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Abstract. An n × n symmetric matrix A is copositive if the quadratic form xTAx is

nonnegative on the nonnegative orthant Rn
≥0. The cone of copositive matrices contains

the cone of matrices which are the sum of a positive semidefinite matrix and a nonnegative

one and the latter contains the cone of completely positive matrices. These are the

matrices of the form BBT for some n× r matrix B with nonnegative entries. The above

inclusions are strict for n ≥ 5. The first main result of this article is a free probability

inspired construction of exceptional copositive matrices of all sizes ≥ 5, i.e., copositive

matrices that are not the sum of a positive semidefinite matrix and a nonnegative one.

The second contribution of this paper addresses the asymptotic ratio of the volume radii

of compact sections of the cones of copositive and completely positive matrices. In a

previous work by the authors, it was shown that, by identifying symmetric matrices

naturally with quartic even forms, and equipping them with the L2 inner product and

the Lebesgue measure, the ratio of the volume radii of sections with a suitably chosen

hyperplane is bounded below by a constant independent of n as n tends to infinity. In

this paper, we extend this result by establishing an analogous bound when the sections

of the cones are unit balls in the Frobenius inner product.

1. Introduction

Copositive and completely positive matrices have gained considerable attention in re-

cent years. They appear in combinatorial analysis, computational mechanics, dynamical

systems, control theory and especially in optimization. This is because many combina-

torial and nonconvex quadratic optimization problems can be formulated as linear prob-

lems over the larger cone of copositive or the smaller cone of completely positive matrices

[KP02, Bur09, RRW10, DR21]. In this article we streamline the proof of the main result

of [KŠZ24], which compares the asymptotic volumes of these two cones of matrices. More-

over, we give an explicit construction of exceptional matrices, i.e., matrices that belong

to the larger cone, but not to the smaller one.

1.1. Notation. For n ∈ N denote by Mn(R) the n × n real matrices and let Sn ={
A ∈ Mn(R) : AT = A

}
be its subspace of real symmetric matrices, where T stands for

the usual transposition of matrices. Denote by R[x] be the vector space of real polynomials

in the variables x = (x1, . . . , xn) and let R[x]k be its subspace of forms of degree k, i.e.,
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homogeneous polynomials from R[x] of degree k. To any matrix A = [aij]
n
i,j=1 ∈ Sn we

associate the quadratic form

(1.1) pA(x) := xTAx =
n∑

i,j=1

aijxixj ∈ R[x]2.

1.2. Basic definitions and background. This article studies the inclusion properties

of the cones of the following classes of matrices.

Definition 1.1. A matrix A ∈ Sn is:

(1) copositive if pA is nonnegative on the nonnegative orthant

Rn
≥0 := {(x1, . . . , xn) : xi ≥ 0, i = 1, . . . , n},

i.e., pA(x) ≥ 0 for every x ∈ Rn
≥0. Equivalently, A is copositive iff the quartic form

(1.2) qA(x) := pA(x
2
1, . . . , x

2
n) ∈ R[x]4

is nonnegative on Rn. We write COPn for the cone of all n×n copositive matrices.

(2) positive semidefinite (PSD) if all of its eigenvalues are nonnegative. Equiv-

alently, A is PSD iff pA(x) ≥ 0 for all x ∈ Rn iff A = BBT for some matrix

B ∈ Mn(R). We write A ⪰ 0 to denote that A is PSD and PSDn stands for the

cone of all n× n PSD matrices.

(3) nonnegative (NN) if all of its entries are nonnegative, i.e., A = [aij]
n
i,j=1 with

aij ≥ 0 for i, j = 1, . . . , n. We write NNn for the cone of all n× n NN matrices.

(4) SPN (sum of a positive semidefinite matrix and a nonnegative one) if it is of the

form A = P+N , where P ∈ PSDn and N ∈ NNn. We write SPNn := PSDn+NNn

for the cone of all n× n SPN matrices.

(5) doubly nonnegative (DNN) if it is PSD and NN. We use DNNn := PSDn ∩NNn

for the cone of all n× n DNN matrices.

(6) completely positive (CP)1 if A = BBT for some r ∈ N and n × r entrywise

nonnegative matrix B. We write CPn for the cone of all n× n CP matrices.

