atomic (R ∪ {∞})–representing measure µ for L such that
multµ t = m and multµ∞ = rankM(n)− np.
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Proof. By the same proof as for the implication (2) ⇒ (1) of Theorem 1.1, (5.1) implies that
the sequence S(2n−1) := (S0, S1, . . . , S2n−1) has a (rankM(n − 1))–atomic R–representing
measure µ̃ such that multµ̃ t = m. Let S̃2n =

∫
R x

2ndµ̃ and S̃ = (S0, S1, . . . , S2n−1, S̃2n).
Since rankMS̃(n) = rankMS̃(n− 1), it follows that MS̃(n)

/
MS̃(n− 1) = 0p. Moreover,

M(n)
/
M(n− 1) = S2n − S̃2n +MS̃(n)

/
MS̃(n− 1).

By (5.2), S2n− S̃2n ⪰ 0 and thus S = (S0, S1, . . . , S2n) has a (R∪{∞})–representing measure

µ := µ̃+ δ∞
(
M(n)

/
M(n− 1)

)
.

This concludes the proof of Theorem 5.1. □
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