The presented matrices clearly form the following chain of inclusions:

(1.3) COPn ⊇ SPNn ⊇ PSDn ∪NNn ⊇ DNNn ⊇ CPn .

After formulating a combinatorial problem as a conic linear problem over COPn or

CPn, the complexity of the problem is reduced to the constraints of the respective cone.

However, the membership problem for COPn is co-NP-complete [MK87] and NP-hard for

CPn [DG14]. For this reason, Parrilo [Par00] proposed an increasing hierarchy of cones

K
(r)
n := {A ∈ Sn : (

∑n
i=1 x

2
i )

r · pA(x) is a sum of squares of forms}, which give a tractable

inner approximation of the cone COPn based on semidefinite programming. Clearly,

(1.4)
⋃
r∈N0

K(r)
n ⊆ COPn,

and a result of Pólya [Pól28] gives a statement on the quality of the approximation,

namely int(COPn) ⊆
⋃

r∈N0
K

(r)
n . It was shown in [Par00, p. 63–64] that K

(0)
n = SPNn.

Also, SPNn = COPn for n ≤ 4 by [MM62]. Whence, K
(0)
n = COPn and the inclusion in

1Despite the similar name, the CP matrices considered here are not related to the CP maps ubiquitous

in operator algebra [Pau02].
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(1.4) is in fact equality for n ≤ 4 (see also [Dia62]). However, for n ≥ 5, the cone K
(0)
n

is strictly contained in COPn . For n = 5, the strict inclusion is testified by the so-called

Horn matrix [HN63]

(1.5) H =


1 −1 1 1 −1

−1 1 −1 1 1

1 −1 1 −1 1

1 1 −1 1 −1

−1 1 1 −1 1


giving a standard example of a copositive matrix that is not SPN.

Further, H ∈ K
(1)
5 by [Par00], but COP5 ̸= K

(r)
5 for any r ∈ N by [DDGH13]. Very

recently it was shown in [LV22b, SV24] that for n = 5, the inclusion in (1.4) is also

equality, while for n ≥ 6, the inclusion becomes strict [LV22a]. The aim of this paper

is first to find further testimonies of the gap between COP and CP matrices. Next, we

imply that this construction cannot be randomized by showing that the asymptotic ratio

of the volume radii of compact sections of the cones COP and CP is strictly positive as n

goes to infinity. A nice exposition on the classes of matrices defined above can be found

in [BSM21] and some open problems regarding COP and CP are presented in [BDSM15].

1.3. Main results. The first main result is a bootstrap method to find exceptional doubly

nonnegative (e-DNN) matrices, i.e., doubly nonnegative matrices that are not completely

positive. We first find a seed e-DNN matrix of size 5×5, which then gives rise to a family

of e-DNN matrices of arbitrary sizes ≥ 5.

The construction is inspired by the free probability construction in [CHN17] of positive

maps between matrix spaces that are not completely positive. For each f ∈ L∞[0, 1]

consider the corresponding multiplication operator Mf on L2[0, 1]; that is

Mf g = fg

for g ∈ L2[0, 1]. With respect to the standard orthonormal basis for L2[0, 1] given by

(1.6) B :=
{
1
}
∪
{√

2 cos(2kπx) : k ∈ N
}
∪
{√

2 sin(2kπx) : k ∈ N
}
,

each such multiplication operator can be represented by an infinite matrix. For a closed

subspace H ⊆ L2[0, 1] denote by PH : L2[0, 1] → H the orthogonal projection onto H.

Then for any f ∈ H, the operator MH
f := PHMfPH is in fact a multiplication operator on

H and can be as well represented by a (possibly infinite) matrix. Our idea is to find an

infinite dimensional H and an f ∈ H such that MH
f has all finite principal submatrices

DNN but not CP.

1.3.1. Construction of exceptional DNN matrices of all sizes ≥ 5. The setting in which

we work is the following:

f is of the form 1 + 2
m∑
k=1

ak cos(2kπx), m ∈ N, a1 ≥ 0, . . . , am ≥ 0,(1.7)

H ⊆ L2[0, 1] is spanned by the functions cos(2kπx), k ∈ N0.

For n ∈ N, let Hn be the finite-dimensional subspace of H spanned by the functions

1,
√
2 cos(2πx), . . . ,

√
2 cos(2(n− 1)πx)
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and let Pn : H → Hn the orthogonal projection onto Hn. Clearly, all the matrices

(1.8) A(n) := PnM
H
f Pn, n ∈ N

are NN since f has positive Fourier coefficients. To certify that they are PSD, we impose

the condition that f is a sum of squares (SOS) of trigonometric polynomials, i.e.,

(1.9) f = vTBv, where B ∈ PSDm′+1

and

vT =
(
1 cos(2πx) · · · cos(2m′πx)

)
for some m′ ≤ m.

Finally, to achieve that A(n) ̸∈ CPn for n ≥ 5, we demand that

(1.10) ⟨A(5), H⟩ < 0,

where H is the Horn matrix of (1.5) and ⟨·, ·⟩ is the usual Frobenius inner product on

symmetric matrices, i.e., ⟨A,B⟩ = tr(AB). Since CP matrices are dual to the COP

matrices w.r.t. the Frobenius inner product, this condition indeed certifies that A(n) ̸∈ CPn

for all n as we explain in Subsection 2.1.

Now letm = 6. The above construction can be implemented via the following feasibility

SDP

tr(A(5)H) = −ϵ,

f = vTBv with B ⪰ 0,

ai ≥ 0, i = 1, . . . , 6,

(1.11)

where ϵ > 0 is predetermined (small enough). Solving (1.11) for different values of ϵ and

m′ ≤ 6, Mathematica’s semidefinite optimization solver gives an exceptional DNN matrix

A(5) (see Subsection 2.3 for an explicit example). We remark that the idea is to search

for an f as in 1.7 with the smallest m as possible to reduce the complexity of the SDP

1.11. The choice of m = 6 seemed optimal from our experiments.

1.3.2. Construction of exceptional copositive matrices of all sizes n ≥ 5. To construct

exceptional copositive matrices of arbitrary size we proceed as follows. For n ≥ 5 let

A(n) be a DNN matrix constructed by the above procedure. To obtain an exceptional

copositive matrix C of size n× n we impose the conditions

⟨A(n), C⟩ < 0,( n∑
i=1

x2
i

)k
qC is SOS for some k ∈ N

(1.12)

with qC as in (1.2). Searching for C satisfying (1.12) for fixed k can again be formulated

as a feasibility SDP. For an explicit example obtained in this way see Subsection 2.3.

1.3.3. Second main result. Let V be a finite-dimensional Hilbert space equipped with the

pushforward measure of the Lebesgue measure µ on RdimV . A natural way to compare

the volumes of two cones K1, K2 in V is to compare the compact sections of both cones

when intersected with some “fair” subset of V . A seemingly fair choice is the unit ball

B of V . In this case the task is to derive an estimate for the so–called ball-truncated

volume of Ki [ST15a]

btv(Ki) := Vol(Ki ∩B),



CONSTRUCTION OF EXCEPTIONAL COPOSITIVE MATRICES 5

where the volume Vol is computed with respect to µ. If one is interested only in the asymp-

totical behaviour of the volume difference, then comparing volume radii vrad(Ki ∩ B),

defined by

vrad(Ki ∩B) =

(
btv(Ki ∩B)

Vol(B)

)1/ dimV

,

is equally informative (see also [KŠZ24, Remark 2.4] for a detailed discussion on the ratio

of volumes versus the ratio of volume radii).

Let Bn ⊆ Sn be the unit ball w.r.t. the Frobenius inner product. Our second main

result compares the sizes of the convex cones K from Definition 1.1 by comparing the

volumes of their intersections with Bn, i.e., K
(Bn) := K ∩Bn.

Theorem 3.1. We have that
1

8
√
2
≤ vrad(CP(Bn)

n ) ≤ vrad(NN(Bn)
n ) =

1

2
≤ vrad(COP(Bn)

n ) ≤ 1.

In particular,

1

8
√
2
≤ vrad(K

(Bn)
n )

vrad(COP(Bn)
n )

≤ 1,

where K ∈ {CP,DNN,PSD,NN, SPN}.

Remark 1.2. (1) Deriving tight estimates for the ball-truncated volume btv(K(B))

of a cone K is very demanding and infeasible for most cones in dimensions be-

yond 3. This is due to the fact that the conditions defining the section K(B) are

quadratic in the coordinates of RdimV . To compensate on this problem one ap-

proach is to compare the cones when intersected with a suitably chosen half-space

or equivalently, a hyperplane. For x ∈ V let Hx := {u ∈ V : ⟨x, u⟩ ≤ 1} be a

closed halfspace and ∂Hx := {u ∈ V : ⟨x, u⟩ = 1} its boundary hyperplane.

(a) A comparison of the sizes of the cones can be done in terms of their least

partial volumes [ST15a, Definition 1.1]. The least partial volume of a cone

K is the smallest volume of K ∩Hx, where x runs over the unit sphere in V .

(b) When we want to compare the cones K1, K2 that are dual to each other in

the inner product on V , i.e.,

K2 = K∗
1 = {u ∈ V : ⟨x, u⟩ ≥ 0 for all x ∈ K1},

a “fair” choice of x in Hx is the so-called volumetric center ρ(K1) of K1

[ST15a, Definition 1.2]. This is because ρ(K1) is the centroid of K2∩ ∂Hρ(K1)

(see [ST15b, p. 2 and Lemma 5.2]), which is equivalent to the fact that ρ(K1)

is the so–called Santaló point of K1∩∂Hρ(K1), for which the Blaschke–Santalo

inequality [MP90, p. 90] can be applied.

(2) In our previous work [KŠZ24] on estimating the quantitative gap between COPn

and CPn we used the identification with quartic even forms (1.2) and then com-

pared volumes of the corresponding cones in positive even quartics. The inner

product is taken to be the L2 norm, i.e., ⟨f, g⟩ =
∫
Sn−1 fg dσ, where σ is the

rotation invariant probability measure on the unit sphere Sn−1 ⊂ Rn. In this con-

text, determining conclusive ball-truncated volumes is challenging. Therefore, we

selected an appropriate hyperplane Hx, where x is a multiple of x2
1+ . . .+x2

n, and

then derived volume estimates for the intersections of all the cones with ∂Hx. For

a detailed discussion on the choice of x see [KŠZ24, Section 2.2].
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(3) The proof of Theorem 1.3.3 is significantly less demanding than the proof of the

corresponding result in [KŠZ24], namely Theorem 1.4. To establish the latter, we

had to use two distinct inner products: in addition to the L2 inner product, we also

employed the so-called differential inner product on even quartics, which resem-

bles the Frobenius inner product on matrices. The main observations for deriving

the estimates relied on the differential inner product, while the connection be-

tween the volumes of the sets in both inner products, developed by Blekherman in

[Ble04, Ble06], was crucial. Proving Theorem 1.3.3 closely follows the observations

regarding the differential inner product from [KŠZ24].

2. Construction of exceptional doubly nonnegative and exceptional

copositive matrices

In this section we describe the details of the bootstrap method outlined in Subsection

1.3 to find exceptional doubly nonnegative (e-DNN) and exceptional copositive (e-COP)

matrices. The idea is to find a seed e-DNN matrix of size 5 × 5 that is the compression

of a multiplication operator Mf for a sum of squares cosine trigonometric polynomial f

using a semidefinite optimization program (SDP). From the seed matrix we then read off

the (finitely many) Fourier coefficients of f. Finally, we argue that all the larger finite

compressions (principal submatrices) of Mf are e-DNN as well. Using the constructed

e-DNN matrices we produce a corresponding family of exceptional copositive matrices.

2.1. Justification of the construction of a family of e-DNN matrices from a

seed e-DNN matrix of size 5× 5. Recall that the function f we are looking for is of

the form

f(x) = 1 + 2
6∑

k=1

ak cos(2kπx)

with a1, . . . , a6 ≥ 0 (here we immediately set m = 6 as in (1.7)). Also, in (1.8), we defined

A(n) = (A
(n)
jk )j,k to be the n×n principal submatrix of the infinite matrix pertaining to the

multiplication operator MH
f on H. Here H is the closed subspace of L2[0, 1] spanned by

the cos(2kπx), k ∈ N0. The technical reasons why we restrict to H instead of considering

the entire L2[0, 1] are discussed in Remark 2.1. The restriction to matrices of size n ≥ 5

is clear from the introduction since DNNn = CPn for n ≤ 4.

To find the general form of A(n) note that

A
(n)
jk =

∫ 1

0

f(x) cos(2(j − 1)πx) cos(2(k − 1)πx) dx for j, k = 1, . . . , n,

where the integration is with respect to the Lebesgue measure on [0, 1]. Using the well-

known trigonometry formula involving the cosine product identity, the products of dif-

ferent cosine functions can be replaced with linear combinations of cosine functions with

higher and lower frequency, i.e.,

cos(2jπx) cos(2kπx) =
1

2

(
cos

(
2(j − k)πx)

)
+ cos

(
2(j + k)πx

))
.(2.1)
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From (2.1) it follows that

(2.2)

∫ 1

0

cos(2jπx) cos(2kπx) cos(2ℓπx)dx =


1
2
, if j = ℓ, k = 0,

1
4
, if k ̸= 0 and j ∈ {ℓ+ k, ℓ− k},

0, otherwise.

Using (2.2) it is now easy to compute that for A(5) to be the 5× 5 compression of MH
f , it

must be of the form

(2.3) A(5) =


1

√
2a1

√
2a2

√
2a3

√
2a4√

2a1 a2 + 1 a1 + a3 a2 + a4 a3 + a5√
2a2 a1 + a3 a4 + 1 a1 + a5 a2 + a6√
2a3 a2 + a4 a1 + a5 1 + a6 a1√
2a4 a3 + a5 a2 + a6 a1 1

 .

Thus demanding that ai ≥ 0 for i = 1, . . . , 6 certifies that A(5) is NN. By the same

reasoning A(n) is NN for every n ≥ 5.

Further on, f being of the form (1.9) is equivalent to f being a sum of squares of

trigonometric polynomials [Mar08, Lemma 4.1.3]. This implies that all matrices A(n) =

PnM
H
f Pn as in (1.8) are PSD. Indeed, suppose

f =
k∑

i=0

( m′∑
j=0

hij cos(2jπx)︸ ︷︷ ︸
hi

)2

for some k and hij ∈ R. Since f and the hi are in H, clearly MH
f and the MH

hi
are

multiplication operators on H and

MH
f =

k∑
i=1

(
MH

hi

)2
.

Here each MH
hi

is self-adjoint, from which the claim follows.

Finally, we justify why (1.10) implies that PnM
H
f Pn is not CP for any n ≥ 5. Since

CP matrices are dual to copositive matrices in the usual Frobenius inner product, (1.10)

certifies that A(5) is not CP. Now the equality

(2.4) A(5) = P5(PnM
H
f Pn)P5 = P5A

(n)P5

for any n ≥ 5, implies that A(n) is not CP for any n ≥ 5. Indeed, suppose that A(n) = BBT

for some n ≥ 5 and (not necessarily square) matrix B with nonnegative entries. By (2.4),

A(5) = P5B(P5B)T and since P5 only has 0, 1 entries, this contradicts A(5) not being CP.

2.2. Justification of the construction of exceptional COP matrices from excep-

tional DNN matrices. It remains to justify our procedure for constructing an excep-

tional copositive matrix C of size n × n for any n ≥ 5 from the obtained e-DNN matrix

A(n). Since SPN matrices are dual to the DNN matrices in the Frobenius inner product,

the first condition in (1.12),

⟨A(n), C⟩ < 0,
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implies that C is not SPN. On the other hand, the second condition in (1.12),

( n∑
i=1

x2
i

)k
qC is SOS for some k ∈ N,

is a relaxation of the copositivity of C and it clearly implies that qC is nonnegative on

Rn. Whence, C is COP. We remark that in practice, it suffices to consider only k = 1 or

k = 2.

Remark 2.1. We explain the reason for restrictingMf to the closed subspaceH of L2[0, 1]

generated by the cosine functions. As in Subsection 1.3.1, with respect to the standard

orthonormal basis for L2[0, 1] given by

(2.5) 1,
√
2 cos

(
2kπx

)
,
√
2 sin

(
2kπx

)
for k ∈ N, each multiplication operator Mf for f ∈ L∞[0, 1] can be represented by an

infinite matrix.

It seems natural to start by considering the entire space L2[0, 1] and compressions

P̃nMf P̃n of Mf for some trigonometric polynomial f and n ≥ 2, onto the (2n + 1)-

dimensional span H̃n of the functions in (2.5) for k = 1, . . . , n. Here P̃n : L2[0, 1] → H̃n

are orthogonal projections.

Suppose that A is the 5×5 compression of Mf and is given with respect to the ordered

(orthonormal) basis consisting of the functions

1,
√
2 cos(2πx),

√
2 cos(4πx),

√
2 sin(2πx),

√
2 sin(4πx).

Moreover, assume that the corresponding function f has finite Fourier series

(2.6) f(x) = 1 + 2
m∑
k=1

ak cos(2kπx) + 2
m∑
k=1

bk sin(2kπx)

for some m ∈ N and real numbers ak, bk with k = 1, . . . ,m. Again, using well-known

trigonometry formulas involving product identities, i.e.,

sin(2jπx) sin(2kπx) =
1

2

(
cos

(
2(j − k)πx)

)
− cos

(
2(j + k)πx

))
,

cos(2jπx) sin(2kπx) =
1

2

(
sin

(
2(k − j)πx)

)
+ sin

(
2(j + k)πx

))(2.7)

in addition to (2.1), it is easy to compute that for A to be the 5 × 5 compression of a

multiplication operator Mf for f as in (2.6) with m ≥ 4, it must be of the form

A =


1

√
2a1

√
2a2

√
2b1

√
2b2√

2a1 a2 + 1 a1 + a3 b2 b1 + b3√
2a2 a1 + a3 a4 + 1 b3 − b1 b4√
2b1 b2 b3 − b1 1− a2 a1 − a3√
2b2 b1 + b3 b4 a1 − a3 1− a4

 .

Note that since we want all the finite-dimensional compressions ofMf to be NN, f needs

to have an infinite Fourier series. Indeed, suppose f has finite Fourier series as in (2.6) for

some m ∈ N. Then for all j, k with k < j ≤ m and m < j+ k, the (j+1, k+m+1)-entry
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of the compression P̃mMf P̃m,∫ 1

0

f(x)
√
2 cos(2jπx)

√
2 sin(2kπx) dx =∫ 1

0

f(x) sin
(
2(k − j)πx)

)
dx +

∫ 1

0

f(x) sin
(
2(j + k)πx)

)
dx,

equals −aj−k. Furthermore, we see from (2.7) that the Fourier sine coefficients of f must

satisfy

bj+k ≥ bj−k

for all k, j. But the containment f ∈ L2[0, 1] implies that bk = 0 for all k. Hence, f has a

Fourier cosine series. To avoid technical difficulties, we thus restrict our attention to H.

2.3. Examples.

2.3.1. A seed e-DNN 5 × 5 matrix. Let ϵ = 1/20. Solving the SDP (1.11) with this

parameter and rationalizing the solution [PP08, CKP15] yields the 5× 5 compression

A(5) =



1 16
√
2

27

√
2

123
1

147
√
2

5
√
2

21

16
√
2

27
124
123

1577
2646

212
861

1205
8526

√
2

123
1577
2646

26
21

572
783

1777340
√
2−2413803

3254580

1
147

√
2

212
861

572
783

1777340
√
2+814317

3254580
16
27

5
√
2

21
1205
8526

1777340
√
2−2413803

3254580
16
27

1


.(2.8)

By comparing the above A(5) with the general form (2.3) we read off the Fourier coefficients

of the corresponding function f as in (1.9), i.e.,

f(x) = 1+
32

27
cos(2πx) +

2

123
cos(4πx) +

1

147
cos(6πx)

+
10

21
cos(8πx) +

8

29
cos(10πx)

+
−2440263 + 1777340

√
2

1627290
cos(12πx).

This function is indeed SOS, since we have f = vTBv for v as in (1.3.1) with m′ = 3 and

B =



9
22

7
37

− 3
22

− 206923
5678316

7
37

336929
243540

− 88867
√
2

162729
2210
28971

88867
162729

√
2
− 200129

487080

− 3
22

2210
28971

46466763−19550740
√
2

35800380
4
29

− 206923
5678316

88867
162729

√
2
− 200129

487080
4
29

1777340
√
2−2440263

1627290

 ⪰ 0.

2.3.2. Exceptional copositive matrix from a DNN matrix. Now let ϵ′ = 1/10 and k = 1.

From the matrix A(5) in (2.8) we construct an exceptional copositive matrix C as described

in Subsection 1.3.1 by solving the feasibility SDP

tr(CA(5)) = −ϵ′,( n∑
i=1

x2
i

)
qC = wTBw with B ⪰ 0,
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where w is the vector with all the degree at most 3 words in the variables x1, . . . , xn.

Again, after a suitable rationalization, we get an exceptional copositive matrix

C =



17 −91
5

33
2

38
3

−36
5

−91
5

59
3

−53
4

8 33
4

33
2

−53
4

39
4

−13
2

8

38
3

8 −13
2

16
3

−13
3

−36
5

33
4

8 −13
3

1373628701
353935575


.

3. Quantifying the gap between COPn and CPn

In this section we prove our second main result (Theorem 1.3.3) on the estimates of

volume radii of the cones from Definition 1.1:

Theorem 3.1. We have that
1

8
√
2
≤ vrad(CP(Bn)

n ) ≤ vrad(NN(Bn)
n ) =

1

2
≤ vrad(COP(Bn)

n ) ≤ 1.

In particular,

1

8
√
2
≤ vrad(K

(Bn)
n )

vrad(COP(Bn)
n )

≤ 1,

where K ∈ {CP,DNN,PSD,NN, SPN}.

Proof. First we establish two claims.

Claim 1. vrad (NN(Bn)
n ) = 1

2
.

Proof of Claim 1. We first show that Bn is a disjoint union of 2dim Sn copies of NN(Bn)
n

and hence

Vol(NN(Bn)
n ) = 2− dim Sn · Vol(Bn).

Indeed, for A = [aij]ij ∈ {0, 1}n×n ∩ Sn let SA := Bn ∩HA, where

HA = {[bij]ij ∈ Sn : (−1)aij+1 · bij ≥ 0 for all i, j}.

The ones (zeros resp.) in the matrix A thus determine the entries bij that have positive

(negative resp.) sign. Note that

Bn =
⊔

A∈{0,1}n×n∩Sn

SA

and VolSA = VolNN(Bn)
n for every A ∈ {0, 1}n×n ∩ Sn. Hence

VolBn =
∑

A∈{0,1}n×n∩Sn

VolSA = 2dim Sn Vol(NN(Bn)
n ),

which immediately proves Claim 1. □

Next, denote by

Diff(CP(Bn)
n ) := CP(Bn)

n −CP(Bn)
n = {U − V : U, V ∈ CP(Bn)

n }

the difference body of CP(Bn)
n .
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Claim 2. CP(Bn)
n ⊆ NN(Bn)

n ⊆
√
2Diff(CP(Bn)

n ).

Proof of Claim 2. The left inclusion is clear. To prove the right inclusion it suffices to

prove that every extreme point of NN(Bn)
n is contained in Diff(CP(Bn)

n ). Note that the

extreme points of NN(Bn)
n are of two types:

Eii for some i = 1, . . . , n,(3.1)

1√
2
(Eij + Eji) for some i, j = 1, . . . , n, i ̸= j,(3.2)

where Eij are the standard matrix basis, i.e., the only nonzero entry of Eij is 1 at position

(i, j). The extreme points of the form (3.1) clearly belong to CP(Bn)
n ⊆ Diff(CP(Bn)

n ). It

remains to study the extreme points of the form (3.2). Note that

F := Eij + Eji + Eii + Ejj = xxT ∈ 2CP(Bn)
n ,

where x ∈ Rn is a vector with zeros except at positions i and j, where it has ones. Hence

1√
2
(Eij + Eji) =

1√
2
F − 1√

2
(Eii + Ejj) ∈

√
2Diff(CP(Bn)

n ),

which concludes the proof of Claim 2. □

By the Rogers-Shepard inequality [RS57, Theorem 1] we have that

vrad(Diff(CP(Bn)
n )) ≤ 4 vrad(CP(Bn)

n ).(3.3)

By (3.3) and Claims 1 and 2, it follows that

1

8
√
2
≤ vrad(CP(Bn)

n ) ≤ 1

2
.(3.4)

The statements in Theorem 3.1 now follow from Claim 1 and (3.4).
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